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Abstract. In this paper, we present a characterization of a big Q-divisor D on a smooth
projective surface S with D? > 0 and H'(Og(—[D])) # 0, which generalizes a result of Sakai
[Sak90] for D integral. As applications of this result for Q-divisors, we prove results on base-point-
freeness and very-ampleness of the adjoint linear system |Kg + [D]|. These results can be viewed as
refinements of previous results on smooth surfaces of Ein-Lazarsfeld [EL93] and Magek [Mag99].
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1. Introduction.

1.1. Main result. Being a central object in algebraic geometry, linear systems
on projective varieties have been intensively studied over the past decades. One ma-
jor problem about linear systems, particularly adjoint linear systems, is to determine
their base-point-freeness and very-ampleness. Over surfaces, there are three impor-
tant methods known in the literature. The first one is Reider’s method [Rei88] via
Bogomolov instability theorem for rank 2 vector bundles on surfaces. The second
method is based on a cohomological machinery which uses multiplier ideal sheaves
and Kawamata-Viehweg vanishing theorem (see [EL93] for instance). The third one,
discovered by Sakai [Sak90], employs a characterization of a big divisor D on a surface
S with D? > 0 and H'(S,Os(—D)) # 0. That is,

PROPOSITION 1.1 ([Sak90, Proposition 1]). Let D be a big divisor with D* > 0
on a smooth projective surface S. If H*(S,Og(—D)) # 0, then there is a nonzero
effective divisor E such that

(i) (D—-E)E<0;

(ii) D —2F is a big divisor.

It is now a general philosophy that in birational geometry, we always study Q-
divisors rather than merely integral ones. For example, Kawamata-Viehweg vanishing
theorem holds for nef and big QQ-divisors with simple normal crossing fractional parts,
and it has played a crucial role when studying various problems in algebraic geometry.
Another example is the development of multiplier ideal sheaves which is mainly aiming
at exploring Q-divisors. Having noticed these, we may wonder whether the above
result of Sakai is valid also for Q-divisors.
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The main purpose of this paper is to confirm this expectation. We have the
following theorem:

THEOREM 1.2. Let D be a big Q-divisor on a smooth projective surface S. If
HY(Os(—[D1])) # 0, then there is a nonzero effective Q-divisor E such that
(i) (D= E)C <(|D]-TE])C <0 for any irreducible component C' of E;
(ii) The intersection matriz of F is negative definite;
(iil) For any irreducible component C in E, we have {multc¢ D} = {multcE};
(iv) D —2FE is a big divisor provided that D? > 0.

If D is an integral divisor, then the effective divisor £ we construct in Theorem
1.2 is the same as that in Sakai’s result. The main differences of Theorem 1.2 from
Sakai’s result lie in (i) and (iii), where we show that to some extent, the fractional
part of E is coherent to that of D. These properties did not show up in Sakai’s result,
as both D and E therein are just integral without any fractional part. The fact that
D and E have the same fractional parts along every component of F does play a
crucial role in the following application.

1.2. An application. As mentioned before, Sakai’s result applies to the study
of adjoint linear systems on surfaces. In this paper, we also apply Theorem 1.2 to
the similar problem but for Q-divisors. More precisely, given a Q-divisor D on S,
we deduce a base-point-freeness criterion (see Theorem 4.1) and a very-ampleness
criterion for the adjoint linear system |Kg + [D]] (see Theorem 5.1 and 6.2).

The (Reider-type) base-point-freeness and very-ampleness results for Q-adjoint
linear systems have been investigated for a long time (see [EL93] and [Mag99] for
instance). The method used loc. cit. is mainly a combination of multiplier ideal
sheaves and the technique of lifting sections from curves. Our method here is com-
pletely different. In fact, combining Theorem 1.2 with the Hodge index theorem, we
basically transfer the problem into some numerical inequalities. In this way, we are
able to recover the previous results on smooth surfaces in [EL93, Mag99] in a much
more elementary manner and also provide criteria with weaker intersection conditions
in certain cases.

Another feature different from previous results is that, we actually give an explicit
characterization of critical curves, namely, curves on which we should impose the
intersection number conditions (with D). In fact, we find that all critical curves that
play a role in results of Reider-type are those smooth at the point © € S (resp. the
tangent direction ¢ € T,(5)) that we are considering, with the only exception in the
separation of tangents case when we need to take into account curves singular at x of
order two as well.

1.3. A sketchy proof. To illustrate our method more concretely, we sketch in
the following the proof of Theorem 5.1 for separating two distinct points. Exactly
the same idea applies to separating tangents in Theorem 6.2, and a simpler version is
already sufficient for proving the base-point-freeness result in Theorem 4.1.

Let x and y be two distinct points on S, and let 7 : S — S be the blowing up of S
at z and y. Suppose that the linear system |Kg + [D1]] fails to separate x and y. We
are able to find a big divisor D on S such that H'(Kg+[D]) # 0. Applying Theorem
1.2 to D, we thus construct an effective divisor E on S satisfying all properties therein.
Denote by E = m.E. An important (and also a bit surprising) observation here is
that the Hodge index theorem D?E? < (DE)? for D and E has put lots of constrains
on E. For example, we conclude from the above inequality and the property (iii) that
there is at most one irreducible component A with its multiplicity ¢ < 1 in E that
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passes through z (here we just ignore the interchanging between z and y). Moreover,
A is smooth at x if it exists. Combining the assumption on DA and the above Hodge
index theorem together, we are able to show that the same situation occurs also at y,
i.e., there is at most one irreducible component B (it is possible that B coincides with
A) in E that passes through y, and B is smooth at y. Now we combine assumptions
on both DA and DB with the Hodge index theorem for one more time, and this time
we deduce a contradiction. Hence the proof is finished.

