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Abstract

Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also
acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an
unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling)
and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and
transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of
representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type
Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or
inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in
Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a
transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the
expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both
virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to
the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and
delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6
and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased
fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the
nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that
enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.
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Introduction

It is a paradigm that any micro-organism that functions as an

effective pathogen must possess mechanisms either to suppress or

evade the armoury of host defence responses. This is particularly

true for biotrophic plant pathogens because they can only

maintain a successful infection in the presence of living host cells.

Plant pathogenic bacteria introduce dozens of pathogen-encoded

effectors into the host via the Type III secretion system (TTSS) [1]

and biotrophic fungal or oomycete pathogens may deliver

hundreds of effectors across the haustorial membrane [2,3] that

suppress or modify plant defence responses.

Plant viruses are amongst the least genetically complex

pathogens but must nevertheless maintain the ability to overcome

host-defences. Much recent attention has focused on the role of

RNA-silencing in anti-virus defence and the majority of plant

viruses encode silencing suppressor proteins (VSSPs) [4]. As well as

RNA-silencing, many plant viruses stimulate basal defence

responses in compatible hosts; these include the global activation

of Salicylic Acid (SA)-responsive and changes in the abundance of

Jasmonic Acid (JA)-responsive genes [5,6]. Exogenous application

of SA or analogues can reduce accumulation or long-distance

movement of a number of viruses, e.g. Tobacco mosaic virus (TMV)
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and Cucumber mosaic virus (CMV [7–9] and long distance movement

of Cauliflower mosaic virus (CaMV) is inhibited in Arabidopsis

(Arabidopsis thaliana) mutants in which SA-responsive defence

pathways are constitutively activated [10]. CMV protein 2b,

a VSSP, has also been implicated as modifying both JA- and SA-

responses implying a possible link between silencing, SA and JA

[6,11], although in Arabidopsis SA-mediated antiviral defence

against TMV and CMV appears to act partially independently of

DICER activity [12]. These results demonstrate the importance of

SA and JA signaling in defence responses following infection by

either compatible or incompatible viruses.

CaMV is a plant pararetrovirus with an 8.0 kbp DNA genome

and a worldwide distribution [13]. Hosts include members of the

Cruciferae [13] and infections of Arabidopsis (Arabidopsis thaliana)

make an excellent model pathosystem with which to study

signaling and defence responses during compatible host-virus

interactions. In Arabidopsis, CaMV-infection strongly stimulates

activation of genes responsive to ethylene, reactive oxygen species

and SA [14]. Up-regulation of markers such as PR-1, BGL2 and

PR-5 is dependent on functional SA-signaling pathways. However,

although Arabidopsis mutants in which SA-responsive defence

pathways are constitutively activated show enhanced resistance to

CaMV, genotypes that cannot accumulate SA e.g. NahG and sid2-

2 do not show any corresponding enhanced susceptibility [10].

Therefore, in wild-type Arabidopsis plants (but not in mutants in

which Systemic Acquired Resistance (SAR) is constitutively

activated) SA-dependent defence responses triggered by CaMV-

infection may be ineffective in restricting virus multiplication and

spread.

Measured on a whole plant basis, SA-responsive transcripts

increase in abundance over time following CaMV-inoculation but

leaf-by-leaf the situation is more complex. In individual leaves at

the very early stages of virus invasion, levels of PR-1 transcripts are

high but they decrease as virus titres within the leaf increase

[15,16]. A plausible explanation for this strong inverse correlation

between virus titre and PR-1 expression in individual leaves, and

for the lack of enhanced susceptibility in SA-deficient genotypes

[10], is that a virus-encoded protein may be suppressing SA-

signaling in infected cells.

CaMV gene VI encodes P6, a 62 kD multifunctional nuclear-

cytoplasmic shuttle protein [17] with an essential role in virus

replication [13]. P6 acts as a translational transactivator (TAV)

promoting translation of downstream open reading frames (ORFs)

on the polycistronic 35 S mRNA through a non-canonical

mechanism [13,18]. It also associates with actin filaments and

plays a role in virus cell-to-cell movement [19,20]. Gene VI is also

the major genetic determinant of pathogenicity [21–23] and in

some hosts P6 functions as an avirulence determinant triggering

a hypersensitive response (HR) [24,25]. Consistent with a role as

a pathogenicity determinant, P6 can also act as a suppressor of

RNA-silencing, interfering with DICER activity through an

interaction with nuclear protein DRB4 [26,27]. Here we have

investigated whether P6 might play yet another role by suppressing

SA-dependent defence responses.

We have previously reported that expression of P6 from

a transgene in Arabidopsis results in a symptom-like phenotype

and modifies ethylene and Auxin signaling responses [28–30]. We

now show that in transgenic Arabidopsis and when transiently

expressed in Nicotiana benthamiana, P6 dramatically decreases the

abundance of representative SA-responsive transcripts and in-

creases the abundance of JA-responsive transcripts. P6 expression

results in increased levels and altered subcellular localization of

NONEXPRESSOROFPATHOGENESISRELATED1 (NPR1),

a key regulatory protein that controls many aspects of SAR in

plants. We also show that in P6-expressing transgenic plants,

susceptibility to virulent and avirulent strains of Pseudomonas syringae

pv tomato (Pst) is greatly enhanced, but susceptibility to the

necrotrophic fungal pathogen Botrytis cinerea is greatly reduced. We

conclude that P6 is a novel and unique pathogenicity effector that

specifically targets basal defence by profoundly altering signaling

responses to SA and JA.

