
 Procedia CIRP 38 (2015) 277 – 282

Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.
doi: 10.1016/j.procir.2015.08.039

ScienceDirect

The Fourth International Conference on Through-life Engineering Services

Modelling electronic circuit failures using a Xilinx FPGA system

Thomas E. Carney. Richard P. McWilliam. Alan Purvis.*

School of Engineering and Computing Sciences, University of Durham,

∗ Corresponding author. Tel.: +44 0771 3505409; E-mail address: alan.purvis@durham.ac.uk

Abstract

FPGAs are a ubiquitous electronic component utilised in a wide range of electronic systems across many industries. Almost all modern FPGAs

employ SRAM based configuration memory elements which are susceptible to radiation induced soft errors. In high altitude and space applica-

tions, as well as in the nuclear and defence industries, such circuits must operate reliably in radiation-rich environments. A range of soft error

mitigation techniques have been proposed but testing and qualification of new fault tolerant circuits can be an expensive and time consuming pro-

cess. A novel method for simulating radiation-induced soft errors is presented that operates entirely within a laboratory environment and requires

no hazardous exposure to radiation or expensive airborne test rigs. A system utilising modular redundancy is then implemented and tested under

the new method. The test system is further demonstrated in conjunction with a software flight simulator to test single electronic modules in the

context of active service on board a passenger aircraft and the effects of failure under radiation induced soft errors are observed. Our research

proposes a test regime in which design strategies for self-healing circuits can be compared and demonstrated to work.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

Keywords: FPGA; Hardware-in-loop; Fault Tolerance; TMR; Fault Injection;

1. Introduction

The Field Programmable Gate Array is a programmable

logic device which has become ubiquitous in electronic systems

due to its cost, ease of use and reprogrammability. The inter-

national market for FPGAs is huge and growing. The FPGA

producer, Xilinx, reported 4th quarter sales in excess of half a

billion US dollars in 2013 [1] while competitor, Lattice Semi-

conductor, have sold over one billion FPGAs over the 10 year

period up to 2013, and are currently selling over a million units

per day of their ultra-low density iCE FPGAs [2].

Despite their many advantages, FPGAs are susceptible to

faults. Wirthlin et al. [3] provides a discussion of radiation

induced faults on SRAM based FPGAs. These faults can take

the form of (i) Total Ionizing Dose, causing permanent and

irreparable damage to the device. (ii) Single Event Latchup

(SEL) A potentially destructive condition in which a charged

particle causes latchup within a device. Once in latchup, high

currents will flow through parasitic bipolar transistors and de-

stroy the device. (iii) Single Event Upset (SEU), a change in

state of a digital memory element caused by an ionizing parti-

cle. These last are soft errors which do not cause any permanent

damage to the device. [3] notes that devices such as the Xilinx

QPRO high reliability FPGA are immune to latchup and has an

acceptable dose tolerance, but are still sensitive to SEUs.

Anti-fuse FPGAs are available which are not susceptible to

SEUs, but as noted in [4] these have their own drawbacks. They

are one time programmable devices and are only available in

smaller devices with a much smaller gate count than SRAM

based versions.

Gusmao and Katensmidt [5] note the sensitivity of FPGAs

to radiation while Niknahad et al. [6] point out that it is the

SRAM memory elements inherent to most FPGAs which are

particularly susceptible to SEUs (Single Event Upsets). Such

errors may not present in systems in stable environments, and

it is possible that some low priority systems may allow for such

errors, but FPGAs have now become commonplace in critical

applications in which transient faults cannot be tolerated. Such

applications are pervasive in hazardous or remote applications

including aircraft and spacecraft, where errors due to radiation

are more likely.

Aircraft and spacecraft are prime examples of environments

where these faults from radiation are likely to occur and abso-

lutely cannot be tolerated.

[7] notes the effects of mechanical and/or ionizing stress dur-

ing aircraft and spacecraft launch and operations, and the high

incidence of cosmic rays and high energy photons encountered

by FPGA systems operating in deep space.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Programme Chair of the Fourth International Conference on Through-life Engineering Services.

