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Abstract: This work proposes a novel approach for real-time video mosaicking facilitating drift-free mosaic construction and visualisation,
with integrated frame blending and redundancy management, that is shown to be flexible to a range of varying mosaic scenarios. The approach
supports unconstrained camera motion with in-sequence loop closing, variation in camera focal distance (zoom) and recovery from video
sequence breaks. Real-time performance, over extended duration sequences, is realised via novel aspects of frame management within the
mosaic representation and thus avoiding the high data redundancy associated with temporally dense, spatially overlapping video frame
inputs. This managed set of image frames is visualised in real time using a dynamic mosaic representation of overlapping textured graphics
primitives in place of the traditional globally constructed, and hence frequently reconstructed, mosaic image. Within this formulation,
subsequent optimisation occurring during online construction can thus efficiency adjust relative frame positions via simple primitive position
transforms. Effective visualisation is similarly facilitated by online inter-frame blending to overcome the illumination and colour variance asso-
ciated with modern camera hardware. The evaluation illustrates overall robustness in video mosaic construction under a diverse range of
conditions including indoor and outdoor environments, varying illumination and presence of in-scene motion on varying computational platforms.

1 Introduction

The problem of effective visualisation of multi-view imagery is
present in most camera surveillance systems. With the development
and increased deployment of pan—tilt-zoom (PTZ) capable surveil-
lance cameras, the problem of limited situational awareness has
arisen with respect to any given (current) camera viewpoint. The
camera operator has to effectively make a constant compromise
between viewing a wide angle picture of the overall environment
under surveillance, or a limited, narrow angle view focusing on par-
ticular object of interest. In this paper, a video mosaic is constructed
from the incoming video imagery providing the operator with the
contextually aware ability to zoom in on a specific object of interest
within the scene while having this detailed information presented in
a panoramic (mosaicked) visualisation of the wider environment
(i.e. situational awareness).

A range of prior work in this topic area exists, not only dealing
with video mosaicking [1-3] but also in the very closely related
problem of image-based panoramic stitching [4]. The input to
such a technique is a set of overlapping images (video frames),
and the goal is to align them spatially and produce a larger output
panoramic image (mosaic). However, when we examine these tech-
niques in detail, they are generally not the same. In the case of pano-
ramic stitching the input is a set of unordered, high-resolution still
images that overlap slightly. In the case of video mosaicking, the
input video frames are temporally dense (i.e. multiple frames per
second (fps)) and have a large spatial overlap. This is caused by
the fact that the camera movement between two consecutive
video frames, within the environment, is usually relatively small
and constrained. Although it may appear that this secondary case
presents a somewhat easier mosaicking problem, it consequently
gives rise to issues of (i) frame (data) management for constructing
large mosaicking sequences (because of the high data redundancy
associated with temporally dense input video frames with signifi-
cant spatial overlap) and (ii) the accumulated error associated
with long-term sequential image registration [3, 5, 6] (i.e. long-term
drift). Furthermore, in most cases video mosaicking algorithms
have a real-time requirement and the problem is therefore most
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generally studied with a live video source — in our case a mobile
PTZ camera is used for this purpose. By contrast, the panorama
stitching problem involving still images does not have a real-time
constraint and thus regular approaches to this related problem
focus mainly on the quality of the output composite (panoramic)
image rather than real-time performance and visualisation issues.
This facilitates the use of a one-time optimisation approach in
such image-based panorama problems [4].

In contrast to earlier recent work [3, 5], we present a pipeline for
real-time video mosaicking through the use of constrained online
bundle adjustment [7-9] supported by a novel online approach to
both real-time processing and data (image frame) redundancy man-
agement. Extending prior work in the field [3, 5, 6], we explicitly
resolve both camera rotation (i.e. pan-tilt) and focal changes (i.e.
zoom (Z)) to facilitate the emplacement of high-resolution (quality)
‘zoomed-in’ image detail within the context of a lower-resolution
mosaic of the environment (e.g. Fig. 1). Furthermore, we introduce
the frame sieve concept to handle the large data redundancy which
is associated with temporally and spatially dense input video
frames. This is supported by graphics accelerated visualisation,
using a dynamic representation of our mosaic as a set of overlapping
graphics primitives, with adapted visual enhancements suitable for
consistent mosaic visualisation within a real-time context. Overall
this facilitates the construction of real-time video mosaics from a
live video source, in the presence of in-sequence breaks (i.e. breaks
in the ‘video feed’), presented as a visually consistent mosaic ren-
dered for real-time interactive visualisation. We illustrate the flexibil-
ity of this technique to both the rotational + zoom (i.e. PTZ) camera
scenario (Fig. 11) in addition to translational camera motion (Fig. 8).

This paper makes several key contributions that both extend the
mosaiking capability of prior work [3, 5, 10] and additionally
address the practical issues of (i) efficiently managing image
frame (data) redundancy [3, 10] and (ii) multi-image compositing
[4] within a real-time context.

Our use of dual steps of pairwise alignment and global bundle
adjustment decouples the online problem of ‘next frame matching’
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Fig. 1 Video mosaic of varying focal length (resolution) imagery from a PTZ camera

a Individual input video frames — without camera Z applied
b Individual input video frames — with camera Z applied
¢ The resulting constructed mosaic from input images in (a) and (b)

within the mosaic map from that of building a globally consistent
mosaic of the scene. This provides both the drift-free capability
of [3, 5] but also additionally facilitates variation in camera focal
length (Zoom, Z) within the mosaic itself (see Fig. 1). Following
the work of [3, 10], a key-frame approach is introduced to
manage frame redundancy because of overlap and maintain the
complexity of the required global optimisation (global bundle ad-
Justment) to a minimum. Loop-closing and in-sequence break re-
covery are both further supported via robust feature matching [3]
over general camera motion in R>. Prior work in this area either
does not address this complete set of issues within a real-time
context (e.g. [3, 5, 10, 11]) or does so within the limitations of a
pure rotational camera context targeting mobile device usage
[6, 12]. By contrast we present a complete and flexible pipeline
that facilitates the relative placement of mosaicked image frames
as graphics primitives in R®,  independent of the spherical
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(rotational) or planar (translational) projection models associated
with prior work that uses a global mosaic image representation
[3, 5, 10, 11]. An example of a video mosaic constructed within
this context is illustrated in Fig. 1 where we see ‘close-up’
imagery, via camera Z presented within the global scene context
of the scene.

