136

Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

Anne E. Wiley^{1,2*}, Peggy H. Ostrom¹, Andreanna J. Welch³⁻⁵, Robert C. Fleischer³, Hasand Gandhi¹, John R. Southon⁶, Thomas W. Stafford, Jr.^{7,8}, Jay Penniman⁹, Darcy Hu¹⁰, Fern P. Duvall¹¹, and Helen F. James²

¹Department of Zoology, Michigan State University, East Lansing, MI 48824 ²Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20004 ³Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008 ⁴Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, MD, 20742 ⁵Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260 ⁶Department of Earth System Science, University of California, Irvine, CA 92617 ⁷Stafford Research, Inc., Lafayette, CO 80026 ⁸Centre for GeoGenetics, Østervoldgade 5-7, University of Copenhagen, Denmark ⁹Pacific Cooperative Studies Unit, University of Hawaii, Honolulu, HI 96822 ¹⁰National Park Service, Pacific West Regional Office, Honolulu, HI 96850 ¹¹Department of Land and Natural Resources, Wailuku, HI 96793 *Correspondence to: wileyann@msu.edu; Smithsonian Institution, Division of Birds, PO Box 37012, MRC 116, Washington, DC 20013-7012; (734) 353-0201

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 years, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 years of dietary stasis followed by a decline of ca. 1.8 ‰ in $\delta^{15}N$ over the past 100 years. Fishery-induced trophic collapse is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the NE Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.

fishing | food web | seabird | stable isotope | trophic decline

INTRODUCTION

2 3

4 5

6 7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25 26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Historical baselines are a prerequisite to understanding the extent of human impact on a species or ecosystem. In coastal marine environments, retrospective studies show that habitat destruction and harvest of marine organisms have caused severe modifications, including trophic cascades and the regional loss of entire ecosystems (1, 2). It is difficult to assess the extent to which such impacts extend beyond continental shelves to the oceanic zone, because few chronological data are available for regions far out at sea, and the vast size of these ecosystems makes their food webs difficult to study, even in the present.

In the oceanic Northeast Pacific, significant human presence began with the colonization of the Hawaiian Islands, less than 1,000 years ago (3, 4). For centuries afterwards, anthropogenic impacts, such as harvesting of marine organisms, were concentrated near the Islands; only in the 20th century, with the advent of industrialized fishing, have a wide variety of oceanic organisms been exploited at a broad spatial-scale (5, 6). Our understanding of how human actions such as fishing have affected oceanic food web structure is primarily derived from catch statistics, which show a temporal decline in the abundance of some targeted groups, such as tuna, and in the trophic level of global catch (6–8). However, catch statistics can be strongly affected by shifting technologies and markets, and reflect only the abundance of species that are harvested. Moreover, catch statistics cannot record information about pre-human conditions, and very few systematicallycollected catch statistics or scientific surveys predate 1950.

Historical records from generalist predators offer an alternative means of studying marine food webs. Responding to changes in prey availability by shifting their diet or foraging locations, or else declining in abundance, predators such as seabirds can forage over large expanses and are often viewed as sentinels of their food webs (9–11). Here, we present millennial-scale records of foraging ecology from a wide-ranging, generalist predator, the Hawaiian petrel (*Pterodroma sandwichensis*), to provide a new proxy for the condition of oceanic food webs in the Northeast Pacific Ocean. Shifts in Hawaiian petrel foraging habits have the potential to reflect changes occurring over large portions of the oceanic Pacific given the birds' diverse diet of fish, squid, and crustaceans, the high mobility of individuals (>10,000km foraging trips), and the species' extensive range from the equator to near the Aleutian Islands (0-50°N, 135-175°W)(12–14).

Hawaiian petrels breed only on the main Hawaiian Islands, where their bones are abundant in paleontological and archaeological sites (Fig. 1). Within those bones, a record of petrel foraging locations and trophic level is preserved by stable carbon and nitrogen isotope values (δ^{13} C and δ^{15} N) of the protein collagen (15, 16). We collected isotope data from over 250 individuals, including birds from every known modern and ancient Hawaiian petrel population. Equally extensive genetic studies (based largely on the same set of individuals) show that despite their high mobility, Hawaiian petrels rarely move between islands, and breeding colonies on different islands have diverged into genetically distinct populations (17, 18). Because at least some of

Reserved for Publication Footnotes

Fig. 1. Collection sites for Hawaiian petrel sub-fossil bones (dark-colored points), historic breeding distribution for the potentially extirpated population on Molokai, and modern breeding distribution on Kauai, Lanai, Maui, and Hawaii (lighter colored shapes). The distribution on Hawaii includes the saddle region between Mauna Kea and Mauna Loa, where Hawaiian petrel breeding is only documented by indigenous knowledge and bones (46, 58).

Fig. 2. Flight feather isotope data and at-sea locations of Hawaiian petrels. In (a), the black line marks Hawaiian petrel distribution from transect surveys (14). The red dashed-line is a typical flight path from a satellite-tracked Maui bird during the breeding season(13). These two regions represent the predominate areas where Hawaiian petrels occur. In (b), the blue oval denotes an approximate area where organic matter and consumers have unusually high δ^{15} N values within the Hawaiian petrel's range (23, 24). In (b), the blue circle identifies petrels that apparently concentrate their foraging in a region with elevated δ^{15} N. In both panels, arrows emphasize the negative relationship between latitude and δ^{13} C of marine organisms (20–22). Hatch-year birds from Maui are outlined in red to associate them with the Maui flight path.

those populations also have distinct foraging habits (15), we construct separate isotopic chronologies for each island population. Collectively, our chronologies extend back roughly 4,000 years, to well before human presence in the oceanic Northeast Pacific (3, 4). Our study therefore provides a unique, fishery-independent window into potential anthropogenic alterations of oceanic food webs.

