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Abstract. A circle graph is the intersection graph of a set of chords in a cir-
cle. Keil [Discrete Applied Mathematics, 42(1):51-63, 1993] proved that Domi-
nating Set, Connected Dominating Set, and Total Dominating Set are
NP-complete in circle graphs. To the best of our knowledge, nothing was known
about the parameterized complexity of these problems in circle graphs. In this
paper we prove the following results, which contribute in this direction:
• Dominating Set, Independent Dominating Set, Connected Dominat-

ing Set, Total Dominating Set, andAcyclic Dominating Set areW [1]-
hard in circle graphs, parameterized by the size of the solution.

• Whereas both Connected Dominating Set and Acyclic Dominating
Set are W [1]-hard in circle graphs, it turns out that Connected Acyclic
Dominating Set is polynomial-time solvable in circle graphs.

• If T is a given tree, deciding whether a circle graph G has a dominating set
inducing a graph isomorphic to T is NP-complete when T is in the input, and
FPT when parameterized by t = |V (T )|. We prove that the FPT algorithm

runs in subexponential time, namely 2
O(t· log log t

log t
) · nO(1), where n = |V (G)|.

Keywords: circle graphs; domination problems; parameterized complexity; pa-
rameterized algorithms; dynamic programming; constrained domination.

1 Introduction

A circle graph is the intersection graph of a set of chords in a circle (see Fig. 1 for an
example of a circle graph G together with a circle representation of it). The class of
circle graphs has been extensively studied in the literature, due in part to its applica-
tions to sorting [12] and VLSI design [33]. Many problems which are NP-hard in general
graphs turn out to be solvable in polynomial time when restricted to circle graphs. For
instance, this is the case of Maximum Clique and Maximum Independent Set [19],
Treewidth [27], Minimum Feedback Vertex Set [20], Recognition [21,34], Dom-
inating Clique [25], or 3-Colorability [36].

But still a few problems remain NP-complete in circle graphs, like k-Colorability
for k ≥ 4 [35], Hamiltonian Cycle [8], or Minimum Clique Cover [26]. In this
article we study a variety of domination problems in circle graphs, from a parameterized
complexity perspective. A dominating set in a graph G = (V,E) is a subset S ⊆ V

⋆ A preliminary conference version of this work appeared in the Proceedings of the 38th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG), Jerusalem,
Israel, June 2012. The third author was partially supported by EPSRC Grant EP/G043434/1.
The other authors were partially supported by AGAPE (ANR-09-BLAN-0159) and GRATOS
(ANR-09-JCJC-0041) projects (France).
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Fig. 1. A circle graph G on 8 vertices together with a circle representation of it.

such that every vertex in V \ S has at least one neighbor in S. Some extra conditions
can be imposed to a dominating set. For instance, if S ⊆ V is a dominating set and
G[S] is connected (resp. acyclic, an independent set, a graph without isolated vertices,
a tree, a path), then S is called a connected (resp. acyclic, independent, total, tree, path)
dominating set. In the example of Fig. 1, vertices 1 and 5 (resp. 3, 4, and 6) induce an in-
dependent (resp. connected) dominating set. The corresponding minimization problems
are defined in the natural way. Given a set of graphs G, the Minimum G-Dominating
Set problem consists in, given a graph G, finding a dominating set S ⊆ V (G) of G of
minimum cardinality such that G[S] is isomorphic to some graph in G. Throughout the
article, we may omit the word “Minimum” when referring to a specific problem.

For an introduction to parameterized complexity theory, see for instance [10,15,29].
A decision problem with input size n and parameter k having an algorithm which solves
it in time f(k) · nO(1) (for some computable function f depending only on k) is called
fixed-parameter tractable, or FPT for short. The parameterized problems which areW [i]-
hard for some i ≥ 1 are not likely to be FPT [10, 15, 29]. A parameterized problem is
in XP if it can be solved in time f(k) · ng(k), for some (unrestricted) functions f and g.
The parameterized versions of the above domination problems when parameterized by
the cardinality of a solution are also defined naturally.

Previous work. Dominating Set is one of the most prominent classical graph-
theoretic NP-complete problems [17], and has been studied intensively in the literature.
Keil [25] proved that Dominating Set, Connected Dominating Set, and Total
Dominating Set are NP-complete when restricted to circle graphs, and Damian and
Pemmaraju [9] proved that Independent Dominating Set is also NP-complete in
circle graphs, answering an open question from Keil [25].

Hedetniemi, Hedetniemi, and Rall [22] introduced acyclic domination in graphs. In
particular, they proved that Acyclic Dominating Set can be solved in polynomial
time in interval graphs and proper circular-arc graphs. Xu, Kang, and Shan [37] proved
that Acyclic Dominating Set is linear-time solvable in bipartite permutation graphs.
The complexity status of Acyclic Dominating Set in circle graphs was unknown.

In the theory of parameterized complexity [10,15,29], Dominating Set also plays a
fundamental role, being the paradigm of a W [2]-hard problem. For some graph classes,
like planar graphs,Dominating Set remains NP-complete [17] but becomes FPT when
parameterized by the size of the solution [2]. Other more recent examples can be found
in H-minor-free graphs [3] and claw-free graphs [7, 23].

The parameterized complexity of domination problems has been also studied in ge-
ometric graphs, like k-polygon graphs [11], multiple-interval graphs and their comple-
ments [13, 24], k-gap interval graphs [16], or graphs defined by the intersection of unit
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squares, unit disks, or line segments [28]. But to the best of our knowledge, the pa-
rameterized complexity of the aforementioned domination problems in circle graphs was
open.

Our contribution. In this paper we prove the following results, which settle the pa-
rameterized complexity of a number of domination problems in circle graphs:

• In Section 2, we prove that Dominating Set, Connected Dominating Set,
Total Dominating Set, Independent Dominating Set, and Acyclic Domi-
nating Set areW [1]-hard in circle graphs, parameterized by the size of the solution.
The reductions are from k-Colored Clique in general graphs. It is worth noting
that our reductions can be done in polynomial time and that the parameter de-
pendency is polynomial, hence they also show in particular that all these problems
are NP-hard in circle graphs; this settles the computational complexity of Acyclic
Dominating Set in circle graphs, which was unknown.

• Whereas both Connected Dominating Set and Acyclic Dominating Set are
W [1]-hard in circle graphs, it turns out that Connected Acyclic Dominating
Set is polynomial-time solvable in circle graphs. This is proved in Section 3.1.

• Furthermore, if T is a given tree, we prove that the problem of deciding whether a
circle graph has a dominating set isomorphic to T is NP-complete (Section 2.3) but
FPT when parameterized by |V (T )| (Section 3.2). The NP-completeness reduction
is from 3-Partition, and we prove that the running time of the FPT algorithm
is subexponential. As a corollary of the algorithm presented in Section 3.2, we also
deduce that, if T has bounded degree, then deciding whether a circle graph has a
dominating set isomorphic to T can be solved in polynomial time.

Further research. Some interesting questions remain open. We proved that several
domination problems are W [1]-hard in circle graphs. Are they W [1]-complete, or may
they also be W [2]-hard? On the other hand, we proved that finding a dominating set
isomorphic to a tree can be done in polynomial time. It could be interesting to generalize
this result to dominating sets isomorphic to a connected graph of fixed treewidth. Finally,
even if Dominating Set parameterized by treewidth is FPT in general graphs due to
Courcelle’s theorem [6], it is not plausible that it has a polynomial kernel in general
graphs [5]. It may be the case that the problem admits a polynomial kernel parameterized
by treewidth (or by vertex cover) when restricted to circle graphs. Finally, we would like
to point out that the considered problems are FPT in circle graphs parameterizing by
the maximum degree of the input graph, as the treewidth of a circle graph is linearly
upper-bounded by its maximum degree [18].

2 Hardness results

In this section we prove hardness results for a number of domination problems in circle
graphs. In order to prove the W [1]-hardness of the domination problems, we provide two
families of reductions. Namely, in Section 2.1 we prove the hardness of Dominating
Set, Connected Dominating Set, and Total Dominating Set, and in Section 2.2
we prove the hardness of Independent Dominating Set and Acyclic Dominating
Set. Finally, we prove the NP-completeness for trees in Section 2.3.

For better visibility, some figures of this section have colors, but these colors are not
indispensable for completely understanding the depicted constructions. Before stating
the hardness results, we need to introduce the following parameterized problem, proved
to be W [1]-hard in [31] (see also [13]).
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1st section

2nd section

2nd cluster

1st cluster

Fig. 2. Sections and clusters in the reduction of Theorem 1.

k-Colored Clique
Instance: A graph G = (V,E) and a coloring of V using k colors.

Parameter: k.
Question: Does there exist a clique of size k in G containing

exactly one vertex from each color?

Note that in an instance of k-Colored Clique, we can assume that there is no
edge between any pair of vertices colored with the same color. Also, in [31] the problem
is proved W [1]-hard in the special case where all color classes have the same number of
vertices, and therefore we will make this assumption as well.