278 Thomas E. Carney et al. / Procedia CIRP 38 (2015) 277 – 282

It is clear then that fault tolerance and fault recovery in FP-

GAs is an absolutely vital area of research for aerospace appli-

cations. However, the testing and qualification of such systems

for flight is of equal importance, and can be an extremely ex-

pensive process. [8] notes the expense and complexity involved

in testing a piece of equipment under realistic operating condi-

tions

1.1. TMR

TMR (Triple Modular Redundancy) is a technique com-

monly used in high radiation environments to avoid errors. It

is the most common scheme for mitigating SEU (Single Event

Upset) errors in sequential circuits in orbit. [9] TMR uses hard-

ware redundancy to mask any single design failure by voting on

the result of three identical copies of the same functional unit.

[10]. Morgan et al. [11] points out several successful demon-

strations of TMR implementation, but point out the drawbacks

of the scheme in terms of the additional resources required. In

fact TMR can require up to six times the area of the original

circuit [3]

1.2. Configuration Scrubbing

Configuration scrubbing is the process of reloading the bit-

stream into configuration memory during operation. This can

be carried out constantly or in the instance of fault detection.

Adell and Allen [4] point out that this process will require an

external, radiation hardened ASIC or one time programmable,

Anti-Fuse FPGA. [4] also notes that scrubbing in itself is not

a useful technique, but rather must be associated with a redun-

dancy scheme in order to observe any improvement in reliabil-

ity. This recommendation is echoed by Bridgeford et al. [12]

as discussed in the section on Xilinx tools, below.

1.3. Xilinx Tools

Bridgeford Et Al [12] in the Xilinx application note ”Single

Event Upset Mitigation Selection Guide” present a number of

fault mitigation techniques which can be easily implemented

through Xilinx’ own software tools. The most basic approach

noted is termed ”Power Cycling” i.e. switching the power off

and then on again to force the FPGA to reconfigure.

1.4. Real World Effects

The failure rate of FPGA devices due to SEUs is entirely

dependent on the level of radiation, most significantly neutron

flux, and device cross section. [13] The largest Virtex-6 de-

vice (XC6VLX760) contains 184,823,072 bits of configuration

memory and will exhibit a nominal failures-in-time (FIT) rate

of 176 at sea-level in New York. While this represents a mean

time between failures (MTBF) of 648 years, a system com-

prised of 1,000 FPGAs would experience a failure every year.

[14] At high altitude (40000 feet), these numbers severely in-

crease, namely as much as 100 times at the Equator and 560

times at the Earth poles [15].

Real world failures due to SEUs have been known to occur

and pose a grave threat to the aviation industry. On 7 October

2008, Qantas flight 72 suffered a SEU in one of its three Air

Data Inertial Reference Units causing the aircraft to carry out

a sudden pitch down manoeuvre causing over 100 injuries to

passengers including 14 serious injuries requiring passengers

to be airlifted to hospital following an emergency landing. [16]

1.5. Testing Apparatus

Experiments for this investigation were carried out us-

ing the Xilinx ML605 evaluation board, featuring a Virtex-6

XC6VLX240T FPGA. Designs were developed in VHDL us-

ing ISE 14.7 and Xilinx System Generator in conjunction with

Matlab 2013b. Though the problem of enhancing resilience has

led to many design strategies there is a need to develop a stan-

dard test bed to stress these different circuits in repeatable, near

real world engineering systems.

2. Error Injection System

The fault mitigation schemes put forward in this study are

intended to be used in the presence of ionizing radiation, es-

pecially at high altitude, but it would be expensive, time con-

suming and potentially dangerous to test these schemes in such

an environment and so it was necessary to develop a technique

for simulating the effects of ionizing radiation by artificially in-

troducing SEUs in the laboratory. One possible approach to

introducing SEUs is Beam Testing. The device under test can

be placed in a test chamber and bombarded with a beam of ar-

tificially generated radiation. Advantages to this technique are

that the level of radiation can be accurately monitored and con-

trolled, and that this is the closest possible simulation to actu-

ally exposing the hardware to natural ionising radiation. The

obvious disadvantage to this approach is the immense cost as-

sociated with the development of a beam testing facility. [17],

[18] and [19] all present details of such test schemes where pur-

pose built facilities have been constructed. [17] and [18] present

neutron beam testing facilities at different energies while [19]

employs proton beam testing via a synchrotron device. All of

these facilities represent a considerable investment of time and

capital resources whilst only managing to perform testing over

a small range of possible radiation sources.