Results

Expression of CaMV-P6 from a transgene in Arabidopsis
and transiently in N. benthamiana suppresses
transcriptional up-regulation of SA-dependent marker
genes in response to infection
To test if P6 might be interfering with SA-signaling during

CaMV infection we inoculated transgenic Arabidopsis plants

which constitutively expresses high levels of P6 [28] with CaMV,

and compared the expression of PR-1 (a reliable marker for SA-

dependent defence) [10,31] with CaMV-infected non-transgenic

(NT) plants in the same ecotypic (Ler) background. Transcripts

were measured by Real Time qPCR in samples harvested at

14 dpi a time at which we have previously showed that SA-

responsive markers are strongly up-regulated in CaMV-infected

wild-type plants [14]. In a typical P6-transgenic line (A7) virus

levels at 14 dpi (measured by q-PCR) were 2664% those in NT;

we have previously reported similarly reduced virus titres in P6-

transgenic lines [26]. In NT plants, CaMV-infection stimulated

the expected large increase in abundance of PR-1 transcripts. In

contrast, PR-1 transcripts accumulated in A7 to levels that were

only 2.660.3% the levels in infected NT and only slightly greater

than in uninfected NT plants (figure 1A). Although virus titres in

the P6-transgenic plants were lower than in NT, as we have

reported previously levels of PR-1 transcripts are not directly

proportional to virus titres but rise sharply around 8 dpi (at which

time virus levels are still low) [14,15]; we therefore think it unlikely

that the large reduction in PR-1 transcript levels in the P6-

transgenic relative to NT lines is attributable to the much more

modest relative reduction in virus titres.

To determine whether the effect was specific to CaMV-

infection, we quantified PR-1 transcripts 48 h after inoculation

with Pseudomonas syringae pv tomato (Pst) (AvrB), which is avirulent

on Ler and triggers a strong gene-for-gene response [32].

Transcript levels in Pst (AvrB)-inoculated leaves of NT plants

showed the anticipated large increase compared to uninoculated

controls (figure 1B). In leaves of P6-transgenic plants inoculated

with Pst (AvrB), PR-1 transcripts only accumulated to levels that

were approximately one tenth those in Pst (AvrB)-inoculated NT.

Thus, expression of P6 from a transgene inhibited the expression

of a SA-dependent marker gene both in response to a virus-

infection and in a gene-for-gene response to a bacterial infection.

To assess if this novel function was limited to Arabidopsis or

could be manifested in other plant species we took advantage of

the ability of Agrobacterium (Agrobacterium tumefaciens) to trigger

Pathogen-Associated Molecular Pattern (PAMP)-driven defence

responses when infiltrated into Nicotiana leaves [33]. We transiently

expressed P6 in Nicotiana benthamiana by infiltrating leaves with

Agrobacterium carrying an appropriate Ti binary expression

vector and measured the expression of NbPR-1a a homologue of

the SA-responsive marker genes NtPR-1a in N. tabacum and AtPR-1

in Arabidopsis [34]. Transcript levels were measured in leaves

agroinfiltrated with Ti binary plasmid pJO-BJI [28] in which

expression of P6 is driven from a 35S promoter; controls

comprised leaves agroinfiltrated with the empty parent vector

pJO530 (EV). The expression of P6 in agroinfiltrated leaves was

Defence Suppression by CaMV P6
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confirmed in western blots using anti-P6 antibody; these gave

a strong immunoreactive band of the expected size in leaves

infiltrated with pJO-BJI, but not in uninfiltrated controls or leaves

agroinfiltrated with EV (supplementary figure S1A). Levels of P6

in N. benthamiana leaves were slightly higher than in the P6-

overexpressing transgenic Arabidopsis line A7; we have previously

shown these to be similar to levels in CaMV-infected Arabidopsis

[28].

Agroinfiltration with EV stimulated an increase in NbPR-1a

transcripts of more than three orders of magnitude compared to

uninfiltrated controls, reflecting the PAMP-driven engagement of

basal defence [33]. In leaves agroinfiltrated with pJO-BJI (for

transient expression of P6) the NbPR-1a transcripts were more

abundant than in the untreated control, but were however

consistently ,10-fold less abundant than in EV-agroinfiltrated

leaves (figure 1C). These results taken together indicate that P6 is

able to suppress representative SA-dependent responses to

different pathogens in two unrelated plant species, Arabidopsis

and N. benthamiana.

P6 plays an essential role in CaMV-replication facilitating the

translation of downstream ORFs on the polycistronic 35S RNA by

translational transactivation (TAV). To determine whether the

TAV activity of P6 was required for suppressing PAMP-responsive

NbPR-1a expression, we agroinfiltrated N. benthamiana with

a construct expressing a mutant form P6Y305P, in which the

conserved Tyrosine at amino acid 305 has been substituted for

a Proline, a change that abolishes TAV activity [35]. Since

P6Y305P was constructed in a different binary vector pGWB17

[36], we used as an additional control a third construct P6myc that

expresses wild-type P6 (with a C-terminal myc tag) from the same

pGWB17 vector. P6 protein levels in P6myc and P6Y305P-

infiltrated leaves were much lower than in leaves agroinfiltrated

with pJO-BJI and although P6myc and P6Y305P proteins were

readily detectable in western Blots using an anti-myc antibody they

gave only faint bands using anti-P6 antibodies making it difficult to

accurately compare expression of the three constructs in the same

blot. To better compare expression from the three constructs we

quantified P6 transcripts by qPCR (Supplementary figure S1B)

Transcript levels from P6myc and P6Y305P were 7% and 15%

respectively those from pJO-BJI but despite the much lower levels

of expression of P6Y305P and P6myc, NbPR-1a transcript levels

were essentially identical to those with pJO-BJI and ,10% the

level in plants agroinfiltrated with EV. Therefore the ability of P6

to suppress expression of a SA-responsive marker gene does not

require functional TAV activity.

P6 reduces levels of SA-responsive gene transcripts in
SA-treated and in untreated plants
The very low levels of AtPR-1 and NbPR-1a transcripts in plants

exposed to pathogens suggested that P6 was most likely interfering

with SA-signal transduction. We therefore tested the responsive-

ness of P6-transgenic plants to exogenous application of SA. NT

(Ler) and two independent P6-transgenic lines, A7 and B6 were

sprayed with 1.0 mM SA. We then quantified transcripts of three

representative SA-responsive marker genes PR-1, BGL2 and

AOX1A at intervals up to 24 h after treatment (figure 2A, B and

C). SA-treatment of NT elicited the expected strong time-

dependent increase in PR-1 transcripts (up to a maximum of

,700-fold) and a slightly smaller but somewhat more rapid

increase in BGL2 transcripts. In contrast, in P6-transgenics levels

of both transcripts remained very low following application of SA.