In a representation of a circle graph, we will always consider the circle oriented an-
ticlockwise. Given three points a, b, c in the circle, by a < b < c we mean that starting
from a and moving anticlockwise along the circle, b comes before c. In a circle repre-
sentation, we say that two chords with endpoints (a, b) and (c, d) are parallel twins if
a < c < d < b, and there is no other endpoint of a chord between a and c, nor between
d and b. Note that for any pair of parallel twins (a, b) and (c, d), we can slide c (resp. d)
arbitrarily close to a (resp. b) without modifying the circle representation.

2.1 Hardness of domination, connected and total domination

We start with the main result of this section.

Theorem 1. Dominating Set is W [1]-hard in circle graphs, when parameterized by
the size of the solution.

Proof: We shall reduce the k-Colored Clique problem to the problem of finding a
dominating set of size at most k(k+1)/2 in circle graphs. Let k be an integer and let G
be a k-colored graph on kn vertices such that n vertices are colored with color i for all
1 ≤ i ≤ k. For every 1 ≤ i ≤ k, we denote by xi

j the vertices of color i, with 1 ≤ j ≤ n.
Let us prove that G has a k-colored clique of size k if and only if the following circle
graph C has a dominating set of size at most k(k + 1)/2. We choose an arbitrary point
of the circle as the origin. The circle graph C is defined as follows:

• We divide the circle into k disjoint open intervals ]si, s
′
i[ for 1 ≤ i ≤ k, called sections.

Each section is divided into k+ 1 disjoint intervals ]cij , c
′
ij [ for 1 ≤ j ≤ k+ 1, called

clusters (see Fig. 2 for an illustration). Each cluster has n particular points denoted
by 1, . . . , n following the order of the circle. These intervals are constructed in such
a way that the origin is not in a section.

• Sections are numbered from 1 to k following the anticlockwise order from the origin.
Similarly, the clusters inside each section are numbered from 1 to k + 1.

• For each 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1, we add a chord with endpoints cij and c′ij , which
we call the extremal chord of the j-cluster of the i-th section.
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• For each 1 ≤ i ≤ k and 1 ≤ j ≤ k, we add chords between the j-th and the (j+1)-th
clusters of the i-th section as follows. For each 0 ≤ l ≤ n, we add two parallel twin
chords, each having one endpoint in the interval ]l, l+1[ of the j-th cluster, and the
other endpoint in the interval ]l, l + 1[ of the (j + 1)-th cluster. These chords are
called inner chords (see Fig. 3 for an illustration). We note that the endpoints of the
inner chords inside each interval can be chosen arbitrarily. The interval ]0, 1[ is the
interval between cij and the point 1, and similarly ]n, n+ 1[ is the interval between
the point n and c′ij .

• We also add chords between the first and the last clusters of each section. For each
1 ≤ i ≤ k and 1 ≤ l ≤ n, we add a chord joining the point l of the first cluster and
the point l of the last cluster of the i-th section. For each 1 ≤ i ≤ k, these chords
are called the i-th memory chords.

• Extremal, inner, and memory chords will ensure some structure on the solution. On
the other hand, the following chords will simulate the behavior of the original graph.
In fact, the n particular points in each cluster of the i-th section will simulate the
behavior of the n vertices of color i in G. Let i < j. The chords from the i-th section
to the j-th section are between the j-th cluster of the i-th section and the (i+1)-th
cluster of the j-th section. Between this pair of clusters, we add a chord joining
the point h (in the i-th section) and the point l (in the j-th section) if and only
if xi

hx
j
l ∈ E(G). We say that such a chord is called associated with an edge of the

graph G, and such chords are called outer chords. In other words, there is an outer
chord in C if the corresponding vertices are connected in G.

ci,j 1 2 3 n c′i,j ci,j+11 2 3 n c′i,j+1

Fig. 3. Representation of the chords between the j-th and the (j + 1)-th cluster of the
i-th section. The higher chords are extremal chords. The others are inner chords and
have to be replaced by two parallel twin chords.

Intuitively, the idea of the above construction is as follows. For each 1 ≤ i ≤ k,
among the k + 1 clusters in the i-th section, the first and the last one do not contain
endpoints of outer chords, and are only used for technical reasons (as discussed below).
The remaining k− 1 clusters in the i-th section capture the edges of G between vertices
of color i and vertices of the remaining k− 1 colors. Namely, for any two distinct colors
i and j, there is a cluster in the i-th section and a cluster in the j-th section such that
the outer chords between these two clusters correspond to the edges in G between colors
i and j. The rest of the proof is structured along a series of claims.

Claim 1 If there exists a k-colored clique in G, then there exists a dominating set of
size k(k + 1)/2 in C.

Proof: Assume that there is a k-colored clique K in G and let us denote by ki the
integer such that xi

ki
is the vertex of color i in this clique. Let D be the following set of

chords. For each section 1 ≤ i ≤ k, we add to D the memory chord joining the points ki
of the first and the last clusters. We also add to D the outer chords associated with the
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edges of the k-colored clique. The set D contains k(k + 1)/2 chords: k memory chords
and k(k − 1)/2 outer chords. Let us prove that D is a dominating set.

The extremal chords are dominated, since D has exactly one endpoint in each cluster.
Indeed, there is an endpoint in the first and the last cluster of section because of the
memory chords of D. There is an endpoint in the other clusters because of the outer
chord associated with the edge of the k-colored clique. Let us see that the inner chords
are also dominated. For all 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1, the endpoint of the chord of
D in the j-th cluster of the i-th section is ki. Thus, for all 1 ≤ l ≤ n, the inner chords
between the intervals ]l, l + 1[ of the j-th cluster and ]l, l + 1[ of the (j + 1)-th cluster
are dominated by the chord of D with endpoint in the j-th section if l ≤ ki − 1, or by
the chord of the (j + 1)-th section otherwise.

The outer chords are dominated by the memory chords of D, since the outer chords
have their endpoints in two different sections. Finally, the memory chords are also
dominated by the outer chords of D for the same reason. �

In the following we will state some properties about the dominating sets in C of size
k(k + 1)/2.

Claim 2 A dominating set in C has size at least k(k + 1)/2, and a dominating set of
this size has exactly one endpoint in each cluster.

Proof: The interval of a chord linking x and y, with x < y, is the interval [x, y]. One
can note that when ℓ chords have pairwise disjoint intervals, at least ⌈ℓ/2⌉ chords are
necessary to dominate them.

The intervals [ci,j , c
′
i,j ] of the extremal chords are disjoint by assumption. Since

there are k(k + 1) extremal chords, a dominating set has size at least k(k + 1)/2. And
if there is a dominating set of such size, it must have exactly one endpoint in each
interval, i.e., one endpoint in each cluster. �

Claim 3 A dominating set of size k(k+1)/2 in C contains no inner nor extremal chord.

Proof: Let D be a dominating set in C of size k(k + 1)/2. It contains no extremal
chords, since both endpoints of an extremal chord are in the same cluster, which is
impossible by Claim 2. If D contains an inner chord c, the parallel twin of c in C is
dominated by some other chord c′. But then c ∪ c′ intersect at most three clusters,
which is again impossible by Claim 2. �

By Claim 3, a dominating set in C of size k(k+1)/2 contains only memory and outer
chords. Thus, the unique (by Claim 2) endpoint of the dominating set in each cluster is
one of the points {1, . . . , n}, and we call it the value of a cluster. Fig. 4 illustrates the
general form of a solution.

Claim 4 Assume that C contains a dominating set of size k(k+1)/2. Then, in a given
section, the value of a cluster does not increase between consecutive clusters.

Proof: Assume that in a given arbitrary section, the value of the j-th cluster is
l. The inner chords between the interval ]l, l + 1[ of the j-th cluster and the in-
terval ]l, l + 1[ of the (j + 1)-th cluster have to be dominated. Since the value of
the j-th cluster is l, they are not dominated in the j-th cluster. Therefore, in order
to ensure the domination of these chords, the value of the (j+1)-th cluster is at most l. �
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Fig. 4. The general form of a solution in the reduction of Theorem 1. The thick chords
are memory chords and the other ones are outer chords. The origin is depicted with a
small “o”.

Claim 5 Assume that C contains a dominating set of size k(k + 1)/2. Then, for each
1 ≤ i ≤ k, all the clusters of the i-th section have the same value.

Proof: Let D be such a dominating set. In a given section, the endpoints of D in the
first and the last clusters are endpoints of a memory chord, and for all l, they link the
point l of the first cluster to the point l of the last one. Thus, the first and the last
clusters have the same value. Since by Claim 4 the value of a cluster does not increase
between consecutive clusters, the value of the clusters of the same section is necessarily
constant. �

The value of a section is the value of the clusters in this section (note that it is
well-defined by Claim 5). The vertex associated with the i-th section is the vertex xi

k if
the value of the i-th section is k.

Claim 6 If there is a dominating set in C of size k(k + 1)/2, then for each pair (i, j)
with 1 ≤ i < j ≤ k, the vertex associated with the i-th section is adjacent in G to the
vertex associated with the j-th section. Therefore, G has a k-colored clique.

