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Abstract

We present a collective coordinate approximation to model the dynamics of two

interacting nonlinear Schrödinger (NLS) solitons. We discuss the accuracy of this ap-

proximation by comparing our results with those of the full numerical simulations and

find that the approximation is remarkably accurate when the solitons are some distance

apart, and quite reasonable also during their interaction.



1 Introduction

The nonlinear Schrödinger equation (NLS) is an important model in mathematical physics,

with applications in many fields which includes nonlinear optics, plasma physics, biophysics

and Bose-Einstein condensates (BEC’s). Interactions between NLS solitons is particularly

important; for example in soliton-based optical communications the NLS equation describes

information transfer in optical fibres [1], and soliton interactions fundamentally limit the

capacity of these communication systems [2].

As the NLS equation is integrable its exact soliton solutions can be found analytically via

the inverse scattering transform [3] (see e.g. [4]). However, given the rather involved nature

of this approach and the complicated form of these solutions and the fact that they hold only

for the exact form of the NLS equation it is useful to look at other approaches to this problem.

This is particularly true if one wants to get a ‘physical feeling’ about the forces governing the

scattering of solitons i.e. to see whether they are attractive or repulsive and how they depend

on the various parameters of the solutions and how they respond to small perturbations of

these solutions or the equation itself.

Hence, the equation has also been studied numerically [5], [6], [7], [8] and an attempt has

been made to introduce a collective coordinate approximation to a two soliton field configu-

ration [9]. Several other papers have also looked at NLS solitons perturbed by external fields

or in interaction with them [10] but though very interesting, these papers have not approxi-

mated the dynamics of the system of solitons by a full Lagrangian based collective coordinate

model [11], which has recently been shown [12], [13] (in relativistic models) to be a very good

approximation for the investigation of soliton dynamics.

Having performed some numerical simulations of the scattering of two solitons in a class of

modified NLS models [14] we have started thinking of a collective coordinate approximation to

this process and we have found the paper by Zou and Yan [9]. As this paper does not present

many explicit results we have modified its approach a little and have looked at the interaction

of two solitons in some detail. We have found that the collective approach, which is expected

to describe the properties of the solitons when they are far apart from each other, works quite

well even when the solitons are close together and so may be a somewhat unexpectedly good

approximation to the description of the two soliton scattering at all times. Thus our paper

discusses this approximation and its validity for a class of models based on the NLS in (1+1)

dimensions.

This paper is organised as follows: in section 2 we give a brief introduction to the NLS

model, its basic symmetries and its 1-soliton solution. In section 3, for completeness, we

say a few words about the collective coordinate approximation in general, and in section 4 we
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present our 2-soliton approximation ansatz (based on [9]) and use it to determine the equations

of motion for our collective coordinates. We have solved these equations numerically using

the 4th order Runge Kutta method, and in section 5, we present some of our results. Some

further comments and conclusions are given in section 6.

2 The model

The non-relativistic Lagrangian describing the dynamics of the NLS field ψ(t, x) and its com-

plex conjugate ψ∗(t, x) is given by

L =

∫
dx

i

2
(ψ∗∂tψ − ψ∂tψ∗)− ∂xψ∗∂xψ + η|ψ|4. (2.1)

Variation of this Lagrangian with respect to ψ∗(t, x) gives us

i∂tψ = −∂2xψ − 2η|ψ|2ψ, (2.2)

which is the NLS equation for ψ(t, x) (variation of the Lagrangian with respect to ψ(t, x) gives

the complex conjugate of (2.2) which is the NLS equation for ψ∗(t, x)).

Solutions to (2.2) with boundary conditions |ψ|x=−∞ = |ψ|x=∞; ∂xψ → 0 as x→ ±∞ have

conserved Noether charges as a result of the symmetries of the action.

