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Analysis beyond the Thomas-Fermi approximation of the density profiles of a miscible
two-component Bose-Einstein condensate
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We investigate a harmonically trapped two-component Bose-Einstein condensate within the miscible regime,
close to its boundaries, for different ratios of effective intra- and interspecies interactions. We derive analytically
a universal equation for the density around the different boundaries in one, two, and three dimensions, for both
the coexisting and spatially separated regimes. We also present a general procedure to solve the Thomas-Fermi
approximation in all three spatial dimensionalities, reducing the complexity of the Thomas-Fermi problem for
the spatially separated case in one and three dimensions to a single numerical inversion. Finally, we analytically
determine the frontier between the two different regimes of the system.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion (BEC) in dilute atomic vapors was a landmark achieve-
ment of late twentieth century physics [1-3], and there are
now many elements that can be cooled down to quantum
degeneracy [1-10]. A significant number of two-component
Bose-Einstein condensates (TCBECs) have also been reported,
as mixtures of two atomic species [11-14], two isotopes of
the same species [15], or two hyperfine states of the same
isotope [16-23].

Many theoretical studies have addressed the density profiles
of TCBECs depending on the ratio between the intra- and
interspecies interaction strengths [24-28]. However, most
of these theoretical studies are numerical or based on the
Thomas-Fermi (TF) approximation [29,30] for Bose-Einstein
condensates [31]. This approximation, introduced for the
single-component case, describes the basic features of the
ground state of a BEC with large net interatomic interactions.
The TF approach neglects the kinetic-energy term in the
time-independent Gross-Pitaevskii equation, on the grounds
that its contributions are to a significant extent dominated
by those due to the nonlinear interaction term. It can give
good approximations, for instance, of the condensate chemical
potential or of the order parameter near its maximum value.
However, close to the order-parameter boundaries, where
the atomic densities are low, the TF approximation cannot
provide the condensate density profile. Knowing the wave
function of the condensate around these boundaries is very
important in order to characterize, for instance, the actual
kinetic energy [32,33], the tunneling rate across a potential
barrier [32,34], or in the case of immiscible TCBECs the
penetration of one component into the other [27], which has
been reported to be highly relevant when characterizing the
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physics at the interface [35-38]. Several works have proposed
new analytical approximations beyond the TF approximation
for single-component BECs [32,33,39-43], and for the two-
component case in the immiscible regime [27,37,38]. Here we
focus on a different scenario, namely, TCBECs in the miscible
regime. We present an analytical approach to study the
density profile around the regions where the TF approximation
fails, by deriving a universal equation that generalizes to two
components the approach presented in [32,33] for the single-
component BECs. We also introduce a general procedure to
solve the TF approximation of TCBECs in one dimension
(1D), two dimensions (2D), and three dimensions (3D),
and we provide an analytical formula that determines the
frontier between the different regimes of the system [24]. Our
method also reduces the complexity of the numerical inversion
required in the TF approach for the one- and three-dimensional
cases [28,44] for the spatially separated regime.

Our paper is organized as follows. In Sec. II we present
the equations that describe TCBECs and the general form of
the two-component TF approximation in the particular case
of an isotropic harmonic potential. In Sec. III we derive a
universal equation governing the behavior of the density profile
close to the different boundaries of the system. Finally, in
Sec. IV we develop a procedure to solve the two-component
TF approach in a general way. We compare our approach,
for each dimensionality, with the numerical solution of the
coupled Gross-Pitaevskii equation in Sec. V, and present our
conclusions in Sec. VI.

II. GROUND STATE OF A TWO-COMPONENT
BOSE-EINSTEIN CONDENSATE

A. Gross-Pitaevskii equations and the Thomas-Fermi limit

The ground state of a TCBEC at zero temperature within
the mean-field approximation is typically well described by the
time-independent two-component Gross-Pitaevskii equations
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(TCGPEs):
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where s = 1 or 2 refers to each component of the BEC, while
myg, Ny, Vi(r), and u, are the mass, number of atoms, external
potential, and chemical potential of the s component, respec-
tively. The intra- and interspecies interaction coefficients are
given by g, > 0 and g, respectively. For simplicity, we will
assume that the TCBEC under consideration is formed by
atoms of the same species in two different spin states [16—
23]. This means that we can set m; = m, = m. Similarly,
we consider equal trapping potentials Vi(r) = V,(r) = V (1),
which in our case will be isotropic and harmonic. Nevertheless,
our results can be straightforwardly generalized for cases
with m; # my and for Vi(r) # V,(r). At this stage it is
useful to redefine the interaction coefficients as gz = g, Ny
and g2 = &12+/ N1 N;, obtaining TCGPEs of the form

272
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with IT = N;/N,.