Proof: Let i and j be two sections with i < j, and let xi
k and xj

l be the vertices
associated with these two sections, respectively. By Claim 5, the chord of the domi-
nating set in the j-th cluster of the i-th section has a well-defined endpoint ki, and
the chord of the dominating set in the (i − 1)-th cluster of the j-th section has a
well-defined endpoint kj . The vertex xi

ki
associated with the i-th section is adjacent

in G to the vertex xj
kj

associated with the j-th section. Indeed, the chords having
endpoints in these clusters are exactly the chords between these two clusters, and
there is a chord if and only if there is an edge between the corresponding vertices in G. �

Claims 1 and 6 together ensure that C has a dominating set of size k(k+1)/2 if and
only if G has a k-colored clique. The reduction can be easily done in polynomial time,
and the parameters of the problems are polynomially equivalent. Thus, Dominating
Set in circle graphs is W [1]-hard. This completes the proof of Theorem 1. �

From Theorem 1 we can easily deduce the W [1]-hardness of two other domination
problems in circle graphs.
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Fig. 5. Gadget Hi in interval Ii used in the proof of Theorem 2, corresponding to a color
class Xi of the k-colored input graph G. The dashed chords correspond to non-edges of
G.

Corollary 1. Connected Dominating Set and Total Dominating Set are W [1]-
hard in circle graphs, when parameterized by the size of the solution.

Proof: In the construction of Theorem 1, if there is a dominating set of size k(k+ 1)/2
in C, it is necessarily connected (see the form of the solution in Fig. 4). Indeed, the
memory chords ensure the connectivity between all the chords with one endpoint in
a section. Since there is a chord between each pair of sections, the dominating set is
connected. Finally, note that a connected dominating set is also a total dominating set,
as it contains no isolated vertices. �

2.2 Hardness of independent and acyclic domination

We proceed to describe our second construction in order to prove parameterized reduc-
tions for domination problems in circle graphs.

Theorem 2. Independent Dominating Set is W [1]-hard in circle graphs.

Proof: We present a parameterized reduction from k-Colored Clique in a general
graph to the problem of finding an independent dominating set of size at most 2k in a
circle graph. Let G be the input k-colored graph with color classes X1, . . . , Xk ⊆ V (G).
Let xi

1, . . . , x
i
n be the vertices belonging to the color class Xi ⊆ V (G), in an arbitrary

order. We proceed to build a circle graph H by defining its circle representation. Let
I1, . . . , Ik be a collection of k disjoint intervals in the circle, which will we associated
with the k colors. For 1 ≤ i ≤ k, we proceed to construct an induced subgraph Hi of
H whose chords have all endpoints in the interval Ii, which we visit from left to right.
Throughout the construction, cf. Fig. 5 for an example with n = 4.

We start by adding two cliques on n vertices Li and Ri, with chords li1, . . . , l
i
n and

ri1, . . . , r
i
n, respectively, in the following way. The endpoints of Li and Ri are placed in

three disjoint subintervals of Ii, such that the first subinterval contains, in this order,
the left endpoints of li1, . . . , l

i
n. The second subinterval contains the right endpoints of Li

and the left endpoints of Ri, in the order li1, r
i
1, l

i
2, r

i
2, . . . , r

i
n−1, l

i
n, r

i
n. Finally, the third

subinterval contains, in this order, the right endpoints of ri1, . . . , r
i
n. The blue (resp. red)

chords in Fig. 5 correspond to Li (resp. Ri).
For 1 ≤ j ≤ n, we define the interval vij as the open interval between the right

endpoint of lij and the left endpoint of rij ; cf. the thick intervals in Fig. 5. Such an

interval vij will correspond to vertex xi
j of G.

We also add two sets of 2k + 1 parallel twin chords whose left endpoints are placed
exactly before the left (resp. right) endpoint of li1 (resp. ri1) and whose right endpoints
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are placed exactly after the left (resp. right) endpoint of lin (resp. rin); cf. the green chords
in Fig. 5. We call these chords parallel chords. This completes the construction of Hi.

Finally, for each pair of vertices xi
p, x

j
q of G such that i ̸= j and {xi

p, x
j
q} /∈ E(G), we

add to H a chord ci,jp,q between the interval vip in Hi and the interval vjq in Hj ; cf. the
dashed chords in Fig. 5. We call these chords outer chords. That is, the outer chords of
H correspond to non-edges of G. This completes the construction of the circle graph H.

We now claim that G has a k-colored clique if and only if H has an independent
dominating set of size at most 2k.

Indeed, let first K be a k-colored clique in G containing vertices x1
j1
, x2

j2
, . . . , xk

jk
, and

let us obtain from K an independent dominating set S in H. For 1 ≤ i ≤ k, the set
S contains the two chords liji and riji from Hi. Note that S is indeed an independent

set. For 1 ≤ i ≤ k, since both Li and Ri are cliques, all the chords in Li and Ri are
dominated by S. Clearly, all parallel chords are also dominated by S. The only outer
chords with one endpoint in Hi which are neither dominated by liji nor by riji are those

with its endpoint in the interval viji . Let c be such an outer chord, and suppose that the

other endpoint of c is in Hℓ. As K is a clique in G, it follows that there is no outer chord
in H with one endpoint in viji and the other in vℓjℓ , and therefore necessarily the chord

c is dominated either by lℓjℓ or by rℓjℓ .

Conversely, assume that H has an independent dominating set S with |S| ≤ 2k.
Note that for 1 ≤ i ≤ k, because of the two sets of 2k + 1 parallel chords in Hi, at
least one of the chords in Li and at least one of the chords in Ri must belong to S, so
|S| ≥ 2k. Therefore, it follows that |S| = 2k and that S contains in Hi, for 1 ≤ i ≤ k,
a pair of non-crossing chords in Li and Ri. Note that in each Hi, the two chords
belonging to S must leave uncovered at least one of the intervals (corresponding to
vertices) vi1, . . . , v

i
n. Let viji and vℓjℓ be two uncovered vertices in two distinct intervals

Ii and Iℓ, respectively. By the construction of H, it holds that the vertices xi
ji

and xℓ
jℓ

must be adjacent in G, as otherwise the outer chord in H between the intervals viji and

vℓjℓ would not be dominated by S. Hence, a k-colored clique in G can be obtained by

selecting in each Hi any of the uncovered vertices. �

The construction of Theorem 2 can be appropriately modified to deal with the case
when the dominating set is required to induce an acyclic subgraph.

Theorem 3. Acyclic Dominating Set is W [1]-hard in circle graphs.

Proof: As in Theorem 2, the reduction is again from k-Colored Clique. From a k-
colored G, we build a circle graph H that contains all the chords defined in the proof of
Theorem 2, plus the following ones for each Hi, 1 ≤ i ≤ k (cf. Fig. 6 for an illustration):
we add another set of 2k+1 parallel chords whose left (resp. right) endpoints are placed
exactly before (resp. after) the right (resp. left) endpoint of li1 (resp. rin); cf. the middle
green chords in Fig. 6. We call these three sets of 2k + 1 chords parallel chords.

Furthermore, we add a clique with n chords di1, . . . , d
i
n such that for 1 ≤ j ≤ n the

left (resp. right) endpoint of dij is placed exactly after the left (resp. right) endpoint of

lij (resp. rij). Finally, for each such a chord dij we add a parallel twin chord, denoted by

d̄ij . We call these 2t chords distance chords, and their union is denoted by Di; cf. the
brown edges in Fig. 6. This completes the construction of H. Note that a pair of chords
lij1 and rij2 dominates all the distance chords in Hi if and only if lij1 and rij2 do not cross,
that is, if and only if j1 ≤ j2.

We now claim that G has a k-colored clique if and only ifH has an acyclic dominating
set of size at most 2k.



10 N. Bousquet, D. Gonçalves, G. B. Mertzios, C. Paul, I. Sau, and S. Thomassé
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Fig. 6. Gadget Hi in interval Ii used in the proof of Theorem 3, corresponding to a color
class Xi of the k-colored input graph G. The dashed chords correspond to non-edges of
G.

Indeed, let first K be a k-colored clique in G. An independent (hence, acyclic) dom-
inating set S in H of size 2k can be obtained from K exactly as explained in the proof
of Theorem 2. Note that in each Hi, the distance chords in Di are indeed dominated by
S because the corresponding chords in Li and Ri do not cross.

Conversely, assume that H has an acyclic dominating set S with |S| ≤ 2k. First
assume that S contains no outer chord. By the parallel chords in each Hi (cf. the green
chords in Fig. 6), it is easy to check that S must contain at least two chords in each
Hi, and therefore we have that |S| = 2k. We now distinguish several cases according to
which two chords in a generic Hi can belong to S. Let {u, v} = S ∩ V (Hi). Because of
the parallel chords, it is clear that only one Li, Ri, or Di cannot contain both u and v. It
is also clear that no parallel chord can be in S. If u ∈ Di and v ∈ Li, let w.l.o.g. u = dij1
and v = lij2 . Since v must dominate the twin chord d̄ij1 , it follows by the construction

of Hi that j2 ≤ j1, and therefore the chord rij1 is dominated neither by u nor by v (cf.

