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Hydrodynamic suppression of phase separation in active suspensions
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We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We
explore numerically the full range of squirmer area fractions from dilute to close packed and show that “motility
induced phase separation,” which was recently proposed to arise generically in active matter, and which has been
seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an
argument for why this should be the case and support it with counterpart simulations of active Brownian disks in
a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.
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I. INTRODUCTION

“Active matter” [1] comprises internal subunits that col-
lectively drive the system far from Boltzmann equilibrium
by each individually consuming energy. Biological examples
include actively cross-linked polymeric filaments in the cell
cytoskeleton [2], cells grouped in living tissues [3], suspen-
sions of motile microorganisms [4,5], and shoals of fish and
flocks of birds [6]. Nonbiological examples include vibrated
granular monolayers [7–9] and self-propelled synthetic col-
loidal particles [10,11].

Distinct from the more familiar scenario of a passive
complex fluid driven by, say, a global shear flow imposed
at the system’s boundaries, in active matter the driving
out of equilibrium arises intrinsically in the active subunits
throughout the system’s own bulk. Consequently active
materials can spontaneously develop mesoscopic or macro-
scopic mechanical stresses and deformations even without
driving or loading from outside. Other exotic and generically
emergent phenomena include swarming, pattern formation,
giant number fluctuations, nonequilibrium ordering, and phase
separation (for a recent review see Ref. [1]). These offer
fascinating challenges to fluid dynamicist, rheologist, and
statistical physicist alike.

Many active particles are elongated and so have an
intrinsic (steric) tendency to align with each other [12–16].
Activity-mediated coupling between these orientational modes
and fluctuations in the local number density then provide a
generic mechanism for giant number fluctuations and phase
separation [7,9,17]. The standard deviation �N in a subregion
of material of mean number of particles N then scales as Na

with a > 1/2, whereas for passive systems away from any
transition a = 1/2.

Besides any such tendency for alignment, another generic
mechanism for phase separation was recently put forward in
the context of “run and tumble” particles, such as some species
of motile bacteria [18,19]. These swim in nearly straight-line
runs at almost constant speed, between intermittent tumbles in
which they suddenly randomize swim direction. The basic idea
is that particles (a) accumulate where they move more slowly
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and (b) move more slowly where crowded. Positive feedback
between (a) and (b) then gives rise to “motility-induced
phase separation” (MIPS). This idea was recently extended
analytically to active Brownian particles [20], consistent with
simulations showing phase separation in active Brownian
disks [21] and spheres [22] that indeed lack any tendency
for steric alignment, or for phase separation in the passive
equilibrium case.

To date these simulations lack hydrodynamic interactions,
in which moving particles set up flow fields that influence
their neighbors. But such interactions arise widely in active
matter [1], and this is fundamentally important because steady
state properties in nonequilibrium systems depend strongly on
dynamics, in contrast to equilibrium states, which depend only
on the underlying free energy. This includes the existence (or
otherwise) of activity-induced phase separation.

The contribution of this work is to show that hydrodynamic
interactions in fact strongly suppress MIPS. Accordingly,
MIPS might not arise as generically in active matter as
hitherto suggested. We show this by simulating with hydro-
dynamics a suspension of active disks [23–25] that squirm
through a Newtonian fluid. A closely related model was
studied previously in [26–28]. We explore the full range
of squirmer area fractions from dilute to close packed and
demonstrate that hydrodynamics causes a key assumption of
the (a)–(b) feedback mechanism outlined above to fail. It
does so by effectively rendering a crucial parameter (defined
below) ζ ≈ 1 rather than ζ � 1. To support this, we further
demonstrate suppression of MIPS in active Brownian disks in
the regime ζ ≈ 1 more closely analogous to the squirmers,
with MIPS recovered for ζ � 1, as explored previously for
active Brownian particles [21].

Being disks, the active particles studied here lack any
steric tendency to align with each other. This choice was
made deliberately in order to exclude a priori the first,
non-MIPS mechanism for active phase separation discussed
above. For simulations of active rods with hydrodynamics, see
Ref. [29].

The paper is structured as follows. In Sec. II we outline the
models to be studied in the rest of paper. In Sec. III we detail our
simulation methods. Units and parameter values are discussed
in Sec. IV, then the statistical quantities that we measure from
the simulations are defined in Sec. V. In Sec. VI we present
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our results, and we provide a discussion of them in Sec. VII.
Finally in Sec. VIII we give conclusions and perspectives for
future study.

II. MODELS

In this section we outline the models to be studied
throughout the manuscript. We start in Secs. II A and II B
by discussing hydrodynamic squirmers, before summarizing
in Sec. II C the active Brownian particles that we shall simulate
for comparison with the hydrodynamic case.

A. Squirmers

The model of hydrodynamic swimmers that we shall adopt
is based on a minimal description of microbial propulsion
originally put forward by Lighthill [23], then further by
Blake [24,25], and studied extensively by Pedley et al. [26,28].
The swimming particles are assumed to be neutrally buoyant
and so force free. Their size and swimming speed are assumed
sufficiently small that the Reynolds number is negligible, and
the flow associated with their swimming is Stokesian. Their
size is, however, assumed large enough that Brownian motion
is negligible (infinite Péclet number).