If beam testing is considered to be too costly, then a sim-

ulation of SEU by local hardware is an acceptable alternative.

[6] notes that the nature of SEUs is to invert SRAM memory

elements within the FPGA. An external fault injection system

could be developed using Xilinx Dynamic Reconfiguration to

modify the state of the configuration memory. A method simi-

lar to this is presented in [20] where it is used to effectively sim-

ulate some SEU type errors. This approach is restricted by the

limits of the Xilinx reconfiguration techniques which will ac-

tively prevent alteration of certain reserved bits in configuration

memory, providing a level of protection which is not present in

real-world applications.

The chosen solution was to use the Xilinx Soft Error Mitiga-

tion (SEM) IP Core. This core is included as part of the Xilinx

CoreGen utility and is intended as an error detection and correc-

tion tool, but can also be configured to provide fault injection

by inverting bits in the FPGA configuration memory via the

279 Thomas E. Carney et al. / Procedia CIRP 38 (2015) 277 – 282

FPGA’s Internal Configuration Access Port (ICAP). The error

detection and correction capabilities of the SEM core are ap-

plicable only to a small selection of Xilinx’ own FPGA chips.

Furthermore, the design and operation of the SEM core is con-

sidered by Xilinx to be commercially sensitive information and

is not available to form part of this study. For these reasons this

will not be considered as a fault mitigation scheme for the pur-

poses of this study. The Error Injection function is not required

to be transferrable to other technologies and while its capabili-

ties cannot be independently verified, they are fully documented

in [21]. This makes the SEM core an appropriate and expedient

tool to use for the implementation of error injection, although

there are a number of issues which need to be overcome before

the SEM IP core can be used in this manner.

2.1. Addressing

The SEM IP core is designed for testing the fault tolerance

of an entire, chip-wide design, but the creation of such a design

is a huge task and is well beyond the scope of this project. The

Virtex-6 XC6VLX240T contains in excess of 57 million ad-

dressable bits of configuration memory of which no more than

6% was ever used during this investigation. The SEM core is

capable of injecting errors into the configuration memory at an

address specified at run time, but there is no direct mapping of

configuration memory address space to FPGA fabric physical

location of logic, in fact this mapping is deliberately withheld

by Xilinx in order to protect the intellectual property of its cus-

tomers. It is difficult therefore to be confident that errors are

being injected into an address which will (i) compromise the

design (ii) avoid compromising the SEM core itself. In order to

determine a suitable address range for error injection, the fol-

lowing steps were taken:

1. Area Constraints

The user constraint file included with the design was modi-

fied to place strict physical area constraints on the logic un-

der test. This constraint restricts the CLB slice and Block

RAM ranges where the logic can be placed as well as spec-

ifying that no other logic can be placed within this range.

2. FPGA Editor

The FPGA editor program is a part of the ISE design

tools. If run from the command line with the appropri-

ate switches, this tool will automatically access the user

constraint file mentioned above and incorporate it into the

place and route process to generate the native circuit de-

scription and physical constraint files required to specify

the physical implementation of the circuit. FPGA Editor

can also create a log file which details how the area con-

straints in the user constraint file have been implemented.

3. Bitstream Generation

The BitGen program uses the native circuit description and

physical constraint files from the place and route process

to create a bitstream to configure the device. If the proper

command line switches are used, then BitGen is also ca-

pable of generating an essential bits file (.ebd). This file is

a string of binary digits representing every bit in the bit-

stream, but rather than representing the actual data, a ’1’

represents a bit which is used in the design and a ’0’ rep-

resents an unused bit. Crucially, BitGen can be instructed

to access the log file created by FPGA Editor and generate

the essential bits file only for the parts of the design men-

tioned in the area constraints which were inserted into the

user constraint file.