RESULTS AND DISCUSSION

We conducted a species-wide study of the Hawaiian petrel based on stable isotope data from six populations and two tissues: collagen and flight feather. Collagen is ideal for constructing long-

2 | www.pnas.org --- ---

term isotope chronologies, not only because it is preserved in ancient bones, but because its slow turnover rate in living birds results in an isotopic composition that can reflect foraging over a period of years (19). For the Hawaiian petrel, collagen data also provide spatially-integrated dietary signals from individuals that are capable of traveling over large portions of the NE Pacific ocean, even within a single season (13). In contrast, flight feathers grow in a month or less during either the breeding season (for hatch-year birds) or non-breeding season (for adults) (12, 15). Isotope data from flight feathers are therefore more useful for showing the diversity of foraging strategies present among Hawaiian petrels during short periods of time. Here, we study the isotopic composition of modern flight feathers in order to understand spatial and seasonal variation in petrel foraging habits and to aid in interpretation of our isotope chronologies from collagen.

We found large disparities in feather $\delta^{15}N$ and $\delta^{13}C$ values among populations and age groups, which we interpret as reflecting mainly divergences in foraging locations (Fig. 2, Table S1), as did Wiley et al. 2012 in a study of two Hawaiian petrel populations. Our spatial interpretation of feather data is based on wellrecognized $\delta^{15}N$ and $\delta^{13}C$ gradients within the Hawaiian petrel's distribution (Fig 2a)(15), and is supported by observational studies. In brief, multiple data sets indicate that throughout North Pacific food webs, $\delta^{13}C$ varies inversely with latitude and $\delta^{15}N$ values decline precipitously away from an area of elevated $\delta^{\rm 15}N$ values in the southeast portion of Hawaiian petrel distribution, between 4-10° N and 135-140°W (20-24). Thus, petrels that focus their foraging southeast of the Hawaiian Islands are expected to have relatively high δ^{13} C and δ^{15} N values. Alternatively, the relatively high δ^{15} N values, such as those we observed for Lanai and Hawaii populations, could be due to feeding at a higher trophic level than other petrels. However, Laysan albatross (Phoebastria immutabilis) feeding north of the Hawaiian Islands, away from the region of elevated δ^{15} N, have relatively low δ^{15} N values (12.5 ‰)(15). Because Hawaiian petrels are unlikely to forage at a higher trophic level than the related and substantially larger Laysan albatross, δ^{15} N values greater than 12.5 ‰ in Hawaiian petrel feathers must result from feeding in a region of elevated δ^{15} N.

High δ^{13} C values among adults are consistent with all adults growing feathers in the southern portion of Hawaiian petrel distribution, with variable δ^{15} N indicating that populations rely to different extents on areas of elevated $\delta^{15}N$ (e.g. in the southeast portion of the species' distribution, Fig. 2a). Relatively low δ^{13} C values of Maui and Kauai hatch-year birds are consistent with parental foraging trips near and north of the Hawaiian Islands, as shown by satellite tracks from Maui petrels (Fig. 2). In contrast, petrels from Hawaii likely provision their chicks with prey from southeast of the Hawaiian Islands, based on the elevated $\delta^{15}N$ and δ^{13} C values in the feathers of Hawaii hatch-year birds. Our interpretations of feather data are supported by multiple observational studies. For example, petrels breeding on Hawaii visit their nests more frequently than petrels on Maui, presumably due to shorter foraging trips to different at-sea locations (12, 25). In addition, at-sea observations show that Hawaiian petrels are more concentrated to the SE of the Hawaiian Islands from October to December (the late breeding season and early nonbreeding season) than during the mid-breeding season, consistent with our interpretation that adult petrels move towards this area during the early non-breeding season (14). Overall, feather data show substantial variation in foraging location, both seasonally and among populations. In contrast, neither $\delta^{15}N$ or $\delta^{13}C$ values of bone collagen vary significantly among modern petrel populations (comparisons of collagen $\delta^{15}N$ among populations can

Fig. 3. δ^{15} N values of modern and radiocarbon-dated bone collagen for five Hawaiian petrel populations. The average age and isotopic composition of each time bin, \pm standard error, is plotted with sample size noted (see Fig. S1 for δ^{13} C results and Fig. S2 for confidence intervals of radiocarbon dates). Gray shading indicates time bins. Modern samples were unavailable from Oahu and Molokai due to population extirpation. Stippled lines connecting data points are for visualization purposes; isotopic shifts between time bins may have occurred non-linearly. be found in Table S2; ANOVA for δ^{13} C, p=0.597, F=0.8434, df=11). Isotopic signals of location are apparently averaged out in modern bone collagen, likely due to the long time period represented by this tissue and the extensive foraging range of individual birds over the course of the breeding and non-breeding seasons, combined.