SA stimulated a more modest increase (up to 4-fold) in AOX1A

transcript levels in NT; again in P6-transgenics levels increased

only slightly following application of SA. To take advantage of the

sensitivity of qPCR, which allows accurate quantification of

transcript levels over a range of several orders of magnitude, and

to allow accurate comparison of transcript levels in untreated as

well as SA-treated plants we plotted the data on a log scale

(figure 2D and E). Levels of BGL2 and PR-1 transcripts in

untreated P6 transgenic lines were about 1 to 2 logs lower than in

untreated NT plants. Following SA treatment transcript levels

showed similar time-dependent increases relative to untreated plants in

all three backgrounds but at each of the individual time point,

absolute levels in the P6-transgenic lines were always 1 to 2 logs

lower than in NT plants. For AOX1a transcripts, differences in

levels between P6-transgenic and NT plants were much smaller

(figure 2C) and comparison on a log scale was not informative.

To establish whether a similar effect was occurring in N.

benthamiana, leaves were agroinfiltrated with either pJO-BJI or EV.

After 48 h (to allow expression of P6) they were sprayed with SA

Figure 1. Quantification of AtPR-1 and NbPR-1a transcripts in response to pathogens. (A) PR-1 transcripts in mock-inoculated and CaMV-
infected NT (Ler) and P6-transgenic (A7) Arabidopsis, determined by qPCR. Bars show mean levels (in arbitrary units) of 3 independent biological
samples each comprising pooled tissue from 3 plants. Samples were harvested 14 dpi. Error bars show standard deviations. (B) PR-1 transcripts in
uninoculated controls and Pst (AvrB) inoculated NT (Ler) and P6-transgenic (A7) Arabidopsis, determined by qPCR. Bars show mean levels (in arbitrary
units) of 3 independent biological samples each comprising pooled inoculated leaves from 3 plants. Samples were harvested 48 h after infiltration.
Error bars show standard deviations. (C) PR-1a transcripts, determined by qPCR, in N. benthamiana leaves harvested 48 h after agroinfiltration.
Samples were (U) uninfiltrated leaves, and leaves infiltrated with Agrobacterium carrying the following vectors (EV) pJO530, (pJO-BJI) pJO-BJI, (P6myc)
pGWB-P6myc, (P6Y305P) pGWB-P6Y305P. Bars show mean levels (in arbitrary units) of 3 independent biological samples each comprising 3 pooled
infiltrated leaf sections. Error bars show standard deviations.
doi:10.1371/journal.pone.0047535.g001
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and NbPR-1a transcripts were quantified 12 h later (figure 2F). In

agroinfiltrated plants not treated with SA, NbPR-1a transcript

levels were approximately 10-fold higher in EV controls compared

to leaves transiently expressing P6 (similar to the results shown in

figure 1C). SA-treatment stimulated a further 4- to 5-fold increase

in transcripts (over and above the PAMP-driven response to

Figure 2. Quantification of transcripts of SA-responsive genes in P6-expressing and non-expressing plants following SA-treatment.
(A) PR-1a transcripts (in arbitrary units), determined by qPCR, in P6-transgenic (A7 and B6) and NT (Ler) Arabidopsis following treatment with 1.0 mM
SA. Each point represents mean levels of 3 independent biological samples each comprising pooled tissue from 3 plants harvested at intervals from
0 to 24 h. Error bars show standard deviations. (B) BGL2 transcripts (in arbitrary units), determined by qPCR, in P6-transgenic (A7 and B6) and non
transgenic (Ler) Arabidopsis following treatment with 1.0 mM SA as in figure 2A above. (C) AOX1a transcripts (in arbitrary units), determined by qPCR,
in P6-transgenic (A7 and B6) and non transgenic (Ler) Arabidopsis following treatment with 1.0 mM SA as in figure 2A above. (D) Data presented in
(A) but with abundance of PR-1a transcripts plotted on a logarithmic scale. Error bars (positive only) show standard deviations. (E) Data presented in
(B) but with abundance of BGL2 transcripts plotted on a logarithmic scale. Error bars (positive only) show standard deviations. (F) PR-1a transcripts,
determined by qPCR, in N. benthamiana leaves following treatment with 1.0 mM SA. Leaves were infiltrated with Agrobacterium carrying either
empty vector (pJO530) or a binary vector expressing P6 (pJO-BJI) as in figure 1C above. After 48 h leaves were sprayed with 1 mM SA; controls were
left untreated. Tissue was harvested 12 h later and PR-1a transcripts were quantitated by qPCR. Bars show mean levels (in arbitrary units) of 3
independent biological samples each comprising 3 pooled infiltrated leaf sections. Error bars show standard deviations.
doi:10.1371/journal.pone.0047535.g002
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Agrobacterium) in both EV and P6-expressing plants. However,

levels of NbPR-1a transcripts in SA-treated leaves that were

transiently expressing P6 were still ,6-fold lower than in SA-

treated EV-plants (and only about half the level in EV-plants that

had not been SA-treated). Therefore in N. benthamiana as with

Arabidopsis, accumulation of transcripts of a representative SA-

responsive marker gene was greatly reduced in leaves transiently

expressing P6, although expression remained SA-responsive.

NT Arabidopsis also responded to SA-treatment by developing

necrotic patches on leaves; these were easily identifiable 24 h after

SA-treatment when the leaves were stained with Trypan Blue. In

contrast P6-transgenic lines never developed necrotic lesions

following SA-treatment (figure 3A). This suggests that in the

presence of P6, pathways involved in the promotion of cell death

in response to SA are inhibited.