Thus the invariance of the action under time translations gives the energy conservation:

E =

∫ ∞
−∞

dx
(
|∂xψ|2 − η|ψ|4

)
. (2.3)

Conservation of momentum results from the invariance of the action under space transla-

tions:

P = i

∫ +∞

−∞
dx (ψ∗∂xψ − ψ∂xψ∗) . (2.4)

And, finally, the internal U(1) symmetry of the action, ψ → eiαψ for a constant α, gives the

conservation of the normalisation

N =

∫ +∞

−∞
dx |ψ|2. (2.5)
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As is well known for η = 1, (2.2) has the 1-soliton solution (called ‘bright soliton’)

ψ =
b

cosh [b (x− vt− x0)]
e
i
[(
b2− v

2

4

)
t+ v

2
x+δ

]
, (2.6)

where b, v and x0 are real parameters of the solution. This solution is clearly defined up to an

overall constant phase due to the U(1) symmetry of (2.1). It describes a soliton moving with

velocity v, which at t = 0 is positioned at x0. The parameter b, which describes the ‘width’

of the soliton, is related to N and so is, in fact, fixed.

3 The collective coordinate approximation

For integrable systems exact solutions can be found via the inverse scattering transform (IST);

however IST is confined to integrable models so for non integrable systems, or when one wants

to study perturbations of integrable models, other methods must be used to find approximate

solutions or to understand what is really going on. In such cases, one can perform numerical

simulations (i.e. solve the equations numerically but this is often very time consuming) or use

other approximate methods. One of such methods is the collective coordinate approximation

[15]. This approximation reduces the infinite-dimensional problem to a coupled set of ODEs

for the collective coordinates by focusing on the motion of the solitons themselves, and so

retaining only the variables which describe the solitons. Of course, this approximation neglects

all radiative corrections and so is valid only if these corrections are small; this is true when

the solitons are far apart from each other. When the solitons begin to interact with each other

the approximation becomes less accurate (as some radiation is sent out and the solitons are

mutually distorted). However, it may happen that these distortions are well described by the

well chosen collective coordinates and that the radiation effects are small. This is, in fact,

what we have found in our work as will be described in the next few sections.

The general idea of the collective coordinate approximation is to start with a static solution

ψ(x, q1, ..., qn). Of course, if ψ(x, q1, ..., qn) is a static solution then the total energy of the

solution does not depend on the values of the parameters (i.e. for all values of these parameters

the energy is the same). Some of these parameters describe physical properties of the solitons,

like their position etc. If we change the field configuration describing the solitons the energy

will be larger so that in the field space we have low energy valleys in the directions of the

parameters of the solutions with the slopes described by the other modifications of the fields.

Consider now moving solitons. For small velocities of the solitons tangential to the field

space their motion would be easiest along the valleys descibed by the parameters of the static

solutions as other changes (going up the slopes) would require larger increases of the energy.
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Hence, for small velocities it makes sense to approximate the dynamics of the solitons by the

parameters of the static solution becoming functions of t; i.e. qi = qi(t), and assuming that

these parameters contain all the solitons’ dynamics.

These assumptions are reasonable for the relativistic field theories and the collective coor-

dinate approximation (also called the moduli space approximation) has been studied in detail

in many papers (see e.g. [12] or [13] for the study of the Sine Gordon case). The approxima-

tion is very good and reproduces the results of the full simulations of such systems very well

indeed.

The NLS model is a little different as its equations of motion involve first derivative with

respect to time and the energy (2.3) does not contain a kinetic contribution. Moreover, the

model has stationary and not static solutions (see (2.6)). Clearly x0 + vt denotes the position

of the soliton moving with velocity v at time t, so a natural collective coordinate would be

ξ(t) = x0 +vt. However, the soliton possesses also a moving phase, which has to be taken into

account in any collective coordinate approximation. As the x dependent part is proportional

to the velocity of the moving soliton it makes sense to introduce a collective coordinate µ(t)

which initially takes the value of v
2
; there is also the overall constant phase δ in (2.6).

How does one obtain the equations for the collective coordinates? This is discussed in great

detail in [12] where it is shown that one takes relevant collective coordinate approximation

ansatz and puts it into the expression for the action. One then integrates out all relevant spa-

tial degrees of freedom (in our case x) and obtains a Lagrangian for the collective coordinates

qi(t). In our case, as the full Lagrangian is given by (2.1), the resultant Lagrangian will involve

qi(t) and will be linear in q̇i(t), and from it we can determine the first order equations for qi(t).