By considering the TF limit, which neglects the kinetic-
energy terms (V2W, = 0) when compared with the nonlinear
interaction terms, we are able to write down density profiles for
either component. Adopting this limit the TCGPEs [Eq. (2)]
become

(V + gong + g1 2ns_; — )W =0, 3)

where we define n,(r) = |W,(r)|? for s = 1 and 2. Then, by
solving the two coupled equations (3), one obtains the general
form of the TF density profile for each component in the region
where both components coexist, i.e., ny 7% 0, for both values
of s:

(g12HS_3/2 —g3-)V )+ usg3s — MS—SgIZHX_yz

ns(r) = >
8182 — 812

“)

Note that in order to have positive-definite solutions within
the TF approximation the denominator in Eq. (4), g182 — g%z,
must be positive [45]. A system fulfilling this condition is
commonly said to be in the miscible regime, otherwise it is
in the immiscible regime. Throughout this paper, we will only
consider intra- and interspecies interaction coefficients such
that we are in the miscible regime. In the regions where one
component is absent (n; = 0 for s = 1 or 2), the density profile
of the other component, within the TF approximation, reads

Ms — V(I‘)

8s

(&)

ng(r) =

B. Thomas-Fermi boundaries

In a TCBEC, the external potential and the interaction
parameters determine the density distributions of the two com-
ponents. In the following we consider an isotropic harmonic
potential V(r) = V(r) = mwfr2 /2, where w, is the associated
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FIG. 1. (Color online) Different density distributions obtained
within the TF approximation (solid lines) from Eqs. (4) and (5)
and by numerically integrating (dotted lines) the TCGPEs [Eq. (2)]
for the coexisting (a,b) and spatially separated (c) regimes. The
different boundaries obtained in the TF approximation [Egs. (6)]
are highlighted. In this plot we assume g; > g3_, with [T = 1.

angular frequency. With such a potential we can observe two
different regimes: (i) the coexisting regime, where one of
the components occurs only in coexistence with the other
[Figs. 1(a) and 1(b)]; and (ii) the spatially separated regime,
where both components occur partly in coexistence with
each other and partly in isolation [Fig. 1(c)]. In general, we
will denote the component with largest support (meaning the
component with the largest spatial extent) with the subscript
s. Within the TF approximation, we can distinguish two cases,
when gz > g I1°73/2 (equivalently g;_; > g12), in which
case both components have their density maxima at the center
of the trap [Fig. 1(a)], or otherwise, when gs_; < g, IT* /2,
in which case component 3 — s has its maximum of density
at the center of the trap while component s has its maximum
of density away from the center [Figs. 1(b) and 1(c)]. One can
then note that if n,(0) > 0 (=0) we are in the coexisting regime
[Figs. 1(a) and 1(b)] (spatially separated regime [Fig. 1(c)]).
The condition separating these two regimes is derived in
Sec. IV.

The Thomas-Fermi limit, as introduced above, can provide
us with a handle on the relative extent of each component.
As such, we define the TF radii R,, Rs_,, and R, of the
TCBEC trapped in an external harmonic potential by imposing
ng(R;) =0, ng(R3—;) =0 in Egs. (4) and ng(Ry) =0 in
Eq. (5), respectively:

2 Hsf3/2 o —oa
R? — 812 M3—s — &3 sﬂs’ (62)

omep gl — s
2 2 giops — &I s,
Ry = 2 32 (6b)
ma)r g12 - g&‘ HS /
L2
R=—"yp, (6¢)
S ma?
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In Fig. 1 we plot the density profiles of the TCBEC within
the TF approximation and indicate the three boundaries given
in Eq. (6); the outer boundary (R;) that gives the maximum
extent of the BEC, and the inner (R3_,) and innermost (R;)
boundaries delimiting the regions where the two components
coexist. Note that the innermost boundary appears only when
ng(0) =0 (i.e., Ry is only defined when we are in the
spatially separated regime). Figure 1 also shows the numerical
solution of the TCGPE [Eq. (2)] in all the discussed cases,
demonstrating that the TF approach cannot accurately describe
the density profiles close to the boundaries. In the next section
we will go beyond the TF approximation, deriving universal
equations governing the profiles of the densities around the
TF boundaries (the low-density regions), thus enabling an
improvement on the approximate analytical profiles.

III. UNIVERSAL EQUATION
A. Overview

In this section we present an analytical procedure to obtain
the density profile of a TCBEC around the outer, inner,
and innermost boundaries. We derive a universal equation
that describes the density profile around each boundary,
generalizing to two components the method developed in [32]
for the single-component case. This generalization will require
additional approximations for the inner and innermost bound-
aries, beyond those for the one-component case. Note that in
all the expressions shown in this section the subscript s refers
to the component with largest support.

B. Outer boundary

In the vicinity of the outer boundary, R, (present in
both coexisting and spatially separated regimes), the TCBEC
behaves effectively as if it had a single component. Therefore,
we can follow the lines of [32] and linearize the harmonic
potential around R:

V(r) = V(Ry) + ma?Ry(r — Ry) + O[(r — Ry)*. (7

J
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‘We then introduce this linearization into Eq. (2) with W3_; = 0,
obtaining

h? 92
———— +m&’R(r — R) + g |W,[* | ¥, =0, (8)
2m or?

where we have used that u, = V(R,) [see Eq. (5)], and we
have only kept the second derivative term of the radial part
of the Laplacian, i.e., in two (three) dimensions we impose
rOW/ar <« 32W/ar? (2r'ow/or « 82w /or?). This ap-
proximation applies for values of R; much larger than the
thickness of the boundary given by Eq. (10), as discussed
in [32].
Finally, by defining the dimensionless variable

. r—R;
‘Es: s (9)

- K2 173
ds = <2m2a)21§_y> ’ (10)

and the dimensionless wave function ¢; through

S

with

Y(r) = ¢ &), (1)

h
d,\/2m
we obtain the following umversal equation describing the
profile of the outer boundary [32]:

¢! — (& + ¢2) ¢, = 0. (12)

C. Inner and innermost boundaries

Around the inner and innermost boundaries, R; and R3_g,
respectively [see Fig. 1(c)], both components coexist, and we
must therefore consider the full coupled Egs. (2). Thus, in
order to obtain the density profile around the s-component
boundary (the innermost boundary) we linearize the potential
around R;:

V(r) =~ V(R,) + ma; Ry(r — Ry) + O[(r — R,’].  (13)

Introducing this linearization into Egs. (2), one obtains
the following two coupled equations for the s and 3 —s
component, respectively:

B9 gl sy — ) -
[_%ﬁ : el g TR = R+ gl 4 gl 3/2|\v3_x|2} v =0, (142)
12 — 83—s
B9 gas(pass — 1) 3/2—s
“om 32 m-i-mw PRy(r — Ro) + g3 W3 [ 4 ga T2 W | W = 0, (14b)
1 - s

where the term V(R;) in both equations has been rewritten
using the expression (6a). As for the outer boundary, we
only keep the second derivative term of the Laplacian. The
influence of the first derivative is much less than that of
the second derivative in the limit of large R;. Thus, this
approximation will not be valid in the cases for which R;
is close to the origin. Specifically, Ry must be larger than the
thickness of the boundary [Eq. (17)] [32], or, in other words, the

(

relationship between the nonlinear parameters has to be such
that the system is far from the crossover condition between the
coexisting and spatially separated regimes, for which R; = 0
(the analytical expression is shown in Sec. IV).