To evaluate temporal trends in foraging, we first grouped collagen samples into island populations: a grouping that allowed separate examination of genetically distinct populations with disparate foraging locations. Next, we divided collagen samples into time bins and compared average isotope values using ANOVA and Tukey HSD post hoc tests (Fig. 3, Table S2). The initial time bins are based on archaeological chronology in the Hawaiian Islands, which were the population center for people fishing within the oceanic range of the Hawaiian petrel until historical times (in contrast, aboriginal people living on continents concentrated their fishing in near-shore environments of the continental shelves) (3, 5). The later time bins reflect the Historic period of Western economic development and whaling in Hawaii and the oceanic eastern North Pacific, followed by the Modern period of industrialized fishing.

Our isotope chronologies show that δ^{15} N disparities among populations have decreased through time. Prior to the Historic period, δ^{15} N values of bone collagen differ by as much as 2 ‰ and show statistically significant separation (Fig. 3, Table S2). In contrast, isotopic segregation is only observable among modern populations over the short time scales represented by flight feathers. This isotopic convergence of populations may be related to a seemingly concurrent, species-wide shift in δ^{15} N values.

Between the Pre-human and Modern periods, we observed significant δ^{15} N declines for petrel populations on Lanai, Maui, and Hawaii (all the populations from which modern samples were available) (Fig. 3, Table S2). δ^{15} N values from the sample-rich Hawaii chronology did not decline until sometime after the early Expansion period (p<0.01 for Expansion vs. Modern periods, p=0.44 for Pre-human vs. Expansion periods). The ten most recent Expansion period samples from Hawaii (average age = 204 BP) had an average δ^{15} N of 16.8 ± 0.5 ‰, which is similar to the average $\delta^{15}N$ of the remaining samples in this time period (16.5 \pm 0.1 ‰) and implies that the δ^{15} N decline occurred after ca. 200 BP. Petrels collected on the island of Molokai in 1914 have an average $\delta^{15}N$ value that does not differ significantly from that of any ancient population (p=0.072 for Pre-human Hawaii, p>0.76 for all other comparisons), but is higher than the $\delta^{15}N$ of modern Maui and Lanai populations (Table S2), suggesting that δ^{15} N decline occurred within the past 100 years. Notably, the decline in $\delta^{15}N$ between modern and ancient petrels is a robust

characteristic of our timelines: it is present regardless of the time bins chosen for the ancient samples. Preceding the isotopic decline, a relative stasis in average $\delta^{15}N$ values is supported by results from the islands of Oahu, Hawaii, and Maui. When the Modern time bin is excluded, there is no decline in $\delta^{15}N$ for Maui or Hawaii (Table S2). Similarly, prior to its extirpation around 600 BP (615 BP=youngest date), there is no change in $\delta^{15}N$ of the Oahu population (p=1.00). Overall, our data support a recent, species-wide shift in $\delta^{15}N$ that was unprecedented during the last 4,000 years.

We considered whether anthropogenic impact to $\delta^{15}N$ through a North Pacific-wide input of isotopically unique nitrogen could have influenced our results. However, atmospheric deposition of ¹⁵N-depleted anthropogenic nitrogen to the ocean, and a possible increase in nitrogen fixation, together cannot explain even a 0.2 ‰ decrease in $\delta^{15}N$ values (see modeling in Text S1). Additionally, we find no evidence that Hawaiian petrel $\delta^{13}C$ or $\delta^{15}N$ values vary with the El Niño Southern Oscillation or longer-term climatic perturbations (see Materials and Methods) (15). Furthermore, because all modern island populations have lower average $\delta^{15}N$ values than all ancient populations, migration among islands cannot explain the $\delta^{15}N$ decline. This conclusion is supported by genetic analyses, which show that migration was very low among islands prior to human colonization and is currently low among extant populations (17, 18).

We considered whether declining population size in the Hawaiian petrel could be causally linked with the observed iso-topic shift. However, the timing of $\delta^{15}N$ decline argues against this explanation. Our analysis identifies the isotopic shift occurring most likely within the past 100 years. While the population trend over the past century is not well documented, the majority of population decline in the Hawaiian petrel likely occurred before the 20th century, based on the bone record and on indigenous knowledge. Population decline due to human-induced causes (direct harvesting by people, habitat change, predation from in-troduced mammalian predators) is thought to have begun around 900 years ago, when people first arrived in the Hawaiian Islands, and to have continued during the prehistoric Foundation and Expansion periods (4, 26, 27). By around 600 years ago, according to our radiocarbon chronology, the extensive Hawaiian petrel population on the island of Oahu was extirpated. Based on our survey of paleontological bones, the species' breeding distribu-tion on Maui, Molokai, and Hawaii also contracted dramatically during the Foundation and Expansion periods (see Materials and Methods). In this regard, the Hawaiian petrel was no ex-ception. Paleontological sites record the extinction of over half of the endemic species of Hawaiian birds and the extirpation of many other breeding seabird populations during these periods (28–30). Similar extirpations of procellariiform seabird colonies are recorded in the archaeological record on many other Pacific islands (31). Our study was designed in part to reveal whether prehistoric human-mediated seabird decline in the Pacific had a measureable effect on seabird foraging ecology, and our results do not confirm such an effect.