Of course, these equations are much easier to solve than the original equation (2.2) and it is

often easier to understand the dynamics. At the same time, however, the collective coordinate

model is only an approximation which does not capture some aspects of the dynamics e.g.

any radiation effects that often accompany scattering processes. Moreover, there is often an

issue of which collective coordinates to use and whether they are sufficient to capture the main

features of the dynamics.

4 The 2-soliton configuration

Here we construct a set of collective coordinates for the study of the scattering of two solitons.

In the NLS case there exists an explicit expression for the two moving solitons. However,

this expression is not very transparent and when the solitons are far apart it reduces to the

superposition approximation ansatz which we will make below. Moreover, when we go beyond

the pure NLS model (i.e. modify it slightly) we do not have explicit expressions and we are
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obliged to start by constructing a sensible approximation ansatz. So, our work also involves

a check for the suitability of our approximation ansatz.

The motivations for our approximation ansatz is the observation that when the solitons

are far away from each other each one of them is well described by (2.6). The overlap between

them is very small so we take the two soliton field in the form of a superposition of two

independent solitons i.e. we take

ψ = ψ1 + ψ2. (4.1)

Where ψ1 and ψ2 are solutions of (2.2) when they are far apart. Following from Zou and

Yan, [9], we assume that the two solitons are of equal height, constant width, and move

symmetrically around their centre of mass. So we take ψ1 = ϕ1e
−iθ1 and ψ2 = ϕ2e

iθ2 where

ϕ1 =
a(t)

cosh (b(x+ ξ(t)))
, θ1 = µ(t) (x+ ξ(t))− b2t− λ(t)− δ1,

ϕ2 =
a(t)

cosh (b(x− ξ(t))) , θ2 = µ(t) (x− ξ(t)) + b2t+ λ(t) + δ2,

and then treat a(t), ξ(t), µ(t) and λ(t) as our collective coordinates.

This approximation ansatz models two lumps with relative phase δ = δ2 − δ1 and relative

distance 2ξ and so corresponds to two 1-soliton solutions when |ξ| → ∞. In figure 1 we present

a plot of ψ = ψ1 + ψ2 at t = 0 with ξ = 10, µ = 0.1, b = 1, λ = 0 and δ1 = δ2 = 0.

-20 -10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Plot of ψ = ψ1 +ψ2 against x, for ψ the 2-soliton approximation of the NLS model.
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4.1 Effective Langrangian for our collective coordinates

To construct the effective Lagrangian for our collective coordinates we put our approximation

ansatz (4.1) into our Lagrangian (2.1), this yields an effective Lagrangian density which can

be written in terms of the non-interacting part L0 and the interacting part L12.

Introducing ω1 ≡ x+ ξ and ω2 ≡ x− ξ, the non-interacting part becomes

L0 = a2
(
µξ̇ − b2 − λ̇− µ2

)( 1

cosh2(bω1)
+

1

cosh2(bω2)

)
− a2b2

(
tanh2(bω1)

cosh2(bω1)
+

tanh2(bω2)

cosh2(bω2)

)
+ a4

(
1

cosh4(bω1)
+

1

cosh4(bω2)

)
+ a2µ̇

(
ω1

cosh2(bω1)
− ω2

cosh2(bω2)

)
,

where dot denotes the differential with respect to time. Integrating this over all space gives

us the effective Lagrangian of free solitons

L0 =
4a2µξ̇

b
− 16a2b

3
− 4a2µ2

b
− 4a2λ̇

b
+

8a4

3b
. (4.2)

Defining θ1 + θ2 = 2µx + δ2 − δ1 ≡ 2µx + δ ≡ ∆, the interacting Lagrangian density

becomes

L12 = −a2b
(
ξ̇ + 2µ

)( sinh(bω1)

cosh(bω2) cosh2(bω1)
+

sinh(bω2)

cosh(bω1) cosh2(bω2)