This paper is organized as follows. Section 2 is devoted to the proof of Theo-
rem 1.2. In Section 3, we list some preliminary results and notions. Finally, proofs
of theorems on base-point-freeness (Theorem 4.1), separating two points (Theorem
5.1) and separating tangents (Theorem 6.2) will be presented in Section 4, 5 and 6
respectively.

Notation and conventions. Throughout this paper, we work over complex
numbers C. We always denote by S a smooth projective surface over C and by D a
Q-divisor on S. We will use the following notations:

[a] denotes the smallest integer greater than or equal to «.

|a] denotes the largest integer smaller than or equal to a.

{a} = a — || is called the fractional part of «.

For a Q-divisor D = Y o;D; on S where each D; a prime divisor and a; € Q,
we write [D] =5 [a;|D;, | D] =5 |o;|D; and {D} = > {a;} D;.

Acknowledgement. F.Y. would like to express his sincere gratitude to Prof.
Ngaiming Mok for his guidance, encouragement and support during 2012-2015 at
HKU. He would also like to thank Prof. Lawrence Ein and Dr. Lei Song for useful
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Kong where the discussion on [Sak90] was initiated. They would also like to thank the
hospitality of Beijing International Center for Mathematical Research and Academy
of Mathematics and Systems Science, CAS where part of this work was completed.
Finally, the authors would like to thank the anonymous referee for pointing out some
mistakes and inaccuracies.

2. Proof of Theorem 1.2. In this section, we present the proof of Theorem
1.2.
The following vanishing result will play a key role here.

LEMMA 2.1 ([Sak84]). Let S be a smooth projective surface, and let M be a nef
and big Q-divisor on S. Then for any i > 0, we have

Hi(Os(Ks + [M])) = 0.

We now start the proof of Theorem 1.2. First, by Zariski decomposition, we can
write D = P + N, where P is nef, N is effective with a negative definite intersection
matrix, and PC = 0 for any irreducible component C' of N. Notice that P is also
big as D is big. Write N = >°'_| ;C; with a; € Q5. This gives a decomposition
P = P, + P; such that P; consists of all irreducible components in P (with their
multiplicities) that are supported in N. Therefore, we can write P, = Y., 3;C;.!

1t may happen that 3; = 0 for some 1.
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Then we have

D=[P+P+(N+P—[P])=[P]+ P+ &G,
i=1

where §; = a; + 8; — ’—ﬁl]
Let I:={1,2,...,r}. It is easy to see that §; > —1 for any ¢ € I. Let J := {i €
I|6; > 0}. Define Ay := 3" §;C; and A_:= > §;C;. Then
ieJ ieINJ

[D] = [P1] + [P] + [A] = [P]+ [Ay].
By Lemma 2.1, we know that
HY(Os(~[P])) = H'(Os(~[D] + [A11)) =0.

This implies that A4 > 0.
Following the idea in [Sak90], we consider any sequence Dy = [D] — [A4], ...,
Dy =Dy_1+Cj,, ..., D, = [D]. There is a short exact sequence for each k:

0— (95(—Dk) — OS(_Dk—l) — Ocjk (_Dk—l) — 0,
which gives
H%(O¢, (=Dy-1)) = H'(Os(=Dy)) = H'(Os(—Di_1)).

If Dy_1Cj, > 0 for all k, we would inductively get H'(Og(—[D])) = 0. Therefore,
there is a sequence Dy, ..., Dy with £ < n such that D,C; < 0 for all irreducible
components C; of [D] — Dy, < [A4]. Let K C J be the set of indices so that we can
write [D] — Dy = ), m:C; with each m; € Z~¢. Then we define

icK

where

b, — mi—l—i—{&i} if {61}750,

Since k < n, we deduce that K is non-empty. Hence E is a nonzero effective divisor.
The fact that F is supported in Supp(N) has two consequences. First, the intersection
matrix of F is negative definite, which proves (ii). Second, we have PE = 0. Moreover,
(iii) is also straightforward from the construction of E. In the following, we will prove
(i) and (iv).

By the construction of E, we see that [D] — [E] = Dj. Also, by the construction
of E, we have [AL — F] =[A,] — [F]. Since

D—FE= |—P1~|+P2+A++A_—E,
we obtain that

[D—-El =[P+ [P]+[Ar - E]=[P[+[Ay] - [E] = [D] = [E] = D.



SAKATI’'S THEOREM FOR Q-DIVISORS 765

It also yields
[D]=[E]=D-E+([P] - P) = A+ Y ([6] - 8)C.
ieJ\K
Since F has no component contained in [D — E| — (D — E) by (iii), we conclude that
(D - B)C < (ID] - [B])C = DyC <0 (22)

for every component C of E. This proves (i).
Finally, if D? > 0, then (2.2) yields that

(D—2E)>=D?—-4(D — E)E > 0. (2.3)
On the other hand, PE = 0 implies that
(D—2E)P =DP = P? > 0. (2.4)

The above two inequalities guarantee the bigness of D —2FE. The proof is completed.

3. Preliminaries. Throughout this section, S is always a smooth projective
surface.

3.1. A vanishing result. In the following context, we will frequently use the
following result.

PROPOSITION 3.1. Let L be a (—1)-curve on S. Suppose that D is a divisor on
S with DL = 0 such that H'(Ogs(Ks + D — aL)) = 0 for an integer a > 0. Then for
any 0 < k < a, we also have

HY(Os(Ks+ D —kL)) =

Proof. Without loss of the generality, we assume that a > 1. We observe here
that

HY(OL(Ks+ D —kL))=0
for any £ > 0. For any such k, from the short exact sequence
0—0s(Ks+D—(k+1)L) = Os(Ks+D —kL) = Op(Ks+ D — kL) — 0,
we get
HY (Os5(Ks+ D — (k+1)L)) - H'(Os(Ks + D — kL)) = H (Or(Ks + D — kL)).