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

We also considered the possibility that breeding habitat is correlated with foraging behavior, such that the breeding range contraction in the Hawaiian petrel following human arrival and settlement (see Fig. 1 and Material and Methods) led to an apparent shift in foraging. However, modern populations on Kauai and Lanai breed in similar habitats (densely vegetated, >1,000 cm rain per year, ≤1,000 m elevation) (25, 32), and the δ^{15} N of their feathers are more disparate than any other two populations of Hawaiian petrels (Figure 2b). Similarly, δ^{15} N values of feathers from Hawaii and Maui are distinct, although colonies on both islands exist in dry, sparsely vegetated environments above 2,000 m elevation (12, 25). Thus, breeding habitat does not appear to be a dominant control of δ^{15} N values.

429 We could not detect any fluctuations in $\delta^{13}C$ through time 430 after correction for the depletion of ¹³C in atmospheric CO₂ 431 due to fossil fuel burning (Fig. S1; p=0.22 for Lanai, p≥0.99 for 432 all other within-island time bin comparisons). Because of the 433 established, negative relationship between latitude and δ^{13} C in 434 marine food webs (20-22), any shift in average petrel foraging 435 location through time must have been largely constrained to lon-436 437 gitudinal movement. If a change in foraging location accounted for the temporal shift in δ^{15} N, all Hawaiian petrel populations 438 439 must have dispersed, longitudinally, away from a region of the 440 eastern tropical North Pacific characterized by high $\delta^{15}N$ (e.g. 4-441 10°N, 130-140°W, Fig. 2A) (23, 24). This explanation is unlikely 442 because it requires several assumptions that are inconsistent with 443 our knowledge of the Hawaiian petrel. First, all populations must 444 have moved in the same direction, despite our observation that 445 populations have distinct and in some cases seasonally dynamic 446 foraging locations. Second, a shift away from a region of elevated 447 $\delta^{15}N$ must have occurred alongside isotopic convergence of pop-448 ulations. This scenario is particularly unlikely as it would involve, 449 before the isotopic shift, either a) populations having relied to a 450 greater extent on one particular area, while simultaneously show-451 ing stronger spatial segregation, isotopically, or b) populations of 452 a single, opportunistic species, most of which are morphologically 453 indistinguishable (25), having fed in a similar area in the past, but 454 on vastly different prey.

455 Why then, did δ^{15} N decline in our oceanic study species? 456 Most likely, the isotopic shift reflects a species-wide decline in 457 trophic level. Based on an estimated increase of 3 ‰ with each 458 trophic level (33), our $\delta^{15}N$ data translate to a decline of 1/2, 4/5, 459 and 2/3 of a trophic level for the populations on Maui, Lanai, 460 and Hawaii, respectively. Studies of freshwater and near-shore 461 marine ecosystems show that similar trophic declines in generalist 462 seabirds are associated with fishing pressure and declines in prey 463 abundance (34–36). Consistent with this trend, $\delta^{15}N$ decline in 464 the Hawaiian petrel was coincident with the onset of large-scale, 465 industrial fishing in the oceanic Pacific, which could have affected 466 petrel diet through several mechanisms. Many seabirds, including 467 Hawaiian petrels, forage in association with schools of large 468 predatory fish, such as tuna, that drive prey to the ocean surface. 469 Fishery-induced loss of large predators (6, 7) could therefore 470 have reduced feeding opportunities for the Hawaiian petrel or 471 affected the abundance of their prey through a shift in predation 472 rates and a potential trophic cascade, such as that observed 473 in the Scotian Shelf following the collapse of cod populations 474 (2, 37). Fisheries may have also altered Hawaiian petrel diet 475 476 through the direct harvest or bycatch of petrel prey (e.g. flying

4 | www.pnas.org --- ---

fish, *Stenoteuthis oualaniensis* (38)). Regardless of the proximate cause, the recent timing of the species-wide shift in Hawaiian petrel δ^{15} N and the isotopic stasis preceding this shift strongly implicate anthropogenic alterations. Considering the links between fisheries and Hawaiian petrel foraging, including known impacts to large predatory fish populations, and in view of previous studies of fishery-associated trophic decline in seabirds, our record from the Hawaiian petrel further provides evidence that the indirect effects of fishing on marine food webs extend beyond near-shore regions, reaching tropical and temperate oceanic waters. 477478479480480481482482483484

Some predators may respond positively to fishery-mediated changes, such as seabirds that rely on fishery offal and discards (39) or mid-trophic level fish that may benefit from declines in apex predator populations (6, 37). However, Hawaiian petrels are unlikely to use fishery subsidies (15), and the species that appear to have increased in abundance since the onset of industrial fishing in the NE Pacific do not include known Hawaiian petrel prey (6, 12, 37). Instead, our study shows that concurrent with the onset of industrialized fishing, the Hawaiian petrel underwent a species-wide shift in foraging habits that was seemingly unprecedented during the last four millennia. Further research is needed to understand the implications of trophic decline for population viability of this endangered species. Because the ratio of body mass between marine trophic levels is often greater than 100:1 (40, 41), it is possible that a 1/2 - 2/3 trophic level decline represents a reduction in the average body mass of petrel prey to 1/50 -1/67 of its previous size (Text S2). Isotopic convergence of Hawaiian petrel populations, coincident with $\delta^{15}N$ decline, further suggests that trophic decline may have caused populations to become more comparable in their foraging habits, perhaps by limiting them to similar, lower trophic level prey. Conservation efforts for most seabirds focus on breeding grounds where habitat loss and predation from introduced species are obvious hazards (42, 43). However, rapidly shifting or disappearing prey bases may be a hidden threat to Hawaiian petrels and other marine species. Indeed, given the evidence of trophic decline for multiple petrel populations with varied foraging habits, our results suggest a broad-scale shift in the composition of oceanic food webs in the NE Pacific.