Swimming through the suspending fluid is achieved by
means of an imposed tangential squirming velocity around
the particle surface, but without changing the particle shape.
This is intended to mimic, for example, locomotion by the
beating of many cilia on the surface of a ciliated microbe.
For simplicity the tangential velocity is assumed time inde-
pendent, representing an average over many beating cycles.
Spherical (three-dimensional, 3D) [24] and cylindrical (two-
dimensional, 2D) [25] incarnations of this model have been
considered, with axisymmetric tangential velocity assumed
for the spherical case.

The model adopted here is based on the 2D model as
put forward by Blake (i.e., infinitely long cylinders). We
shall then further adapt it to the case of a film of disks
(i.e., highly flattened cylinders) to give a model that has 3D
hydrodynamics.

B. Squirming disks

We consider an ensemble of P inertialess disklike particles,
each of radius R, actively propelling themselves in the x-y
plane of a horizontal film of an inertialess, incompressible
Newtonian fluid of viscosity η. The film has dimensions
Lx,Ly , with periodic boundary conditions in the x and y

directions. The disks and the film each have height h, with
the top and the bottom of the film at z = ±h/2. Semi-infinite
volumes of a Newtonian fluid of a lower viscosity η0 < η fill
the space above and below the film (see Fig. 1). This geometry
was first considered by Saffman and Delbruck in the context
of protein diffusion in fluid membranes [30–33]. One can
define the Saffman length as � = ηh/η0, which quantifies the
relative significance of the viscous dissipation in the 2D film
as compared with the 3D dissipation in the bulk. As a simple
rule of thumb, one can imagine an effective description of the
hydrodynamic interactions between the disks, by regarding
them as objects of typical size set by the Saffman length that

FIG. 1. (Color online) Sketch of the disk geometry.

would interact through 3D bulk viscous hydrodynamics (see
Figs. 1 and 2).

The disks propel themselves in the plane of the film
by means of an active “squirming” motion, achieved by a
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FIG. 2. (Color online) Schematic of effective description of the
hydrodynamic interactions (HI in the figure), i.e., fluid velocities
in the film generated by a point force on the disk boundaries. The
fluid in the bulk is excited by motion in the film, and the Saffman
length � sets the extent of the bulk fluid set in motion. The region of
bulk fluid excited by a disk of radius R can be viewed as a “ghost”
particle, and the size of the ghost particles controls the crossover
between 2D and 3D nature of the effective interactions [30–33]. When
� � R, the effective hydrodynamic interactions (HI) between the
disks separated by distance r are 3D-like and always scale to leading
order as 1/r . When � > R, the effective hydrodynamic interactions
between disks depend on the ratio of the distance between the disks
and the Saffman length �. For a pair of disks with centers at positions
r i ,rj , the hydrodynamic interaction (HI) between them is 3D-like
if rij = |r i − rj | � � and scales like 1/rij while it is 2D-like when
rij = |r i − rj | � � and scales like ln rij .
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prescribed tangential velocity

S(θ − αp) = B1 sin(θ − αp) + 1
2B2 sin 2(θ − αp) (1)

around the disk edges. We denote by β the ratio B2/B1 of
the first to second modes in this expression. Positive β gives
“pullers,” and negative β gives “pushers.”

With these dynamics, a single disk undisturbed by any
others has, in an infinite box, a swim speed v0 = B1/2 [25],
with an instantaneous swim direction êp = (cos αp, sin αp),
for the pth disk. In a suspension of many disks the actual swim
speeds and directions evolve over time due to hydrodynamic
interactions mediated by the Newtonian fluids surrounding the
particles.

In the fluid above and below the film the velocity and
pressure fields v′(r,t) and p′(r,t) obey the mass balance
condition for incompressible flow

0 = ∇ · v′(r,t) (2)

and the Stokes condition of force balance in the limit of
creeping flow:

0 = η0∇2v′(r,t) − ∇p′(r,t). (3)

Here r = (x,y,z) denotes space and t time.
The fluid in the film has velocity and pressure fields v(r,t)

and p(r,t) that are taken to obey the mass balance condition
for incompressible flow

0 = ∇⊥ · v(r,t) (4)

and the force balance condition

0 = η∇2
⊥v(r,t) − ∇⊥p(r,t) + f + σ+ − σ−, (5)

where r = (x,y) are position vectors in the plane of the
film. Here we have decomposed the gradient operator as
∇ = (∇⊥,∂z), with ∇⊥ representing gradients in the plane
of the film.

We recognize Eq. (5) as a 2D Stokes equation subject to
additional source terms f , σ±. We choose the term f to
represent forces around the edge of each disk:

f (r,t) =
∑

p

f p(θp)δ(rp − R). (6)

In this expression we are summing over the separate polar
coordinate systems (rp,θp) of the disks, such that for the pth
term

r = Rp(t) + rp cos(θp)x̂ + rp sin(θp) ŷ, (7)

in which Rp = Rp(t) is the position of the center of the pth
disk. These forces are included so as to ensure that the pth
disk has at any instant a velocity around its edge

vp = V p − R
p θ̂p + S(θ − αp)θ̂p, (8)

comprising solid body translation and rotation, plus the
tangential squirming motion prescribed by the slip velocity
function in Eq. (1).