Then the conclusion for & = a — 1 follows from the assumption, and the whole proof
is completed by iterating the whole process. O

3.2. Further notation. From now on till the end of the paper, we will use the
notion of the local ampleness in order to state our results in a more precise manner.

DEFINITION 3.2. Let x be a closed point on S. We say that a Q-divisor D on S
is locally ample at x, if DC > 0 for any irreducible curve C on S passing through x.

Let € S be a closed point on S. For any Q-divisor D on S, we define
s := mult, ([D] — D).

Notice that this notion has been introduced in [EL93] as well as in [Mag99]. Further-
more, if C'is a curve on S passing through z, we use T,,(C) to denote the tangent
cone of C' at x.
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4. Base-point-freeness theorem. The main result in this section is the fol-
lowing base-point-free theorem.

THEOREM 4.1. Let D be a nef and big Q-divisor on a smooth projective surface
S. Let x € S be a closed point. Then |Kg+ [D]] is free at x provided that one of the
following holds:
(1) Mo = 2;
(2) 0 < g <2, D is locally ample at x, D* > 33 and DC > By for any irreducible
curves C' on S smoothly passing through x, where B > 2 — i, and

. B2
ﬁl_mln{Z_‘uz,BQ_(l_Mz)}'

We remark that in Case (2), we have

2_/1@; ,U/x217
pr = B2

2 <L

62 - (1 _/'LLIJ)

The first result of such type with 81 = 2 — u, in both cases was proved by Ein-
Lazarsfeld [EL93, Theorem 2.3], and the current version was discovered afterwards by
Magek [Mag99, Proposition 3].

Proof. We have the following short exact sequence
0= Os(Ks + [D]) ® Iy = Os(Ks + [D]) = Ox(Ks + [D]) = 0,
where Z, is the ideal sheaf of x. To prove Theorem 4.1, it suffices to show that
HY(Os(Ks + [D]) ® Z,) = 0. (4.1)

Let 7 : S — S be the blowing up of S at z and L, be the exceptional divisor.
Then we have

HY(O5(Kg+*[D] —2L;)) ~ H' (Os(Ks + [D]) ® Z,,). (4.2)
On the other hand, notice that
7 [D] = [7°D] + Lita] La-
By Lemma 2.1, we know that
HY(O3(Kg+[D] = |pa] Le)) = H' (O3(K5 + [7*D])) = 0.

Theorem 4.1 then follows from Proposition 3.1 and (4.2) if p, > 2.
Now assume that 0 < p, < 2. Let

D=n"D—(2— py)Ly.

By the assumption in Theorem 4.1 (2), D? = D? — (2 — p,)? > 0. Since D is big,
D? > 0 implies that D is also big. Moreover,

[D] = [#*D + py L] — 2L, = 7*[D] — 2L,.
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Suppose that the theorem does not hold true, i.e., H'(Og(Kg + [D])) # 0. Apply-
ing Theorem 1.2 to S and D, we can find an effective Q-divisor E on S satisfying
conditions listed therein. Write

E=FE+ ML,

such that L, is not a component of E. Let E; < FE be the effective Q-divisor such
that each irreducible component of E; meets L, properly.

In the following, we present a step-by-step proof. The same strategy also applies
to the rest of the paper.
Step 1 We first prove that E; # 0.
Suppose on the contrary that £; = 0. Then we would have FL, < 0 and thus

(D= X\oL,)E = (n*D)E — (2 — pix + \o)EL, > 0> E.

This is impossible by Theorem 1.2 (i).
As a result, m,Fq is a strictly effective Q-divisor passing through x. Hence by the
local ampleness assumption on D at x, we have

(n*D)E > (7" D)Ey = D(m.E1) > 0.

Step 2 In this step, we deduce several numerical inequalities from Theorem 1.2 and
Hodge index theorem.
First, by Theorem 1.2 (i) and (ii), we know that

0> E?=FEE—~)\,EL, > DE — \,EL, = (m*D)E — (2 — piy + \o)EL,.  (4.3)
Also from Theorem 1.2 (iii), we obtain that
([El - E)L, < (n'[D] =7 'D)L, = p. (4.4)

Recall that by Theorem 1.2 (iv), D —2E is big. Since 7*D is nef and big, we conclude
that (7*D)(D — 2E) > 0, which is equivalent to

2(m*D)E < D?. (4.5)

Other inequalities we are going to use in this section are derived from Hodge index
theorem. As 7*(m,FE) = E + (EL,)L,, we have (7.E)? = E? + (EL,)?. By Hodge
index theorem, it follows that

D*(E? + (EL,)?) = D*(m.E)? < ((r*D)E)?.
Combine the above inequality with (4.3), and we deduce that
D? (7*D)E — (2 — iy + M\o)EL, + (EL,)?) < ((x*D)E)*. (4.6)
That is,
0 < ((7*D)E)? — D*((n*D)E) + D* ((2 — pto + A\o)ELy — (EL,)?) . (4.7)
On the other hand, (4.5) and (4.6) also imply that
(m*D)E)*>  (r*D)E

(T"D)E — (2 = po + A\g) ELy + (EL1)2 < D2 < 9 ’
ie.,
*D)E
(Lo ~ (2~ o+ M)EL < - D 2 (45)

All inequalities presented above will be used throughout the rest of the proof.
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Step 3 We claim that A\, = 0, in particular, FE=E.
Assume on the contrary that A, > 0. Then by Theorem 1.2 (i), we know that

(2=t +Ay) — EL, = (D — E)L, <0.

However, (4.8) suggests that EL, — (2 — iz + A;) < 0. This is a contradiction.
Step 4 In this step, we show that [E]L, = 1.

Recall that so far, we have E = F and A\, = 0. Thus (4.8) now reads as EL, < 2— ji,.
Therefore, by (4.4), we obtain

[E1Ly < EL, + g < 2.