Fig. 6), a contradiction. The case u ∈ Di and v ∈ Ri is similar. Therefore, we may
assume w.l.o.g. that u = lij1 and u = rij2 . Note that such a pair of chords lij1 and rij2
dominates all the distance chords in Hi if and only if lij1 and rij2 do not cross. Hence, as

in the proof of Theorem 2, for each Hi, 1 ≤ i ≤ k, the two chords belonging to S leave
at least one uncovered interval viji (corresponding to vertex xi

ji
), and in order for all the

outer chords in H to be dominated, the union of the k uncovered vertices must induce
a k-colored clique in G. Therefore, if H has an acyclic dominating set of size at most 2k
with no outer chord, then G has a k-colored clique. Note that in this case S consists of
an independent set.

Otherwise, the acyclic dominating set S contains some outer chord. Assume w.l.o.g.
that S contains outer chords with at least one endpoint in each of H1, . . . , Hp (with
p ≥ 2, as each chord has two endpoints), and no outer chord with an endpoint in any of
Hp+1, . . . , Hk (only if p < k). By the arguments above, for p+ 1 ≤ i ≤ k it follows that
S contains exactly one chord in Li and exactly one chord in Ri. For 1 ≤ i ≤ p, in order
for all the parallel chords in Hi to be covered, S must contain some chords in Li, Ri, or
Di. As by assumption |S| ≤ 2k, in at least one Hi with 1 ≤ i ≤ p, S contains exactly
one chord in Li, Ri, or Di. By the construction of H, this chord must necessarily be a
distance chord, as otherwise some parallel chords in Hi would not be dominated by S
(cf. Fig. 6). Assume w.l.o.g. that in H1 only the distance chord d1j1 and one outer chord

outgoing from interval v1j2 belong to S. But then if j2 ≥ j1 (resp. j2 < j1) the chord r1j2
(resp. l1j2) is not dominated by S, a contradiction. We conclude that S contains at least

two outer chords in H1.

By a simple counting argument, as |S| ≤ 2k it follows that for 1 ≤ i ≤ p, S contains
exactly one distance chord and two outer chords from each of H1, . . . , Hp (and, in
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particular, |S| = 2k). But then the subgraph of H[S] induced by the chords belonging
to V (H1) ∪ . . . ∪ V (Hp) has minimum degree at least two, and therefore it contains a
cycle, a contradiction to the assumption that H[S] is acyclic. Thus, S cannot contain
any outer chord, and the theorem follows. �

Note that all the reductions of the previous two subsections can be performed in
polynomial time, and that the output parameter depends polynomially on the original
parameter. Therefore, the same reductions also provide NP-hardness proofs for all the
considered problems in circle graphs.

2.3 NP-completeness for a given tree

The last result of this section is the NP-completeness when the dominating set is re-
stricted to induce a graph isomorphic to a given tree.

Theorem 4. Let T be a given tree. Then {T}-Dominating Set is NP-complete in
circle graphs when T is part of the input.

Proof:We present a reduction from the 3-Partition problem, which consists in deciding
whether a given multiset of n = 3m integers I can be partitioned into m triples that
all have the same sum B. The 3-Partition problem is strongly NP-complete, and in
addition, it remains NP-complete even when every integer in I is strictly between B/4
and B/2 [17]. Let I = {a1, . . . , an} be an instance of 3-Partition, in which we can
assume that the ai’s are between B/4 and B/2, and let B =

∑n
i=1 ai/m be the desired

sum. Note that we can also assume that B is an integer, as otherwise I is obviously a
No-instance.

We proceed to define a tree T and to build a circle graph G that has a {T}-dominating
set S if and only if I is a Yes-instance of 3-Partition. Given I = {a1, . . . , an}, let T
be the rooted tree obtained from a root r to which we attach a path with ai vertices, for
i = 1, . . . , n; see Fig 7(a) for an example with n = 9, m = 3, and B = 5. (In this figure,
for simplicity not all the ai’s are between B/4 and B/2, but we assume that this fact is
true in the proof.) Note that |V (T )| = mB + 1.

The circle graph G is obtained as follows; see Fig 7(b) for the construction corre-
sponding to the instance of Fig 7(a): We start with a chord r that will correspond to the
root of T . Now we add mB parallel chords g1, . . . , gmB intersecting only with r. These
chords are called branch chords; cf. the green chords in Fig 7(b). We can assume that the
endpoints of the branch chords are ordered clockwise in the circle. For i = 1, . . . ,mB, we
add a chord bi incident only with gi. These chords are called pendant chords; cf. the blue
chords in Fig 7(b), where for better visibility these chords have been depicted outside
the circle. Finally, for i ∈ {1, 2, . . . ,mB} \ {B, 2B, . . . ,mB}, we add a chord ri whose
first endpoint is exactly after the first endpoint of bi (in the clockwise order, starting
from any of the endpoints of the root r), and whose second endpoint is exactly before
the second endpoint of bi+1. These chords are called chain chords; cf. the red chords in
Fig 7(b). Note that ri is adjacent to gi, gi+1, bi, and bi+1. This completes the construc-
tion of the circle graph G. Each one of the m connected components that remain in G
after the removal of r and the parallel chords is called a block.

Let first I be a Yes-instance of 3-Partition, and we proceed to define a {T}-
dominating set S in G. For 1 ≤ j ≤ m, let Bj = {aj1, a

j
2, a

j
3} be the j-th triple of the

3-partition of I; in the instance of Fig 7(a), we have B1 = {1, 2, 2}, B2 = {1, 2, 2}, B3 =
{1, 1, 3}. We include the chord r in S, plus the following chords for each j ∈ {1, , . . . ,m}:
For i ∈ {1, 2, 3}, we add to S the branch chord g(j−1)B+

∑i−1
k=1 aj

k+1 plus, if aji ≥ 2, the
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Fig. 7. Reduction in the proof of Theorem 4. (a) Instance I of 3-Partition, with n = 9,
m = 3, and B = 5, together with the associated tree T . (b). Circle graph G built from
I. (c) The thick chords define a {T}-dominating set S in G.

chain chords r(j−1)B+
∑i−1

k=1 aj
k+ℓ for ℓ ∈ {1, . . . , aji − 1}; cf. the thick chords in Fig 7(c).

It can be easily checked that S is a {T}-dominating set of G.

Conversely, let S be a {T}-dominating set S in G, and note that we can assume
that the root of T has arbitrarily big degree. As the vertex of G corresponding to the
chord r is the only vertex of G of degree more than 6, necessarily r belongs to S, and
corresponds to the root of T .

We claim that S contains no pendant chord. Indeed, by construction of G, exactly n
of the branch chords are in S, which dominate exactly n pendant chords. As G[S \ {r}]
consists of n disjoint paths, each attached to r through a branch chord, the total number
of chords in these paths which are not branch chords is mB−n. These mB−n pendant
or chain chords must dominate the pendant chords that are not dominated by branch
chords, which are also mB−n many. Assume that a pendant chord b belongs to S. Since
T is a tree, there must exist a path P in S between b and one of the branch chords, say
g. Assume that P contains p chords, including b but not g. It is clear that b is the only
pendant chord contained in P , as otherwise P would have a cycle. Therefore, P has p
chords and dominates exactly p − 1 pendant chords that are not dominated by branch
chords, which contradicts the fact that mB−n pendant or chain chords must dominate
the mB−n pendant chords that are not dominated by branch chords. Hence, S contains
no pendant chord, so S contains exactly mB − n chain chords.

Since T is a tree, each path in S made of consecutive chain chords intersects
exactly one branch chord. As the ai’s are strictly between B/4 and B/2, each block
has exactly 3 branch chords in S. The fact that chain chords are missing between
consecutive blocks ensures the existence of a 3-partition of I. More precisely, the
restriction of S to each block defines the integers belonging to each triple of the
3-partition of I as follows. For a branch chord gi ∈ S, let Pi be the path in S
hanging from gi, which consists only of chain chords. Then, for each branch chord
gi ∈ S, the corresponding integer is defined by the number of vertices in Pi plus one.
By the above discussion, these m triples define a 3-partition of I. The theorem follows. �

To conclude this section, it is worth noting here that {T}-Dominating Set is W [2]-
hard in general graphs. This can be proved by an easy reduction from Set Cover
parameterized by the number of sets in the solution, which is W [2]-hard [30]. Indeed, let
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C be a collection of subsets of a set S, and the question is whether there exist at most k
subsets in C whose union contains all elements of S. We construct a graph G as follows.
First, we build a bipartite graph (A ∪ B,E), where there is a vertex in A (resp. B) for
each subset in C (resp. element in S), and there is an edge in E between a vertex in A
and a vertex in B if the corresponding subset contains the corresponding element. We
add a new vertex v, neighboring all the vertices in A, and k+1 new vertices neighboring
only v. It is then clear that G has a dominating set isomorphic to a star with exactly k
leaves if and only if there is a collection of at most k subsets in C whose union contains
all elements of S.