The integral properties of the forces are constrained to
ensure zero total force and torque for each disk, consistent
with these particles being swimmers driven by their own
internal dynamics, and not subject to externally imposed force
monopoles.

For mathematical convenience the interior of the discs is
also taken to contain Newtonian fluid obeying Eqs. (4) and (5).
We then simply discard this part of the solution as we are
interested only in the part of the solution outside the discs.

We note that more general squirmer models could be studied
with squirming velocity profiles prescribed for the interior
points at the top and bottom surfaces as well as the edges,
with the inclusion of a corresponding distribution of point
forces on the two surfaces to ensure the prescribed boundary
condition. This would be required, for example, if one wanted
a solid interior of the disk, which our model does not address.
However, we note that even for disks with a solid interior, the
model studied here is a good approximation in the limit of
R � � though it is clearly not valid in this case for arbitrary
values of ε = R/�.

Finally, coupling between the film and the surrounding bulk
fluid is achieved by setting

σ± = η0∂zv
′|x=±h/2 (9)

at the top and bottom of the disks. In this way, the source terms
σ± in Eq. (5) represent drag on the disks by the fluid flow in
the bulk just above and below the film.

In the context of active particles, the Péclet number Pe is
defined as the time taken for a particle thermally to diffuse
a distance equal to its own radius, divided by the time taken
for it to swim the same distance. Here we assume this to
be infinite, as in Refs. [20–22], suppressing Brownian motion
entirely and considering only the deterministic hydrodynamics
defined above. Physically, this is the relevant limit for many
active suspensions of, e.g., swimming bacteria. In simulations
of active Brownian particles the tendency for phase separation
is actually most pronounced in this limit [22]. The fact that
we show hydrodynamics to suppress phase separation in
this limit where, without hydrodynamics, it would be most
pronounced gives strong evidence that hydrodynamics should
further suppress phase separation across the full range of Péclet
number.

As documented in Ref. [34], the case of strictly athermal,
strictly hard sphere colloids with hydrodynamics is a singular
limit. To avoid this unphysical pathology we consider the phys-
ically realistic case of slightly soft particles with a pairwise
repulsive force Fij = −f (a3 − a2)d̂ij , a = 2sR/(dij − 2R)
for interparticle separation dij < 2R(1 + s) between particles
i and j . The effective area fraction is then φ = PπR2(1 +
s)2/LxLy .

C. Active Brownian particles

Following Refs. [21,22,35–37] we take our active Brownian
disks to obey translational dynamics

ṙ i = v0 êi + μFij , (10)

again with swim speed v0 for a single undisturbed particle.
Their angular dynamics is prescribed by

θ̇i = ni(t),〈ni(t)nj (t ′)〉 = 2νrδij δ(t − t ′). (11)

In contrast to the squirmers, the swim directions of the active
Brownian particles are unaffected by interparticle interactions:
they independently follow Eq. (11), regardless of the frequency
or closeness of interparticle encounters.
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Use of the word Brownian should be interpreted carefully in
this context. In the dynamics just prescribed, only the angular
motion is stochastic: the translational motion comprises de-
terministic swimming with slightly soft repulsive interactions
between the particles. In any truly thermal system, the angular
and translational diffusion coefficients would be related by
a fluctuation dissipation relation. In contrast, the stochastic
angular dynamics used here is not intended to represent
true thermal motion, but a continuous time model of, e.g.,
stochastic run-and-tumble events. We use the word Brownian
for consistency with the description of this angularly stochastic
dynamics in the existing literature.

III. SIMULATION METHOD

In this section we outline our simulation method for the
hydrodynamic squirmers. (Brownian particles are in compar-
ison far easier to simulate, using standard methods that we do
not discuss here.) For simplicity we introduce the method first
in the context of the 2D case ε = η0R/ηh → 0 of infinitely
long cylinders propelling themselves in the plane of their cross
section through a Newtonian solvent of viscosity η by means
of the slip function S(θ ), which is independent of height z

along the cylinder. (For spherical particles, methods related
to ours can be found in Refs. [26,28,34,38–41].) Extension to
the 3D case of small but nonzero ε, representing disks in a
highly viscous film, can then be shown to follow by relatively
a simple modification.

The basis of the simulation method is to calculate at any
time step, given the known current positions Rp and preferred
swim directions αp of all the particles, the forces required in
Eq. (6) to effect the correct edge slip velocity functions S for
each particle in Eq. (8), subject to the constraints of zero force
and torque on each swimmer. Emerging from this calculation
at each time step are then the center of mass translational and
angular velocities for each particle V p,
p in Eq. (8), which
are used to update the particle positions and swim directions.