This paper is outlined as follows: first, we detail the prior context-
ual work in this domain (Section 2) before detailing our base pipe-
line for video mosaicking (Section 3) that supports our generation
of this example (Fig. 1). Real-time performance is in turn supported
by dual image alignment and frame redundancy management
within this context (Section 4). Final mosaic visualisation is
further supported by consistent inter-frame rendering of frame pri-
mitives within a real-time context (Section 5). Experimental results
are presented over a range of environmental contexts (Section 6)
with conclusions summarised in Section 7.
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2 Prior work

Prior work on panoramic imaging is well established with respect
to the panoramic stitching of static images [2, 13, 14]. Work
centres around an offline pipeline of inter-image alignment,
global registration and final compositing to produce a given pano-
ramic image [2]. Alignment can either be carried out using
direct-pixel-based methods [1, 2] or, as in more recent work,
based on feature-based matching [4]. From this initial alignment
global registration is thus performed, commonly via bundle ad-
justment driven optimisation [15], with subsequent compositing
consistent mutually of inter-image seam selection and blending
[2, 13]. Within current abilities, initial alignment poses the great-
est computational challenge and work in this area on feature-based
correspondence has given rise to the concept of ‘panoramic rec-
ognition’ 2, 4, 16].

By contrast a review of prior work on real-time video mosaicking
presents a more potted history. Early work from [1, 17] presented
impressive results but failed to address the in-sequence loop-closing
problem of re-visited scene areas. Works by Robinson [1] and
Sawhney et al. [18], such as [17], rely on a direct matching ap-
proach for optimisation which is prone to accumulated error
causing alignment drift. Super-resolution mosaicking from video
was achieved by Capel and Zisserman [19] using a feature driven
framework that is not dissimilar to the later work of Steedly et al.
[10] which explicitly considered the computational efficiency of
mosaic construction. Although Steedly et al. [10] and Capel and
Zisserman [19] did not achieve real-time performance; this was
achievable using the contemporary direct matching, yet drift-prone
approaches of [1].

Indeed numerous authors [1, 20-22] have shown real-time per-
formance using a simple frame-to-frame image matching but
these approaches inherently suffer from the accumulation of small
alignment errors. These cause inconsistency problems within the
mosaic when scene areas are re-visited (i.e. loop-closing) or for
co-registration against secondary source imagery. Several
approaches have been proposed to address this issue by either per-
forming global optimisation [23] or explicit loop closing detection
for each new mosaic frame [24]. More recently, Civera et al. [5] has
considered this problem within the context of a self-localisation and
mapping (SLAM) approach whereby an extended Kalman filter
(EKF) is used to jointly estimate both the current sensor position
and that of the scene features observed. Civera ef al. [5] was able
to demonstrate drift-free mosaicking in real time at frame-rate
using this technique but suffered because of the scalability of the
EKF technique to large numbers of image features. In reality,
Civera et al. [5] used only about 3% of detected image features
which limited the quality of the resulting mosaic. Following from
[3, 5] developed an approach using a key-frame subset of the
mosaic over which optimisation is performed using efficient
second-order minimisation. As is common in SLAM approaches
[5], the work of Lovegrove and Davidson [3] decouples the
problem of ‘next frame matching’ within the mosaic from that of
building a global consistent mosaic. Both tasks are performed inde-
pendently in separate threads following the paradigm of the parallel
tracking and mapping (PTAM) [25] approach whereby the estima-
tion of the current frame is only required to the nearest key-frame in
the mosaic with global optimisation performed as a background
task informing the main mosaic visualisation. Notably, Lovegrove
and Davidson [3] uses a whole image alignment approach for
frame-to-frame alignment in order to leverage all of the image
texture and overcome the quality limitations of [5]. A key limitation
of both Lovegrove and Davidson [3] and Civera ef al. [5], for sep-
arate reasons, is the limited degrees of freedom over which they
operate. The EKF approach [5], based on estimation of sensor pos-
ition, is not robust to camera focal length changes (i.e. lens Z in the
PTZ case) as this would translate as unintended camera motion
resulting in potentially erroneous mosaicking. Similarly the whole
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image alignment approach of Lovegrove and Davidson [3] is not
scale-invariant thus prohibiting mosaic construction under variable
focal length (i.e. camera Z). Both works concentrate on image
alignment [3, 5] to achieve drift-free mosaicking, ignoring blending
issues of aesthetic appearance for mosaic presentation [4] but yet
appear unable to cope with the case presented in Fig. 1.

By contrast to this prior work on drift-free mosaicking, we target
an approach based on combined pairwise alignment and global
bundle adjustment, following the geometry driven approach of
[19] but within a similar PTAM [25] inspired approach to
Lovegrove and Davidson [3]. We adopt this methodology (pairwise
alignment and global bundle adjustment) to robustly estimate
frame-to-frame correspondences of new frames in real time while
global optimisation is similarly performed as a parallel task provid-
ing periodic global alignment updates. This facilitates the drift-free
capability of [3, 5] while similarly allowing for an additional degree
of freedom, image Z, within the mosaic construction (e.g. Fig. 1).
Contemporary approaches performing real-time mosaiking via
either feature-based or direct-pixel-based methods in certain appli-
cation spaces are generally limited to camera rotation [6, 12] or lack
loop-closing [11] — our approach inherently performs both as per
Lovegrove and Davidson [3].

Furthermore, we introduce a novel variation on the key-frame
concept of Lovegrove and Davidson [3] and Steedly ef al. [10] to
derive a frame sieving methodology to manage the growth com-
plexity of this parallel optimisation task to the maximally required
set of images for mosaic visualisation. Both Civera et al. [5] and
Lovegrove and Davidson [3] noted the complexity issue in their re-
spective approaches. Finally, we address the issues of effective
mosaic presentation in the presence of mosaic artefacts caused by
automatic gain control (AGC) present on modern camera hardware
following a real-time substitute of the approaches proposed in [4].
Overall, we present a complete pipeline for video mosaic construc-
tion incorporating both novel aspects of parallel match optimisation
and in-sequence scale changes (Z) realised within the practical
context of frame (data) management for scalability and inter-frame
blending for global mosaic visualisation as an efficient and flexible
graphics primitive representation. Such a complete ‘end-to-end’
recipe for real-time video mosaicking is not presented in the prior
literature [3, 5, 6, 10, 11].