This means that [FE|L, < 1. However, if [E|L, = 0, then EL, = 0 and we would
have

0> FE?> (7*D)E >0

by (4.3). This is a contradiction, which forces that [E|L, = 1.

Step 5 In the last step, we prove that [E]L, = 1 yields a contradiction to (4.7).
Notice that [E|L, = 1 simply implies that E; has exactly one irreducible component
C with its multiplicity 0 < ¢ < 1. Thus 7.C is smooth at z. By our assumption, we
have

(m*D)E > (7*D)E1>c¢f.
Consider the quadratic polynomial

F(T):=T? - (D*)T + D*((2 — ps)EL, — (EL,)?)
=T? — (DT +cD*(2 — py — ©)

in one variable T'. Evaluating F'(T) at T = ¢, we get
F(cB) =c (cﬁf +D*(2 — py — f1 — 0)).

If y1, > 1, then the corresponding 81 = 2 — i, < fa. Notice that D? > 3. Thus we
have

F(cB) = c2(Bi — D*) < 0.
If g, < 1, then

_ B g
_[32_(1_,“96) 1+ﬂ2_(1_ﬂx)'

Notice that ¢ = EL, > [E|L; — ptz = 1 — pt, > 0. Thus

2_Mm_ﬁl_cz(l_ﬂm)+(1_ﬁl)_c
1 _By
= “””)<1 62>

< (1—g;>c—c

(). »

f1
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As a result, we have

F(cpr) < ¢? (ﬂ% - <§;> D2) <c*(BY — B1B2) <0,
i.e., F'(¢f1) < 0 also holds in this case.
Nevertheless, we have got a contradiction. Because T' = %2 is the axis of symmetry

of F(T) and ¢, < (7*D)E < %2 from (4.5), we deduce that
F((m*D)E) < F(cp) <0,
which contradicts (4.7).
This completes the whole proof. O
5. Separation of two points. The main result in this section is the following:

THEOREM 5.1. Let D be a nef and big Q-divisor on a smooth projective surface
S. Let x,y € S be two distinct closed points. Then |Kg + [D]| separates x and y
provided that one of the following holds:

(1) paspy =2
(2) 0 <y <2, uy >2, D is locally ample at x, D* > ﬁ%w and DC > 1 4 for
any trreducible curve C on S smoothly passing through x, where

. ﬂQ.z }
2> 2—, and r=mMin< 2 — g, ———— 5.
ﬂQ, M ﬂl, { 1% ﬁ27m _ (1 _ Mm)

(3) pa > 2,0 < py, <2, D is locally ample at y, D* > B%-,y and DC > By, for
any irreducible curve C on S smoothly passing through y, where

. ﬁZy
Bay>2—py and Py, zmln{Q—u 5
! Y Y ! Bay — (1= py)

(4) 0 < pa,pby < 2, D is locally ample at both z and y, D* > B3, + B3,
DC > Biy (resp. DC > p1,) for any irreducible curve C on S passing
through x (resp. y) smoothly, and DC > b1, + b1,y for any irreducible curve
C on S passing through both x andy smoothly. Here 1 5 and B2 4 (Tesp. Biy
and B2, ) are the same as in (2) (resp. in (3)).

This result refines the previous one proved by Magek [Mag99, Propositin 4] in the
sense that we find that all critical curves that we need to consider are only the ones
smooth at z or y, or both.

We devote the whole section to the proof of this theorem. At first, we fix some
notation that will be used throughout this section. Let 7 : S — S be the blowing up
of S at x and y with exceptional divisors L, and L, respectively. Notice that we have

7D = [ D + te Lo + Lty Ly
Similar to the proof of Theorem 4.1, it suffices to prove that
HY'(Og(Kg+ 7 [D] — 2L, —2L,)) = 0. (5.1)
5.1. Proof of Case (1). As in the proof of Theorem 4.1, we have

HI(OS(KS' +7[D] = [pa| Lo — Lpy] Ly)) = 0.

Since p, > 2, by Theorem 3.1,
HY(O4(Kg + 7 [D] = 2L, — |ty | L)) = 0.

Then (5.1) follows simply by applying Theorem 3.1 again to |, ].



770 F. YE, T. ZHANG, AND Z. ZHU

5.2. Proof of Case (2) and (3). These two cases are quite similar. Here we
only prove Case (2), and Case (3) can be proved in the same way.

Recall that 0 < p, < 2. Let D =7*D — (2 — piz:) L. Then we have
(D] =7 [D] = 2L, — [y ) Ly,

Just adopting the same argument as in the proof of Theorem 4.1 (2) verbatim, we
conclude that

HI(OS'(KS + 7 [D] = 2L, — [py]Ly)) = 0.

We leave the proof here to the interested reader. Finally, since p, > 2, we can apply
Theorem 3.1 again to get (5.1).

5.3. Proof of Case (4). Take D = 7*D — (2 — j1) Ly — (2 — py)L,. Suppose
that the theorem does not hold true. i.e., H(Og(Kg+ [D])) # 0. Then we can find
a nonzero effective divisor E as is described in Theorem 1.2. Again, we write

E=FE+ XLy +\Ly,

and let £y < FE be the effective Q-divisor consisting of all irreducible components
which meet either L, or L, properly.
The proof here is in the same manner as that of Theorem 4.1.
Step 1 We first prove that E; # 0.
If not, then EL, <0 and EL, <0 and we would have

(D = ALy — AyLy)E = (1" D)E — (2 = jig + As)ELy — (2 — piy + \y)EL, > 0> E2,

a contradiction to Theorem 1.2 (i).

Similar as before, the local ampleness of D implies that (7*D)E > 0.

Step 2 Parallel to the proof of Theorem 4.1 Step 2, here we also have several nu-
merical inequalities.

