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The energy landscapes of electrostatically charged particles embedded on constant mean curvature

surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces

are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum

structures. The defect motifs favored by potential energy agree with experimental observations for

colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian

curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary

between these regimes, the two motifs are in strong competition, as evidenced from the appearance of

distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of

pentagon pairs.
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Introduction.—The distribution of electrostatically
charged particles on curved surfaces [1] provides a test-
ing ground for global optimization algorithms [2–7], as
well as useful insights into a number of materials science
and biological applications, including the packing of
virus capsids [8,9], fullerene structures [10,11], colloidal
crystals [12,13], and proteins on lipid membranes [14].
A key issue in understanding the resulting structures
is the appearance of defects, which strongly influence
the mechanical, electronic, and optical properties.
Defect structures have even been exploited for the
rational design of templated self-assembly; for example,
polar defects have been used to create divalent metal
nanoparticles [15].

Frustration is intrinsic to curved surfaces because of the
competition between local order and long-range geometri-
cal constraints, and defects appear to screen the resulting
geometrical stresses, even for the ground state configura-
tion. For example, while a hexagonal lattice is possible
for a flat surface, this arrangement cannot occur on a
sphere without introducing isolated fivefold disclinations
(pentagons with positive topological charges), or compos-
ite structures with sevenfold disclinations (heptagons with
negative topological charges) [2–7,12,16,17]. Generally,
adjacent combinations of pentagons and heptagons may
appear as topologically uncharged or charged lines of dis-
locations, corresponding to pleats (e.g., pentagon-heptagon
topological dipoles) and scars (e.g., pentagon-heptagon-
pentagon arrangements), respectively.

Isolated heptagons may also exist if the Gaussian curva-
ture of the substrate is strongly negative, as was shown
recently in studies of two-dimensional colloidal crystals
on the surface of capillary bridges [18]. By systematically
varying the shape and thus the curvature of the substrate,
a sequence of transitions was observed from zero defects
to isolated dislocations, pleats, scars, and isolated
disclinations.

In the present contribution, we characterize the
energy landscape of electrostatically charged particles
embedded on constant mean curvature surfaces, model-
ing, in particular, the recent experimental setup by Irvine
et al. for colloidal crystals [18,19]. Employing the basin-
hopping algorithm [20–23], we identify likely global
minimum configurations for a wide range of system sizes
and surface curvatures, considering several different
interaction potentials. Not only are we able to reproduce
the experimental sequence of defect transitions, but we
also identify a new defect motif corresponding to penta-
gon pairs, which may appear on surfaces with both
positive and negative Gaussian curvatures. Furthermore,
we show here for the first time the hierarchical nature of
the potential energy landscape for these systems. Using
disconnectivity graphs [24], we demonstrate the appear-
ance of separate funnels in the landscape, corresponding
to competing defect motifs favoring dislocations and
disclinations. Our analysis also provides information on
the rearrangement mechanisms between defect patterns,
as well as insight into likely thermodynamic signatures
for structural transitions.
Methodology.—We consider N identical electrostati-

cally charged particles embedded on the surface of
catenoids (zero mean curvature) and unduloids (nonzero
mean curvature) [25]. To represent the interactions of
these colloids trapped on fluid interfaces [26], we have
mainly considered Yukawa potentials of the form

V ¼ PN
j>i

1
rij
e�ðrij=�Þ, where rij is the Euclidean distance

between particles i and j, and � is the screening length. We
choose � ¼ 0:1 so that the ratio between the screening
length and the length of the capillary bridges is of the same
order as that used in experiments [18,26].
We have also considered four other potentials: a Yukawa

potential with � ¼ 0:4, Coulomb, Lennard-Jones, and a
repulsive Lennard-Jones form. Qualitatively, the defect
motifs are the same provided that the particle density per

PRL 110, 165502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

19 APRIL 2013

0031-9007=13=110(16)=165502(5) 165502-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.165502


unit area is sufficiently high, indicating that our defect
analysis should have wide-ranging applicability to curved
surfaces. This regime corresponds to N > 200. If the
number of electrostatically charged particles is smaller,
they tend to populate the boundaries when Coulomb or
other similarly long-range potentials are used; for the
Lennard-Jones potential, we observe patches of a hexago-
nal lattice separated by large spaces. We therefore focus on
200<N < 600 in the present work.