To implement this, we define the velocity vector

Upq = (vprqs,vprqc,vpθqs,vpθqc)T (12)

in which vprqs is the Fourier component in sin(qθp) of the
radial component of velocity around the edge of the pth
disk and vprqc the corresponding cosine mode. The quantities
vpθqs,vpθqc are their counterparts for the angular velocity
components. In the same way we define the vector of force
components

Fpq = (fprqs,fprqc,fpθqs,fpθqc)T . (13)

To obtain a relation between (12) and (13) we start by taking the
curl and plane Fourier transform (x,y) → (kx,ky) of Eq. (5):

ηk4ψ(k) = [k ∧ f (k)] · ẑ. (14)

(For infinite cylinders, the end-drag terms σ± are absent.)
Here ψ is the usual stream function, which guarantees that the
incompressibility condition, Eq. (4), is satisfied.

It is then possible exactly to express Upq in terms of the
stream function ψ(k), and likewise Fpq in terms of k ∧ f (k).

Together with Eq. (14), this gives

Upq =
P∑

p′=1

Q∑
q ′=0

Mqq ′ (Rp − Rp′ ) · Fp′q ′ (15)

in which Mqq ′ (Rp − Rp′ ) is a matrix propagator that exactly
relates the q ′th Fourier mode of ring forces for a disk centered
at Rp′ to the qth mode of disk edge velocities of a disk centered
at Rp. It contains a sum over Nk plane Fourier modes for each
of kx and ky . For numerical convenience it is calculated once
over a grid of Nr,Nθ points, then at each time step of each run
looked up by interpolation as needed.

At each numerical time step we solve Eq. (15) given the set
of current disk locations Rp(t) and preferred swimming angles
αp(t), which feature in Upq . Prior to solution, the modes of
the imposed squirming function for each disk are known in
Upq , while the translational and rotational velocity of each
disk are unknown. Conversely the forces modes are unknown,
apart from the constraints of zero net force and torque for each
disk. After transferring all knowns to the right-hand side and
unknowns to the left-hand side, we then invert Eq. (15) to find
the unknowns. The particle positions and swim angles are then
updated as Rp → Rp + DtV p, αp → αp + Dt
p, with time
step Dt .

In the limit Q → ∞, Nk → ∞, Nr → ∞, Nθ → ∞ this
gives an exact solution of the full hydrodynamics of the 2D
case of squirming cylinders in a periodic box of dimensions
Lx,Ly . Emergent effects include the net propulsion of each
disk, power law far-field interactions, and lubrication forces in
near field. In numerical practice, Q,Nk,Nr,Nθ are of course
finite, representing the maximum number of modes used in the
simulation. Repeating the simulation for progressively larger
Q,Nk,Nr,Nθ ensures convergence on these parameters to the
desired limit Q → ∞, Nk → ∞, Nr → ∞, Nθ → ∞.

In the 2D limit just discussed, a single such cylinder
subject to a net external force in the plane of its cross section
would suffer Stokes’s paradox. In practice, of course, any such
catastrophe is avoided here by the fact that each squirmer
is free of any net force monopole, experiencing only higher
multipoles of force generated by its own internal squirming
dynamics.

Nonetheless, purely 2D hydrodynamics is still to be treated
with caution. Accordingly, we also consider the 3D case of
small but nonzero ε = R/�, which corresponds to disklike
particles moving in a highly viscous film, surrounded by a
bulk fluid of much lower viscosity on either side. In this case
the hydrodynamic interactions between the disks can be shown
to follow, in the “Saffman” limit [30] of small ε, by means of
a simple modification to the propagator in Eq. (15). The main
effect of this is to modulate the far-field power law index by
one (which would in fact remove Stokes paradox even if our
particles were subject to external forces). Accordingly, once
the 2D (cylinder) code has been written, the 3D (disks in a
film) case follows by a straightforward modification of the
propagator.

IV. PARAMETER VALUES AND UNITS

The squirmer model has nine parameters: the number of
disks P ; the disk radius R; the box size Lx = Ły = L in the x-y
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plane; the single particle swim speed v0; the amplitude f of the
repulsive potential; the range s of the repulsive potential; the
Newtonian viscosity η; the ratio β = B2/B1; and the Saffmann
parameter ε = η0R/ηh.

The active Brownian model has eight parameters, including
P,R,L,v0,f , and s, as for the squirmers. We then further
have the drag coefficient μ (analogous to the Newtonian
viscosity for the squirmers), and the ratio ζ = v0

√
P/νrL of

the prescribed time of decorrelation of swim direction and the
characteristic time interval between particle collisions.

In each case the number of independent parameters is
reduced by three by choosing units of length in which the
box size L = 1, of time in which the single particle swim
speed v0 = 1, and mass in which η = 1 (squirmers) or μ = 1
(Brownian).

For both squirming and Brownian dynamics we then
take the number of particles P = 128 or P = 256, heavily
constrained by computational cost for the squirmers, with these
P values being comparable to that achieved in other squirmer
studies [26]. Much larger values of P are achievable for the
Brownian disks, but we present results only for the same values
of P as for the squirmers to ensure as direct a comparison as
possible. We have checked that all the phenomena reported
here are robust to changing between P = 128 and P = 256.

For both squirming and Brownian dynamics the repulsive
potential has f = 1,s = 0.1 to ensure the dimensionless
parameter v0/μf (and its counterpart in the squirming case)
prescribing the small extent to which particles explore the
interparticle repulsive potential is comparable to that in
Ref. [21], giving almost hard disks. We have checked that
our results are robust to reasonable variations in the value
of s.