In order to solve the two coupled Egs. (14) for the s
component, we use the TF approximation for the 3 —s
component by assuming that, close to R, the density of
component 3 — s is large enough to ignore the kinetic-energy
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terms, i.e., we impose 3°W;_,/dr*> = 0in Eq. (14b). There are
two limiting cases where this assumption cannot be applied: (i)
when R;_; — Ry = O(e), which occurs when g1 — /2182,
because the TF approach is at the limit of its applicability
and (ii) when R, — R3_; = O(e), which occurs for g — 0,
because there is no interaction between components and the
system reduces to two noninteracting BECs.

Then, by combining the TF form of Eq. (14b) with
Eq. (14a), one obtains

h2 32 l—[s73/2
(27 i (10,

83—s
2
+—@y—§&>muﬂqu=a (15)

3—s

By following a similar procedure one obtains the equivalent
equation for the 3 —s component around R;_; at which
n3_s(R3_s) = 0. The resulting equation has the same form
as Eq. (15) but with 3 — s and s exchanged. Thus, in order
to solve the innermost and inner boundaries we define the
dimensionless variable

E=t——, (16)

with d; given by

h2
d; =
£2m2w?Ry(1 — g12T1573/2 /g5

1/3
, 17
'

and the dimensionless wave function ¢, defined through
h

W (r) =
ds\/ 2m (g5 — 812/ 83-s)

b5 (&) (18)

In Egs. (16) and (17) the 4+ (—) sign applies for the inner
(innermost) boundary, and for the inner boundary s has to be
interchanged by 3 — s and 3 — s by s.

Finally, one obtains the same universal equation derived in
Sec. III B [Eq. (12)] for both boundaries:

¢! — (& + ¢2)ps =0, (19)

where the s (3 — ) applies for the innermost (inner) boundary.

Summarizing, in this section we have obtained the universal
Eqgs. (12) and (19) that describe the density profiles at the
boundaries of a TCBEC trapped in a harmonic potential.
Note that we obtain the same universal equation for the three
boundaries. However, they require different transformations,
Egs. (9) and (11) for the outer boundary and Egs. (16) and (18)
for the inner and innermost boundaries, in order to retrieve the
actual wave function at each boundary.

D. Solving the universal equation

One can recognize Eqgs. (12) and (19) in the litera-
ture [46,47] as being a Painlevé type-II equation, which for
positive defined solutions with no divergences or sinusoidal
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FIG. 2. (Color online) Numerical solution of the universal equa-
tion [Egs. (12) and (19)] (black solid line) and the two asymptotic
behaviors given by the Hastings-McLeod solution [Eq. (20)]: the
Airy function (green dot-dashed line) and /—£ (red dashed line). We
also plot the asymptotic behavior of the Airy function [Eq. (21)] for
& — 400 (blue dotted line).

behaviors has a Hastings-McLeod (HM) solution' [46] with
the following asymptotics:

V2Ai(€) forg& — 400
=& for& - —oo

where Ai(§) is the Airy function.

In this paper we are interested in the & — oo limit, where
the density is small and the TF approach is not applicable. In
this limit, the asymptotic formula of the Airy function gives an
intuitive form of the behavior of the wave function at large &:

Pum(é) ~ { (20)

P(E — +00) ~ V2Ai(E) ~ S22 (o))

1

N TI
Figure 2 shows the asymptotic forms of the HM solution
[Eqg. (20)] and the numerical solution of Eq. (12) or (19) for
comparison. We also plot the asymptotic behavior of the Airy
function [Eq. (21)]. Even though the approximation given by
Eq. (21) is obtained at & — oo, the two functions coincide
even for low values of &, which makes this asymptotic
approximation very useful as an analytical expression to
describe the universal equation for £ > 0. It remains for us
to find appropriate expressions for the TF boundaries in order
to complete the transformations to retrieve the actual wave
functions near each boundary.

IV. THOMAS-FERMI SOLUTIONS

A. Overview

In this section we present a general procedure to obtain the
TF radii and chemical potentials within the TF approximation
of a TCBEC trapped in an isotropic harmonic potential in 1D,

"Note that the Painlevé type-II equation has a factor 2 in front of
the nonlinear term that makes the prefactor in front of the Hastings-
McLeod solution equal to 1 instead of v/2.
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2D, and 3D. We study both the coexisting and the spatially
separated regimes, and we determine the frontier between them
for each dimensionality.