Any point on the surface of an unduloid or a catenoid
can be parametrized using two variables u and v [27].
For catenoids, the mapping to Cartesian coordinates
takes the following form: ðx; y; zÞ ¼ ðc coshðv=cÞ cosðuÞ;
c coshðv=cÞ sinðuÞ; vÞ, where 0 � u < 2�, �zm�v� zm,
and c is a free parameter corresponding to the waist of
the catenoid in the z ¼ 0 plane. The corresponding
transformation is more elaborate for unduloids

ðx;y;zÞ¼ ððmsin�vþnÞ1=2 cosðuÞ;ðmsin�vþnÞ1=2 sinðuÞ;
aFð�v=2��=4;kÞþcEð�v=2��=4;kÞÞ, with � ¼
2=ðaþ cÞ, k2 ¼ ðc2 � a2Þ=c2, m ¼ ðc2 � a2Þ=2, and
n ¼ ðc2 þ a2Þ=2. Fð�; kÞ and Eð�; kÞ are elliptic integrals
of the first and second kinds. We tune the shape of the
unduloids by varying the parameters a, c, and the range
of values for v [27]. For a neck shape unduloid [e.g.,
Figs. 1(a)–1(c)], v is centred around vc ¼ 3�=2�, while
for a barrel shape unduloid, vc¼�=2�. The maximum and
minimum values of v are chosen so that �zm � z � zm.

To characterize the most favorable geometries we
employ basin-hopping global optimization [20–23]. In
this method, random geometrical perturbations are fol-
lowed by energy minimization, and moves are accepted
or rejected based upon the energy differences between
local minima. The minimization procedure transforms

the energy landscape of the system into the set of
catchment basins for the local minima, and makes the
basin-hopping method very effective for finding low-lying
structures. Further details are provided in the Supplemental
Material [28].
We have also constructed databases of connected min-

ima for selected systems, starting from the low-lying
structures found in the basin-hopping runs. We employed
doubly-nudged elastic band transition state searches [29],
where images corresponding to local maxima were tightly
converged to transition states using a hybrid eigenvector-
following [30,31]. This procedure provides a global survey
of the potential energy landscape, which we then visualize
using disconnectivity graphs [24]. We find that distinct
structural arrangements of the particles result in separate
funnels in the landscape. Moreover, the database of con-
nected minima and transition states allows us to predict
energy barriers and rearrangement mechanisms between
defect rearrangements.
To visualize the defect structures, we use Voronoi con-

structions. Thus, pentagons, hexagons, and heptagons
correspond to particles with five, six, and seven neighbors.
All the results presented here were obtained using the
GMIN, OPTIM, and PATHSAMPLE programs [32], which are

available for use under the GNU public license.
Defect motifs on unduloids.—We first analyze the

arrangement of electrostatically charged particles
embedded on nonzero constant mean curvature surfaces
(unduloids). The results forN ¼ 600 identical particles are
presented in Fig. 1. The unduloid parameters a and c were
varied while keeping the height (2zm ¼ 1:5) and volume
(V ¼ 2:65) of the unduloids constant. Experimentally,
these parameters correspond to capillary bridges for

(a) [0.50, 885.89] (b) [0.60, 8.75] (c) [0.70, 1.57] (d) [0.75, 0.75] (e) [0.06, 0.85]

(f) (g)
(h) (i)

Positive Gaussian CurvatureNegative Gaussian Curvature

FIG. 1 (color online). Defect motifs for nonzero constant mean curvature surfaces. (a)–(e) The number of electrostatically charged
particles is N ¼ 600, and the curvature of the capillary bridges is varied while keeping the height and volume of the bridges constant.
The corresponding values for the unduloid parameters [a, c] are given in square brackets. (f)–(i) Comparisons to experimental results
of Irvine et al. for colloidal crystals, reproduced from Ref. [18]. In the experiments, the curvature is tuned by stretching or compressing
the liquid bridge, and the sequence of defect transitions observed is identical to our global optimization results.
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surfaces with different contact angles [33,34]. The defect
motifs and sequence of transitions were found to be con-
sistent as we varied the number of particles, and specific
results for N ¼ 200 are presented in the Supplemental
Material [28].