P6 expression enhances expression of JA-responsive
markers
SA- and JA-dependent responses are coordinately but antago-

nistically regulated [37] and transgene-mediated expression of

other VSSPs has been reported to lead to changes in the

expression of JA-responsive genes [6,38]. We therefore quantified

transcripts of three representative JA-responsive marker genes

VSP1, VSP2 and THI2.1, plus AOS1 which encodes a JA-bio-

synthetic enzyme. Transcripts were between 14- and 160-fold

more abundant in the P6-transgenics than in NT (figure 4). To

determine whether the P6-transgenic plants retained JA-respon-

siveness over and above the already enhanced levels of expression,

we treated plants with 10 mM JA and quantified transcripts over

the subsequent 24 h. JA-treatment stimulated an increase in

abundance of all four transcripts both in P6 transgenic lines and

NT (figure 4 – to facilitate comparison of transcript levels, data are

plotted on a log scale). However, transcripts of VSP1, VSP2, and

THI2.1 were consistently ,2 logs more abundant in the P6-

transgenics than in NT throughout the 24 h after JA treatment. In

contrast, with AOS1 although JA treatment stimulated an early

increase in abundance in the P6 transgenics, this was much more

modest than in NT, so that by 3 h after treatment transcript levels

in P6-transgenics and in NT were similar. VSP1, VSP2 and THI2.1

are all regulated downstream of JA (via the COI1 pathway)

whereas AOS1 encodes an enzyme required for JA biosynthesis

whose expression is presumably feedback-regulated by JA levels –

this may account for the differences in response characteristics.

Expression of P6 suppresses gene-for-gene and basal
defences against P. syringae, but enhances resistance
against a necrotrophic fungal pathogen
SA is a central regulator of defence against biotrophic

pathogens. Given the inhibitory effect of P6 on transcript levels

of SA-responsive genes, we anticipated that expression of P6 might

enhance susceptibility to biotrophic pathogens other than CaMV.

We therefore measured growth of virulent (DC3000) and avirulent

(AvrB) strains of Pst and of the hrpA mutant that carries a defect in

the TTSS [39] and is unable to deliver effectors into the host cell.

Bacterial titres were determined in P6 transgenics and in NT at

intervals up to 4 d after infiltration (figure 5). Titres of both

virulent and avirulent strains were consistently 5 to 30-fold higher

in P6-transgenics than in NT. The differences in titre were

somewhat dependent on time after inoculation. However, multi-

variate ANOVA indicated that across all three time points

bacterial growth rates were very significantly higher in A7 than

in NT (p,0.001 for DC3000 and p,0.01 for AvrB). The hprA

mutant grew poorly in both NT and A7 but titres in the latter were

still typically elevated by about 5-fold. Statistical analysis again

indicated that these differences in growth were highly significant

across all time points (p,0.001). As a further control, we

compared bacterial growth in A7 with growth in sid2 a mutant

which lacks a functional ISOCHORISMATE SYNTHASE 1 gene

(making it unable to synthesize SA in response to infection) and

exhibits a well-documented enhanced susceptibility to Pst [40].

Titres of both avirulent and virulent Pst were significantly higher in

A7 than in sid2-2 (p,0.01), particularly for the virulent isolate

DC3000 (supplementary figure S2A), suggesting that additional

factors over and above the suppression of SA-signaling may be

involved in the enhanced susceptibility of P6-transgenics.

P6 transgenic plants of line A7 are chlorotic and dwarfed. To

eliminate any possibility that the increased susceptibility to Pst

might be dependent on the insertion site of the transgene or wholly

or partially an indirect consequence of the dwarf phenotype rather

Figure 3. Development of necrosis (HR) on leaves of NT (Ler)
and P6-transgenic (A7 & B6) Arabidopsis. (A) Effect of SA-
treatment. Panels show from top to bottom: untreated leaves and
treated with 1.0 mM SA. (B) Effect of inoculation with virulent or
avirulent Pst. Panels show from top to bottom, uninfiltrated controls,
leaves infiltrated with Pst (DC3000) and leaves infiltrated with Pst (AvrB).
Black arrows indicate areas of leaf infiltrated with Pst AvrB (bottom row).
Necrosis was visualized by staining leaves with Trypan Blue 24 h after
SA-treatment or infiltration with Pst.
doi:10.1371/journal.pone.0047535.g003
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than the inhibition of SA-signaling, we measured bacterial growth

in a different P6-transgenic line B6 and also in line b2-3,

a derivative of A7 that was obtained from a suppressor screen [29].

This line is homozygous for a recessive mutant allele cse-2 at an

independent locus to the transgene. The presence of cse-2 greatly

ameliorates the chlorotic dwarf phenotype of the parent A7 [29].

Compared to NT, B6 showed the same significantly enhanced

susceptibility to both DC3000 and AvrB as did A7 (supplementary

figure S2B) demonstrating that the effect is similar in two

independent transgenic lines. Bacterial growth in cse-2 (in a NT

Ler background) was similar to Ler whereas in b2-3 (cse-2 in an A7

background) titres were essentially identical to those in A7

(Supplementary figure S2B). Therefore, the increased susceptibil-

ity of the P6-transgenics is not attributable to the chlorotic dwarf

phenotype.

Since development of SA-induced necrosis was delayed in P6-

transgenic plants, we inoculated with a high titre of Pst (AvrB) and

assessed the development of HR in response to an incompatible

pathogen. NT developed a fairly rapid HR, detectable by strong

autofluorescence under UV-illumination 18 h after infiltration and

at 24 h by a visible necrosis readily identifiable by Trypan Blue

staining. In contrast, in P6 transgenic plants autofluorescence was

delayed by 6–12 h and infiltrated areas stained less strongly with

Trypan Blue (figure 3B) indicating that P6 expression reduces the

HR triggered by a gene-for-gene interaction and delays its onset.