3  From video frames to a mosaic

First, we outline a base-line approach to real-time video mosaick-
ing, inclusive of data redundancy management via frame overlap
detection, before proceeding to explicit aspects of maintaining real-
time performance (Section 4) and mosaic presentation (Section 5).

3.1 Outline

Our video mosaicking approach is driven by initial feature point
correspondences (speeded up robust features (SURFs) feature
points [26]) between consecutive video frames. Subsequently, a
RANdom SAmpling and Consensus (RANSAC)-based[27] method-
ology is applied for the dual purpose of outlier rejection and rapid
identification of a maximally consistent set of detected inter-frame
feature correspondences. On the basis of on these match correspon-
dences pairwise alignment is used to robustly estimate relative
frame-to-frame image transformation (Section 4.1). As the mosaic
increases in size, a novel key-firame-based approach is used to iden-
tify frame overlap and facilitate redundant frame removal limiting
global mosaic complexity (Section 3.4). Global bundle adjustment
is performed in parallel, over this redundancy-filtered frame set, to
eliminate accumulated error (i.e. drift) within this pairwise local
registration process (Section 4.1). This provides a periodic
update, in the form of globally optimised drift-free image registra-
tion, over all frames present in the mosaic. Additional gain compen-
sation is used, again on a pairwise and global basis, to compensate
for artefacts caused by the commonplace AGC present on most
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modern cameras (Section 5). Break-in-sequence occurrences or
occurrences where consecutive frame-to-frame matching fails are
handled by invocation of specific global frame search overall all
frames within the mosaic (Section 4.2) within the complexity limi-
tation provided by prior redundant frame removal.

3.2 Feature detection and matching

The primary stage in our approach is the extraction of feature points
from the image following the invariant SURF approach of Bay et al.
[26]. The subsequent SURF feature descriptor characterises a given
feature point as a vector in R®*. SURF descriptor matching is per-
formed using a simple L2 distance comparison embodied in an ef-
ficient k—d tree look-up structure using the nearest neighbour ratio
matching strategy [26, 28]. Following this approach, a feature f
from the first frame is considered a match to the feature f;, from
the second frame if the descriptor distance d(f;, f>) between
these features fulfils the following relationship:

7.(1%’ ifb) ~ <t (1
mind(f,, )

such that the ratio of this distance to the next closest match for a sep-
arate feature in the second frame, f; i # b, is greater than a given
threshold value 1€ (0, 1) (empirically set as =0.65 [28]). When
considering the matches extracted in this previous filtering step,
we must consider that a given amount of statistical outliers
remain in the filtered correspondences. This is especially true in
scenes containing moving objects or significant image noise.
RANSAC fitting [27] is thus employed for outlier rejection to
cope with this occurrence. In general, RANSAC determines
which measurements are statistical inliers or outliers against an esti-
mated model fit. Here our chosen model, for RANSAC fitting, is a
frame-to-frame projective transform (i.e. a 3x3 homography matrix,
H) forming pairwise image alignment in the first instance [7]. This
is obtained from multiple point correspondences by solving a set of
linear equations using a direct linear transformation (DLT) as
follows

X; = sHx; 2)

where x; <> x; is a frame-wise feature point correspondence, in the
set i={0...n} and H is the homography. Since the x; and Hx; are
homogeneous vectors, they may differ in magnitude by a
non-zero scale factor s. The equation can be expressed in the cross-
product form as follows

&) Hx, =0 3)

allowing the derivation of a simple linear solution for H matrix fol-
lowing the DLT algorithm of [7] within our RANSAC framework.
However, it has to be noted that as H is determined up to scale, only
eight unknowns are present in the linear system of equations. As
each point correspondence gives two linearly independent equa-
tions, we thus need a minimum of four correspondences to calculate
the H matrix projection [7]. Empirically, we appear to obtain
average number of point-wise matches between image pairs signifi-
cantly above this threshold over which RANSAC is used to identify
the maximally consistent model, H. In this paper, this estimated
projective transform model, H, is only used to eliminate the statis-
tical outliers from the set of identified matches over which pairwise
alignment (Section 3.5) is subsequently performed.

In terms of feature matching for video mosaicking, as opposed to
still image panoramic stitching, we can assume without loss of gen-
erality that consecutive video frames overlap to a given degree.
There can be special cases when this assumption is broken but
we handle these explicitly (see Section 4.2). This assumption sim-
plifies the matching step, as we need to match the current video
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frame only with the previous one — that is, pairwise matching.
For subsequent global bundle adjustment, we already know the
prior video frame overlap relationships from this pairwise case
and previous global estimations (providing a good initial set of
frame co-registration estimates). This distinction between the pair-
wise and global image alignment will be further detailed in
Section 4.1.

3.3 Camera geometry

Our feature matching and homography estimation is performed over
an assumed pinhole camera model that may both rotate around its
optical centre and Z in or out of the scene view — in practical
terms a stationary PTZ camera. These movements result in a
special group of homographies of the received video frames. In
our case, each video frame is parametrised by an axis-angle repre-
sentation of camera rotation and its associated focal length. The
axis-angle representation is a four parameter model used to describe
an arbitrary rotation in the three-dimensional (3D) space. It consists
of a normalised vector which describes the axis around which the
rotation will occur (the rotation axis is parallel to this normalised
vector) and the fourth parameter is the amount of applied rotation
— an angle of rotation. The focal length parameter is used to param-
etrise camera zooming and is essentially the video frame scaling
factor.

In general, the problem can be formulated as a placement of
video frames in 3D space around an origin, that is, every plane con-
taining a video frame is perpendicular to the ray going through the
centre of that video frame with the starting point in that 3D space
origin. Since the assumed geometry is a constrained case of the
general perspective homography, the 3x3 homography matrix rep-
resentation can be computed from this representation

H = KR )

where K is the scaling matrix based on the focal length f'and R is the
rotation matrix derived from Rodrigues’ rotation formula [29]. Note
that the opposite transformation, that is, computation of the para-
meters of our assumed geometry from the 3x3 homography
matrix is not possible in the general case because of the assumed
constraints, that is, the homography matrix can represent transfor-
mations that cannot be represented by the scale and rotations para-
meters only. Here our consideration of camera PTZ extends prior
work in the field [3, 5, 6, 12]. Furthermore, we will illustrate that
by extending the bounds on this space we can additionally cope
with camera translation in R?, in combination with £, by assuming
planar mosaic projection as illustrated in Fig. 8.