We have found the ratio β ≡ B2/B1 = 0 for the squirmers
to be unimportant for the phase separation phenomenon of
interest in this work. Accordingly, we show results below only
for the case β = 0. However, we have verified that our result
showing suppression of phase separation holds across a wide
range of values of β = −∞, −5, −1,0, +1, +5, +∞ (with
−∞ and +∞ actually equivalent for this model).

This leaves just two dimensionless parameters to be
explored numerically in each case. For the squirmers we have
the area fraction φ = PπR2(1 + s)2/L2, and the Saffmann
parameter ε = η0R/ηh. For the Brownian disks we have
the area fraction φ, as for the squirmers, and the ratio
ζ = v0

√
P/νrL of the prescribed time of decorrelation of

swim direction and the characteristic time between particle
collisions.

V. MEASURED QUANTITIES

Here we define the various statistical quantities that we shall
report in the results section below:

(1) The swim speed

v = 1

PT

∫ T

0

P∑
p=1

|vp(t)|, (16)

averaged over the ensemble of particles p = 1, . . . ,P and
over a time interval t = 0 → T large enough to get good
statistics. Note that this measure of speed we choose to adopt

differs slightly from the choice in Ref. [21], extracted from
the early-time ballistic regime of the mean squared particle
displacement, which one can show analytically is equivalent
to [ 1

PT

∫ T

0

∑
i |vi(t)|2]1/2.

(2) The scaled number fluctuations δN = �N/N1/2 in a
region of the sample with average number of particles N . To
measure this we divide the sample into b = 1, . . . ,B = P/N

equally sized boxes, define the time averages n̄b,n̄
2
b of the

number and squared number of particles in the bth box, then
report

δN = 1

B
√

N

B∑
b=1

√
n̄2

b − n̄b
2. (17)

(3) The characteristic time τo for the decorrelation of
particle swim direction, defined as the time interval �t = τo

for the correlation function

P (�t) = 1

PT

∫ T

0
dt

∑
p

ep(t + �t) · ep(t) (18)

to fall to 1/e.
(4) The time between interparticle collisions, for which we

find a reasonable definition to be

τc = πR/(v0 − ṽ), (19)

in which

ṽ = 1

PT

∫ T

0

∑
p

vp(t) · ep(t) (20)

is a measure of the extent to which a particle manages actually
to attain its full velocity in its attempted swim direction. The
degree to which this differs from the free swim speed is a
measure of the degree to which scattering occurs. We checked
by direct observation that τc provides a reliable measure at
low area fraction. At high area fraction this comparison is
more difficult to carry out, because particles slither around
each other continuously.

VI. RESULTS

We explore first active Brownian disks in the regime where
the particle swim direction is slow to decorrelate, ζ � 1. We
do this to establish a point of contact with earlier simulation
studies [21] of active Brownian disks, which were performed
in this regime, to provide a context in which to discuss our
results below.

As seen in Fig. 3 (top), and correspondingly in Fig. 3
of Ref. [21] (though there with a much larger P = 104),
the particle swim speed v decreases strongly with area
fraction φ. Accordingly this system is a good candidate for
MIPS via the (a)–(b) feedback mechanism discussed above.
The expected spinodal, according to the instability criterion
d log v/d log φ < −1 of Refs. [18,19], is located at the vertical
dotted line in Fig. 3.

Phase separation is indeed observed: see the top two
snapshots of Fig. 4, and correspondingly Fig. 1 of Ref. [21].
This is reflected also in enhanced number fluctuations: our plot
of δN (N ) for each φ (not shown) shows all the same features as
Fig. 3 of Ref. [37], though obviously cuts off sooner at high N
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FIG. 3. (Color online) Active Brownian particles. Top: Average
particle speed as a function of average particle area fraction. Expected
spinodal shown by dotted line. Middle: Scaled number fluctuations.
Bottom: Characteristic time τo for reorientation of particle swim
direction and interparticle collision time τc.

due to our smaller number of simulated particles P . Reporting
in Fig. 3 (middle) the single value δN=P/9, close to the peak
of δN (N ) for this value of P , clearly indicates separation with
binodal onset around φ = 0.25.

Consider now the hydrodynamic squirmers. We start for
simplicity with the 2D case ε = 0 (cylinders), our results
for which are shown in Fig. 5. As for the Brownian disks
the ensemble average swim speed declines strongly with

(a)ζ = 15.0, φ = 0.5445 (b)ζ = 15.0, φ = 0.726

(c)ζ = 1.0, φ = 0.5445 (d)ζ = 1.0, φ = 0.726

FIG. 4. (Color online) Snapshots for active Brownian particles,
corresponding to circles (a)–(d) in Fig. 3.
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FIG. 5. Hydrodynamic squirmers (cylinders). Top: Average par-
ticle speed as a function of average particle area fraction. Expected
spinodal shown by dotted line. Middle: Scaled number fluctuations.
Bottom: Characteristic time τo for reorientation of particle swim
direction and interparticle collision time τc.