In contrast to biotrophs, defence against necrotrophs is

regulated predominantly through JA. Since transcripts of JA-

responsive markers were elevated in P6-transgenics, we inoculated

plants with the necrotrophic fungus B. cinerea and estimated fungal

growth visually (figure 5D). Compared to Ler, both P6-transgenic

lines showed visibly reduced growth of fungal hyphae and much

less chlorosis at 5 dpi, indicating that they were much less

susceptible to infection. This is consistent with P6 enhancing JA-

signaling responses.

P6-transgenic plants accumulate lower levels of SA, but
retain pathogen-responsiveness
The differences in gene-expression and pathogen-susceptibility

between P6-transgenic and NT plants following SA- and JA-

treatments could reflect effects on SA-biosynthesis or accumula-

tion. We measured levels of free SA and SA-b-glucoside
(conjugated SA) in infected leaves of NT and P6-transgenics

before and 48 h after inoculation with avirulent Pst (AvrB) (figure 6).

Concentrations of free SA in uninoculated P6-transgenics were 4-6

Figure 4. Quantification of transcripts of JA responsive genes in P6-transgenic and non transgenic plants. (A) VSP1 (B) VSP2, (C) THI2.1
and (D) AOS1 transcript levels determined by qPCR, in P6-transgenic (A7 and B6) and non transgenic (Ler-0) Arabidopsis following treatment with
10 mM JA. Transcript levels are in Arbitrary Units and are plotted on a logarithmic scale. Each point represents mean levels of 3 independent
biological samples each comprising pooled tissue from 3 plants harvested at intervals from 0 to 24 h. Error bars (positive) show standard deviations.
doi:10.1371/journal.pone.0047535.g004

Defence Suppression by CaMV P6
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fold lower than in NT and levels of SA-b-glucoside were 3–4-fold
lower. Infection stimulated a 1.4–1.8-fold increase in levels of free

SA in P6 transgenics, and a 2.2-fold increase in NT. Levels of SA-

b-glucoside in the P6-transgenics increased 10-fold following

infection and although levels remained below those in infected

NT, they were still much higher than in uninfected NT. Thus P6

expression reduces the overall accumulation of both free and

conjugated SA in infected plants, although levels in P6-transgenic

plants appeared to retain inducibility in response to a gene-for-

gene interaction.

P6 expression alters the expression and subcellular
localization of NPR1
NPR1 is a key regulator of host responses to infection by

biotrophic pathogens [41,42]. NPR1 plays a central role in

regulating many of the responses to both SA and JA, notably by

activating transcription of a battery of genes in response to rising

SA-levels and by modulating JA responses via the COI1-

dependent pathway [42,43]. npr1 mutants show enhanced

susceptibility to both virulent and avirulent strains of Pst and

accumulate very low levels of PR-1 and BGL2 transcripts in

response to infection or SA-treatment [44]. The similarities

between these aspects of the phenotypes of npr1 mutants and P6

transgenic lines suggested a potential involvement for NPR1 in the

action of P6. We therefore compared levels of NPR1 in P6-

transgenic and NT plants in western blots probed with an anti-

NPR1 antibody (figure 7A). A band of ,60 kD corresponding to

the expected size of NPR1 was visible in P6-transgenics and very

faintly in NT plants. Following treatment with SA the relative

intensity of the band was increased in both transgenic and NT

plants, but it remained much stronger and appeared as a doublet

in the P6-transgenic lines. We assume that the band(s) must

correspond to authentic NPR1 since they were undetectable in

extracts from a null mutant npr1-1 even after SA-treatment.

To determine whether increased levels of NPR1 protein might

be a result of greater transcript levels we measured NPR1

transcripts by qPCR and found that they were approximately 7-

fold more abundant in P6-transgenics than in Ler (figure 7B). To

determine whether P6 might be acting at the protein level, e.g. by

stabilizing NPR1 against proteolysis, we transiently co-expressed

HA-tagged NPR1 and either P6myc or as a control EV (pGWB17)

in N. benthamiana. NPR1 levels were quantified in western blots

using an anti-HA antibody (figure 7C). The abundance of

NPR1:HA was unaltered when co-expressed with P6 compared

to EV co-expression controls; therefore P6 does not appear to be

affecting protein stability. Most likely the greater levels of NPR1

when P6 is present are a consequence of enhanced gene-

expression.

NPR1 undergoes a redox-dependent translocation from cyto-

plasm to nucleus in response to increasing concentrations of SA; it

is the presence of activated NPR1 in the nucleus that activates

transcription of genes of the PR1 regulon [45]. To investigate

whether P6 might be affecting the localization and/or activation of

NPR1, we used a transgenic reporter line that constitutively

Figure 5. Pathogen growth in P6-transgenic (A7, B6) and NT
(Ler) Arabidopsis. (A) Titres (in cfu per leaf) of Pst (DC3000) at
intervals from 0 to 4 days after infiltration of leaves with 1.26103 cfu of
bacteria. Titres are plotted on a log scale and show mean (6 standard
deviation) of colony numbers from 10 individual leaves. (B) Titres (in cfu

per leaf) of Pst (AvrB) at intervals from 0 to 4 days after infiltration of
leaves with 1.26103 cfu of bacteria. Titres are plotted on a log scale and
show mean and standard deviation of colony numbers from 10
individual leaves. (C) Titres (in cfu per leaf) of Pst hrpA at intervals from
0 to 4 days after infiltration of leaves with 1.26103 cfu of bacteria. Data
are plotted on a log scale and show mean and standard deviation of
colony numbers from 10 individual leaves. (D) Photographs of
representative leaves from non-transgenic (Ler) and P6-transgenic (A7
and B6) plants 5 days after infection with B. cinerea.
doi:10.1371/journal.pone.0047535.g005
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expresses a NPR1:GFP fusion [46] to monitor its subcellular

location before and after SA-treatment. Under our growth

conditions, mature 35S::NPR1:GFP transgenic plants were dark

green and dwarfed with necrotic micro-lesions, a phenotype

reminiscent of mutants with constitutively activated SA-mediated

responses e.g. cpr5 [47]. Progeny of crosses between

35S::NPR1:GFP and either of the P6-transgenic lines were larger

than both parents and did not develop necrotic lesions. Evidently

the P6 transgene suppresses the cpr5-like phenotype which

presumably results from constitutive overexpression of

NPR1:GFP. In turn, the latter suppresses the chlorotic dwarf

phenotype which results from ectopic overexpression of P6.