3.4 Computing video frame redundancy

A further key issue is that of data redundancy management (i.e.
frame redundancy management) within the context of continuous
dense environment sampling from video. Given the reasonable
bounds on the speed of camera motion within the environment, a
large number of video frames will contribute largely duplicate in-
formation to the resulting mosaic. This growth in the overall
mosaic complexity poses key scalability issues for our parallelised
global bundle adjustment (discussed in Section 3.5) where we
otherwise experience an unchecked quadratic growth in feature
matching complexity (Section 3.2 [3]). Determining potential
frame redundancy by determining if any given two video frames
overlap, as well as the estimation of the extent by which the
frames overlap, is thus key to realisation of this paper for general-
ised large-scale environments. This remains unaddressed in prior
work [3, 5, 6, 12].

Hereby, let us consider two images i and j with their associated
camera parameters (i.e. homography, H). Let the image i be consid-
ered the reference (i.e. the ith image coordinate frame). We assume
the centred, normalised image coordinates, so that the image
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bounding box extends from —1 to 1 horizontally and from — % to
i vertically, where ar is the aspect ratio of the image.
Subsequently, the jth image bounding box needs to be warped
from the jth image coordinate frame to the assumed, the ith
image coordinate frame. This can be done by simply transforming
the jth image bounding box using the associated camera parameters.
The theory behind these transformations is described in further
detail in [7].

Actual transformation of the jth image bounding box coordinates
from the jth image coordinate frame to the reference (i.e. the ith
image coordinate frame) is carried out as follows. First, the coordi-
nates (x;, y;) are transformed to projective geometry as follows

u =1y Q)

Subsequently, we use the homography matrices of images i and j to
warp the coordinates as follows:

—1
u; = HH; u; (6)

The coordinates (x;, ;) in the reference coordinate frame can be cal-
culated by transforming them from the projective geometry:

x=E =t ©)

After the jth image bounding box has been warped to the reference
frame, we are looking at a simple 2D geometry problem. The ith
image is represented by a rectangle and the jth image bounding
box is an arbitrary quadrilateral because of the perspective trans-
form that it underwent. To calculate the common area of the two
image frames, the intersection points of these co-located bounding
boxes are calculated from which the common overlap area for both
quadrilaterals is obtained.

Furthermore, we obtain the percentage of inter-frame overlap
between a set of multiple frames (Fig. 2) by using a numerical sam-
pling method as opposed to the analytical method used in the two
frame overlap problem. This is required in our subsequent use of
a frame sieving approach to identify redundant, or largely redun-
dant, frames within a given set (Section 4.3).

In this approach, the interior of the frame bounding box of image
is initialised with multiple sampling points from which every frame
covering the bounding box is examined (Fig. 2). The algorithm
determines which of the sampling points represent redundancy
because of coverage by other frames within the mosaic by

Y
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Fig. 2 Visible area calculation in the case of multiple frame overlap
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examining sampling point to frame boundary intersection for all
surrounding frames. After all such frames have been examined,
the percentage of visible (i.e. uncovered, non-redundant) area is
equal to the percentage of sampling points left. The idea is depicted
in Fig. 2 where the blue frame represents the potentially redundant
frame and the green and red frames represent existing, potentially
covering, frames. In this example, there are 34 visible sampling
points (blue) remaining from an original 63 resulting in a visible
area equal of 34/63 ~ 53% (Fig. 2).

Since the majority of frames are not significantly rotated relative
to the subsequent frames, the pattern of the sampling points is
chosen to provide higher accuracy of the area estimation when con-
sidering such cases of slight inter-frame rotation. As such, each
sample row and column is slightly offset to the previous one by a
small angle, 6;, of the sampling density as shown in Fig. 2. Here,
we can see that the left-most column of sampling points lies only
partially inside the bounding box of the blue frame in question.
Empirically, this has been found to give improved accuracy in
overlap calculations in place of an axis aligned mesh in the presence
of the often minor inter-frame rotations encountered in a full-frame
video input operating at ~25 fps.

3.5 Bundle adjustment

Finally, bundle adjustment [7-9] addresses the problem of optimis-
ing the 3D structure of the reconstructed scene. In essence this pre-
sents a large, sparse, geometric parameter estimation problem. The
2D positions on images constitute the measurement set and the
camera parameters (scale and rotation) with 3D coordinates (in
our case the 3D coordinates describe the projective geometry) of
the feature points are the parameters being sought. The goal is to
minimise the re-projection error, that is, a sum of squares of euclid-
ean distances of observed and estimated image features.

Following [9], the Levenberg—Marquardt algorithm has proven
to be the best suited in solving this non-linear least-squares
problem. It can be thought as an interpolation between the gradient
descent and Gauss—Newton algorithms. Despite the high dimen-
sionality of the problem, the lack of dependence among most of
the estimated parameters (i.e. the 3D points do not influence each
other) makes fast calculation possible because the structure of the
problem is sparse.

In general, a representation for the geometry used in the problem
is not specifically assumed [9]. We specify the projection function

fp that computes the estimated measurement vector (i.e. the position

of a point in the camera plane), given the camera and 3D point para-
meters. In our case the projection function fp is given by the homo-
graphy H; (calculated from the scale and rotation parameters) of the
camera i. For the estimated point # in the projective space we can
calculate its ith camera coordinates (i.e. its position on the ith
image). These coordinates in terms of projective geometry are
described by vector u;, which can be calculated by applying the
homography to the # point

u, = Hu )

1 1

To calculate the 2D image coordinates (x;, y;) of this point, we need
to transform the coordinates from the projective geometry to the
image coordinate frame:

X =— Vi=—— )

These transformations are thoroughly described in [7] and here
provide a robust reconstruction methodology within a real-time per-
formance framework.
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4 Maintaining real-time performance

On the basis of this prior overview of a video mosaicking approach,
we now outline a specific methodology for maintaining real-time
performance, by way of a continuously updated ‘live’ mosaic, for
a largely unconstrained video input providing densely sampled,
highly redundant scene imagery.