Similar to (4.3), we have

0> F*=FEE—~)\EL, — \,EL,
> (W*D)E_ (2_,Uz+)\ac)ELx_ (Q_Ny+/\y)ELy- (52)
Similar to (4.4), here we have two inequalities as follows:
([E] = E)Ly < py. (5.4)
It is easy to see that (4.5) also holds here, i.e.,
2(m*D)E < D?. (5.5)

Notice that in this case 7*(7.E) = E + (EL;)Ly + (ELy)L,. Then (7. E)* = E? +
(FL)* + (EL,)?. Using the same technique as in the proof of Theorem 4.1 Step 2,
we deduce that

0 < ((x*D)E)* — D? ((x*D)E) +
D*((2 = pto + Ae)ELy + (2 = py + A\y)EL, — (EL;)* — (ELy)?), (5.6)
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as well as
(ELy)* + (ELy)* — (2= pto + Ae)ELy — (2 — py + Ay)EL, < 0. (5.7)
As a consequence of (5.7), one of the following inequalities must be true:

ELy <2— jig + Aa, (5.8)
EL, <2— iy + Ay (5.9)

Without loss of the generality, from now on, we assume that (5.8) holds.
Step 3 In this step, we show that A, = 0 and thus [F|L, < 1.
Otherwise, L, is contained in E. By Theorem 1.2 (i),

0> (D—E)Ly =2 — pig + Ay — EL,.

However, this contradicts (5.8).
As a result, (5.8) now reads as FL, < 2 — p,. Together with (5.3), we deduce that

[E1Ly, < ELy + pig < 2,

ie, [E]L, <1.

Step 4 1In this step, we prove the theorem when [E]L, = 0.

In this case, we have FL, = 0. Then (5.7) implies that (5.9) holds here. Using a
similar argument to that in Step 3, we conclude that A, = 0 and [E]L, < 1. Notice
that (5.7) also guarantees that EL, > 0. Therefore, we conclude that there is only
one irreducible component, say A, in E;. Moreover, AL, = 0 and AL, = 1. This
implies that m, A is smooth at y but not passing through x.

Now we apply the same argument as in the proof of Theorem 4.1 Step 5 to get a
contradiction. We leave the proof to the interested reader as it is just identical to the
proof of Theorem 4.1.

Step 5 In this step, we prove the theorem when [E|L, = 1.

Recall that [E|L, = 1 means that there is only one irreducible component A (with
its multiplicity 0 < a < 1) in F; that meets L, with AL, = 1.

Consider the following quadratic polynomial

G(T):=T° - (D*)T+ D* ((2 — pto — Aa)ELx + (2 — pty + \y)ELy — (EL:)* — (ELy)?)
=T - (Dz)T +D? ((2 —pa)a+ (2= py +Ay)ELy — a® — (ELy)z)

in one variable T. Notice that the axis of symmetry of G(T') is T = %2. We evaluate
G(T) at T = afy 4, and it follows that

G (afre) = a* BT, — aPreD* + D ((2 = pa)a+ (2 = py + Ay ELy — a® — (ELy)?)
=a(aBi, + (2= po — Bra —a)D?) + D* (2 — py + \y)EL, — (ELy)?) .

We start the whole proof in this case from the following two claims.
Claim I. We always have

a (aﬁiz + (2 = Ha — Bl,m - G)D2) < 0.

In fact, when p, > 1, then 31, = 2 — p,. Hence by the assumption on D? it follows
that

a (aﬂ%,w + (2= pie — Pra — a)DQ) =a? ([3%1 - D?) <0.
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If py < 1, then we know that a > [E|L, — py = 1 — py. Similar to (4.9), we deduce
that

2 iy — Pra—a< — (g”) a. (5.10)

2,x

As a result, we deduce that
a (aﬂiw +(2— e — Prx — CL)DQ)

< a2 (ﬂix - (%) D2> < CL2 (ﬂ%z - ﬂl,xﬂlx) < 0.

This completes the proof of Claim I.
Claim II. We have

G (Gﬂlyx) Z O

Actually, by (5.5), (7*D)E lies on the left of the axis of symmetry of G(T'), and by
(5.6), G(T) > 0 when T = (#*D)E. Since (n*D)E > (7*D)E; > af1,, we conclude
that G (af1,z) > 0, which is just the desired result.

It is fairly obvious that the above two claims imply that

D?((2 = py + Ay)EL, — (ELy)?) > 0,
i.e.
(2 — py + \y)EL, — (EL,)* > 0.

This is equivalent to 0 < EL, < 2 — u, + A,. In particular, (5.9) holds. Similar to
Step 3, we obtain that A, = 0 and [E]L, < 1.
Step 5.1. Here we give the proof when

[E]L, = 1.

In this case, there is exactly one irreducible component B (with its multiplicity 0 <
b < 1) in E; that meets L, with BL, = 1. We have the following two possibilities:
A+ Bor A=B.

We first consider the case when A # B. The proof here will apply to all the other
cases, even when [E|L, = 0.

In this case, F1 = aA + bB, and

(7" D)E > (r*D)Ey > afi , + bBr.y.

Our approach is to evaluate G(T') at T = af1 4 + bf1,y. Similar to Claim II in the
above, (1*D)E > af31 , + bB1,, implies that G(aB1 . + bB14) > 0. In the following,
we will finish the proof by showing that G(af1,, + bf1,) < 0 in any case.

In fact, we have

G(aﬁl,m + bﬁl,y)
= (af1. + bﬂl_,y)Q — (afr,e + bﬁl,y)D2 + D? ((2 — pz)a+ (2 — py)b— a? — b2)
= (aBrz +bB1y)? + (2 — pz — Brx — a)aD? + (2 — py — B1,, — b)bD.
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Suppose first that g, > 1. Then the corresponding 31, = 2 — py < Bo . If py > 1,
then 31, =2 — py < fa,5. Thus we have

G(aﬂl,z + bﬂl,y) (aﬂl z T bﬁl y) (CL2 + bz)l)2
< (aBraz +bbry)? — (a® +0*) (B3, + F3,)
0.