3 Polynomial and FPT algorithms

In this section we provide polynomial and FPT algorithms for finding dominating sets in
a circle graph which are isomorphic to trees. Namely, in Section 3.1 we give a polynomial-
time algorithm to find a dominating set inducing a graph isomorphic to some tree. This
algorithm contains the main ideas from which the other algorithms in this section are
inspired. In Section 3.2 we modify the algorithm to find a dominating set isomorphic to
a given tree T in FPT time, the parameter being the size of T . By carefully analyzing its
running time, we prove that this FPT algorithm runs in subexponential time. It follows
from this analysis that if the given tree T has bounded degree (in particular, if it is a
path), then the problem of finding a dominating set isomorphic to T can be solved in
polynomial time.

3.1 Polynomial algorithm for trees

Note that, in contrast with Theorem 5 below, Theorem 3 in Section 2.2 states that, if F
is the set of all forests, then F-Dominating Set is W [1]-hard in circle graphs. This is
one of the interesting examples where the fact of imposing connectivity constraints in a
given problem makes it computationally easier, while it is usually not the case (see for
instance [4, 32]).

Theorem 5. Let T be the set of all trees. Then T -Dominating Set can be solved in
polynomial time in circle graphs. In other words, Connected Acyclic Dominating
Set can be solved in polynomial time in circle graphs.

Proof: Let C be a circle graph on n vertices and let C be an arbitrary circle repre-
sentation of C. We denote by P the set of intersections of the circle and the chords in
this representation. The elements of P are called points. Without loss of generality, we
can assume that only one chord intersects a given point. Given two points a, b ∈ P, the
interval [a, b] is the interval from a to b in the anticlockwise order. Given four (non-
necessarily distinct) points a, b, c, d ∈ P, with a ≤ c ≤ d ≤ b, by the region ab − cd we
mean the union of the two intervals [a, c] and [d, b]. Note that these two intervals can be
obtained by “subtracting” the interval [c, d] from the interval [a, b]; this is why we use
the notation ab− cd.

In the following, by size of a set of chords, we mean the number of chords in it, i.e.,
the number of vertices of C in this set. We say that a forest F of C spans a region ab−cd
if each of a, b, c, and d is an endpoint of some chord in F , and each endpoint of a chord of
F is either in [a, c] or in [d, b]. A forest F is split by a region ab−cd if for each connected
component of F there is exactly one chord with one endpoint in [a, c] and one endpoint
in [d, b]. Given a region ab − cd, a forest F is (ab − cd)-dominating if all the chords of
C with both endpoints either in the interval [a, c] or in the interval [d, b] are dominated
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g

a b

c d

e f

g

u

d

f

h

h

a

c

e

b

v

Fig. 8. On the left (resp. right), regions corresponding to Property T1 (resp. Prop-
erty T2). Full lines correspond to real chords of C, dashed lines correspond to the limit
of regions. Bold intervals correspond to intervals with no chord of C with both endpoints
in the interval.

by F . A forest is valid for a region ab − cd if it spans ab − cd, is split by ab − cd, and
is (ab − cd)-dominating. For simplicity of the presentation, we also say that the empty
forest is valid for a region of the form aa− aa.

Note that an (ab − cd)-dominating forest with several connected components might
not dominate some chord going from [a, c] to [d, b]. This is not the case if F is connected,
as stated in the following claim.

Claim 7 Let T be a valid tree for a region ab− cd. Then all the chords of C with both
endpoints in [a, c] ∪ [d, b] are dominated by T .

Proof: All the chords with both endpoints either in [a, c] or in [d, b] are dominated by
T , since T is (ab − cd)-dominating. Hence we just have to prove that the chords with
one endpoint in [a, c] and one in [d, b] are dominated by T . Since T spans ab− cd, there
are in T a chord γ with endpoint a and a chord γ′ with endpoint c. Since T is split by
ab − cd, there is a unique chord uv in T with one endpoint in [a, c] and one in [d, b].
In T\{uv}, γ and γ′ are in the same connected component. Indeed, otherwise their
connected components span two disjoint intervals of [a, c]. But uv is the unique chord of
T with one endpoint in [a, c] and one in [d, b], thus uv cannot connect these components.
So, if T is a tree, γ and γ′ are in the same connected component.

Thus for each point p in [a, c], there is a chord ef of the connected component of γ
and γ′ such that a ≤ e ≤ p ≤ f ≤ c. Therefore, the chords with one endpoint in [a, c]
and one endpoint in [d, b] are dominated. �

We now state two properties that will be useful in the algorithm. Their correctness
is proved below.

T1 Let F1 and F2 be two valid forests for two regions ab− cd and ef − gh, respectively,
such that a ≤ c < e ≤ g ≤ h ≤ f < d ≤ b. If there is no chord with both endpoints
either in [c, e] or in [f, d], then F1 ∪ F2 is valid for ab− gh (see Fig. 8).

T2 Let F1 and F2 be two valid forests for two regions ab− cd and ef − gh, respectively
(F2 being possibly empty), and let uv be a chord such that u ≤ a ≤ c < e ≤ g ≤
v ≤ h ≤ f < d ≤ b, and such that there is no chord with both endpoints either in
[u, a], or in [g, v], or in [v, h], or in [b, u]. Then F1 ∪F2 ∪{uv} is a tree which is valid
for df − ce. When F2 is empty, we consider that e, f, g, h correspond to the point v.
(see Fig. 8).

Roughly speaking, the intuitive idea behind this two properties is to reduce the length
of the circle in which we still have to do some computation (that is, outside the valid
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regions), which will be helpful in the dynamic programming routine. Again, the proof
is structured along a series of claims. Before verifying the correctness of Properties T1
and T2, let us first state a useful general fact.

Claim 8 Let ab− cd be a region and let F be a valid forest for ab− cd. The chords with
one endpoint in [c, d] and one endpoint in [d, c] are dominated by F .

Proof: Let us now consider a chord γ with one endpoint α in [c, d] and one endpoint β
in [d, c]. First assume that β is in [b, a]. Since F is split by ab− cd, there is a chord of F
with one endpoint in [a, c] and one in [d, b], and such a chord dominates γ. Therefore,
by symmetry, we can assume that β is in [a, c]. Since F spans ab− cd, there is a chord
in F with endpoint c. Since F is split by ab − cd, there is a chord ω = uv of F , in the
same connected component as the chord with endpoint c, with one endpoint in [a, c]
and one endpoint in [d, b]. If β ≤ u ≤ α ≤ v, then the chord γ is dominated by F . Thus
we can assume that u ≤ β < α. And note that by assumption, β ≤ c ≤ α. But in F , the
chord with endpoint c is connected to the chord ω, thus there is a chord wz of F such
that w ≤ β ≤ z ≤ α, and therefore the chord γ is dominated by F , which achieves the
proof of the claim. �

Note that the proof of Claim 8 is symmetric, and then the same result is still true for
the intervals [a, b] and [b, a]. Note also that the same result holds without the asumption
that F is (ab− cd)-dominating.

Claim 9 Property T1 is correct.

Proof: Let us prove that F1∪F2 is a forest and that it is valid for the region ab−gh. For
an illustration refer to Fig. 8. Since F1 and F2 span ab− cd and ef − gh respectively, all
the endpoints of the chords of F1 are in [a, c]∪ [d, b], and those of F2 are in [e, g]∪ [h, f ].
Thus the order a ≤ c ≤ e ≤ g ≤ h ≤ f ≤ d ≤ b ensures that a chord of F1 cannot cross
a chord of F2. Therefore, F1 ∪ F2 is still a forest and the connected components of the
union are precisely the connected components of F1 and the connected components of
F2.

Since F1 spans ab − cd, there is a chord of F1 with endpoint a and one chord with
endpoint b, and the same holds for F2 and g, h. Then F1 ∪ F2 spans the region ab− gh.

Since F1 is split by ab − cd, there is exactly one chord per connected component
between [a, c] and [d, b], thus also between [a, g] and [h, b]. The same holds for F2. Thus
each connected component of F1 ∪ F2 has exactly one chord with one endpoint in [a, g]
and the other one in [h, b]. So F1 ∪ F2 is split by ab− gh.

Let us now prove that F1∪F2 is (ab−gh)-dominating. Let us verify that all the chords
with both endpoints in the interval [a, g] are dominated by F1 ∪ F2. By symmetry, the
same will hold for the interval [h, b]. All the chords with both endpoints in the interval
[a, c] are dominated by F1, and those with both endpoints in the interval [e, g] are
dominated by F2. By assumption, there is no chord in the interval [c, e]. The chords
with one endpoint in [c, d] and one endpoint in [d, c] are dominated by F1 by Claim 8,
and those with one endpoint in [e, f ] and one endpoint in [f, e] are dominated by F2.
Thus all the chords with both endpoints in [a, c] are dominated by F1∪F2, which ensures
that F1 ∪ F2 is (ab− gh)-dominating.