The TF solution, in either the coexisting or in the spatially
separated regime, can be found by following three general
steps (a similar procedure was presented in [24]): (i) normal-
ization of the density using the proper limits of integration; (ii)
isolation of the chemical potential of each of the components,
us and w3_g, as a function of the parameters of the system
from the normalization integrals; and (iii) insertion of u; and
w3—s into Eq. (4) [Eq. (5)] for the coexisting (noncoexisting)
region, to obtain the density profile.

In some cases these steps can be laborious, and in particular
step (iii) may not be available analytically. Specifically,
we have found that in the 1D and 3D cases the chemical
potentials cannot be inverted analytically within the spatially
separated regime. Thus, here we show how to reduce the two
coupled algebraic equations to a single equation, reducing
the complexity of the numerical problem [28,44]. In all other
cases, fully analytical expressions can be found.

B. Coexisting regime

The coexisting regime can be solved in a fully analytical
fashion for all three dimensionalities. In this case, the nor-
malization conditions for the s and 3 — s components read

Rs_ R,
/ & + ) dr + / (s + ) d%r = 1, (222)
0 R

3—s

Ri_
/ (G35 + 3572 dPr = 1, (22b)
0

where D = 1, 2, or 3 depending on the dimensionality. The
dPr differential represents the volume element for each case:
d'r = 2dr, d*r = 2nrdr, d°r = 4xr’dr (note that in the 1D
case we add a factor 2 due to the fact that r should go
from —oo to 0o). We assume cylindrically and spherically
isotropic configurations in the 2D and 3D harmonic potentials,
respectively, and Ay, ;, ¢, and n, are given by

Ms Ms&3—s — M3—sg12IT° 3/2
)\'S = é‘S = 2 )
8s 8182 — 812 23
2 2, 32 (23)
maw;y mw, 812 83—s
Ks = , MNs =

285 2 8182 — &

By carrying out the integrations in Eqs. (22a) and (22b) we
reach

QpRY™? +epRPT? =1, (242)
BpRPT? =1, (24b)
where Qp, €p, and Sp read
2mwr2 g12H3/2_s — &s
Bp =—Ap 3 —
8182 — 81>
2 2 _ YI-Is73/2
Q= Ap mo; g1z <812 g i ) 25)
3 8s 8182 — 81>
2ma? 1
€p=Ap —,
3 &
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and where the scaling factors

3 6

A =1, Ay = — A3 = — 26
1 2 3= 15 (26)

account for the different dimensionalities. Note that Sp is
related to Q2 through Bp = —(g5 /812 I1°3)Qp.
Then, using Eqgs. (24) and the definitions of Eqgs. (6) we
obtain
ma?

L (1 —Qp/Bp) P,

Hs = —p5 (27a)
260D

g12/4s mw? (gs - n3/23g12) 2P+
b .

S PR 2

(27b)

Finally, by introducing these two chemical potentials into
Egs. (4) and (5) one finds the solution of the TF density profile
of a TCBEC in the coexisting regime.

The analytical expression, within the TF approximation,
of the frontier between the coexisting and spatially separated
regimes, can be found by using the fully analytical expression
of the density profile obtained by inserting Eqs. (27a) and (27b)
into Eq. (4) and setting n,(0) = O:

g2
22 ei(gin — I°2gy)

s

.- -2/D
8-s = gs +1IT° 3/2812>
s = :

¢ P32,
(28)

Note that Eq. (28) gives the condition that separates coexisting
[Figs. 1(a) and 1(b)] and spatially separated [Fig. 1(c)] regimes.
All the calculations shown in this subsection are valid for
D =1,2, and 3.