MATERIALS AND METHODS

Sample Acquisition, Feather Growth, and Sub-fossil Distribution

We sampled 83 primary 1 (P1; the innermost primary) feathers and 55 bones from Hawaiian petrel carcasses recovered between 1989 and 2009. We also sampled P1 feathers from two birds prepared as museum study skins in 1980 and 1995, and bones from 10 museum study skins prepared in 1914 (adults from the island of Molokai).

In hatch-year Hawaiian petrels, P1 and other flight feathers are formed during the late growth stages in the breeding season, from September to December (12, 15). As in other *Pterodroma*, adult Hawaiian petrels are presumed to begin primary molt, beginning with P1, during the non-breeding season, following cessation of nest attendance (November to December for breeders) (44, 45). Sample sizes for flight feathers are as follows: Hawaii adults (n=14), Hawaii hatch-years (n=7), Kauai adults (n=13), Kauai hatch-years (n=9), Lanai adults (n=17).

135 sub-fossil bones were sampled from sites across four of the Hawaiian Islands (Fig. 1: see (18) for distinction between archaeological and paleontological sites). The distribution of the paleontological sites helps to record the former breeding range of the Hawaiian petrel, which was more extensive than either the modern or historical range. The Hawaiian petrel was not recorded historically from Oahu, West Molokai, or the leeward slope of Haleakala Volcano on Maui (46). Its subfossil bones, however, are abundant and widespread on the extensive 'Ewa Plain of southwest Oahu, to near sea level: they also occur near sea level in the dunes of West Molokai, and in lava caves of East Maui where the breeding range that is documented down slope as far as 808 m above sea level (asl) at Lua Lepo Cave (28, 29). On the island of Hawaii, active burrows have been recorded historically only from above 2500 m asl on Mauna Kea and from above 1800 m asl on Mauna Loa, although 19th century interviews record indigenous knowledge of a wider prior breeding range, particularly in the saddle region between Mauna Loa and Mauna Kea (46). However, the species is very common and widespread 543 in paleontological sites that extend past the known historic range, including areas in North Kona from the saddle region down to Kawaihai Bay, in the 544

Footline Author

545 Puu Waawaa region of Hualalai Volcano, as well as in South Kona to near South Point. 546

Stable Isotope and AMS Radiocarbon Methods

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

569

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

Prior to stable isotope analysis, feathers were washed in solvent (87:13 chloroform:methanol, v:v), rinsed with ultrapure distilled water (E-Pure, Barnstead), and dried at 25°C in a vacuum oven. Stable isotope data were obtained from samples representative of the entire feather vanes (47)

Collagen was isolated and purified using a method modified from Stafford et al., 1988 (48). Bones were decalcified with quartz-distilled hy-drochloric acid (0.2 to 0.5 M) and soaked in 0.05 M potassium hydroxide overnight to remove humate contaminants. The resulting collagen was gelatinized with 0.05 M hydrochloric acid (110°C, 1-3 hrs), passed through a 0.45 µm Millipore HV filter and lyophilized. One aliquot of gelatinized collagen was used for stable isotope analysis. For ancient samples, a second aliquot of gelatinized collagen was hydrolyzed in hydrochloric acid (6 M. 22 hrs) and passed through a column containing XAD-2 resin to remove fulvic acids. The resulting hydrolysate was dried, combusted to CO2, and graphitized for AMS dating (W. M. Keck Carbon Cycle AMS laboratory, University of CA, Irvine). Background contamination from ¹⁴C-depleted and ¹⁴C-enriched carbon during the preparation of each sample set was evaluated by dating hydrolyzed gelatin of known age: ¹⁴C-dead whale (ca. 70,000 years BP) and Bison bison (mean pooled radiocarbon age: 1794 ± 5.8 years BP, n=9).

For ten ancient samples, collagen was extracted at the Keck facility using techniques modified from Longin 1971, followed by ultrafiltration (49, 50). We demonstrated the comparability of dates obtained using XAD-2 purification versus Longin-ultrafiltration methods. First, we compared dates obtained from the Bison bison sample (median probabilites of 1740-1820 yrs BP (n=10) by XAD purification; 1750-1785 yrs BP (n=2) for Longin-ultrafiltration). Second, we compared dates from Hawaiian petrel bones found in a short-568 term archaeological site, Fireplough Cave, Hawaii (median probabilities of 459-525 yrs BP (n=4) for XAD purification; 473-482 yrs BP (n=3) for Longin-570 ultrafiltration). In both cases, dates for the Longin-ultrafiltration methods fell within the range of those prepared using XAD purification.