Therefore, F1 ∪ F2 is valid for the region ab− gh. �

Claim 10 Property T2 is correct.
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Proof: Let F1 and F2 be two valid forests for ab − cd and for ef − gh, respectively
(F2 being possibly empty), and let uv be a chord with endpoints u and v, such that
u ≤ a ≤ c ≤ e ≤ g ≤ v ≤ h ≤ f ≤ d ≤ b and such that there is no chord with both
endpoints in either [u, a], or [g, v], or [v, h], or [b, u]. For an illustration, refer also to
Fig. 8.

First note that T = F1∪F2∪{uv} is a tree. Indeed, as in Claim 9, one can prove that
F1 ∪ F2 is a forest with exactly one chord with one endpoint in [a, g] and one endpoint
in [h, b] per connected component. Thus, the addition of uv ensures that T is a tree.

Since F1 and F2 spans ab − cd and ef − gh respectively, T spans df − ce. Indeed,
there are chords intersecting d and c in F1, chords intersecting e and f in F2, and all
the chords are strictly inside [d, c] ∪ [e, f ]. Note that when the forest F2 is empty, there
is a chord intersecting v, and thus the tree T spans df − ce.

The tree T spans df − ce, since there is exactly one chord with one endpoint in [d, c]
and one endpoint in [e, f ], which is precisely the chord uv.

Let us prove that T is (df − ce)-dominating. First note that the chords with one
endpoint in [u, v] and one endpoint in [v, u] are dominated by uv. By symmetry, we
just have to prove that the chords with both endpoints in [u, v] are dominated by T .
By symmetry again, we just have to prove that the chords with both endpoints in [u, c]
are dominated. There is no chord with both endpoints in [u, a], the chords with both
endpoints in [a, c] are dominated by F1, since F1 is (ab − cd)-dominating. By Claim 8,
the chords with one endpoint in [a, b] and one endpoint in [b, a] are dominated by F1,
thus the chords with one endpoint in [u, a] and one in [a, c] are dominated.

Therefore, we conclude that T is a valid tree for df − ce. �

For a region ab − cd, we denote by vfab,cd (resp. vtab,cd) the least integer l for which
there is a valid forest (resp. tree) of size l for ab − cd. If there is no valid forest (resp.

tree) for ab − cd, we set vfab,cd = +∞ (resp. vtab,cd = +∞). Let us now describe our
algorithm based on dynamic programming. With each region ab− cd, we associate two
integers v1ab,cd and v2ab,cd. Algorithm 1 below calculates these two values for each region.

We next prove that v1ab,cd = vfab,cd and v2ab,cd = vtab,cd, and that Algorithm 1 computes
the result in polynomial time.

Claim 11 For any region ab− cd, v1ab,cd = 1 (resp. v2ab,cd = 1) if and only if vfab,cd = 1

(resp. vtab,cd = 1).

Proof: Let ab − cd be a region such that vfab,cd = 1. Therefore, there is a set of
chords of size one which is valid for ab − cd. Let ω be this chord. Since ω spans
a, b, c and b, ω has endpoints a, b, c, d. This implies that a = c and b = d, i.e., ω
is precisely the chord ab. If vfab,cd = 1, then a = c, b = d, and the chord ab exists,
which corresponds exactly to the initialization of the algorithm. Conversely, it is
clear that by definition the chord ab is valid for the region ab − ab. Thus, v1ab,cd = 1 if

and only if vfab,cd = 1. The same result holds for trees, since a forest of size one is a tree. �

Claim 12 For any region ab− cd, vfab,cd ≤ v1ab,cd (resp. vtab,cd ≤ v2ab,cd).

Proof: The claim is true for the initialization, since if v1ab,cd = 1 then vfab,cd = 1. By
induction it is still true for all integers k, since Properties T1 and T2 are correct, and
when a value is affected in the dynamic programming of Algorithm 1, one of the two
properties is applied. �
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Algorithm 1 Dynamic programming for computing a dominating tree

for each region ab− cd do v1ab,cd ←∞; v2ab,cd ←∞
for each point a ∈ P do v1aa,aa ← 0; v2aa,aa ← 0
for each chord ab of the circle graph do v1ab,ab ← 1; v2ab,ab ← 1
for j = 2 to n do

if there are two regions ab − cd and ef − gh such that v1ab,cd = j1 and v1ef,gh = j2 with
j1 + j2 = j satisfying Property T1, with v1ab,gh = +∞ then

v1ab,gh ← j
if there is a region ab− cd and a chord uv such that v1ab,cd = j − 1 satisfying Property T2
with an empty second forest then

if v1dv,cv = +∞ then
v1dv,cv ← j

if v2dv,cv = +∞ then
v2dv,cv ← j

if there are two regions ab − cd and ef − gh and a chord uv such that v1ab,cd = j1 and
v1ef,gh = j2 with j1 + j2 = j − 1 satisfying Property T2 then

if v1df,ce = +∞ then
v1df,ce ← j

if v2df,ce = +∞ then
v2df,ce ← j

Claim 13 For any region ab− cd, vtab,cd ≥ v2ab,cd and vfab,cd ≥ v1ab,cd.

Proof: Let us prove it by induction on j. Claim 11 ensures that the result is true for
j = 1. Assume that for all j < k, if vfab,cd = j then v1ac,bd ≤ j and that if vtac,bd = j then

v2ac,bd ≤ j.
Let us first prove that the induction step holds for trees. We now prove that if

vtab,cd = j, then v2ab,cd ≤ j. Let T be a valid tree of size j for the region ab− cd. Since T
spans ab− cd, there is exactly one chord uv with one endpoint in [a, c] and one endpoint
in [d, b]. Let F1 be the restriction of T to the chords with both endpoints in [a, c], and
let F2 be the restriction of T to the chords with both endpoints in [d, b]. Note that
T = F1 ∪ F2 ∪ {uv}. Let e, f (resp. g, h) be the points of the circle graph intersected by
F1 (resp. F2) such that a ≤ e ≤ u ≤ f ≤ c (resp. d ≤ h ≤ v ≤ g ≤ b), and e, f (resp.
g, h) are as near as possible from u (resp. v) (see Fig. 9 for an example). Let us denote
by j1 (resp. j2) the size of F1 (resp. F2). Note that j1 + j2 = j − 1.

a

c

f

e

b

u
v

g

h

a

d
c

b

d

Fig. 9. On the left the original tree, and on the right the partition of the tree into two
forests and a chord uv.

Let us prove that F1 is valid for ac − ef , that F2 is valid for db − hg, and that
Property T2 can be applied to F1, F2, and the chord uv. By symmetry, we just have to
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prove that F1 is valid. There are chords intersecting e, f by definition of e, f , and chords
intersecting a, c since T spans ab − cd. The endpoints of the chords are in [a, e] ∪ [f, c],
since T spans ab − cd and e, f are the nearest points from u which are in T . Thus F1

spans ac− ef .

If there is a connected component of F1 with no chord from [a, e] to [f, c], then
F1∪F2∪{uv} cannot be a tree, since it would not be connected. If a connected component
of F1 has two chords from [a, e] to [f, c], then F1 ∪ {u, v} has a cycle, which contradicts
the fact that T is a tree. Thus F1 spans ac− ef .

Let us prove that F1 is (ac − ef)-dominating. Indeed, if there is a chord with both
endpoints in [a, e] which is not dominated by F1, it cannot be dominated by F2 and uv,
since none of their endpoints is in this interval. Thus T is not valid. Hence all the chords
in the interval [a, e], and by symmetry also in the interval [f, c], are dominated by F1.
Therefore F1 is valid. By induction hypothesis, since the size of F1 is at most j1, we have
v2ac,ef ≤ j1, and the same holds for F2.

Since T is valid, one can note that there is no chord with both endpoints either
in [e, u], or [u, f ], or [h, v], or [v, g]. Thus Property T2 can be safely applied and then
v2ab,cd ≤ j, as we wanted to prove.

d
c

a b
e f
g

d
h

a
b

c

Fig. 10. On the left the original forest F , and on the right the partition of the forest
into the two forests F1 and F2.

Let us now prove that the induction step also holds for forests. We shall prove that
if vfab,cd = j then v1ab,cd ≤ j. Let F be a valid forest F for the region ab − cd. The case
when F is connected has been treated just above, so we can assume that F has at least
two connected components.

Since F spans ab − cd, all the endpoints of F are in [a, c] ∪ [d, b]. Let F1 be the
connected component of the chord with endpoint a. The point e (resp. f) is the point of
[a, c] (resp. [d, b]) with an endpoint in F1, and such that there is no endpoint of F1 after
e (resp. before f) in [a, c] (resp. [d, b]). Let g (resp. h) be the first endpoint of F after e
in [a, c] (resp. before f in [d, b]).