particle area fraction, suggesting that MIPS should again
occur via the (a)–(b) feedback outlined above, with spinodal
onset at the vertical dotted line according to the criterion
d log v/d log φ < −1 of Ref. [18]. Remarkably, however, we
find no evidence for bulk phase separation in the 2D squirmers:
see the snapshots of Fig. 6 and the correspondingly suppressed
number fluctuations δN=P/9 in Fig. 5 (middle panel). We do,

(a)φ = 0.242 (b)φ = 0.363

(c)φ = 0.5445 (d)φ = 0.7865

FIG. 6. Snapshots for hydrodynamic squirmers, corresponding to
circles (a)–(d) in Fig. 5.
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FIG. 7. (Color online) Hydrodynamic squirmers (disks). Top:
Average particle speed as a function of average particle area fraction.
Middle: Scaled number fluctuations. Bottom: Characteristic time τo

for reorientation of particle swim direction and interparticle collision
time τc.

however, find a tendency to form small stringlike clusters at low
area fractions, as reported previously by other authors [26].

To check that this result is not particular to the case of 2D
hydrodynamics discussed so far, ε = 0, we show counterpart
results for the case of small but nonzero ε in Fig. 7. As
discussed above, this corresponds to the 3D hydrodynamics of
disks squirming in a film of highly viscous fluid, surrounded
above and below by a bulk fluid of much lower viscosity. As
can be seen, there is no evidence of phase separation in this
case either. Corresponding state snapshots (not shown) closely
resemble those in Fig. 6 for the cylinders, again showing no
evidence of phase separation.

All these squirmer simulations were run for long times
(typically tmax = 20.0, which in our units is the time taken
for any free squirmer to cross the entire simulation box 20
times). In each case, we checked the run was long enough
to ensure that all the statistical quantities defined above had
convincingly reached a steady state.

VII. DISCUSSION

To understand how hydrodynamics might cause this sup-
pression of motility-induced phase separation (MIPS) we now
revisit the original argument for MIPS, as first put forward in
the context of run-and-tumble dynamics and later generalized
to other systems.

Model run-and-tumble particles move in a series of straight
line runs at a constant speed v0, when dilute, between tumbles
in which they rapidly reassign their swim direction. These
tumbles occur randomly with a typical intertumble time
interval α−1. The argument for phase separation stemming
from this motility is as follows: (a) It can be shown that
the local particle area fraction in any small region of fluid
scales inversely with the local swim speed v. (Although
intuitively reasonable, this is in fact a strongly nonequilibrium
effect stemming from activity.) (b) It is assumed that between
tumbles particles move more slowly in regions of high volume

fraction, being impeded by crowding, rendering the swim
speed a decreasing function of volume fraction v(φ) < v0.
Positive feedback between (a) and (b) gives phase separation,
onset with spinodal instability from an initially homogeneous
state when d log v/d log φ < −1. This argument extends to
active Brownian particles of angular diffusivity νr , with an
exact mapping α → (d − 1)νr in d dimensions [20].

Consider carefully part (b) of this argument. In order mean-
ingfully to define an intertumble swim speed v(φ) < v0 that is
reduced by crowding, each particle must encounter many other
particles between tumbles: the characteristic intertumble time
α−1 must be large compared to the characteristic time scale τc

between collisions. Transcribing this reasoning to Brownian
particles, the angular diffusion time must be small compared to
τc. Generalizing still further, we propose that regardless of the
underlying microscopic dynamics (run and tumble, Brownian,
or hydrodynamic) the decay time τo of the swim-direction
autocorrelation function must greatly exceed the interparticle
collision time scale τc if part (b) of the argument is to hold and
MIPS is to occur.

With this reasoning in mind consider again Fig. 3 for
Brownian disks in the regime ζ � 1 discussed above. The
bottom panel of this figure shows the decay time τo of the
autocorrelation function of particle swim direction, together
with the typical time τc between particle collisions. Consistent
with the externally imposed angular diffusivity νr being small
in these runs (large ζ = 15), τo is a relatively large constant
across all φ. Except in the very dilute limit each particle
encounters many others during the time it takes to alter its swim
direction: τc � τo. Between angular reorientation events, then,
each particle properly samples the ensemble average reduced
swim speed v(φ) < v0: part (b) of the feedback loop holds and
MIPS can indeed occur, as observed. Indeed, this mean-field
nature of v(φ) was noted in Ref. [20].

In contrast, for the squirmers we are not at liberty to
prescribe from the outset the timescale τo of decorrelation
of particle swim direction: instead this emerges naturally as
a result of hydrodynamic interactions between the particles,
which are a priori unknown. (Put differently, there is no
externally tunable ζ for these particles.) Indeed, two-squirmer
studies show that with hydrodynamics each scattering event
(“collision”) typically results in an O(1) change in swim
direction for each particle involved. Accordingly, in these
many-squirmer simulations we expect τo ≈ τc. This is indeed
observed: see Fig. 5 (bottom panel). Squirmers will therefore
be unable properly to sample the reduced v(φ) < v0 between
reorientation events: part (b) of the feedback argument fails,
and MIPS is suppressed.