We calibrated our conventional radiocarbon ages using the program CALIB 6.0 and applied a marine reservoir correction to account for incorporation of ¹⁴C-depleted marine carbon. Specifically, we included a global model of the marine reservoir effect (Marine09 model), along with a regional correction, or ΔR , of 54 ± 20 years, calculated specifically for the Hawaiian petrel. We calculated our correction for the Hawaiian petrel by comparing radiocarbon dates on Hawaiian petrels and a terrestrial species (Hawaiian goose, Branta sandvicensis) in a short-term archaeological site, and also by obtaining radiocarbon dates on known-age museum specimens of the Hawaiian petrel collected in 1914-1917, before the age of atmospheric nuclear bomb testing. All radiocarbon dates referred to in the text are median probabilities, or the average of median probabilities from a group of samples. Similarly, median probability dates were used for all graphing and statistical analysis.

 δ^{13} C and δ^{15} N values of gelatinized collagen (ca. 1.0 mg) were determined using an elemental analyzer (Eurovector) interfaced to an Isoprime mass spectrometer (Elementar). Stable isotope values are expressed in per mil (‰) as: $\delta X = ([R_{sample}/R_{standard}] - 1) \times 1000$, where X is ¹³C or ¹⁵N, R is the corresponding ratio ¹³C/¹²C or ¹⁵N/¹⁴N, and $R_{standard}$ is V-PDB and air for δ^{13} C and $\delta^{15}N$ respectively. Precision was $\leq 0.2 \ \%$ for both $\delta^{13}C$ and $\delta^{15}N$.

We corrected for the Suess Effect using an ice-core based estimate of the rate of δ^{13} C decrease in the atmosphere: 0.22 ‰ per decade since 1960, and 0.05 ‰ per decade between 1860 and 1960 (51, 52).

Temporal and Statistical Analysis

Isotope data from gelatinized collagen were binned based on archaeological and historical time periods marking the growth and development of the human population of the Hawaiian Islands, plus one bin covering the modern period of industrial fishing. Based on Hawaiian archaeology and history, the following time bins were used: the Pre-human period (before human colonization; <1100 CE or >850 yrs BP), the Foundation period (time of Polynesian colonization, with small human population size; 1100-1400 CE; 550-850 yrs BP), the Expansion Period (characterized by increasing human population size; 1400-1800 CE; 150-550 yrs BP), the Historic Period (including the period of European colonization and whaling; 1800-1950 CE; 0-150 yrs BP), and the Modern period (a time of industrialized fishing in the North Pacific; 1950-2010 CE) (4, 6, 53). We subdivided the Pre-human time bin for the island of Maui in half along a natural gap in the data of >850 years, due to the exceptionally long period of ca. 3500 years covered by those samples. We combined all ancient samples (>100 years old) from the island of Lanai into one time bin, due to their relatively narrow range of dates (899-1088 yrs BP) and our small sample size (n=5).

- 1. Jackson JBC et al. (2001) Historical Overfishing and the Recent Collapse of Coastal Ecosys tems. 293:629-638.
- 2. Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic Cascades in a Formerly Cod-Dominated Ecosystem, 1621-1623.
- Rick TC, Erlandson JM (2008) Human Impacts on Ancient Marine Ecosystmes: A Global 3. Perspective (University of California Press, Berkeley).
- Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ (2011) High-precision radiocarbon dating 4.

Age Classification for Bones

622 Among sub-fossil bones in our ancient chronologies, six were identified 623 as hatch-year birds (<1 year in age) based on osteological evidence of incomplete bone formation (using indications such as open sutures, spongy 624 texture, and the presence of small pores and striations (Text S3)): one from 625 Oahu, three from Lanai, and two from Hawaii. For the island of Maui, all 626 modern and ancient hatch-year bones were excluded from analysis due to the isotopic disparities observed between age classes in the modern 627 population for both feather and bone (t-test comparing 6 hatch-year and 10 adult bones: p=0.021 for δ^{15} N and p=0.018 for δ^{13} C). We retained hatch-628 629 year petrels in our chronology for the island of Hawaii, because no isotopic 630 disparity was observed between age classes for either feathers or bones in 631 the modern population from this island (t-test comparing 8 hatch-year and 18 adult bones: p=0.862 for δ^{15} N and p=0.690 for δ^{13} C), and because the average 632 $\delta^{15}N$ value for the known hatch-year birds in the ancient chronology was the 633 same as the average for all ancient Hawaii birds (16.6 %). While hatch-year 634 birds were included in our ancient sample from Lanai, the modern sample from this island consists entirely of adults. For Lanai, the three ancient hatch-635 636 vears have lower $\delta^{15}N$ values than the ancient adults, as we would expect based on the foraging pattern of breeding Lanai adults, which appears to 637 be similar to that of Maui birds (13, 54). The inclusion of hatch-year petrels 638 in the Lanai chronology will tend to lower the average $\delta^{15}N$ value for our 639 ancient Lanai time bin, perhaps causing us to underestimate any $\delta^{15}N$ decline through time.