)
sin ∆

+ 2a2
(
µ2 + µ̇ξ + µξ̇ − b2 − λ̇

) cos ∆

cosh(bω1) cosh(bω2)

− 2a2b2
sinh(bω1) sinh(bω2)

cosh2(bω1) cosh2(bω2)
cos ∆

+ 4a4
(

1

cosh3(bω1) cosh(bω2)
+

1

cosh3(bω2) cosh(bω1)

)
cos ∆

+
2a4

cosh2(bω1) cosh2(bω2)
cos (2∆) +

4a4

cosh2(bω1) cosh2(bω2)
,
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which, when integrated over space, and after some rearranging yields

L12 =

(
µ̇ξ − µ2 − λ̇+

4a2µ2

b2

)
4πa2 sin(2µξ) cos δ

b sinh(πµ
b

) sinh(2bξ)
+

(
1− 2a2

b2

)
8πa2b sin(2µξ) cos δ

sinh(πµ
b

) sinh3(2bξ)

+

(
2a2

b2
− 1

)
8πµa2 cos(2µξ) cosh(2bξ) cos δ

sinh(πµ
b

) sinh2(2bξ)
+ 32a4ξ

cosh(2bξ)

sinh3(2bξ)
− 16a4

b sinh2(2bξ)

+
8πa4 cosh(2bξ) sin(4µξ) cos(2δ)

b sinh(2πµ
b

) sinh3(2bξ)
− 16πa4µ cos(4µξ) cos(2δ)

b2 sinh(2πµ
b

) sinh2(2bξ)
.

The integrals given here have been evaluated using the residue theorem; some of these

calculations are presented in detail in the Appendix.

4.2 Equations of motion

Next we determine the equations for our collective coordinates. First we note that the total

Lagrangian is given by

L =
4a2

b

(
µξ̇ − 4b2

3
− µ2 − λ̇+

2a2

3

)
+

(
µ̇ξ − µ2 − λ̇+

4a2µ2

b2

)
4πa2 sin(2µξ) cos δ

b sinh(πµ
b

) sinh(2bξ)

+

(
1− 2a2

b2

)
8πa2b sin(2µξ) cos δ

sinh(πµ
b

) sinh3(2bξ)
+

(
2a2

b2
− 1

)
8πµa2 cos(2µξ) cosh(2bξ) cos δ

sinh(πµ
b

) sinh2(2bξ)

+ 32a4ξ
cosh(2bξ)

sinh3(2bξ)
− 16a4

b sinh2(2bξ)
+

8πa4 cosh(2bξ) sin(4µξ) cos(2δ)

b sinh(2πµ
b

) sinh3(2bξ)

− 16πa4µ cos(4µξ) cos(2δ)

b2 sinh(2πµ
b

) sinh2(2bξ)
.

This expression agrees with the Lagrangian given in Zou and Yan’s paper [9] if we take their

approximation by neglecting higher order terms of µ, λ and their t derivatives.

From our full Lagrangian we can calculate the Euler-Lagrange equations for our collective

coordinates a(t), ξ(t), µ(t) and λ(t).

For λ we have

d

dt

∂L

∂λ̇
− ∂L

∂λ
= 0→ d

dt

(
4a2

b

(
1 +

π sin(2µξ) cos δ

sinh(πµ
b

) sinh(2bξ)

))
= 0,
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which implies that
4a2

b

(
1 +

π sin(2µξ) cos δ

sinh(πµ
b

) sinh(2bξ)

)
= constant,

is a conserved quantity corresponding to the normalisation N . So we can write

N =

∫ +∞

−∞
dx |ψ|2 =

4a2

b

(
1 +

π sin(2µξ) cos δ

sinh(πµ
b

) sinh(2bξ)

)
≡ N0 +N12,

where N has been split into interacting and non-interacting parts.