Cotyledons from soil-grown seedlings were infiltrated with

1 mM SA to induce defence responses and examined by confocal

microscopy to determine the subcellular location of NPR1:GFP.

Uninduced controls were infiltrated with water. figure 7D shows

Figure 6. Levels of free and conjugated SA in P6-transgenic
and non-transgenic Arabidopsis following inoculation with Pst
(AvrB). (A) free SA, (B) SA-conjugates (SA-b-glucoside) in leaves of NT
(Ler) and P6-transgenic (A7 and B6) plants inoculated on a single leaf
with 1.26103 cfu of bacteria. Leaves from uninoculated plants were
used as controls. Each sample comprised the pooled tissue from 10
leaves harvested 48 h after inoculation. Bars show mean values from 3
samples, error bars indicate standard error.
doi:10.1371/journal.pone.0047535.g006

Figure 7. The effects of expression of P6 on NPR1. (A) Western
blots of protein extracted from npr1 mutant, P6-transgenic (A7, B6) and
NT (Ler) plants, separated by polyacrylamide gel electrophoresis. Tissue
was harvested from plants either before (4 lanes on left) or 12 hours
after (4 lanes on right) treatment with 1.0 mM SA. Upper panel shows
blots probed with antibody to NPR1 and bands visualized by
chemiluminescence. Bars on left indicate mobility of molecular weight
markers; arrow indicates expected mobility of NPR1. Lower panel shows
Ponceau-stained loading control; arrow indicates mobility of Rubisco
Large Subunit (RBCL). (B) Western blots showing NPR1 accumulating in
N. benthamiana leaves following agroinfiltration with a binary vector
expressing NPR1 (HA-tagged at the N-terminus) under the control of
a 35S promoter. Upper panel shows blots probed with anti-HA antibody
and bands visualized by chemiluminescence. Lower panel shows
Ponceau-stained loading control – arrow indicates mobility of Rubisco
Large Subunit (RBCL). (Lane 1) HA:NPR1 co-infiltrated with empty binary
vector pGWB17; (lane 2) HA:NPR1 co-infiltrated with P6 expressing
binary vector pGWB-P6myc. (C) NPR1 transcript levels (in arbitrary units)
determined by qPCR in P6-transgenic (A7 and B6) and NT (Ler) plants.
Bars represent mean levels of 3 independent biological samples each
comprising pooled tissue from 3 plants. Error bars show standard
deviations. (D) Confocal microscope images of representative pairs of
guard cells from transgenic plants expressing an NPR1:GFP fusion.
Panels a–c are in a NT background; panels d-f are in a P6-transgenic
background (the progeny of a typical cross between the NPR1:GFP
transgenic and B6). Panels a & d show samples from uninduced
seedlings (infiltrated with water). Panels b & e and c & f show samples
from seedlings following 5 min and 40 min (respectively) infiltration
with 1.0 mM SA. Arrows indicate the nucleus.
doi:10.1371/journal.pone.0047535.g007
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representative images of guard cells (as used to show nuclear and

cytoplasmic localization of NPR1:GFP by Mou et al. [46]). In

uninduced plants with the wild-type background, fluorescence was

visible in the cytoplasm with no obvious accumulation in the

nuclei. Following 5 min treatment with SA, much of the

fluorescence was now located in the nuclei, and by 40 min nuclei

appeared strongly fluorescent (figure 7D panels a, b and c). To

confirm that the site of NPR1 localization was indeed in nuclei, we

carried out DAPI (49,6-diamidino-2-phenylindole) staining and

observed colocalization of GFP and DAPI fluorescence in SA-

induced plants (supplementary figure S3). When we repeated the

infiltrations on several independent progeny of crosses between

35S::NPR1:GFP and either A7 or B6 (i.e. seedlings containing both

P6 and 35S::NPR1:GFP transgenes), the nuclei always exhibited

strong GFP fluorescence even in the uninduced (water-infiltrated)

leaves (panel d); SA-treatment had no obvious further effect on its

location (panels e and f). We conclude that P6 stimulates the

accumulation of enhanced amounts of NPR1, which are

apparently targeted to the nucleus even in uninduced plants

(although presumably in a form that cannot stimulate transcription

of PR genes).

Discussion

Expression in planta of P6, a pathogenicity determinant encoded

by CaMV, strongly inhibited SA-dependent responses including

the expression of representative pathogenesis-related genes,

hypersensitive cell death, and basal defence against biotrophic

bacterial pathogens. We have previously showed that long distance

movement of CaMV is almost completely inhibited in Arabidopsis

mutants that accumulate high levels of SA and show constitutively

activated SAR [10]. Therefore SA-dependent defence responses,

in particularly when they are pre-engaged (as in these mutants),

must be capable of restricting long distance movement of CaMV.

During natural CaMV-infections of wild-type plants an effect of

the accumulation of P6 in infected leaves might be to suppress the

activation of these SA-dependent defence responses thereby

facilitating systemic spread.