4.1 Pairwise and global image registration

Bundle adjustment is commonly performed over the entire image
set to obtain a maximally global consistent mosaic [2, 4]. By con-
trast here, within real-time constraints, we cannot readily afford to
perform global bundle adjustment over all prior video frames
every time a new frame is introduced. However, it is still desirable
to use global bundle adjustment in order to prevent accumulated
error (drift) which otherwise occurs when only concatenated pair-
wise image alignment is used in mosaic construction [1, 5]. Our
use of image alignment has been divided into two concurrent opera-
tions: (i) primary — pairwise frame alignment and (ii) secondary —
global bundle adjustment in a similar vein to the work of [3] and
[25]. We hence use bundle adjustment globally for overall accumu-
lated error reduction (i.e. to remove drift accumulated from iterative
pairwise frame-to-frame alignment and) within the overall mosaic
representation.

Pairwise frame alignment is instigated for every new video frame
occurrence. It takes only two frames, transforming the second to
align it optimally to the first one (i.e. it does not change the para-
meters of the first frame). This is performed iteratively over the
set of video frames occurring since the last global bundle adjust-
ment. As each application of pairwise frame alignment only takes
two video frames, it facilitates real-time alignment of incoming
frames relative to those already present and globally adjusted
within the mosaic.

Global bundle adjustment is performed periodically in parallel to
the pairwise alignment case. This maximally aligns all of the
current mosaic images simultaneously taking into account the
overall structure of the mosaic and thus correcting errors accumu-
lated from prior pairwise image alignment. Post-calculation of all
the video frame alignment transformation parameters are updated
in the visualisation. Although global bundle adjustment is compu-
tationally expensive (order of magnitude seconds for 10+ video
frames present in the mosaic), it is effectively implemented as a par-
allel task periodically updating the overall inter-image alignment
within the mosaic following the Levenberg—Marquardt algorithm
[8] presented in Section 3.5.

Both image alignment methods (pairwise and global) require an
initial estimate of the camera transformation parameters for each
frame. For a new video frame, where these are unknown, we initial-
ise these parameters with a coarse approximation using those of the
mosaic frame to which this new frame has the most feature-based
correspondences (see Section 3.2). Although coarse, this has empir-
ically proven to be itself to be a sufficient initial estimate. The more
common approach of initialising the input frame transformation
with the parameters derived from a RANSAC-based estimation
(see Section 3.2) have not shown any general improvement while
occasionally resulting in significant mis-transformation of the new
incoming video frame. In this paper, RANSAC is thus uniquely
used solely for rapidly confirming the presence of a suitable
match within the current mosaic frames and for eliminating the out-
liers from the image-to-image feature matching. It is the pairwise
frame alignment process, over the remaining inliers, that is, used
to compute the final image alignment registration of the new incom-
ing frame to the existing mosaic presentation.

Global bundle adjustment requires prior knowledge of inter-
frame overlap (i.e. spatially matching frames) within the current
mosaic. This facilitates the extraction of additional image-to-image
feature matches which have not been present in the previous pair-
wise chain of matching (i.e. image 1 < image 2 < image 3 <
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etc.). These additional matches occur because the camera may re-
acquire certain portions of the mosaic within its motion. For
example, Fig. 3 presents a case where the eigth frame provides an
additional match with second frame. Essentially, this is the case
of either localised or global loop closing as discussed in prior
work [3, 5] (Fig. 3).

Image overlap within the mosaic is identified directly by the rela-
tive inter-image geometry recovered (initially) from pairwise image
alignment using the technique outlined in Section 3.4. When such
an overlap event occurs then the identified frame pairs feature
point matching as described in Section 3.2 using the per-calculated
features from their initial feature extraction. Post matching the
RANSAC sieve is again used for eliminating the outliers from
these newly computed image-to-image feature correspondences
and for confirming suitable matching has been found. From all of
these identified pairwise image-to-image feature correspondences
extracted we use the union-find algorithm [30] to merge the corre-
spondences between feature points on different images and thus
derive a global set of multi-point matches. This set of global
feature correspondences from the input to global bundle adjustment
and are essential in eliminating the accumulated error associated
with drift within the mosaic.

4.2 Dealing with frame mismatches

Under certain conditions a valid feature matching between the last
most video frame captured and the currently captured video frame
cannot be found. There are many practical reasons for this
in-sequence break in transmission: camera malfunction, large-scale
movement within the scene or a featureless image frame (e.g. plain
white wall). In such a case, our approach simply discards the input
video frame and proceeds with the next received. However, if this
occurs repeatedly we initiate a search for a global match — that is,
we assume a possible significant movement of the camera and
attempt to match a current video frame with anyone of all the
current frames encompassing the video mosaic. This is based on
the assumption that during the ‘outage period’ of the image match-
ing the camera may have moved position within the global scene
view and therefore it is reasonable to assume that a match may be
found against any portion of the previously captured scene
imagery. If the result of this search is successful, then the new
frame is aligned with the identified matching frame. From this
point, the regular operation of the dual pairwise image alignment
and global bundle adjustment continues. Determination of a suit-
able match between the current video frame post-outage and a
frame currently existing within the global set of mosaic frames is
made on a simple threshold basis. First, we have a condition that
there must be a sufficient amount of statistical inliers present in
the set of feature point matches post-RANSAC sieve as outlined
in Section 3.2. Additionally, the percentage of inliers in the set of
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feature point matches must be greater than a set threshold ¢,,, (em-
pirically set to 80%).

Overall the operation as described is desirable in several real case
scenarios. Often the mismatch is temporary, and after one or two
video frames that cannot be matched, the next received can be suc-
cessfully registered due to the fact that camera movement is usually
not significant over short periods of time. However, when a signifi-
cant ‘outage period’ occurs our approach initiates searching for a
global match based on the assumption of a potential significant
camera movement within the scene. This global search is not per-
formed instantly but instead after a given number of missed
frames (dependent on the frame-rate) for two primary reasons.
First, it is computationally expensive and thus to be avoided and
second empirically it has been found that instant operation does
not improve the overall performance of the video mosaicking ap-
proach as perceived by the viewer.