4. Essential Bit Analysis

The .ebd file created by BitGen is still not particularly use-

ful as it is in a proprietary format, details of which are not

made available by Xilinx. Through negotiation with Xil-

inx it was possible to acquire the EBD Analyser — a piece

of software which is not advertised or commercially avail-

able but is used by Xilinx engineers specifically for the

purpose of analysing the EBD file and generating a list of

linear frame addresses in configuration memory. Unfortu-

nately the only version of the EBD Analyser in existence

is designed exclusively for 7-series FPGAs. The SEM IP

core for 7-series uses a slightly different address structure

to the Virtex-6 version. Address structures are detailed

in [21] and so it was possible to write a C++ program to

parse the address file and generate a list of configuration

memory addresses which were correctly structured for the

Virtex-6.

2.2. Communication

The SEM IP core, when configured for error injection, has a

36 bit inject-address bus input and an inject-strobe input which

can be used to inject errors to a known address. Unfortunately

using these pins to inject errors to a series of non-sequential ad-

dresses while meeting timing requirements for injection proved

impractical. Fortunately when the SEM IP core is instantiated

it contains a PicoBlaze soft microcontroller. The PicoBlaze is

a very small, very limited controller which in this case serves

only as a control mechanism for the SEM IP core. Commands

can be sent to, and data received from the pico-blaze using the

monitor tx and monitor rx pins. In order to make use of this

control mechanism, a soft RS232 communication module was

implemented on the FPGA using the on-board UART of the

ML605 board, and connected to the monitor tx and monitor rx

pins of the controller. A proprietary software interface was writ-

ten in the C# language to allow fault injection commands to be

written to the on board UART from a windows PC.

2.3. Integration with System Generator

The above steps are sufficient to enable error injection via

the SEM IP core into any design generated using the ISE tools,

but in order to interface the design with the Flight Simulator

in Simulink it was necessary to use the design in Hardware

CoSimulation mode in System Generator. System Generator

inherently takes control of all i/o on the FPGA which renders

the USB communication mentioned above ineffective. To solve

this problem it was necessary to redefine the ML605 board pa-

rameters within System Generator and reserve some pinouts as

Non Memory Mapped (NMM) Ports. The NMM ports could be

assigned to ports on the SEM IP block within system generator,

effectively routing those i/o ports to the on-board resources.

3. N Modular Redundancy

The most common method of fault mitigation is Triple Mod-

ular Redundancy, or more generally, N-Modular Redundancy.

280 Thomas E. Carney et al. / Procedia CIRP 38 (2015) 277 – 282

Fig. 1. Example of Triple Device Redundancy

The principle of operation of this scheme is to create multiple

copies of the same module and apply a majority voting mech-

anism to the outcome. For this scheme to be effective, N must

be greater than or equal to 3. Systems with N=2 may be able

to detect an error but will not be able to correct it. The system

of N-Modular redundancy which has been implemented here is

similar to that presented by [22].

In implementing a system of modular redundancy it is nec-

essary to decide the level at which redundancy will exist. The

most reliable system would be device level redundancy. [22]

notes that this method ”has the highest reliability for detecting

single and multiple bit upsets, transient upsets, and any other

functional interrupts including total device failure” [12] agree

that ”duplicating the design on multiple FPGAs with voting on

the outputs of the FPGAs provides the most robust mitigation

scheme” This arrangement is shown in fig. 1. It is obvious how-

ever that this approach is the most costly in terms of resources,

requiring multiple discrete devices as well as a radiation hard-

ened voting device.

The Module level redundancy approach applies the same

concept to the individual modules on the chip. Each module

is replicated and a voting mechanism is applied for each output

required. This level of redundancy provides a trade-off between

resource utilisation and fault tolerance. It is possible to employ

a more fine grained level of redundancy, with every individ-

ual component in the module, or even every logic gate or Slice

LUT being replicated. This finest level of redundancy requires

extremely high levels of resources, as discussed below.

The addition of the voting logic introduces a potential weak-

ness into the system as this new component involves additional

logic where errors may occur. It is difficult to envisage any

manner in which a modular redundancy system may protect its

own voting mechanism without introducing yet more unpro-

tected voting mechanisms. This additional circuitry may lead

to an increased likelihood of single faults occurring while si-

multaneously increasing the reliability of the overall system.