To support this argument we finally revisit the Brownian
disks, but now imposing a smaller ζ = 1.0 so that the particles
reorient their swim directions much more quickly than in
the large ζ case discussed above, giving dynamics more
closely akin to the squirmers (τo ≈ τc, Fig. 3, bottom). Phase
separation is then indeed strongly suppressed: see the bottom
two snapshots of Fig. 4 and the significantly reduced number
fluctuations of Fig. 3 (middle panel). This is despite the en-
semble average velocity v(φ) still decreasing strongly enough
for this ζ = 1.0 to satisfy the condition for spinodal onset.
Put simply, particles that rapidly reorient do not have time to
sample this mean field v(φ) between reorientation events.
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Our findings are consistent with an earlier comment
in Ref. [42] that a tendency to order was suppressed by
hydrodynamics in a suspension of rodlike swimmers; with
experiments demonstrating highly cooperative dynamics and
mesoscale turbulence in living fluids, without associated
evidence for phase separation [43]; and with experiments [44]
demonstrating that concentrated bacterial suspensions are
dominated by a competition between short range lubrication
and steric effects.

Despite the absence of true bulk phase separation for the
squirmers, and for the Brownian disks with τo ≈ τc, some
particle clustering is nonetheless still apparent in Figs. 4(c)
and 4(d) and Figs. 6(a)–6(d). Whether this clustering can be
interpreted in terms of a nearby but suppressed MIPS, which
could therefore be a generic feature of active matter with
hydrodynamics, remains an open question.

VIII. CONCLUSIONS

We have simulated with hydrodynamics a suspension of
active squirming disks across the full range of area fractions
from dilute to close packed. In doing so we have shown that
hydrodynamic interactions strongly suppress motility induced
phase separation. These findings should apply generically
to active systems in which hydrodynamics are important,
and in which the effective particle velocity depends on
volume fraction via collisions impeding particle motion.
Obvious exceptions include systems in which v depends on φ

instead by chemically mediated mechanisms (such as quorum
sensing [45]), allowing MIPS to arise at relatively low volume
fractions, and/or systems in which the particles reside in (or
on the surface of) a gel [46].

Open for further study is the degree to which particle
elongation might force a correlation of particle orientations,
potentially restoring phase separation for sufficiently elon-
gated particles, and so possibly even bringing an understanding
of phase separation in active rodlike suspensions [7,9,17] into
the framework proposed here. Also unresolved remains the

effect of dimensionality of particle packing and hydrodynamic
propagator: 3D packings with 3D hydrodynamics do not
appear to phase separate [26], nor do the 2D packings with
2D hydrodynamics (cylinders) or 3D hydrodynamics (disks)
reported here. However, studies of 2D packings of spherical
particles with 3D hydrodynamics [28] did report separation,
though at an area fraction φ = 0.1 that seems very low
for MIPS to be implicated. This issue of dimensionality
deserves careful future attention. It also remains an open
challenge to address the clustering observed experimentally
in synthetic colloids [11], noting that (true) interparticle
attractions cannot be entirely eliminated experimentally. Such
questions notwithstanding, the mechanism proposed here is
expected to arise widely in active matter, and particularly
in active colloids, which form the focus of intense current
experimental interest [10,11].

Note added in proof. We note that recently a related work
was published by Zöttl and Stark [47] studying a squirmer
suspension confined between plates separated by a distance
comparable to the swimmer size. What differentiates our
work from theirs is the fact that hydrodynamic interactions
under confinement are effectively screened with a screening
length that is set by the gap size. In our study of an extended
and unconfined system, hydrodynamic interactions are always
long ranged, while the thin film geometry allows us to tune
the effective dimensionality of the long-ranged hydrodynamic
interactions to make a smooth crossover from 2D to 3D
behavior.
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[2] F. Jülicher, K. Kruse, J. Prost, and J.-F. Joanny, Phys. Rep. 449,
3 (2007).

[3] M. Poujade et al., Proc. Nat. Acad. Sci. USA 104, 15988
(2007).

[4] H. C. Berg, E. coli in Motion (Springer, New York, 2003).
[5] S. Rafai, L. Jibuti, and P. Peyla, Phys. Rev. Lett. 104, 098102

(2010).
[6] J. K. Parrish and W. M. Hamner, Three Dimensional

Animal Groups (Cambridge University Press, Cambridge,
1997).

[7] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105
(2007).

[8] A. Kudrolli, G. Lumay, D. Volfson, and L. S. Tsimring, Phys.
Rev. Lett. 100, 058001 (2008).

[9] J. Deseigne, O. Dauchot, and H. Chate, Phys. Rev. Lett. 105,
098001 (2010).

[10] G. Ruckner and R. Kapral, Phys. Rev. Lett. 98, 150603 (2007);
J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, ibid. 99, 048102 (2007); J.
Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, ibid. 105,
088304 (2010); A. Erbe, M. Zientara, L. Baraban, C. Kreidler,
and P. Leiderer, J. Phys.: Condens. Matter 20, 404215 (2008);
W. Paxton et al., J. Am. Chem. Soc. 126, 13424 (2004); Y. Hong,
N. M. K. Blackman, N. D. Kopp, A. Sen, and D. Velegol, Phys.
Rev. Lett. 99, 178103 (2007); H.-R. Jiang, N. Yoshinaga, and M.
Sano, ibid. 105, 268302 (2010); G. Volpe et al., Soft Matter 7,
8810 (2011); S. Thutupalli, R. Seemann, and S. Herminghaus,
New J. Phys. 13, 073021 (2011); R. Golestanian, T. B. Liverpool,
and A. Ajdari, ibid. 9, 126 (2007); ,Phys. Rev. Lett. 94, 220801
(2005).