Let us denote by F2 the forest F \ F1 (see Fig. 10 for an example). Let us
prove that F1 and F2 are valid for ab − ef and for gh − cd, respectively. Since F is
(ab− cd)-dominating, all the chords with both endpoints either in [a, e] or in [f, b] (resp.
[g, c] or [d, h]) are dominated by F , thus by F1 (resp. F2). Therefore F1 (resp. F2) is
(ab − ef)-dominating (resp. (gh − cd)-dominating). Thus, by induction hypothesis we

have v1ab,ef = vfab,ef and v1gh,cd = vfgh,cd. And since Property T1 can be applied for

F1 ∪ F2, by the safeness of Property T1, in Algorithm 1 we have v1ab,cd ≤ vfab,cd. �

Claims 12 and 13 together ensure that vfab,cd = v1ab,cd and that vtab,cd = v2ab,cd. Hence,
by dynamic programming all the regions of a given size can be found in polynomial time.
Let us now explain how we can verify if there is a dominating set isomorphic to some
tree of a given size k. This in particular will prove Theorem 5.
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Claim 14 Let k be a positive integer. There is a dominating tree of size at most k in
C if and only if there is a region ab− cd such that vtab,cd ≤ k and such that there is no
chord strictly contained in [b, a] nor in [c, d].

Proof: Assume that there is a region ab − cd with vtab,cd ≤ k and no chord strictly
contained in [b, a] nor in [c, d]. Then by Claim 8, all the chords with one endpoint in
[b, a] and one endpoint in [a, b] are dominated, and the same holds for the couple c, d.
All the chords with both endpoints in [a, c] ∪ [d, b] are dominated by Claim 7, as T is
valid for ab − cd. Since by assumption there is no chord strictly contained in [b, a] and
in [c, d], all the chords of the circle graph C are dominated, as by assumption there is
no chord in the other intervals. Thus, T is a dominating set.

Conversely, let T be a dominating tree of size k. Let uv be a chord of T which
disconnects T . Thus T\{uv} has at least two connected components. Let F1 be a
connected component of T\{uv}, and let F2 = T\({uv} ∪ F1). Let a, b, c, d ∈ P be the
points such that [a, c] (resp. [d, b]) is the smallest interval containing the endpoints of all
the chords in F1 (resp. F2); see Fig. 9 for an illustration. Let us prove that vtab,cd ≤ k.
Indeed, T is a tree by assumption, by definition it spans a, b, c, d, it spans ab− cd since
the chord uv is the unique chord from [a, c] to [d, b], and it is (ab− cd)-dominating since
T is a dominating tree. In addition, since T is a dominating tree, there is no chord with
both endpoints either in the interval [b, a] or in [c, d], as otherwise such a chord would
not be dominated by T . �

By dynamic programming, Algorithm 1 computes in polynomial time the regions for
which there is a valid tree of any size from 1 to n. Given a region ab− cd with vtab,cd ≤ k,
we just have to verify that there are no chords in the intervals [b, a] and [c, d], which
can clearly be done in polynomial time. One can easily check that Algorithm 1 runs in
time O(n10), but we did not make any attempt to improve its time complexity. This
completes the proof of Theorem 5. �

As Algorithm 1 computes the regions for which there is a valid tree of any size from
1 to n, it can be slightly modified to obtain the following corollary.

Corollary 2. Let Tk be the set of all trees of size exactly k. Then Tk-Dominating Set
can be solved in polynomial time in circle graphs.

3.2 FPT algorithm for a given tree

It turns out that when we seek a dominating set isomorphic to a given tree T (which
is part of the input), the problem is FPT parameterized by |V (T )|. In order to express
the running time of our algorithm, and to prove that it is subexponential in |V (T )|, we
need some definitions. Let T be a tree, and let us root T at an arbitrary vertex r. Let v
be a vertex of T . We denote by T [v] the subtree of T induced by v and the descendants
of v in the rooted tree. Let v1, . . . , vl be the children of v in the tree T rooted at r. We
define F (v) as the forest T [v1] ∪ T [v2] . . . ∪ T [vl], which we consider as a multiset with
elements T [v1], . . . T [vl], where we consider two isomorphic trees T [vi] and T [vj ] as the
same element. Suppose that F (v) contains exactly s non-isomorphic trees T1, . . . , Ts,
and that for 1 ≤ i ≤ s, there are exactly di trees in F (v) which are isomorphic to Ti

(note that
∑s

i=1 di = l). We define the following parameter, which corresponds to the
number of non-isomorphic sub(multi)sets of the multiset F (v):

αT
r (v) =

s∏
i=1

(di + 1).
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Finally, we also define the following three parameters, where we implicitly assume that
T is a tree:

αT
r = max

v∈V (T )
αT
r (v)

αT = max
r root of T

αT
r

αt = max
T :|V (T )|=t

αT .

Let t = |V (T )|. Note that for any tree T , we easily have that αT ≤ 2t, and that
if T has maximum degree at most ∆, then it holds that αT ≤ t · 2∆−1 (by choosing
r to be a leaf of T ). In particular, if T is a path on t vertices, is holds that αT ≤ 2t.
In the following proposition we upper-bound the parameter αt, seen as a function of t,
which will allow us to prove that the running time of the algorithm in Theorem 6 is
subexponential.

Proposition 1. αt = 2O(t· log log t
log t ) = 2o(t).

Proof: Let t be an integer and let T be a tree which maximizes αt, i.e., a tree T for
which αT = αt. Let r be a root of T maximizing αT

r , and let v be a vertex of T such
that v maximizes αT

r (v). We claim that we can assume that v = r. Note that if v ̸= r,
then it holds that αT

v (v) > αT
r (v), as on the left-hand side we have one more child of v

that contributes to αT
v (v). Assume for contradiction that αT

r (v) > αT
r (r). Then, by the

previous inequality it holds that αT
v (v) > αT

r (v) > αT
r (r), contradicting the choice of r.

Therefore, we assume henceforth that v = r.
Let T1, T2, ..., Ts be all the non-isomorphic rooted trees of F (r) sorted by increasing

size (where size means number of vertices). As defined before, we denote by di the number
of occurrences of Ti in F (r). By simplicity in the sequel, let us denote by k + 1 the size
of Ts. We first want to find an upper bound on s.

We will need the fact that the number of unlabeled rooted trees of size ℓ is asymptot-
ically equal to a ·dℓℓ−3/2, where a ≃ 0.4399 and d ≃ 2.9558 (see for instance [14, Chapter
VII.5]). It follows that there exist two constants c, c′ and a constant d such that for all
ℓ, the number Nt(ℓ) of unlabeled rooted trees of size ℓ satisfies

c · dℓℓ−3/2 ≤ Nt(ℓ) ≤ c′ · dℓℓ−3/2. (1)

Claim 15 There exists a constant c such that s ≤ ct/ log t.

Proof: Let us first prove by contradiction that all the trees of size at most k appear
in F (v). Assume that there is a tree Ta of size at most k which is not in F (v). Let T ′

be the same tree as T , rooted at r′, except that we replace all the occurrences of Ts

in F (r′) by occurrences of Ta. Since the size of Ta is at most k, T ′ contains strictly
less vertices, say l, than T . Thus in order to have t vertices, we attach to the root of
T ′ l new trees isomorphic to the singleton-tree. Note that T ′ has also size t. Let us
calculate the difference between αT

r (r) and αT ′

r′ (r
′). Note that by maximality of T , we

have αT
r (r) ≥ αT ′

r′ (r
′). For all 1 ≤ i ≤ s − 1 such that Ti is not the singleton-tree, by

construction the number of trees isomorphic to Ti in F (r) in T is equal to the number
of occurrences of Ti in F (r′) in T ′. Thus di = d′i for all 1 ≤ i ≤ s− 1 when Ti is not the
singleton-tree. Since, by construction, there are the same number of occurrences of Ts in
F (r) and of Ta in F (r′), we have ds = da. Thus the only difference between αT

r (r) and
αT ′

r′ (r
′) is the term corresponding to the singleton-tree. If the number of occurrences of

the singleton-tree in F (r) is d∗, then the number of occurrences of the singleton-tree in
F (r′) is d∗ + l. Thus αT ′

r′ (r
′) > αT

r (r), which contradicts the maximality of T .
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Thus, we can assume that all the non-isomorphic rooted trees of size at most k appear
in F (r). By Equation (1), there are at least c · dkk−3/2 non-isomorphic rooted trees of
size k. Therefore, if there is a tree of size k + 1 in F (r), then necessarily

|V (T )| = t ≥ k · c′ · dkk−3/2 = c · dk/
√
k.

Note that, in particular, we have that k ≥ log t for t large enough. Indeed, when we
replace k by log t, the inequality is satisfied. In the following, when we write log we
mean logd.

Since one can easily check that the number of rooted trees of size at most k + 1 is
less that the number of rooted trees of size exactly k+2, and since Ts has size k+1, by
the previous inequalities we have

s ≤ c · dk+2 · (k + 2)−3/2 ≤ c · d2 · dk/k3/2 ≤ c1/k · dk/
√
k ≤ c2t/k ≤ c2t/ log t,

where the last inequality is a consequence of the fact that k ≥ log t. Thus, there exists a
constant, called again c for simplicity, such that s ≤ ct/ log t, as we wanted to prove. �

We now state a useful claim.