C. Spatially separated regime

As mentioned previously, the full solution of the two
chemical potentials in the spatially separated regime cannot
be found analytically in the one- and three-dimensional cases.
Here we present a procedure to reduce the complexity of
this numerical problem. We start by using the normalization
conditions for the s and 3 — s components, respectively:

RB—S Rs
/ & + nsrz)dDr + / (As + Ksrz)dDr =1, (29a)
R

Rs—s

s

R R3—
/ (s + k3 dPr + / (G3—s + ma_r?)dPr =1,
0 R,
(29b)

where A, k5, g, and 1, are defined in Eq. (23). After integrating
Egs. (29) and rearranging the terms, we obtain the two coupled
equations

]/DRSD+2 + QDR3Dj;2 + GDRSD+2 = l,

()[DRSD-"_2 + ﬂDR3D_J;2 = 17

(30a)
(30b)
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FIG. 3. (Color online) Comparison between the results of the density profiles obtained through the universal equation [Eqgs. (12) and (19)],
the TF approximation (Sec. IV), and the numerical solution of the TCGPEs [Eq. (2)]. The first row shows the TF density profile (blue dotted
line) and the numerical solution of the TCGPEs (solid lines) of a TCBEC in the spatially separated regime for the 1D (first column), 2D (second
column), and 3D (third column) cases for two different values of g, in each plot. We also plot a magnification around R; (second row), R,
(third row), and R, (fourth row) where we include the asymptotic approximation of the universal equation ~/2Ai(r) (dot-dashed line) derived
in Sec. III. The parameter values used are (i) for the 1D case x = 0.985, g = 200 (black lines), and g, = 1000 (red or gray lines); (ii) for
the 2D case x = 0.9, g, = 1000 (black lines), and g, = 10000 (red or gray lines); and (iii) for the 3D case x = 0.9, g, = 1000 (black lines),
and g, = 10000 (red or gray lines). Note that the magnifications only include the component under study. For a complete description of the
dimensionless parameters and scalings see the text.

053626-6



ANALYSIS BEYOND THE THOMAS-FERMI ...

where ap and yp read
2me? gin (g2 — g3—s113/>~
Op = _AD 2 )
3 g 8182 — 80

2me? g1 3% — g5
3 si;m—eh
with the scaling factors accounting for the different dimen-
sionalities given in Eq. (26), and where Q2p, €p, and Bp are
defined as in Eq. (295).

In the 1D and 3D cases the chemical potentials of both
components cannot be obtained analytically from Egs. (30).

Therefore in order to reduce the two coupled equations into a

single equation we rewrite R”*+2 and Rfjgz from Eq. (30) as

€2y

YD = ADp

g3*5 / §—
RPP? = — = (gN' + g%, (32a)
(glgz - 812))’0
RP#? = 82 (gaN'+ g5, TI¥2), (32b)

(g5, — 8182)2p

where N’ =1 — epRP*+2. Introducing Egs. (32) into the
relation between the TF radii obtained from Egs. (6) yields

5 g(g s — gnll'™?)

R? - R?
8182 — 81>
32 —
" 812(8;s - gIZ)RiS, (33)
8182 — 81>

and one obtains a single equation that only depends on
and on the parameters of the system. This equation has two
roots that need to be inverted numerically in order to find
ws (the root power depends on the dimensionality). By using
the expression for R;_; from Egs. (32a) and (6a) we find
an analytical formulation for p;_g as a function of pu,. Once
we have the two chemical potentials, we introduce them into
the densities [Eqgs. (4) and (5)], obtaining the TF solution
of a TCBEC in D dimensions in the spatially separated
regime.

In the 2D case, however, Egs. (30) can be solved analytically
using the definitions of o, B, y, L, and € from Egs. (25), (26),
and (31) for D = 2. In this case, using the expressions of the
TF radii from Eq. (6) we obtain

ooy _ [migy (132 +1)
M3_g = - s

(34a)

oDy may (T —32gs — g)(IT3/2g15 — g3)
Mg = U3—s + nnz.v73g12 ’
(34b)

and by substituting into Eqs. (4) and (5) we get the density
profiles of the TCBEC in 2D in the spatially separated regime.