4.3  Key frames and frame sieve

In general, the input video frames can be considered to be tempor-
ally and spatially dense with most of these video frames having a
significant spatial overlap resulting in high spatial frame redun-
dancy. The concept of key frames is introduced to provide means
of reducing this redundancy and identifying portions of the image
data that are to be retained while others can be discarded because
of spatial duplication (using methodology of Section 3.4). Key
frames are dominant frames composing the mosaic (with relatively
low-redundant information content).

Despite the fact that only a portion of the video stream is retained
and contributes to final video mosaic, initially all of the input video
frames are pairwise aligned and displayed for visualisation. Only
after the current video frame (frame 7) has been captured and
aligned within the mosaic can a redundancy the decision about
the previous one (frame (¢ — 1)) be made. This decision is made
in the concept of the frame sieve which essentially works on the
identification of the key spatial frames within the overall video se-
quence (i.e. key frames).

Two criteria are used to classify a frame as redundant: (i) the per-
centage of area, threshold #;, that is common to the last identified
key-frame (Section 3.4) and (ii) the temporal distance to the last
such key frame measured in terms of the frame index in the se-
quence (i.e. significant temporal separation) (This assumes a con-
stant video frame-rate from a video source device.). Initially all
the input frames are retained and displayed — both key frames
and non-key frames. However, the frame sieve iterates over the
set of video mosaic frames removing all non-key frames, except
the most recently captured as a separate parallel process. This ap-
proach assures that the most recent video frame is always displayed
within the mosaic in addition to those which give significant spatial
coverage of the environment.

The second stage of the frame sieve erases all frames that are
completely spatially covered by newer (temporally more recent)
frames and thus are not visible within the mosaic. In practice, this
heuristic procedure is slightly more complex. First, frames are inter-
rogated in temporal order. If a frame is only partially covered by
more recent frames (the specific level of coverage is specified by
a threshold value, #;), then we identify that this frame would
leave holes within the mosaic if removed. The final stage in the
overall pipeline of frame sieving is to erase the oldest frames if
the number of globally recorded frames exceeds a given frame
limit value f; based on the memory management of a practical
video mosaic implementation from a standard frame-rate (i.e. 25—
30 fps) video source at reasonable spatial resolution. The frame
sieve is thus composed of three main stages of frame filtering: (i)
non-key-frame removal, (ii) overlapping frame removal and (iii)
temporal frame removal. This delivers a highly practical, yet effect-
ive, frame management solution that in turn both manages the com-
plexity growth of the global bundle adjustment approach and the
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storage requirements of the video mosaic for usage cases over a
range environments (see results in Section 6).

5 Real-time mosaic visualisation

Individual video frames within the mosaic are represented as inde-
pendent, textured rectangular graphic primitives in 3D space.
Relative transformation parameters for every video frame, obtained
from bundle adjustment (Section 3.5), are directly applied to
arrange these graphics primitives appropriately using hardware
accelerated visualisation. This independence of each frame, as
opposed to the connected 3D geometry approach of [3], lends
itself well to the global bundle adjustment and frame sieve
approaches outlined previously (Sections 3.5 and 4.3) as it readily
supports independent frame adjustment and removal as required.
Furthermore, recent prior work on real-time mosaicking [3, 5, 6]
does not address the issues of inter-frame blending and gain com-
pensation in real time. These have been shown to be required for
effective artefact free visualisation in similar work on still

imagery [4].

5.1 Inter-frame blending

Video frame blending solves the problem of visible seams on the
resulting image mosaic by blending the video frame border with
the overlapped one. Brown and Lowe [4] suggest a multi-band
blending methodology to merge the images in the composite pano-
ramic image but such an approach is not readily possible within
real-time bounds. Hence, we use a much simpler approach by asso-
ciating an a-channel with each video frame. This channel specifies
the opacity of a given part of the image. It is set to be completely
opaque in the video frame centre with an increasing transparency
towards the edges following a linear distribution. Despite the sim-
plicity of the approach, the experimental results show that it is ef-
fective. In Fig. 4, we can see the seams apparent within the
mosaic prior to blending (Fig. 4 upper) and an increase in the per-
ceived quality of the mosaic post blending (Fig. 4 lower).

Fig. 4 Example of inter-frame blending
a Mosaic without the blending
b Mosaic with the blending applied
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Fig. 5 Application of gain compensation
a Mosaic without gain compensation
b Mosaic with gain compensation

5.2 Gain compensation

Most modern video cameras are equipped with 4GC, which automat-
ically adjusts the camera exposure to achieve an automatically regu-
lated level of image brightness and dynamic range based on the
illumination conditions within the image [31]. However, this inde-
pendence in gain between video frames in the sequence can conse-
quently introduce undesirable effects into the video mosaic because
the dynamic range of each video frame thus varies independently
based on localised changes in lighting levels within the scene (see
Fig. 5 upper). If we consider the example provided in Fig. 5
(upper), we see a camera that is initially viewing a darker portion of
the scene (e.g. tree on left), pans right towards the brighter area of
the sky (Fig. 5, upper right). During the transition the AGC decreases
the overall camera gain, darkening the image as the overall illumin-
ation level entering the camera increases. Mosaicking a video frame
sequence such as this shows that the sky becomes darker from
frame-to-frame because of the effect of the AGC (Fig. 5 upper).
Correcting these differences is required to improve the overall
quality of the output video mosaic and mitigate the effect of the
gain compensation introduced by the AGC (see example Fig. 5 lower).

The method for calculating such gain compensation is detailed in
[4]. The compensation works in terms of minimising an error func-
tion, essentially the intensity differences between overlapping
regions of the mosaic. The error function is defined as:

n n 1 1
€= ZZMJ((&[V _gjlji)ng+ (1-g) Uzg) (10)

i=1 j=1

where N;; is the number of pixels in image 7 that overlaps with image
J (note that N;; does not necessarily equal V), g; is the gain parameter
for image i we are seeking and I;; is the mean value of intensity values
of pixels in image i that overlaps with image j. The o parameters are
standard deviations of normalised intensity error and gain. Following
from the prior work of [4], we choose these values to be o)y =10 and
0,=0.1but the (1 - g term has been added to keep the gain para-
meters close to unity. Without it the optimal solution to the problem
would be g = 0, that is, all the images black.