IN

If uy < 1, then by (5.4), we know that b = EL, > [E|L, — py, = 1 — . Similar to
(5.10), we deduce that

_/J'U_Bl,y_bg - (gi—z) b. (5.11)

ﬂw) 2
(62,1/ b

< (aﬂl,z‘FbBly ( (ﬂl,y) ) ﬂ2m+ﬂ2u
62,11
< (afrz +bB1y)? <(I52 x4+ 082,y g:;)

\ B2y

(aBrz + bB1y)? — (aBor + bB1 )

As a result, we have

(aﬂlz +bﬂl y) (aﬂlz +bﬁly

<
<0

Therefore, G(af1,5 + bB1,,) < 0 when pu, > 1.

Now assume that p, < 1. If g, > 1, then the above proof for p, > 1 and p, < 1 is
also applicable here just by interchanging = and y. If p, < 1, then both (5.10) and
(5.11) hold in this case. Therefore, we have

G(aB1o +bBry) < (aBre + bBry) — ((ﬁl—“) o + (@) b2) D?
ﬂQ,x ﬂQ y

comvinr ((3) s () )

< (aBro+bB1y)? (aﬂzz,/ﬂ” +bﬂ2y,/ﬂly>
733 )U

(aﬁl z+ bﬁl u) (aﬁl z+ bﬁl,u

Thus we see that G(aB1, + bB1,) < 0 when p, < 1. This completes the proof when
A # B.

Now the proof for A = B becomes very easy. Notice that A = B implies that F1 = a4,
where 0 < @ < 1 and 7, A is smooth at both z and y. Then the proof for this case is
identical to the previous one by simply letting b = a.

Step 5.2. Finally, we consider the case when [E|L, = 0. Then there is no component
in I that meets L,. The proof here is already very straightforward, and we just need
to repeat the proof in Step 5.1 by setting b = 0.
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6. Separation of tangent directions. In this section, we consider the problem
about separating tangent directions by the adjoint linear system |Kg + [D]|. We fix
some notation first. Let = be a closed point on S and ¥ a tangent direction at x. Let
f: 8" — S be the blowing up of S at & with the exceptional curve L. Denote by
p € L’ the closed point on L/, corresponding to the tangent direction @. Let g : S — S’
be the blowing up of S’ at p with the exceptional curve L,. Write L, = g~ 'L/.. Then
L2 =-2and L,L,=1.

For any Q-divisor D on S, we define

fig == mult,([f D] — f~'D).
Denote by 7 = go f : § — S the composition of f and g. We thus have

pe = ([f7'D] = fT'D)L, = ([77'D] = 7' D)(Ls + Ly),
fiz = (g~ ([f7'D] = f'D))Ly = ([x~'D] = 'D)L,.

Write pz := e + fiz. We observe that p, — iy = ([7~ D] — 7~ 1D)L, > 0. This
implies that

P < pe and 2[5 < py < 24 (6.1)

All above notation are also used in [Mag99].

DEFINITION 6.1. Let C be an irreducible curve passing through x. We say that
C' passes through v smoothly, if p is a smooth point on f~1C.

Note that ¢*(f~'C) = 77 'C + ((x~'C)L,)L,. Hence C passes through @
smoothly if and only if (77*C)L, = mult,(f~'C) = 1.
Here is the main result in this section.

THEOREM 6.2. Let D be a nef and big Q-divisor on a smooth projective surface
S. Let x € S be a closed point and let 0 # U € T,(S) be a tangent direction at x.
Then |Kg + [D]| separates ¥ at x, provided that one of the following holds:
(1) paz > 3.
(2) ps > 4.
(3) 2 <y < 3,2 < g <4, D is locally ample at x, D* > 83 and DC > 4 — uz
for every irreducible curve C passing through U smoothly, where By > 4 — ug.
When 1y < 1, we further assume that DC > 28, for every irreducible curve C'
singular at x of order two and v ¢ T,.(C), and DC > (1 for every irreducible
curve C' passing through x smoothly and U ¢ T,(C'), where

Ba(1 — fiz) }
B2 — (2+ fig — pz) )

(4) 0 < py < 2, D is locally ample at x, D* > ﬁ%w + ﬁ;p, DC > (1 for every
irreducible curve C' passing through x smoothly and v ¢ Ty (C), and DC > 2/
for every irreducible curve C passing through ¥ smoothly. When fiz < 1, we
further assume that DC' > 28y for every irreducible curve C' singular at x of
order two and U ¢ Ty(C). Here PB4, B2, and B1 are real numbers such that
ﬂQ,z > 2— K5 ﬂQ,p > 2— ﬂg, and

f1 = min {3 = Ha;

B£1 = min {%(4 — uz) B2.a + B2,p } '

" Baw+ Bop — (2 — ug)
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Before stating the proof, we would like to remark that in Case (3), we have

3 — pg, Mo — flg > 2;
pr = Ba(1 — fiy)
62_(2"’—/1@_/141)7

,uz_/l17<2-

In particular, we always have 8 < 1(4 — uz), and the number (4 — p7) was the
B1 deduced in [Mag99, Proposition 5]. Moreover, the above inequality is strict once

Mo — fig 7& 2.
In Case (4), we have

1

5(4—/@), ps > 2;
61 = ﬂQ,z + ﬂQ,p

ﬁ2,1} + 62,;) - (2 - /1’17)7

To prove Theorem 6.2, it is equivalent to prove that |Kg + f*[D] — 2L’ is base
point free at p. Using the same observation as in Theorem 4.1, we only need to prove
that

H'(O5(Kg+ n*[D] — 2L, — 4L,)) = 0. (6.2)