Effects of Climate on Hawaiian petrel $\delta^{15} N$ Values

We used a measure of ENSO, the Southern Oscillation Index (SOI), to evaluate potential impacts of climatic variation on $\delta^{15}N$ of modern Hawaiian petrel flight feathers. SOI values, standardized according to the methods of Trenberth 1984 (http://www.cgd.ucar.edu/cas/catalog/climind/soi.html) (55), were averaged over the months surrounding flight feather growth (September-December for hatch-year birds; November-March for adults, with SOI averages offset by one month for all Maui petrels to account for their earlier breeding cycle). We used an analysis of covariance (ANCOVA) to test for an effect of SOI while accounting for the variance associated with age class (adult vs. hatch-year) and population. Based on data from all the flight feathers where year of collection was known (n=82; see table S5), SOI had a statistically insignificant effect on $\delta^{15}N$ values (t value =0.055, p=0.9559). Additionally, we compared δ^{15} N values from the most data-rich El Niño event (Fall/Winter of 2006) and La Niña event (Fall/Winter of 2007) for petrels nesting on the islands of Lanai and Hawaii (all data combined, as the $\delta^{15}N$ values of these age groups and populations were not significantly different). Because there was unequal variance in δ^{15} N among years (F statistic=0.0039), we performed a Welch t-test, which showed no significant difference in $\delta^{15}N$ between the El Nino and La Nina years (t=-0.6282, p=0.599, n=18, df=6.928).

We also did not detect a significant difference in average isotope values between our Pre-human time bins (4409-955 BP) and Foundation time bins (555-914 BP) (Fig. 2, table S1): a time span that encompassed considerable climatic variation around the Pacific basin (e.g. Medieval Warm Period vs. cooling at ca. 1500 BP) (56, 57).

ACKNOWLEDGEMENTS.

For access to museum specimens we thank the Bird Division and Paleobiology Department, National Museum of Natural History, the Natural History Museum of Los Angeles County, the Bernice Bishop Museum, and C. Gebhard, K. Garrett, K. Campbell, L. Garetano, and C. Kishinami for their assistance. We also thank N. Holmes, S. Judge, K. Swindle, D. Ainley, and J. Adams for sharing their expertise, and D. Johnson for the use of his photography equipment. We are also grateful to J. Mead and N. Ostrom for helpful comments to the manuscript. Funding was provided by the National Science Foundation (DEB-0745604), Geological Society of America, Michigan State University, and the National Museum of Natural History, Smithsonian Institution.

shows recent and rapid initial human colonization of East Polynesia. Proceedings of the National Academy of Sciences 108:1815-20.

- 5. Kirch P V (1985) Feathered Gods and Fishhooks: An Introduction to Hawaiian Archaeology 676 and Prehistory (University of Hawaii Press). 677
- Ward P, Myers RA (2005) Shifts in open-ocean fish communities coinciding with the 6. commencement of commercial fishing. Ecology 86:835-847.
- 7. Myers R a, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

678

679

680

621

423:280-3.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

- Pauly D et al. (1998) Fishing Down Marine Food Webs. Science 279:860-863. 8
- Cairns DK (1987) Seabirds as indicators of marine food supplies. Biological Oceanography 9. 5.261-271
- 10. Piatt I, Sydeman W (2007) Seabirds as indicators of marine ecosystems. Marine Ecology Progress Series 352:199-204.
- 11. Ricklefs RE, Duffy D, Coulter M (1984) Weight gain of Blue-footed booby chicks: an indicator of marine resources. Nordic Scandinavica 15:162-166.
- 12. Simons TR (1985) Biology and behavior of the endangered Hawaiian Dark-rumped Petrel. The Condor 87:229-245.
- 13. Adams J, Flora S (2009) Correlating seabird movements with ocean winds: linking satellite telemetry with ocean scatterometry. Marine Biology 157:915-929.
- 14. Spear LB et al. (1995) Population Size and Factors Affecting At-Sea Distributions of Four Endangered Procellariids in the Tropical Pacific at-sea distributions of four endangered procellariids in the tropical Pacific. 97:613-638.
- 15. Wiley AE et al. (2012) Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168:119-30.
- Deniro MJ (1985) Postmortem preservation and alteration of in vivo bone collagen isotope 16. ratios in relation to palaeodietary reconstruction. Nature 317:806-809.
- 17. Welch AJ et al. (2012) Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109:19-28.
- 18. Welch AJ et al. (2012) Ancient DNA Reveals Genetic Stability Despite Demographic Decline: 3,000 Years of Population History in the Endemic Hawaiian Petrel. Molecular biology and evolution 29:3729-3740.
- Rucklidge GL, Milne G, McGaw BA, Milne E, Robins SP (1992) Turnover rates of different 19. collagen types measured by isotope ratio mass spectrometry. Biochimica et Biophysica Acta 1156:57-61.
 - Goericke R, Fry B (1994) Variation of marine plankton $\delta13C$ with latitude, temperature, and 20. dissolved CO2 in the world ocean. 8:85-90.
- MacKenzie KM et al. (2011) Locations of marine animals revealed by carbon isotopes. 21. Scientific Reports 1:1-21.
- Takai N, O SO, Op YI, Akihiko Y (2000) Geographical variations in carbon and nitrogen 22. stable isotope ratios in squid. Journal of Marine Biology 80:675-684.
- 23. Altabet MA, Francois R (1994) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8:103-116.
- Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) in Isoscapes: 24. Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping, pp 299-318. 25. Judge S (2011) Interisland comparison of behavioral traits and morphology of the endan-
- gered Hawaiian petrel: Evidence for character differentiation 26 James HF et al. (1987) Radiocarbon dates on bones of extinct birds from Hawaii. Proceedings
- of the National Academy of Sciences 84:2350-2354. 27. James HF (1995) Prehistoric extinctions and ecological changes on oceanic islands. Ecological
- Studies 115:88-102. 28. Olson SL, James HF (1982) Fossil Birds from the Hawaiian Islands: Evidence for Wholesale
- Extinction by Man before Western Contact. Science 217:633-635. Olson SL, James HF (1991) Descriptions of thirty-two new species of birds from the Hawaiian 29.
- Islands: Part 1. Non-Passeriformes. Ornithological Monographs 45:1-88 30 James HF, Olson SL (1991) Descriptions of thirty-two new species of birds from the Hawaiian
- Islands: Part 2. Passeriformes. Ornithological Monographs 46:1-88. 31. Steadman DW (1996) Extinction and Biogeography of Tropical Pacific Birds (University of
- Chicago Press, Chicago). Ainley DG, Podolsky R, Deforest L, Spencer G (1997) New insights into the status of the 32.
- Hawaiian Petrel on Kauai. Colonial Waterbirds 20:24-30. Michener RH, Schell DM (1994) in Stable Isotopes in Ecology and Environmental Science, eds 33.
- Lajtha K, Michener R, pp 138-157.
- 34. Becker BH, Beissinger SR (2006) Centennial Decline in the Trophic Level of an Endangered