The optimisation problem in this case can be solved analytically
by setting the derivative of the error function to zero as follows:

3 3 2
o oo ... Ty (11)
0g, 0g, g,

This is an open access article published by the IET under the Creative Commons

Attribution License (http:/creativecommons.org/licenses/by/3.0/)
8

This results in a linear system of equations which we solve via a
Gaussian elimination method. This solution results in a recovery
of the gain parameter vector g which contains the gain parameters
for every video frame, that is, g;, g, ..., g, This is then
applied to the video mosaic graphics primitives as texture para-
meters (separately for each frame) to result in the effect shown in
Fig. 5 (lower) where we see a reduction in the AGC related artefacts
in comparison to Fig. 5 (upper).

This solution solves the problem of gain compensation, in general;
however, if applied as-is ((10) and (11)) a significant calculation has
to be carried out for each new video frame. Owing to the real-time
requirements we introduce, analogously to the bundle adjustment
detailed in Section 3.5, the concepts of pairwise and global gain com-
pensation. Global gain compensation performs the calculation of all
gain parameters, g;, for all video frames i present within the video
mosaic. These are processed using the error metric as described in
(10). The execution of global gain compensation is not bound to
video frame capture but operates as a similar parallel task to that of
global bundle adjustment (Section 4.1).

However, this introduces a problem of calculating the gain param-
eter for most recently captured video frames. Consider a mosaic with n
globally gain compensated video frames. After a few subsequently
captured video frames our mosaic will have m video frames, where
m > n. However, the global gain compensation would not immediate-
ly calculate the new gain parameters, because of its parallel ‘batch’
nature, for all the m video frames. As a result we introduce a fast, pair-
wise gain compensation for temporary estimation of the gains g,+1,
2442, ..., Zm. This pairwise gain compensation takes only a single
pair of frames at a time and adjusts the gain of the secondary frame
to match that of the first (which is kept constant). It iterates from
the last globally gain compensated video frame (frame # in the case
presented above) to the most recently captured one (frame m) and
thus calculates all the unknown gains g,,+1, Zpi2, --.» &m» Which
can be instantly supplied to the graphics visualisation and subsequent-
ly optimised in the next round of global gain compensation.

6 Results

We outline some example results of our technique over a range of
both camera and workstation hardware to show illustrative results
following the, largely subjective, evaluation methodology of prior
work [1, 3, 5-6, 12, 16] in the field.

Fig. 6 Wide angle video mosaic of the engine display room, School of
Engineering, Cranfield University

a Individual input video frames

b The constructed mosaic
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Fig. 7 Video mosaic from an interior scene comprising varying cross-scene
illumination

a Camera is pointed directly at the bright window

b Camera points at the dark portion of the scene

6.1 Equipment and environment

Results are illustrated on a range of differing video source equip-
ment of varying quality and spectral response: a hand-held con-
sumer camcorder (32x optical zoom and deinterlaced 352 x 288
pixel resolution), a near infra-red (IR) camera (wavelength 850
nm, IR diode lighting, deinterlaced 352 x 288 pixel resolution)
and a low-cost consumer webcam (640 x 480 pixels, low-quality
USB camera).

The presented method has been evaluated in various environ-
ments under varying lighting conditions including both indoor
and outdoor environments. A few of the scenarios had a very un-
stable lighting conditions (Fig. 7) and others were fairly uniformly
illuminated (Fig. 6). The case of a heavy movement present in the
scene (i.e. considerable per cent of the video frame area contains
moving objects) has also been examined (Fig. 9).

Our methodology was primarily evaluated using Intel Core i7 (4
core) central processing unit (CPU)-based computer with a Nvidia
GeForce 9800 GT graphics card. In addition some testing was also

carried out on a standard Intel Pentium M 1700 MHz (single core
common laptop) with an A71 Fire GL T2 graphics card. Overall
we aim to present performance on both high-end and low-end
hardware.

6.2 lllustrative results

The first example, shown in Fig. 1, depicts an outdoor panorama
with considerable zoom. This mosaic has been built up from an
interesting camera movement. First, the camera swept the scene
without any zooming (Fig. 1, upper), then it zoomed in and
started to update the mosaic with a much higher effective resolution
(the captured frames had constant resolution but the camera has
zoomed considerably hence the information density for objects on
the scene has increased, Fig. 1 (middle)). This is clearly visible
within Fig. 1 (lower) where we can see the approximate, blurred
nature of the scene detail on the left-hand side of the scene,
whereas on the right-hand side we can see updated, high-resolution
detail within the scene context based on the zoomed (higher reso-
Iution) information. This shows the overall robustness of the meth-
odology and its components to variations in scale/zoom of the
source video frame.

Let us analyse the second example — another standard case of the
video mosaic, Fig. 6. The field of view of the visualisation is set to
be wide, hence the mosaic looks distorted (especially at the corners
of the view) which is to be expected in the case of the wide angle
perspective projection. The black parts of the mosaic represent
unknown regions, that is, parts of the scene that have not been cap-
tured by the camera. Despite the difficulties in maintaining a sta-
tionary hand-held camera and a short distance to the objects in
the scene the video mosaic is still constructed properly. To be spe-
cific, the distance from the camera to each of the engines (not in-
cluding the large one on the right side of the mosaic) was equal
to approximately 1 m. This short distance amplifies the errors that
result from the violation of the stationary camera assumption attrib-
utable to the hand-held nature of this video capture sequence. The
result (Fig. 6 lower) shows the robustness of this method in the
presence of minor disturbances.

The third example, Fig. 7, shows the test of indoor performance
in case of varying lighting conditions (i.e. large lighting gradient
within the indoor scene because of influx of light from windows
within the environment). In this figure, the red box shows the pos-
ition of the input video frame in the mosaic (Fig. 7). Comparing
Fig. 7 (upper) with Fig. 7 (lower) one can observe the importance
of the gain compensation described in Section 5.2. In Fig. 7
(lower) we point the camera at a darker portion of the scene,
whereas Fig. 7 (upper) presents a case of ‘blinding’ the camera
with a direct light entering the lens. Despite the fact that the
AGC of the camera changes the exposure considerably, the gain

Fig. 8 Mosaic constructed from a top-down unmanned aerial vehicle (UAV) camera footage
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Fig. 9 Motion (office chair and fan) present within the scene. The red box shows the current field of view of the camera

compensation accounts for that and the mosaic is globally consist-
ent in terms of brightness (Fig. 7 upper/lower).