Because of the finite number of particles, edge effects
are an intrinsic feature and we find that the first two rows of
Voronoi cells from the boundary consistently have more
defects. As for the experimental results on colloidal crys-
tals [18], we find a series of defect transitions, including
isolated heptagons (Fig. 1). The Gaussian curvature is not
constant on the surface of an unduloid, and it is most
negative at the waist, where isolated heptagons are located
[Fig. 1(a)]. Far from the waist and near the edge of the
unduloid, we observe lines of dislocations.

For less negative total Gaussian curvatures [Figs. 1(b)
and 1(c)], isolated heptagons disappear and dislocation
lines prevail. The length of the dislocations is also found
to correlate strongly with the curvature: the length is shorter
when the curvature is less negative. For weakly negative
Gaussian curvatures, the pentagon-heptagon dipole is a
common motif, together with a pair of pentagons. The
pentagon pair motif is surrounded by seven hexagons, as
for an isolated heptagon, and to the best of our knowledge,
this motif has not been reported before. Since isolated
pentagons have a positive topological charge, it is some-
what surprising that double pentagons may exist in a bound
state, and that they can be favorable for surfaces with a
negative Gaussian curvature.

We observe no defects for cylinders [zero Gaussian
curvature, Fig. 1(d)], as expected. Dislocation lines as
well as pentagon pairs then reappear for the unduloid
with a positive total Gaussian curvature [Fig. 1(e)]. The
orientations of the dislocations and pentagon pairs are
reversed for surfaces with positive and negative Gaussian
curvatures. As predicted by continuum elastic theories
[18,35], for negative curvatures, the 7-5 dislocation axis
runs along the meridian, pointing in the direction of the
boundary. For positive Gaussian curvatures, the dislocation
axis points to the center of the unduloid instead. Similarly,
the pentagon pairs point to the boundary for negative
Gaussian curvatures, and to the center of the unduloids
for positive Gaussian curvatures.

Defect motifs on catenoids.—We have also analyzed the
defect structures for a family of catenoids (minimal
surfaces) with varying values of the waist parameter c.
We adjust the height parameter zm so that the radius of
the catenoid at zm, ccoshðzm=cÞ¼1. This procedure results
in less negative total Gaussian curvatures with an increas-
ing waist radius c; see Fig. 2.
For a strongly negative Gaussian curvature (small c in

Fig. 2), we always observe isolated heptagons at the waist
of the catenoids, independent of N. We illustrate the
disconnectivity graph [36] for N ¼ 600 and c ¼ 0:40 in
Fig. 4(a). The potential energy landscape is clearly hier-
archical in character. Interestingly, there are only two
dominant defect configurations near the waist with a high
degree of symmetry, which we label as� and� in the inset,
each consisting of eight heptagons. The main variation
in the structural arrangements of the ions comes from the
dislocation lines near the edges (see the Supplemental
Material for animations of the structures shown in Fig. 4
[28]). The energy barrier for interconverting waist configu-
rations � and � is approximately �E1 � 0:4 (in reduced
units) if the configuration near the edge of the catenoid is
roughly preserved. On the other hand, the barrier for
rearranging the particle distribution near the edges can be
much higher, �E2 � 2:2 (reduced units), as indicated in
Fig. 4(a). From the pathway we see that the high barrier is
due to the global concerted rotation of several layers of
ions near the edges of the catenoids.
For weakly negative Gaussian curvatures (large c in