It is inherently difficult to implement n-modular redundancy

for FPGAs due to the complex design flow involved in moving

from HDL code to bitstream, most of which is beyond the con-

trol of the engineer. Synthesis tools such as Synopsis Synpliy

and Xilinx Synthesis Tool (XST) perform optimisation opera-

tions on the schematics and HDL code created by the engineer

and are explicitly designed to remove any redundant logic in

order to maximise on-chip resource utilisation. To avoid this

Fig. 2. Schematic diagram of the ripple multiplier circuit used to test redundant

circuit

unwanted optimisation process it is necessary to use the design

approach detailed in [22]. This includes designing all circuits

using purely structural VHDL in order to gain an extra level of

control over the synthesised design. It is also required to assign

synthesiser attributes to the designed modules. These attributes

vary between synthesis tools but when using XST it is neces-

sary to apply the ”KEEP HIERARCHY = true” attribute to the

top level module in the design, and to apply the ”KEEP = true”

and ”EQUIVALENT REGISTER REMOVAL = no” to all in-

terconnecting signals.

4. Device Under Test

For the first part of this study, the circuit being tested was an

array of binary multipliers, with an input of 16 x 4bit numbers

and outputting a single 64bit number. The numbers are mul-

tiplied together in stages, two at a time, with the outcome of

each multiplication rippled forward to a next stage multiplier,

as shown in fig 2. This configuration was chosen because it

provides a simple, predictable calculation with a high number

of bitwise logic functions. Each multiplier is composed of a

shift register and ripple adder. These arithmetic components

were built in structural VHDL at gate level in order to avoid be-

ing synthesised into any specialised arithmetic logic circuits on

the FPGA, but rather to encourage synthesis into Slice LUTs in

order to keep the results of the trial as generalised as possible.

Several versions of this circuit were implemented for analy-

sis and testing as detailed below.

• Version 1 was unprotected and essentially identical to the

version displayed in Fig 2. Following synthesis and place-

ment this circuit was found to occupy 4245 Slice LUTs.

• Version 2 was designed with 3x module level redundancy

and Version 3 was designed with 5x module level redun-

dancy, as discussed in III above. Following synthesis and

placement these circuits were found to occupy 17,564 and

29,138 Slice LUTs respectively.

• Version 4 was designed with triple component level re-

dundancy. In this configuration each full adder, ripple

281 Thomas E. Carney et al. / Procedia CIRP 38 (2015) 277 – 282

Table 1. Characteristics of the circuit designs created

Ver. Replic. Replic. LUT Res. Res.

Count Level Count Util. Increase

1 x1 NA 4245 2%

2 x3 Module 17564 11% x4.18

3 x5 Module 29138 19% x6.86

4 x3 Component 176555 111%

Fig. 3. Box plot showing the distribution of the number of errors injected before

a fault is observed

adder and multiplier was triplicated with voting mecha-

nisms added. Following synthesis and placement this cir-

cuit was found to occupy 176,555 Slice LUTs.

This data is summarised in table 1. It can be seen from the

table that resource utilisation increases beyond the replication

level, with each multiple of module level replication requir-

ing approximately 1.375x increase in resources. Furthermore

it should be noted that version 4 could not be studied further as

it required more resources than were available on the Virtex-6

chip.

5. Testing and Results

Each circuit was implemented within the system generator

hardware co-simulation model and subjected to a series of er-

rors via the error injection system described above in section II.

The inputs to the hardware were kept constant and consequently

the output would normally be expected to remain constant. For

circuit 1, a fault was considered to have occurred when the out-

put from the circuit changed by one or more bits at which point

the trial was ended and the system reset. For the TMR pro-

tected circuit 2 it was noted when a single one of the outputs

changed, but the trial was continued until the final, voted out-

put also changed.

The data collected from these trials is summarised in figs 3

and 4. and table 2. Note that the confidence interval stated in

table 2 is adjusted for the fact that the number of errors before

failure must be greater than or equal to 1.