P6 is a multifunctional protein one of whose activities is

suppressing RNA silencing [26,27]. In addition to affecting SA-

responses, P6 also had a profound effect on JA-signaling, strongly

up-regulating representative JA-responsive marker genes. SA- and

JA-signaling pathways are regulated in a mutually antagonistic

manner through mechanisms that at least partially rely on the

activity of NPR1 [37,43]. There have been several reports of

VSSPs modifying JA-responsive gene-expression. Transgene-

mediated expression of two geminivirus VSSPs C2 and bC1
suppressed JA-dependent responses, albeit by different mechan-

isms [48,49]. HC-Pro from a potyvirus and 2b from CMV had

profound effects on the patterns of expression of JA-responsive

genes in their hosts [6,38,50]. However, in contrast to P6, none of

these VSSPs significantly altered the global patterns of expression

of SA-responsive genes and they seemed to be more specifically

targeted at JA-signaling. P6 therefore appears to be unique in this

respect, being the prototype member of a novel class of

pathogenicity effectors that that directly targets SA-signaling. P6

accumulates to high levels during CaMV infection [13,28]

providing a plausible explanation for our previous observation

that in individual leaves, virus invasion coincides with a decrease in

the abundance of transcripts of SA-responsive genes [15].

Transgene-mediated expression of VSSPs can have pleiotropic

effects on developmental and stress responses. Endres et al. [38]

suggested that the global activation of wounding-, JA-, cold- and

heat-responsive genes by potyvirus HC-Pro might indicate

a compensatory relationship between RNA-silencing and stress-

and defence-response pathways. However, three other VSSPs

CMV 2b and the geminivirus-encoded C2 and bC1, all suppressed
JA-responsive gene expression [6,48,49], exactly the opposite

effect to HC-Pro (and P6). Therefore, it is probably an over-

simplification to directly link suppression of silencing with a general

up-regulation of stress and defence responses.

P6 plays an essential role in CaMV replication by facilitating the

non-canonical translation of downstream ORFs on the 35S RNA

[13]. Since P6Y305P, a mutant form that is defective in TAV

activity, suppressed PAMP-responsive expression of NbPR-1a as

efficiently as wild-type P6, TAV activity (which localizes to the

central region of P6) does not appeared to be required for the

suppression of SA-signaling. Replication (TAV) and pathogenicity

functions may therefore be at least partially separated. Recent

work in our laboratory (C. Carr, J. Laird and JJ Milner,

unpublished data, 2012) indicates that sequences that are essential

for both of the pathogenicity functions (suppression of silencing

and suppression of PR1a expression) map within the N-terminal

112 amino acid domain. Thus the two activities may be

functionally linked. Kobayashi and Hohn [51,52] introduced in-

frame deletions to the same N-terminal domain resulting in virus

mutants that were replication-competent but deficient in long-

distance movement – again this is consistent with our proposed

link between SA-dependent defence responses and long-distance

movement of CaMV. The N-terminal region of P6 is an

avirulence domain in some Arabidopsis ecotypes and in at least

two Nicotiana species [20,24,25], consistent with the zig-zag model

for the evolution of defence mechanisms in plants [53] whereby

effectors that suppress basal defence themselves become targets for

effector-triggered immunity.

P6 interacts directly with nuclear protein DRB4 and is believed

to suppress RNA-silencing by modifying DICER activity [27]. If

silencing suppression and SA-signaling suppression are linked, it is

not clear which activity underlies the other. Shivaprasad et al.

reported that P6 interferes with RDR6-dependent siRNA and

tasiRNA pathways [54], and that small RNA populations undergo

global changes during CaMV-infection [54–56]. Some of these

small RNAs might be involved in regulating SA- and JA-signaling

thereby providing a mechanism through which P6 might suppress

SA-signaling. This hypothesis is consistent with our observation

that in the presence of P6, despite overall levels of SA- and JA-

responsive transcripts being profoundly affected, responsiveness to

exogenous application of SA or JA was still present. An alternative

model puts SA-signaling as the primary target for P6, silencing

suppression perhaps being a secondary consequence of an effect

on the SA-responsive RNA-amplification loop. RDR1, an SA-

responsive RNA-dependent RNA polymerase [57] is a potential

link between silencing and SA-mediated defence [11]. However

although RDR1 plays an important role in the generation of

siRNAs in CMV-infected plants [58,59], RDR6, whose expression

is not SA-responsive, may be the more important target for P6

[54].

Sequence analysis of P6 predicts several putative functional

domains (e.g. RNA-binding, Zn-finger) but no homologues are

known outside the closely related members of the Caulimovirus

and Soymovirus families of the Caulimoviridae. Apart from these

small groups of viruses, the TAV-dependent translation of

a polycistronic mRNA has no obvious equivalent elsewhere in

eukaryotes. Although TAV and defence suppression domains may

have evolved independently and their evolutionary lineage

remains obscure, P6 appears to be a functionally and structurally

unique protein.
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Translocation of NPR1 from cytoplasm to nucleus is a critical

step in the transcriptional activation of genes of the PR-1 regulon,

so our finding that NPR1 is both more abundant and more

strongly nuclear-localized in the presence of P6 was unexpected

and at first sight counter-intuitive. However 35S::NPR1:GFP

35S::P6 double transgenics do not show the ‘‘constitutively-

activated-defence’’ phenotype of the 35S::NPR1:GFP parent: PR-

1 levels are low and the dwarf lesion-mimic phenotype is absent.

Therefore, notwithstanding its localization to the nucleus, when P6

is present NPR1 cannot be functioning normally as a transcrip-

tional activator.

At low intracellular SA levels NPR1 exists predominantly in the

cytoplasm as an inactive multimer [45,60]. Increasing concentra-

tions of SA promote monomerization and activation of NPR1

which is translocated into the nucleus where it interacts with bZIP

transcription factors stimulating transcription of genes in the PR-1

regulon [45]. Additional layers of complexity are added to the

model by roles for phosphorylation and S-nitrosylation of NPR1

and for its turnover by targeted proteolysis [60,61]. In addition to

its nuclear functions, NPR1 modulates cross-talk between JA- and

SA-signaling, acting in the cytoplasm to regulate JA-signaling via

the COI1 pathway [45]. Active NPR1 is also essential for SA-

accumulation [62] providing a plausible explanation for the low

endogenous levels of SA in P6-transgenics.