Claim 16 Let x1, . . . , xk be some real variables and let P be the polynomial such that
P (x1, . . . , xk) =

∏k
i=1 xi. Under the constraint

∑k
i=1 xi = ℓ, the polynomial is maximized

when xi = ℓ/k for all 1 ≤ i ≤ k.

Proof: Assume for contradiction that this is not the case. Then by symmetry we can
assume that x1 > ℓ/k. Thus there exists another value, say x2, such that x2 < ℓ/k. Let
ε = min{x1 − ℓ/k, ℓ/k−x2}. To compare the two values of the polynomial, we just have
to compare the product x1 · x2. One can easily verify that x1 · x2 < (x1 − ε)(x2 + ε),
contradicting the fact that the polynomial was maximized. �

Claim 16 ensures that αT is maximized when all the di’s are equal. Since T contains
t vertices and since each tree contains at least one vertex, it holds that

∑s
i=1 di ≤ t.

Thus the function αT is maximized when we have di = t/s for all 1 ≤ i ≤ k, i.e.,

αT ≤ max
1≤s≤ct/ log t

s∏
i=1

(di + 1) ≤ max
1≤s≤ct/ log t

(t/s+ 1)s.

Claim 17 Let t be a large enough integer. The real function ft : x 7→ (t/x + 1)x is
increasing in the interval [1, ct/ log t].

Proof: The derivative of the function ft is the following

f ′
t(x) = exp(x log(t/x+ 1)) · (log(t/x+ 1)− 1/(1 + t/x)).

Note that the first term is always a positive function. We also have 1/(1 + t/x) ≤ 1.
Thus we have log(t/x+ 1)− 1/(1 + t/x) ≥ log(t/x+ 1)− 1 ≥ 0 when t is large enough,
since x ∈ [1, ct/ log(t)]. �

Since ft is an increasing function by Claim 17, and since s ≤ ct/ log t by Claim 15,
we have that

αT ≤ (log t/c+ 1)ct/ log t ≤ 2c
′·t· log log t

log t ,

for some constant c′, which completes the proof of Proposition 1. �

We are now ready to state Theorem 6, which should be compared to Theorem 4 in
Section 2.3. We use Proposition 1 to conclude that the running time is subexponential.
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Theorem 6. Let T be a given tree. There exists an FPT algorithm to solve {T}-
Dominating Set in a circle graph on n vertices, when parameterized by t = |V (T )|,
running in time O(αT · nO(1)) = 2o(t) · nO(1). In particular, if T has bounded degree,
{T}-Dominating Set can be solved in polynomial time in circle graphs.

Proof: The idea of the proof is basically the same as in the proof of Theorem 5. The main
difference is that in the proof of Theorem 5, when Properties T1 or T2 are satisfied, we
can directly apply them and still obtain a forest or a tree. In the current proof, when we
make the union of two forests, we have to make sure that the union of the two forests is
still a subforest of T , and that we can correctly complete it to obtain the desired tree T .
For obtaining that, we will apply the two properties stated below, whenever it is possible
to create forests which are induced by the children of the same vertex of T . Let us first
give some intuition on the algorithm.

In the following we consider the tree T rooted at an arbitrary vertex r. Let w1, . . . , wl

be some vertices of T which are children of the same vertex y. The subforest of T induced
by w1, . . . , wl, denoted by F (w1, . . . , wl), is the forest T [w1] ∪ T [w2] . . . ∪ T [wl].

Roughly speaking, the idea of the algorithm is to exhaustively seek, for each region
ab − cd and any possible subforest F of F (v) for every vertex v in T , a valid forest
for ab − cd isomorphic to F , and then try to grow it until hopefully obtaining the
target tree T . Note that if a vertex v of T has k children, there are a priori 2k possible
subsets of children of v, which define 2k possible types of subforests in F (v). But the
key point is that if some of the trees in F (v) are isomorphic, some of the choices of
subsets of subforests will give rise to the same tree. In order to avoid this redundancy,
for each vertex v of T , we partition the trees in F (v) into isomorphism classes, and then
the choices within each isomorphism class reduce to choosing the multiplicity of this
tree, which corresponds to the parameter di + 1 (as we may not choose any copy of it)
defined before the statement of Proposition 1. Note that carrying out this partition into
isomorphism classes can be done in polynomial time (in t) for each vertex of T , using the
fact that one can test whether two rooted trees T1 and T2 with t vertices are isomorphic
in O(t) time [1].

Therefore, if we proceed in this way, the number of such subforests for each vertex
v ∈ V (T ) is at most αT

r (v). As we repeat this procedure for every node of T , the cost of
this routine per vertex is at most αT

r = max{v∈V (T )} α
T
r (v). And as we chose the root ar-

bitrarily, it follows that the function can be upper-bounded by αT = max{r root of T} α
T
r ,

which in turn can be upper-bounded by αt = max{T :|V (T )|=t} α
T , which is a subexpo-

nential function by Proposition 1. We would like to note that this step is the unique
non-polynomial part of the algorithm.

Let us now explain more precisely the outline of the algorithm. An induced subtree
T1 of the input circle graph is valid for a region ab − cd and a tree T [w], if it is valid
for ab− cd, and if, in addition, there is an isomorphism between T1 and T [w] for which
the unique chord between [a, c] and [b, d] corresponds to w. A forest F1 is valid for a
region ab− cd and F (w1, . . . , wl), if it is valid for ab− cd, and if there is an isomorphism
between F1 and F (w1, . . . , wl) for which the unique chord between [a, c] and [b, d] of
each connected component T [wi] corresponds to vertex wi. Let us now state the two
properties that correspond to Properties T1 and T2 of Theorem 5.

F1 Let F1 and F2 be two valid forests for ab − cd and F (v1, . . . , vl), and for ef − gh
and F (w1, . . . , wm), respectively. Assume in addition that a ≤ c ≤ e ≤ g ≤ h ≤
f ≤ d ≤ b. Assume also that, for all 1 ≤ i ≤ l, 1 ≤ j ≤ m, the vertices vi and wj

are pairwise distinct and are children of the same vertex y of T . If there is no chord
with both endpoints either in [c, e] or in [f, d], then F1 ∪ F2 is valid for ab− gh and
F (v1, . . . , vl, w1, . . . , wm).
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F2 Let F1 and F2 be two valid forests for ab − cd and F (v1, . . . , vl), and for ef − gh
and F (w1, . . . , wm), respectively (F2 being possibly empty), and let uv be a chord
of the input graph C. Assume that u ≤ a ≤ c ≤ e ≤ g ≤ v ≤ h ≤ f ≤ d ≤ b and
that there is no chord with both endpoints either in [u, a], or in [g, v], or in [v, h], or
in [b, u]. Assume also that there exists a vertex y of T with exactly l +m children
v1, . . . , vl, w1, . . . , wm Then F1 ∪ F2 ∪ {uv} is a tree which is valid for df − ce and
T [y]. When F2 is empty, we consider that e, f, g, h correspond to the point v.

In the proof of Theorem 5, we have seen that the validity of the corresponding regions
is satisfied. Thus, we just have to verify that the tree or the forest which is created is
isomorphic to the target tree T , and that the chords with one endpoint in each side are
children of the same vertex. The union of the two isomorphisms, and the fact that the
chords with one endpoint in both sides are the children of y, ensures that both properties
are true. Indeed, for example for Property F2, since the chords with one endpoint in
each interval are exactly the children of y, it holds that the chord corresponding to the
vertex y intersects exactly its children.

For each region ab − cd and each tree T [w], we define a boolean variable btab,cd,w,
which is set to ‘true’ if and only if there is a valid tree for ab − cd and T [w]. For each

region ab− cd and each forest F (w1, . . . , wl), we define a boolean variable bfab,cd,w1,...,wl

which is set to true if and only if there is a valid forest for ab − cd and F (w1, . . . , wl).
(For the sake of simplicity, we distinguish between trees and forests, but we would like
to stress that it is not strictly necessary for the algorithm.)

By a dynamic programming similar to Algorithm 1 in Theorem 5, we can compute
all the regions ab− cd and all vertices v of T for which btab,cd,v = true (and the same for

forests). If there is a region ab − cd for which btab,cd,r = true, and such that there is no
chord with both endpoints either in [b, a] or in [c, d], then the tree T dominates all the
chords in the input circle graph C. Indeed, the safeness of Properties F1 and F2 ensures
that there is a valid tree isomorphic to T for the region ab − cd. And Claim 14 in the
proof of Theorem 5 ensures that this tree is indeed a dominating tree.

Note that, indeed, the unique non-polynomial step of the algorithm consists in
generating the collection of non-isomorphic subforests, which are at most αT many.
Thus, the dynamic programming algorithm runs in time O(αT · nO(1)). Again, we did
not make any effort to optimize the degree of the polynomial in the running time. �
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4. O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh. Degree-Constrained Subgraph
Problems: Hardness and Approximation. In Proc. of the 6th Workshop on Approximation
and On-line Algorithms (ALGO/WAOA), volume 5426 of LNCS, pages 29–42, 2008.

5. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.
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