Next we fix N , which is conserved and so does not depend on t, by putting solitons initially

far apart, i.e. taking x0 very large. In our 2-soliton approximation ψ1 and ψ2 are 1-soliton

solutions for the solitons far apart, if we compare this to the 1-soliton solution (2.6) we see

that for our solitons initially far apart µ ≈ −v
2
, ξ ≈ x0− vt and a ≈ b, and therefore N12 ≈ 0,

N0 ≈ 4b.

Then we have

a2 =
b2

1 + π sin(2µξ) cos δ
sinh(πµ

b
) sinh(2bξ)

≡ b2

1 + ω
, (4.3)

where we have defined ω ≡ π sin(2µξ) cos δ
sinh(πµ

b
) sinh(2bξ)

for convenience.

Equation (4.3) can be used to eliminate a(t) from the equations of motion for µ(t) and

ξ(t), giving a system of coupled first order equations involving µ, ξ, their derivatives and λ̇.

The dependence in λ̇ can be eliminated if we use the equation of motion for a(t), leaving us

with

F1(µ, ξ)µ̇+G1(µ, ξ)ξ̇ +H1(µ, ξ) = 0,

F2(µ, ξ)µ̇+G2(µ, ξ)ξ̇ +H2(µ, ξ) = 0.

Finally we solve these to derive the system of equations

µ̇ =
G1H2 −G2H1

F1G2 − F2G1

, ξ̇ =
F2H1 − F1H2

F1G2 − F2G1

. (4.4)

We write the right hand side of the expression for µ̇ as R(µ, ξ), and differentiate the

expression with time to get µ̈ = Ṙ. Multiplying this by µ̇ and integrating over time gives a

conserved quantity E
µ̇2

2
=
R2

2
+ E, (4.5)

where E is determined by the initial conditions. Similarly we can do this for the expression
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for ξ̇ to get
ξ̇2

2
=
P 2

2
+ Ẽ, (4.6)

so we have two energy-like conservation formulas. If we consider µ̇2

2
to be like kinetic energy,

−R2

2
to be like a potential and E to be like total energy then we can plot potential curves

as −R2 up to a constant (we take this constant to be the square of the initial velocity), see

figure 7.

5 Results

In our work we have used the fourth-order Runge-Kutta method to solve numerically our

system of equations (4.4). Each 1-soliton configuration, ψ1 and ψ2, possesses a U(1) symmetry

so we can choose each phase arbitrarily and consider the dependence on their phase difference

δ. In our analysis we have considered only small values of velocity (ξ̇) describing the initial

motion of the solitons towards each other, as the collective coordinate approximation is a good

approximation for slowly moving solitons.

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
 0

 0  100  200  300  400  500

ξ(
t)

time

Figure 2: The relative position of the solitons for different values of δ, the phase difference
between the two solitons: δ = 0 (red line), δ = π

4
(green line), δ = π

2
(dark blue line), δ = 3π

4

(pink line) and δ = π (light blue line).

Our simulations of the collective coordinate approximation have shown that the interaction

between the solitons depends on their initial phase difference and their velocity at the time of

interaction. Solitons with the same initial phase (δ = 0) attract each other the most and, if

their velocity is sufficiently small, they become trapped and oscillate around each other with

constant frequency. Solitons with the opposite initial phase (δ = π) are in the repulsive channel

and so they repel each other. The attractive/repulsive forces vary continuously between
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δ = 0, π with complex interactions taking place around δ = π
2

where the solitons experience

an initial attraction and so come together, then repel and move away from each other with a

constant velocity. The range of interactions can be seen in figure 2 where the relative position

between the solitons is plotted as a function of time, for a simulation with the initial distance

ξ = −5, initial velocity v = −0.01 so that they are sent towards each other, and for δ = 0, π
4
,

π
2
, 3π

4
and π.
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Figure 3: The relative position of the solitons initially at ξ = −5, with an initial velocity
v = −0.01 and phase difference δ = π; results of the full simulation is the dashed line and the
approximation is the solid line.
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Figure 4: The relative position of the solitons initially at ξ = −5, with an initial velocity
v = −0.01 and phase difference δ = 3π

4
; results of the full simulation is the dashed line and

the approximation is the solid line.