It can be seen from fig 3 that the reliability of each individual

output is reduced by the inclusion of module level redundancy,

while the overall reliability of the system is improved. The to-

tal range of the data is greatly increased for the TMR circuit

and there is considerable overlap between the three result sets,

Table 2. Summary of data

Version Mean Std Dev 99.7% interval

Non Redundant 4956.59 1988.2 1 — 10921

TMR Single Fault 3163.64 1530.08 1 — 7754

TMR Failure 9607.58 5921.41 1 — 27371

Fig. 4. Cumulative Frequency of the count of errors injected before a fault is

observed

indicating that while the TMR circuit is likely to be more re-

silient to SEUs, it is possible that it may fail just as quickly.

This is consistent with expectations given the random nature of

the simulated SEUs which are equally likely to strike the final

output voter as any other component.

6. Flight Simulator Link

In order to assess the real-world effects of the error injection

mechanism, as well as to achieve a realistic, full test environ-

ment of the circuits under test, the System Generator model was

linked to the Flight Gear open source flight simulator. Flight

gear contains some native support for interfacing with Matlab,

via the Simulink Aerospace Blockset. This method of interface

was used where possible due to its relative ease of use, but not

all of the internal parameters used by Flight Gear can be ac-

cessed in this method, it was therefore necessary to implement

a novel, more expandable interface. A schematic diagram of

the complete test setup can be seen in fig.5.

FlightGear is capable of running with an inbuilt telnet server

which can be used to access and set any values in its internal

parameter tree via a set of telnet commands. In order to in-

terface with the telnet server, a set of tcp sockets were set up

within the Simulink model to act as i/o blocks. The Flight Sim-

ulator model used was an Airbus A380. A hardware model of

the aircraft’s pitot tube control electronics was developed. With

the hardware-in-loop model running, the error injection appli-

cation was used to introduce simulated SEUs into the FPGA

SRAM memory in batches of 100 SEUs at a time.There were

two failure modes present: Failure mode 1 was to cause the

measured forward pressure to increase dramatically, by up to

30 orders of magnitude in some cases. This erroneous data

caused the autopilot in the simulated aircraft to believe that its

282 Thomas E. Carney et al. / Procedia CIRP 38 (2015) 277 – 282

Fig. 5. Overall schematic diagram of the system, showing relevant circuitry

within the FPGA as well as external components

speed was unnecessarily high and reduce the engine power to

idle speed, causing the aircraft to rapidly lose altitude. Failure

mode 2 was to cause the measured forward pressure to dramat-

ically decrease, often to zero. This erroneous data would cause

the autopilot to assume that its speed was dangerously low and

throttle the engines to maximum in an attempt to compensate.

Many devices can be modelled in hardware and placed in-loop

in the flight simulator. SEU injection has been demonstrated

but fault types such as stuck-at or ’no fault found’ could be

simulated, mitigation techniques implemented.

7. Conclusions

A Hardware-in-loop method for the qualification of FPGA

circuits with radiation induced soft errors has been developed.

It relies on generating random SEU type errors within the hard-

ware under test without dangerous radiation or expensive air-

borne test rigs. The method can be used to assess modular re-

dundancy in FPGA circuits and shows increased reliability for

TMR circuits. Furthermore the method has been applied to the

Flight Gear open source flight simulator to conduct hardware-

in-loop testing of speed calculations from pressure readings and

the resultant failure modes observed. It has been demonstrated

that the fault injection tools developed to compare approaches

to designing resilience into circuits work well as the TMR ex-

ample shows.

Acknowledgements

This work was carried out with the support of the EP-

SRC Innovative Centre for Through-life Engineering Services.

[EP/IO33246/1]. AP is also grateful for the support and wel-

come he received whilst a visitor at the University of Sydney

Australian Centre for Field Robotics.

References

[1] “Xilinx investor information,” http://investor.xilinx.com/releasedetail.cfm?

ReleaseID=759113.

[2] EETimes, “With over 1 billion fpgas sold, lattice introduces machxo3 fam-

ily,” http://www.eetimes.com/document.asp?doc id=1319597.

[3] M. Wirthlin, N. Rollins, M. Caffery, and P. Graham, “Hardness by design

techniques for field programmable gate arrays,” in Proc. 11th annual NASA
symposium on VLSI design, Coeur d’Alene, Idaho, 28-29 May 2003.