032304-8

http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1016/j.physrep.2007.02.018
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1103/PhysRevLett.104.098102
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.100.058001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.105.098001
http://dx.doi.org/10.1103/PhysRevLett.98.150603
http://dx.doi.org/10.1103/PhysRevLett.98.150603
http://dx.doi.org/10.1103/PhysRevLett.98.150603
http://dx.doi.org/10.1103/PhysRevLett.98.150603
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://dx.doi.org/10.1088/0953-8984/20/40/404215
http://dx.doi.org/10.1088/0953-8984/20/40/404215
http://dx.doi.org/10.1088/0953-8984/20/40/404215
http://dx.doi.org/10.1088/0953-8984/20/40/404215
http://dx.doi.org/10.1021/ja047697z
http://dx.doi.org/10.1021/ja047697z
http://dx.doi.org/10.1021/ja047697z
http://dx.doi.org/10.1021/ja047697z
http://dx.doi.org/10.1103/PhysRevLett.99.178103
http://dx.doi.org/10.1103/PhysRevLett.99.178103
http://dx.doi.org/10.1103/PhysRevLett.99.178103
http://dx.doi.org/10.1103/PhysRevLett.99.178103
http://dx.doi.org/10.1103/PhysRevLett.105.268302
http://dx.doi.org/10.1103/PhysRevLett.105.268302
http://dx.doi.org/10.1103/PhysRevLett.105.268302
http://dx.doi.org/10.1103/PhysRevLett.105.268302
http://dx.doi.org/10.1039/c1sm05960b
http://dx.doi.org/10.1039/c1sm05960b
http://dx.doi.org/10.1039/c1sm05960b
http://dx.doi.org/10.1039/c1sm05960b
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/13/7/073021
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1103/PhysRevLett.94.220801
http://dx.doi.org/10.1103/PhysRevLett.94.220801
http://dx.doi.org/10.1103/PhysRevLett.94.220801
http://dx.doi.org/10.1103/PhysRevLett.94.220801


HYDRODYNAMIC SUPPRESSION OF PHASE SEPARATION . . . PHYSICAL REVIEW E 90, 032304 (2014)

[11] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and
L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012); O. Chepizhko,
E. G. Altmann, and F. Peruani, ibid. 110, 238101 (2013); J.
Palacci et al., Science 339, 936 (2013).

[12] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
[13] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[14] S. Ramaswamy, R. Simha, and J. Toner, Europhys. Lett. 62, 196

(2003).
[15] J. Toner, Y. Tu, and S. Ramaswamy, Ann. Phys. 318, 170 (2005).
[16] A. Baskaran and M. C. Marchetti, Phys. Rev. E 77, 011920

(2008); ,Phys. Rev. Lett. 101, 268101 (2008).
[17] H. Chate, F. Ginelli, and R. Montagne, Phys. Rev. Lett. 96,

180602 (2006); H. Chate et al., Eur. Phys. J. B 64, 451 (2008).
[18] J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008).
[19] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[20] M. E. Cates and J. Tailleur, Europhys. Lett. 101, 20010 (2013).
[21] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702

(2012).
[22] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev. Lett.

110, 055701 (2013).
[23] M. J. Lighthill, Comm. Pure Appl. Math. 5, 109 (1952).
[24] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
[25] J. R. Blake, Bull. Austr. Math. Soc. 5, 255 (1971).
[26] T. Ishikawa, J. Locsei, and T. Pedley, J. Fluid Mech. 615, 401

(2008).
[27] F. Alarcón and I. Pagonabarraga, J. Mol. Liquids 185, 56 (2013).
[28] T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103 (2008).
[29] D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 99, 058102

(2007); ,100, 178103 (2008); ,J. R. Soc. Interf. 9, 571 (2012).
[30] P. G. Saffman, J. Fluid Mech. 73, 593 (1976); P. G. Saffman and

M. Delbruck, Proc. Natl. Acad. Sci. USA 72, 3111 (1975).
[31] D. K. Lubensky and R. E. Goldstein, Phys. Fluids 8, 843 (1996).

[32] A. J. Levine, T. B. Liverpool, and F. C. MacKintosh, Phys. Rev.
Lett. 93, 038102 (2004); ,Phys. Rev. E 69, 021503 (2004).

[33] M. Leoni and T. B. Liverpool, Phys. Rev. Lett. 105, 238102
(2010); ,Europhys. Lett. 92, 64004 (2010).

[34] J. Melrose and R. Ball, Europhys. Lett. 32, 535 (1995).
[35] J. Bialke, T. Speck, and H. Löwen, Phys. Rev. Lett. 108, 168301
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