Comparison of the approximation with the full simulation confirms the observed depen-

dence of the soliton scattering on the initial phase difference between the solitons, δ, and

shows that the approximation describes the dynamics of the soliton scattering with varying
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Figure 5: The relative position of the solitons initially at ξ = −5, with an initial velocity
v = −0.01 and phase difference δ = 0; results of the full simulation is the dashed line and the
approximation is the solid line.
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Figure 6: The relative position of the solitons initially at ξ = −5, with an initial velocity
v = −0.01 and phase difference δ = π

32
; results of the full simulation is the dashed line and

the approximation is the solid line.

levels of accuracy for different values of δ. For δ = π the approximation is very accurate, this

can be seen in figure 3 where the results of the full simulation and the approximation are both

plotted for solitons initially at ξ = −5 and with an initial velocity v = −0.01 (so that they

are sent towards each other), and with relative phase δ = π. In the repulsive cases, δ & π
2
, the

results for the full simulation and the approximation are very close, see figure 4 where the full

simulation and approximation results are compared for δ = 3π
4

, and initial ξ = −5, v = −0.01

as before. However, for values of δ . π
2

our collective coordinate approximation does not fully

capture the soliton dynamics. For small values of δ in the full simulation the solitons initially

attract and oscillate as in the approximation, but over time the oscillations weaken and the

solitons start to repel each other. For δ = 0 the approximation remains accurate for a long
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Figure 7: Potential curves for solitons initially at ξ = −10 and v = −0.1 with a) from top to
bottom δ = π

2
, π

4
, 0, and b) from top to bottom δ = π, 3π

4
, π

2
, π

4
, 0

time as the oscillations only start to decay at around t = 900, see figure 5. For small non

zero values of δ the decay starts immediately and the approximation does not match the full

simulation as well, though it does give a close approximation for the period of the oscillations,

this can be seen in figure 6 where the results are compared for δ = π
32

. For values of δ closer

to π
2

the attraction is so weak that the solitons only move towards each other for a short

period of time before repelling away, this is different to the approximation where the solitons

move together slowly and come on top of each other before slowly oscillating (or eventually

repelling if initial velocity is too high). These differences could be due to the phase difference

being a constant in our collective coordinate approximation but free to vary in time in the full

simulation, therefore allowing solitons intially in an attractive channel to end up in a repulsive

channel. This could be tested by changing the choice of collective coordinates to allow the

solitons’ phases to vary separately in time.
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Figure 8: Potential curves for solitons initially at ξ = −10, δ = π
2

and from top to bottom
v = −0.000001, −0.5, −1, −1.5, −2
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We have confirmed our observations by considering the conserved quantity resulting from

our expression for ξ̇. This we have done by interpreting (4.5) as an energy conservation formula

so that we could consider the movement of solitons as the motion of a particle moving in a

potential. In figure 7 we have plotted the potential curves for initial velocity v = −0.1, initial

position ξ = −10, and various values of δ. We see that δ = 0, π do indeed correspond to the

attractive and repulsive potentials, respectively. Our potential curves are similar to those in

Zou and Yan’s results in [9] but with a few differences as we have not made any approximations

in our calculations. Firstly, our potential curves have a dependence on the initial velocity which

is demonstrated in figure 8 by plotting potential curves for δ = π
2
, initial position ξ = −10

and various values of initial velocity. Secondly our potential curves are more symmetric about

δ = π
2
, i.e. in our results solitons with δ = π / δ = 0 feel repulsion/attraction at the same

relative distance, whereas in Zou and Yan’s results solitons with δ = π feel repulsion whilst

further apart than solitons with δ = 0 feel attraction. Finally, our potential curve for δ = π
2

is much more attractive than theirs for all values of the initial velocity (see figure 7(a)).