V. DENSITY PROFILES AROUND THE BOUNDARIES

In this section, we present the comparison between the
density profiles in 1D, 2D, and 3D of a TCBEC around
the boundaries defined in Eq. (6) obtained (i) within the TF
approximation (Sec. IV), (ii) using the universal equation
derived in Sec. III, and (iii) by numerically integrating the
TCGPEs [Eq. (2)] for the spatially separated regime. To reduce
the parameter phase space we consider the same number of
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atoms for both components, i.e., [T = 1, g1o = ,/xg182, and
gs = 2g3_s, in such a way that the parameter y determines
the ratio between the different TF radii [Eq. (6)], and g3
determines the strength of the nonlinear interactions. In
addition, we rescale the densities of both components to the
maximum value of the density of the 3 — s component at the
origin (considering the s component to be that with largest
support) and the r coordinate to the maximum extension of
the TCBEC (R,). We also use harmonic oscillator units, which
is equivalent to setting i = m = w, = 1. These settings allow
us to compare the behavior, graphically, of the density profiles
close to the boundaries for different values of the nonlinearity
on the same axis scale.

In order to have some reference values of the strength
of the considered nonlinear interactions (g3—;) we compare
our rescaled nonlinear parameters with typical experimental
values. We consider a TCBEC of ¥Rb trapped in a harmonic
potential with a radial trapping frequency w, = 27 x 20 Hz,
transverse trapping frequency w,; = 2w x 150 Hz (for the
one- and two-dimensional cases), and a, = 100aqy, with ag
and a; being the Bohr radius and the s-wave scattering length,
respectively. In the 1D case, g3_; =~ 200 corresponds to a BEC
with N, = N3, ~ 1 x 10* particles, while in the 2D and 3D
cases g3_s = 1000 corresponds to an approximate value of
Ny = N3_; >~ 5 x 10* particles.

Figure 3 shows the density profile of a 1D, 2D, and
3D TCBEC trapped in an isotropic harmonic potential in
the spatially separated regime using the TF approximation
[Egs. (30)—(33)], the universal equation [Egs. (12) and (19)],
and the results of the TCGPE [Eq. (2)] for different nonlin-
earities. Note that we have fixed s = 1 for the component
with largest support. We observe that in 1D (first column of
Fig. 3) the asymptotic behavior of the universal equation at
the different boundaries is in excellent agreement with the
numerical solution of the TCGPE, even for values of g;
corresponding to a relatively small number of particles in a
typical experimental TCBEC.

In 2D (second column of Fig. 3) we can see that the
universal equation around the boundaries (Sec. III) gives a
good insight into the numerical solution of the TCGPE in a
fully analytical way for g» = 1 x 10*. However, for relatively
small nonlinearities (g, ~ 1000), the universal equation close
to the innermost boundary cannot describe the density of the
TCBEQC, as discussed in Sec. II1.

In 3D (third column of Fig. 3) we see that the outer and inner
boundaries are in very good agreement for both nonlinearities,
showing that this approximation can be used to describe the
density of a TCBEC around the boundaries provided that the
conditions mentioned in Sec. III are fulfilled. The universal
equation close to the innermost boundary, on the other hand,
hardly reproduces the density of the TCBEC for low values of
g2; however, the approximation appears to have broad validity
for values of g, above 10 000.

VI. CONCLUSIONS AND REMARKS

In this paper we have presented an analytical approximation
to the ground-state density profiles of a TCBEC trapped in an
isotropic harmonic potential in the mean-field approximation
around the boundaries of each component, where the TF
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approximation is no longer valid. We have derived universal
equations that give a very good estimation of the behavior
of the density profile at the boundaries of each species,
softening the sharp edges produced by the TF approximation.
‘We have compared our analytical results with the numerically
integrated TCGPE, obtaining an excellent agreement between
them. The method proposed in this paper also offers the
possibility to calculate analytically, as proposed in [32,33],
the kinetic energy of the system, tunneling between double-
well potentials and other possibilities such as calculating an
equivalent healing length in a TCBEC in the miscible regime,
similarly to the penetration depth defined in the immiscible
regime by [27]. Moreover, the approach presented in this
work can be easily extended to different species (i.e., different
masses), and also, due to its generality, the procedure may be
extended to other trapping potentials.

We have also studied the TF approximation for 1D, 2D,
and 3D. We have shown that the coexisting regime can be
treated analytically in all three cases. However, the spatially
separated regime only has an analytical solution in 2D. In
1D and 3D we can decrease the complexity of the numerical
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inversion required by reducing the resulting system of two
coupled equations to a single one. Finally, within the TF
approximation, we have determined, analytically, the frontier
between the coexisting and spatially separated regimes.
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