Even in normal uninduced cells, small amounts of an inactive

form of NPR1 are translocated into the nucleus; this is recruited to

the PR-1 promoter but cannot activate transcription [60]. Perhaps

this nuclear localization of inactive NPR1 might be stimulated in

the presence of P6, greatly reducing the expression of genes in the

PR-1 regulon. Unlike PR-1 and BGL2, AOX1a is not thought to be

regulated via NPR1. The much smaller effect of P6 on levels of

transcripts of AOX1a compared to PR-1 and BGL2 is consistent

with this hypothesis, and suggests that alternative signaling

pathways may also be involved. To date we have been unsuccess-

ful in attempts to demonstrate a direct interaction between P6 and

NPR1 either in yeast or by immune co-precipitation or by an

association in planta (A. Love, C. Geri, C. Carr and J. J. Milner,

unpublished data, 2010/11). Therefore, an indirect mechanism,

perhaps involving a role for siRNAs or miRNAs, appears more

probable. Whatever the mechanisms of action, P6 should prove

a valuable tool with which to uncover novel components (or novel

roles for existing ones) that might regulate the activity of NPR1

during SAR.

SA is the key regulator of plant defence against biotrophic

pathogens [63]. It is therefore unsurprising that P6-transgenic

Arabidopsis show markedly enhanced susceptibility to both

avirulent and virulent Pst (and enhanced resistance to a necro-

trophic pathogen). Indeed, increased susceptibility extends to

Pseudomonas species to which Arabidopsis is normally a non-host

(C. Geri, A. Love, J. Laird, M. Tunney and J. Milner,

unpublished data, 2009). If these phenomena extend to crop

species, CaMV-infected crop plants are likely to be more

susceptible to opportunistic infection by a whole range of

biotrophic pathogens and this knock-on effect would make

CaMV a much more economically important pathogen than

previously realized.

Materials and Methods

Transgenic P6-expressing Arabidopsis lines A7 and B6 have

been described [28,29]. Transgenic Arabidopsis expressing

NPR1:GFP from a 35S promoter [46] were a gift from Prof

Xinian Dong (Duke University, USA). Non-transgenic (NT) plants

were Ler-0 (unless stated otherwise). Inoculation with CaMV

(isolate Cabb B-JI) was carried out according to Cecchini et al [64].

Plants were inoculated with P. syringae by infiltrating 1.26103 cfu

of bacteria according to Grant et al. [14,65]. Results were analyzed

statistically by Multi-Variate Analysis of Variance (MANOVA) as

described by Love et al. [14]. Necrotic lesions were assessed by

Trypan Blue staining following infiltration of 1.26105 cfu [66].

Infection with B. cinerea was carried out according to Grant et al.

[67].

Transient expression was obtained by infiltrating N. benthamiana

leaves with A. tumefaciens GV3101 carrying the appropriate

expression vector according to Bazzini et al [68]. The P6-

expression vector pJO-BJI and the parent Ti binary vector

pJO530 are as described [28,29]. Details of pGWB-P6Y305P,

pGWB-P6myc and pGWB-HA:NPR1 are given in SI.

SA and JA treatments were carried out by spraying plants with

1.0 mM SA or 10 mM JA using a hand-held mister as described

by Love et al. [14]. RNA was extracted from tissue samples,

checked for integrity and transcripts were measured by qPCR

using a Stratagene MX4000 thermocycler. PCR conditions,

protocols and analysis of the data have been described previously

[10,14].

Free SA and SA-b-glucoside concentrations were determined

using a mini-scale procedure based on high pressure liquid

chromatography [67].

Fluorescence microscopy was carried out using a Zeiss LSM510

confocal microscope as described previously [10].

Full details of methods are given in Methods S1.

Supporting Information

Figure S1 Accumulation of P6 protein and transcripts in
N. benthamiana leaves following agroinfiltration. (E) (A)
Western blots showing levels of P6 protein. Tissue was collected

3 days after infiltration. (Lane 1) uninfiltrated N. benthamiana

leaves; (lane 2) leaves infiltrated with Agrobacterium carrying

empty vector pJO530; (lane 3) leaves infiltrated with Agrobacter-

ium carrying P6 expression vector pJO-BJI; (lane 4) P6 transgenic

Arabidopsis line A7 (tissue collected from 3 week old plants). Top

panel shows blots probed with anti-P6 antibody and bands

visualized by chemiluminescence. Bars on left indicate mobility of

molecular mass markers, arrow indicates expected mobility of P6.

Bottom panel shows Ponceau stained loading control; arrow

indicates Rubisco Large Subunit (RBCL) (F) (B) P6 transcripts,

determined by qPCR, in N. benthamiana leaves harvested 48 h after

agroinfiltration. Leaves were infiltrated with Agrobacterium

carrying the following binary plasmids (EV) pJO530, (pJO-BJI)

pJO-BJI, (P6myc) pGWB-P6myc, (P6Y305P) pGWB-P6Y305P.

Bars show mean levels (in arbitrary units) of 3 independent

biological samples each comprising 3 pooled infiltrated leaf

sections. Error bars show standard deviations.

(TIF)

Figure S2 Titres of Pst DC3000 and AvrB in wild-type,
mutant and P6 transgenic Arabidopsis lines. Colony

counts were carried out on leaves harvested 54 h after inoculation

with 1.26103 cfu. Bars show mean of 10 individual leaves, error

bars show standard deviations. (A) Col-0, sid2-2 and A7. (B) Ler,

A7, B6, cse-2 mutant in Ler background and cse-2 mutant in a P6

(A7) background (line b2–3).

(TIF)

Figure S3 Nuclear localization of NPR1:GFP. Confocal

microscope images of a representative pair of guard cells from

transgenic plants expressing an NPR1:GFP fusion infiltrated with

1.0 mM SA and stained with DAPI. Panels show from left to right
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GFP fluorescence (rendered in green) DAPI fluorescence (ren-

dered in blue) and the merged images.

(TIF)

Table S1 Primer sets used in Real-Time qPCR.

(DOC)

Methods S1

(DOC)
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