6 Further comments and some conclusions

In this paper we have presented a collective coordinate approximation (based on the modif-

cation of the approach of Zou and Yan [9]) for the study of the dynamics of two interacting

bright solitons in a NLS model and then we have used it to investigate these dynamics in

some detail. We have observed that the initial relative phase between the solitons determines

whether they feel an attractive or repulsive force towards each other, and for a small enough

velocity the solitons can form a bound state and continue to oscillate around each other in-

definitely. In comparing our results to those of full numerical simulations we had remarkable

agreement in most cases, suggesting that our collective coordinate approximation can be used

to reproduced the dynamics of the solitons even when the solitons are close together. We have

also observed some discrepancies for small values of relative phase which we hope to be able

to resolve in further work by adjusting our choice of collective coordinates. In addition to this

we plan to continue our work by applying the method developed in this report to investigate

various physically interesting perturbations to the NLS equation.
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A Appendix: Calculation of integrals

i⇡

2

i⇡

!

�

R�R

Friday, 29 March 13

Figure 9: Appropriate contour (called C) for all the integrals: only one of the infinitely many
poles is picked.

Here we present a few details which show the way we have performed the calculations of

the integrals in section 4.

A.1 I =
∫ +∞
−∞

dx
cosh2(b(x+ξ(t))) cosh2(b(x−ξ(t)))

Defining ω = b(x+ ξ(t)) we can write:

I =

∫ +∞

−∞

dx

cosh2(b(x+ ξ(t))) cosh2(b(x− ξ(t))) =
1

b

∫ +∞

−∞

dω

cosh2(ω) cosh2(ω − 2bξ)
. (A.1)

Consider the following complex integral along the closed contour C (see figure 9) in the plane

z = ω + iφ ∮
C

f(z)dz =

∮
C

z

cosh2(z) cosh2(z − 2bξ)
dz. (A.2)

We have chosen our contour such that the integrand is analytic except for two second-order

poles z1 = iπ/2, z2 = iπ/2 + 2bξ, and in the limit R → ∞ the integrals along the vertical

paths z = ±R + iφ, φ ∈ [0, iπ] vanish. From the residue theorem we have∮
C

f(z)dz = −iπI = 2πi
∑
k=1,2

Resf(zk), (A.3)
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where the residues can be calculated as usual:

Resf(z1) = lim
z→z1

d

dz
(z − z1)2f(z) =

iπ cosh(2bξ)

sinh3(2bξ)
+

1

sinh2(2bξ)
(A.4)

Resf(z2) = lim
z→z2

d

dz
(z − z2)2f(z) = −(iπ + 4bξ) cosh(2bξ)

sinh3(2bξ)
+

1

sinh2(2bξ)
. (A.5)

Combining this with A.3 we have:

I =
8ξ cosh(2bξ)

sinh3(2bξ)
− 4

b sinh2(2bξ)
. (A.6)

A.2 I =
∫ +∞
−∞

cos(2µx+δ)
cosh(b(x+ξ)) cosh(b(x−ξ))dx

Rewriting this with the definition ω = b(x+ ξ) we have:

I =
1

b

∫ +∞

−∞

cos(2µω
b

) cos(δ − 2µξ)− sin(2µω
b

) sin(δ − 2µξ)

cosh(ω) cosh(ω − 2bξ)
dω, (A.7)

which can be expressed as

I =
cos(δ − 2µξ)

b
Re

[∫ +∞

−∞

ei
2µω
b

cosh(ω) cosh(ω − 2bξ)
dω

]

− sin(δ − 2µξ)

b
Im

[∫ +∞

−∞

ei
2µω
b

cosh(ω) cosh(ω − 2bξ)
dω

]
. (A.8)

We consider the following complex function integrated around C:∮
C

f(z)dz =

∮
C

ei
2µz
b

cosh(z) cosh(z − 2bξ)
dz. (A.9)

Using the residue theorem we have:∮
C

f(z)dz =
(1− e− 2µπ

b )

b

∫ +∞

−∞

ei
2µω
b

cosh(ω) cosh(ω − 2bξ)
dω = 2πi

∑
k=1,2

Resf(zk), (A.10)

and we can calculate the residues as before to find:

I =
2π cos(δ) sin(2µξ)

b sinh(πµ
b

) sinh(2bξ)
. (A.11)
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