Another example is a video mosaic constructed from a top-down
UAV camera (Fig. 8). The problem of mosaicking an aerial footage
is that it employs a different geometry — a mosaic of a flat surface

captured by a camera moving and filming it from the above. Hence,
we slightly modify our approach to approximate this geometry
using an extended focal length parameter within the
prior formulation (Section 3.3). Although the approach was not direct-
ly designed for such a task, one can see that it gives promising results

Fig. 10 Mosaic constructed from a near IR imagery
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Fig. 11 360° scene mosaic comprising drifi-free loop closing

indicating that a feature point-based matching could be employed
with success to the problem of the aerial photography stitching.

The fifth example presents the case of a significant motion within
the mosaic scene. In Fig. 9, the person is rotating on an office chair
and together with rotating fan introduces a significant motion dis-
turbance which must be recognised and dealt with. In our method-
ology, the application of a robust statistical RANSAC sieve
(Section 3.2) allows for correct mosaic construction behaviour
under such conditions. In the case where the methodology cannot
find a suitable frame-to-frame feature match, the procedure of
global search (Section 4.2) is used as a means to recover and
proceed with ongoing mosaic construction from the video source.
As we can see from Fig. 9 (upper) significant motion is present
in primary area of the scene but as shown in Fig. 9 (lower) the
mosaic is successfully constructed.

The sixth case presents the use of the methodology for the con-
struction of a mosaic from a monochromatic Infrared (IR) video
source. Fig. 10 depicts this case thus showing that the implemented
method can operate on the footage taken using wavelengths outside
the visible light spectrum.

The final case presents the 360° mosaic, that is, all of the visible
horizon have been captured around the camera position. This is pre-
sented in Fig. 11 where we see it presents a wide angle view of a
mosaic including effective 360° loop closing without obvious
effects of drift.

Overall although some mild alignment and/or frame blending
artefacts may be visible (Fig. 11), we can see that in the majority
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of cases (Figs. 1, 6-10) such artefacts are not present under
varying lighting, video source and motion conditions.

6.3  Performance characterisation

We can characterise the real-time performance of our video mo-
saicking approach by considering the different aspects of the
main processing requirements. In most cases, the core processing
loop takes about 50 ms from which the SURF extraction step is
the most computationally expensive. In more demanding environ-
ments, especially in those producing more feature points this core
processing loop can take as long as 150 ms (with SURF extraction
taking ~100 ms). From our experimentation, a single video frame is
processed in a mean of ~75 ms over a range of environments. This
translates into a frame-rate of ~13 fps which is clearly within the
bounds of real-time performance for the tasks under consideration.

The performance of the polygon-driven visualisation also meets
the real-time requirement with an average display refresh time of
~45-50 ms (average to worst case). This translates to ~20 fps
(worst case) which is highly satisfactory for an interactive visualisa-
tion. As the frame-rate of the visualisation is greater than that of the
main mosaic construction operation, the presentation of all captured
video frames is assured.

The update frequency of the parallelised global bundle adjust-
ment varies with the number of video frames currently registered
within the mosaic. Although it is somewhat dependent on the rela-
tive positioning of the video frames and on the number of global
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frame-to-frame matched feature points, for a low image count (~20)
the update algorithm does not take more than 500 ms to globally op-
timise the registration of the current mosaic. This provides an ap-
proximate global alignment update every half second into mosaic
visualisation. As we consider larger mosaics (e.g. 80-100+
frames), this global bundle adjustment time can grow to ~3-5s
but empirically appears to remain sufficient for the task of elimin-
ating accumulated errors (Section 3.5).

Opverall, performance on a modern quad-core CPU (allowing par-
allelisation as identified) facilitates the primary mosaicking of
source video footage at 13 fps and the subsequent visualisation at
20 fps which is sufficient for real-time performance, visualisation
and interactive user display (user specified PTZ within the mosaic
visualisation itself).

6.4 Performance characterisation — low-end CPU

On a dual-core CPU platform, a moderately sized video mosaic,
consisting of 40 video frames, was constructed for illustrative pur-
poses. Despite the reduction in computational resource, the applica-
tion still performed in a real-time manner. The primary processing
loop took ~200 ms on average (peaking at 300 ms, feature depend-
ent), while the visualisation loop processing time was stable at
~100 ms. The global bundle adjustment update rate was 2 s for
frame registration optimisation. This translates as 5 fps for input
video frame-rate and 10 fps for the visualisation.

The methodology was also tested on the standard single-core
platform as specified (Section 6.1). Overall the performance was
poor with a mosaic constructed from 20 frames resulting in 3.3
fps with a visualisation of ~10 fps. Global bundle adjustment was
again no more than 2 s. From this testing, we can see that with a re-
duction in computational resource the proposed methodology
becomes increasingly less viable in terms of the parallelised
aspects of global bundle adjustment and global gain compensation
which extend earlier works within this field [1, 4]. We can see that
while the approach is moderately viable on dual CPU parallelisation
performance significantly drops for a single CPU platform.

7  Conclusions

In this paper, we have presented a feature point-based approach for
the task of real-time video mosaicking. We present a variation on
the prior approaches proposed within the field [3, 5], extending
current mosaicking approaches to deal with in-sequence changes
in scale (i.e. camera zoom) [3, 5, 6] and illustrating a flexible real-
time visualisation architecture adaptable to both spherical (hand-
held) and planar (UAV) scene mosaicking tasks. Furthermore, we
make explicit provision for effective mosaic visualisation, via
online frame filtering and blending [4], and effective frame manage-
ment that is overlooked in prior work [3, 5]. Overall an effective
pipeline for flexible real-time mosaicking is realised with the
context of a practical real-time application incorporating both a
novel online mosaic construction approach, integration of frame
blending and redundancy management aspects and a graphics
primitive driven visualisation strategy.

The approach is shown to be robust to motion in the scene,
varying lighting conditions and varying video source characteristics
over a diverse range of environmental conditions. Real-time per-
formance is characterised over varying computational platforms.
Future work will investigate an extension to the combined use of
real-time video mosaicking and stereo depth modelling from multi-
camera systems in addition to addressing the aspects of wide-area
deployment, usage and visualisation.
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