Write v, = mult, D and 7z = mult,(f D). Notice that puz = p, + fiz. Then we
have

[T[D] = [f"D] + |pa ) Ly

and

m*[D] = g* (f'[D] + (Vo + pa) L)

7 D]+ (05 + fig) Ly + (Vo + pa) (Lo + Lp)
= [g*(f 7'D) + figLp + (Vz + po)(Ls + Lyy)]

= [71"D + pa(Ly + Lp) + fizLy]

= [m*D] + |pe) Lo + || Lp-

6.1. Proof of Case (1). By Lemma 2.1, we have
HY(Os/(Ksr + f*[D] = lpalLy)) = H' (Os/(Ks + [£*D])) = 0.
Since p, > 3, by Proposition 3.1, we obtain
HY(Os/(Ks + f*[D] = 3L})) = 0.
Therefore, the following map
HY(Os/ (K + [ D] —2L,)) = H'(Oy, (Ks: + f*[D] - 2L}))
is surjective. Notice that O, (Ks/+ f*[D]|—2L}) = Op (—L},) is globally generated.

Thus the above surjectivity implies that |Kg + f*[D] — 2L is base point free at any
closed point on L/, in particular, at p.
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assume that u, < 3, otherwise we may go back to Case (1). Thus |p,| = 2. Similar
to Case (1), we have

6.2. Proof of Case (2). Since pugy > 4, by (6.1), we have p, > 2. We may

HY(Og(Kg+7m*[D] — 2L, — |pz)Lp)) = 0.
This implies (6.2) by using Proposition 3.1 again.
6.3. Proof of Case (3). In this case, we take
D =7*D — (4 — pug)L,.
By the assumption, D? > 0 and D is big. Moreover, since |, | = 2, we have
(D] = [7*D] + |ug| L, — 4L, = 7*[D] — 2L, — 4L,,.

Assume that (6.2) does not hold. Then H'(Og(—[D])) # 0. Again, by Theorem
1.2, we can find a divisor E as before. We write

E=E+ XL+ Ly,

and let By < E be the effective Q-divisor consisting of all irreducible components
which meet either L, or L, properly. Notice that by Theorem 1.2 (iii) and the
construction of D, we know that Ap and Az + p,, are both integers.

Step 1 In this step, we prove that E; # 0.

Suppose on the contrary that £y = 0. Then we have A, > \,. Otherwise, since

EL,= oLy +M\Lp)Lyp =Ny — Ay <0,
we would get a contradiction as follows:
0> E2> (r"D)E — (4 — ug)EL, > (4 — pg)(Ap — Az) > 0.
In particular, A, > 0. It implies that L, is contained in E. Thus it follows that
(IAa1La + ApLp) Ly = [E]Ly > [D] L, =0,

ie., Ap —2[X\;] > 0. However, this contradicts with A, > A,,.
In the following steps, we always assume that E; # 0. Then m,F; is a strictly
effective divisor passing through x. Hence by the local ampleness of D at x, we have
(m*D)E > 0 as before.
Step 2 Similar to (5.2), we have
0> F*=FEE—~)\EL, — \,EL,
> (*"D)E — Ay ELy — (4 — g + Ap)ELy,. (6.3)

Corresponding to (5.3) and (5.4) for separating two points, we still have the following
two inequalities based on the definitions of p, and fiz at the beginning:

([E] = E)L, < (n~'([D] = D)) Lp = fiz, (6.4)

([B] = B)Ls < (x='([D] = D)) Ly = 1z — i

Also, the inequality
2(r*D)E < D? (6.6)
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holds here.
Notice that in this case, we have 7*(m.E) = E + (ELy + EL,)(Ly + Ly,) + (ELy)L,,.
As (Lp+ L)Ly =0 and (L, + L,)* = L2 = —1, we obtain

(meE)* = E? + (EL,)* + (EL, + EL,)*.
Applying the same technique for obtaining (4.7) and (5.6), we deduce that

0 < ((n*D)E)* — D*((z*D)E) +
D* (A\;ELy 4+ (4 — pg + A\p)EL, — (EL, + EL,)* — (EL,)?) . (6.7)

The analogue of (4.8) and (5.7) in this case becomes

0> (EL, + EL,)*+ (FL,)* = \;EL, — (4 — g + \p)EL,
= (EL, + EL,)* + (ELy)* = \o(ELy + EL,) — (4 — pug + A\p — A\s)EL,.  (6.8)

Up to now, the proof goes in a similar way as that of Theorem 5.1. However, the
two points  and y in Theorem 5.1 are interchangeable in some sense, while here no
“symmetry” lies in between x and ¢. This can be seen, for example, by comparing
(5.7) with (6.8). Therefore, in order to proceed the proof, we have to take a detour,
and our argument will be subject to A,. In particular, we have to take some effort to
deal with the case when A\, = 3 — u, which is quite different from the proofs before.
Also in the proof of Case (4), there is the same issue.

However, there are also similarities. For example, we still rely on the analysis using a
quadratic polynomial. The polynomial we are going to employ in this case is

H(T):=T?—- (DT +
D* (A\ELy 4+ (4 — pg + A\p)EL, — (EL, + EL,)* — (EL,)?). (6.9)

Here T is a real variable.
Step 3 Throughout this step, we prove the theorem when A\, = 0.
Substituting A, = 0 into (6.8), we obtain that

(ELp)* — (4 — pz + A\p)EL, <0,

ie., 0 < EL, < 4 — py + Ap. This inequality implies that A\, = 0. Otherwise, L, is
contained in E and by Theorem 1.2 (i), we would have

EL,=FEL,+ X\, > DL, + )y =4 — pg + \p.