Seabird after Fisheries Decline. Conservation Biology 20:470-479.

- Farmer RG, Leonard ML (2011) Long-term feeding ecology of Great Black-backed Gulls 35 (Larus marinus) in the northwest Atlantic: 110 years of feather isotope data. Canadian Journal of Zoology 89:123-133.
- 36. Herbert CE et al. (2008) Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change. Ecology 89:891-897.
- Polovina JJ, Abecassis M, Howell EA, Woodworth P (2009) Increases in the relative abun-37 dance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996-2006. Fishery Bulletin 107:523-531.
- 38 FishStatJ: Universal software for fishery statistical time series (2011).
- Garthe S, Camphuysen CJ, Furness RW (1996) Amounts of discards by commercial fisheries 39. and their significance as food for seabirds in the North Sea. Marine Ecology Progress Series 136:1-11.
- Brose U et al. (2006) Consumer-resource body-size relationships in natural food webs. 40. Ecology 87:2411-2417
- Jennings S, Warr KJ, Mackinson S (2002) Use of size-based production and stable isotope 41. analyses to predict trophic transfer efficiencies and predator-prey body mass ratios in food webs. 240:11-20.
- Taylor RH, Kaiser GW, Drever MC (2000) Eradication of Norway Rats for Recovery. Restoration Ecology 8:151-160.
- 43 Nogales M, Mart A, Tershy BR, Donlan CJ, Veitch D (2004) A Review of Feral Cat Eradication on Islands. Conservation Biology 18:310-319.
- Pyle P (2008) in Identification Guide to North American Birds, Part 2 (Slate Creek Press, Point 44. Reyes Station, CA), pp 248-260.
- 45. Warham J (1996) The Behaviour, Population Biology and Physiology of the Petrels (Academic Press, London).
- 46. Banko WE (1980) History of endemic Hawaiian birds: population histories, species accounts: Sea birds: Hawaiian Dark-rumped Petrel ed Smith CW (University of Hawaii at Manoa;

Western Region, National Park Service, Honolulu, Hawaii).

- Wiley AE, Ostrom PH, Stricker CA, James HF, Gandhi H (2010) Isotopic Characterization of Flight Feathers in Two Pelagic Seabirds: Sampling Strategies for Ecological Studies. The Condor 112:337-346. Stafford, Thomas W J, Brendel K, Duhamel RC (1988) Radiocarbon, 13C and 15N analysis of fossil bone: Removal of humates with XAD-2 resin. Geochimica et Chosmochimica Acta
- 52:2257-2267 49 Longin R (1971) New method of collagen extraction for radiocarbon dating. Nature
- 230:241-242. Brown TA, Nelson DE, Vogel JS, Southon JR (1988) Improved collagen extraction by 50. modified Longin method. Radiocarbon 30:171-177.
- Francey RJ et al. (1999) A 1000-year high precision record of δ^{13} C in atmospheric CO₂. 51. Tellus B 51:170-193.
- 52 Chamberlain CP et al. (2005) Pleistocene to recent dietary shifts in California condors. Proceedings of the National Academy of Sciences of the United States of America 102:16707-11. 53.
- Kirch P V (1990) The evolution of sociopolitical complexity in prehistoric Hawaii: An assessment of the archaeological evidence. Journal of World Prehistory 4.
- VanZandt MLA (2012) Distribution and Habitat Selection of the Endangered Hawaiian Petrel (Pterodroma sandwichensis), from the Island of Lana'i. 73 pp.
- 55. Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Weather Review 112:326-332
- Grove JM (2004) Little ice ages: ancient and modern (Routledge, London, UK)second edition. 56. 57. Nunn P (2007) Climate, Environment and Society in the Pacific during the last millennium ed
- Nunn PD (Elsevier).
- Athens JS, Kaschko MW, James HF (1991) Prehistoric bird hunters: high altitude resource 58 exploitation on Hawai`i Island. Bishop Museum Occasional Paper 31:63-84.

816

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785