Fig. 2), we never find isolated heptagons, and only lines
of dislocations and pentagon pairs exist. It is worth noting
that these defect motifs have the same orientations as for
unduloids with a negative Gaussian curvature, above. The
energy landscape for this parameter regime is also simpler.
In particular, we find that the number of possible local
minima is considerably smaller.
The transition from defect patterns favoring disclina-

tions to dislocations occurs at moderately negative
Gaussian curvatures, c� 0:55, which we determine by
constructing a defect phase diagram as a function of the
number of electrostatically charged particles N and the
catenoid waist radius c (Fig. 3). Our global optimization
results further suggest that this transition is only weakly

c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8

Increasingly negative total Gaussian curvature

FIG. 2 (color online). Defect motifs on catenoid surfaces for N ¼ 600, with variable waist radius c.
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dependant on the number of particles in this size range. The
phase diagram for the repulsive Lennard-Jones potential is
shown in the Supplemental Material [28], where we find
similar behavior, except that the phase boundary is shifted
to larger c. Our results for N < 600 are probably far from
the continuum limit, where Bowick and Yao [35] predict
that c will decrease monotonically with N. Additionally,
the phase boundary found in Fig. 3 is neither smooth nor
monotonic. We can explain this observation by analyzing
the disconnectivity graph for N ¼ 600 and c ¼ 0:575.
As shown in Fig. 4(b), there are two distinct funnels, one
favoring dislocations and the other favoring disclinations.
The energy difference between the lowest configurations

in the two funnels is very small compared to the energy
barrier (�E3 � 0:7 in reduced units) associated with inter-
converting the two defect motifs.
Discussion.—We have investigated the most favor-

able defect motifs for electrostatically charged particles
embedded on zero and nonzero constant mean curvature
surfaces. By varying the curvature of the embedding
surface, we have characterized the detailed structures and
energetics of a wide range of defect motifs, including
dislocation lines and isolated disclinations, which are in
excellent agreement with experiment and predictions from
continuum elastic theories. The appearance of a new defect
motif consisting of pentagon pairs is also predicted.
Taking the typical experimental values for electrostatic

interactions between colloids embedded on interfaces, the
energy scale for one simulation unit corresponds to
between 10 and 100kBT (at room temperature). The energy
barriers of interest, as shown in Fig. 4, are therefore quite
large and the structures observed in experiments could be
trapped in local minima. For experimentally relevant tem-
peratures the favored defect motifs are primarily deter-
mined by the potential energy, which is consistent with
the successful structure predictions that we have reported.
We hope these results will stimulate future theoretical and
experimental work. In particular, it will be interesting to
modulate (reduce) the strength of interactions between
the electrostatically charged colloids, so that the defect
rearrangement mechanisms and thermodynamics of the
system may be fully explored. Since the energy landscape
is hierarchical, with different energy scales for intercon-
verting the defect motifs, we expect the thermodynamics

(a) (b) disclinations dislocations

FIG. 4 (color online). Disconnectivity graphs for N ¼ 600 electrostatically charged particles embedded on catenoids with waist
radius (a) c ¼ 0:40 and (b) c ¼ 0:575. The structures in (a) and (b) show representative minima for the corresponding funnels in the
potential energy landscape. We also indicate the typical energy barriers for interconverting different defect motifs. �E1, �E2, and �E3

are, respectively, 0.4, 2.2, and 0.7 in reduced units.
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FIG. 3 (color online). Defect phase diagram as a function of
the catenoid waist radius c and number of electrostatically
charged particles N. Squares denote global minimum structures
containing isolated heptagons, while circles correspond to struc-
tures without isolated heptagons.
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of the system to be very rich. For example, we predict
that there will be multiple signatures in the heat capacity
corresponding to alternative defect morphologies [23].
Calculations of the thermodynamics, kinetic rates, and
rearrangement pathways for these defect motif transitions
are currently underway and will be presented elsewhere.
The interplay between the arrangement of the electrostati-
cally charged particles and possible deformation of the
interface is still an open question, and allowing for flexible
rather than rigid curved surfaces is another avenue for
future research.

Analog models of the defect motifs presented here can
be constructed using Polydron tiles [37], as illustrated in
the Supplemental Material [28]. The Supplemental
Material also contains animations of the defect morpholo-
gies shown in Figs. 1, 2, and 4, the tabulated numbers of
positive and negative topological charges, and a detailed
analysis of the net topological charges as a function of the
integrated Gaussian curvature for several representative
cases. The putative global minima found here will be
made available online from the Cambridge Cluster
Database [38].
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