[4] P. Adell and G. Allen, “Assessing and mitigating radiation effects in xilinx

fpgas,” JPL Publ, vol. 08-09, 2008.

[5] F. Gusmao, G. Kastensmidt, R. Hentschke, L. Carro, and R. Reis, “Design-

ing fault tolerant techniques for sram-based fpgas,” IEEE Design and Test,
vol. 21, pp. 552–562, 2004.

[6] M. Niknahad, O. Sander, and J. Becker, “Qfdr — an integration of quadded

logic for modern fpgas to tolerate high radiation effect rates,” in 12th Euro-
pean Conference on Radiation and Its Effects on Components and Systems
(RADECS), Sevilla, Spain, 19-23 Sept 2011, pp. 119–122.

[7] M. G. Parris, C. A. Sharma, and R. F. Demara, “Progress in autonomous

fault recovery of field programmable gate arrays,” ACM Comput. Surv,

vol. 43, pp. 31:1–31:30, 2011.

[8] A. Griffio, D. Druryand, and D. Salt, “Hardware in the loop based syn-

chronous generator emulation test rig for more electric aircraft power sys-

tems,” in 6th IET International Conference on Power Electronics, Ma-
chines and Drives, Bologna, Italy, 16-18 Oct 2012, pp. 1–6.

[9] S. Smith, “Single event upset mitigation by means of a sequential circuit

freeze,” Microelectronics Reliability, vol. 52, pp. 1233–1240, 2011.

[10] M. Straka, J. Kastil, Z. Kotasek, and L. Miculka, “Fault tolerant system de-

sign and seu injection based testing,” Microprocessors and Microsystems,

vol. 37, pp. 155–173, 2007.

[11] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A comparison of tmr

with alternative fault tolerant design techniques for fpgas,” IEEE Transac-
tions on Nuclear Science, vol. 54, pp. 2065–2072, 2007.

[12] B. Bridgeford, C. Carmichael, and C. W. Tseng, Xilinx Application Note
987: Single-event upset mitigation selection guide, 2008.

[13] C. Hu and Z. Suhail, Xilinx Application Note 1073: NSEU Mitigation in
Avionics Applications, 2010.

[14] Neutron Induced Single Event Upset FAQ, Microsemi Corporation, 2011,

www.microsemi.com/document-portal/doc view/130760-neutron-seu-faq.

[15] C. Leong, J. Semiao, M. B. Santos, I. C. Teixeira, and J. P.

Teixeira, “Seu sensor for short-term effects monitoring in fpgas,”

INESC-ID Technical Report, Tech. Rep., June 2013, http://www.inesc-

id.pt/ficheiros/publicacoes/9174.pdf.

[16] A. T. S. Bureau, “In-flight upset 154km west of learmouth, wa, 7 october

2008,” 2008.

[17] M. Osterlund, J. Blomgren, S. Pomp, and A. V. Prokofiev, “The uppsala

neutron beam facility for electronics testing,” Nuclear Instruments and
methods in Physics Research, vol. B241, pp. 419–422, 2005.

[18] S. Lee, J. Rinckel, and P. E. Sokol, “New neutron radiation effects capa-

bilities at the low energy neutron source (lens),” Physics Procedia, vol. 60,

pp. 110–117, 2014.

[19] A. Hasanbegovic, “Proton beam characterization at oslo cyclotron labo-

ratory for radiation testing of electronic devices,” 16th Symposium on the
Design and Diagnostics of Electronic Circuits and Systems, pp. 135–140,

2013.

[20] M. Straka, J. Kastil, and Z. Kotasek, “Seu simulation framework for xilinx

fpga: First step towards testing fault tolerant systems,” 14th Euromicro
conference on Digital System Design, pp. 223–230, 2011.

[21] Xilinx product guide PG036: LogiCORE IP Soft Error Mitigation Con-
troller v4.0, 2013.

[22] S. Habinc, “Functional triple modular redundancy: Vhdl design methodol-

ogy,” Gaisler Research, vol. v0.2, pp. 003–01, 2002.