This is a contradiction.
Now A, = 0 too. By (6.4), we deduce that

(E]LpSELp+ﬂ17<4_M’L7+ﬂ'U:4_M$§27

ie., [E]L, < 1. Notice that [E|L, > EL, > 0. It forces that [E|L, = 1. This
implies that there is exactly one irreducible component, say A, in E with its multi-
plicity 0 < a < 1 that meets L,. Moreover, AL, = 1. Hence by our assumption,
(m*D)E > a(n*D)A > a(4 — pg).

The polynomial (6.9) under the current setting becomes

H(T) =T?— (D*)T 4 D* (4 — ps)a — (ELy 4 a)® — a®) .
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Evaluate H(T') at T = a(4 — pz), and it follows that

H (a(4 — )) a*(4 — py)® — D* ((ELy + a)® + a?)
a*(4 — pp)? — (4 = pg)? (BLy + a)® + a®)
= —(4 — uz)*(EL, +a)?
<0.

On the other hand, similar to the observation before, we have a(4 — uz) < (7*D)E <
DTZ from (6.6) and H ((7*D)FE) > 0 from (6.7). These imply that H (a(4 — uz)) > 0.
This is a contradiction. Therefore, the proof is completed in this case.

Step 4 In this step as well as the next one, we assume that A\, > 0. Our goal in
this step is to prove that

Ap =0, Ag=3—p, FEL,=0, EL,<3—ps [E|L,=2, pgy<1. (6.10)
We first prove that A\, = 0. Otherwise, A, > 0 and by Theorem 1.2 (i), we have
EL,=FEL,+ X\, — Ay > DLy + Xy — Ay =4 — pg + Xy — A
This, together with (6.8), implies that
(EL; + FEL,)* — \o(EL, + EL,) < 0,

e, 0 < EL, + EL, < A;. On the other hand, by Theorem 1.2 (i) again, both
Az, Ap > 0 implies that

0=D(L,+L,) <E(Ly+ L,) = EL, + EL, — \,.

Therefore, we get a contradiction. As a result, FE = E + A\, L, now.
Second, we prove that A\, = 3 — u, and EL, = 0. Since A\, > 0, by Theorem 1.2 (i)
once more, we know that

EL, > DL, — M\, L2 > 2\, — (4 — pig).

We claim that EL, < 4 — uy — A,. This is again from (6.8) and similar to the above
proof for A, = 0. Suppose on the contrary that EL, > 4 — uy — A. Then by (6.8),
EL; + EL, < A;. Combine this with the above lower bound of FL,, and we have

EL, <Xy — EL, <4 — 15— A,.

This is a contradiction. Hence the claim holds. A simple consequence of the above
claim is that A, + EFL, < 4 — py < 4 — pp. Recall that A\, + p, must be an integer
and p, > 2. This forces that A\, + p, = 3, i.e.,

Az =3 — lg.
Substitute this equality into the above inequality, we deduce that
ELy <4—piz— (3= pia) = 1 — iz

Hence by (6.4), it follows that [E|L, < EL, + iy < 1. This gives [E|L, = 0 and
EL, =0.
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Now we are ready to prove the rest of (6.10). First, notice that [E] = [E] + L,. By
Theorem 1.2 (i), we have

[E1Ly = ([E] — Lz)Ls > [D]Ls +2 = 2.

On the other hand, (6.8) simply reads as (EL,)? — A, EL, < 0 in this case. It yields
0 < EL, < Ay = 3 — piz. Combine this with (6.5) and the above lower bound of
[E]L;, we deduce that

2 < [E|Ly < BLy + o — fiz < 3 — iy < 3.

This forces that [E|L, = 2 and jiz < 1. The proof of (6.10) is completed now.

Step 5 In this step, we complete the whole proof based on (6.10).

In fact, (6.10) has put lots of constraints on E and Fj. It is straightforward to see

there are only two possibilities for Fy:

(1) FE1 = b1 By 4+ by By, where by,by > 0, by + by < 3 — Moy B1L, = BsL, =1 and
Ble = BQLp = 0,

(i) Ey =bB, where 0 < 2b < 3 — pp, BL, =2 and BL, = 0.

To unify the notation here, we simply denote bl'QH” by b if we are in Case (i). Thus

EL, = 2b for both cases. Recall that i < 1 now. By the assumption, we have

(7" D)E > 2bp,
in any case. Moreover, the polynomial (6.9) under (6.10) becomes

H(T)=T? - (D*)T + D*((3 = pia)ELy — (EL;)?)
=T? — (D*)T +2bD*(3 — pu,, — 2b).
By (6.7), H ((m*D)E) > 0. Similar argument as before gives H(2b5;) > 0.
To get a contradiction, in the following, we show that H(2b3;) < 0. Evaluate H(T)
at T = 2bp3;. It follows that

H(2bB1) = 40?82 — 208, D? + bD?(6 — 21, — 4b)
= 4?37 + 2bD*(3 — pu — B1 — 2b).

When p;—fiz > 2, we have 51 = 3—pu,. Notice that iz < 1. Thus 3—u, < 4—puz < Bo.
Therefore, it follows that

H(2bp1) = 4b* (57 — D?) < 46°(8} — B3) < 0.

When p, — iz < 2, we deduce that

Ba(1 — fiz) N X A
pr= - = (1= i) + 2+ fig — prz) 7~
B2 — (2 + fig — pa) ( )+ )[32
In the meantime, we have
1— iy 1— g 1—py 1
ﬁ: “ < a - = /{ ==-<1
Bo Bo—(2+f5—pa) = (d—pg)— 2+ —pe)  2-205 2

Notice that by (6.5), 20 = EL, > [E]L, — py + fig = 2 — ptz + fiz. Combine these
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inequalities together, and it follows that

3_,ux_ﬂl_2b:(2+ﬂv_,uz)+(1_ Aﬂ_ﬂl)_2b

=2+ s — )(1—%)—%

2
1
b(1-22) -2
<2(1 ﬁ) 2

2

ﬁ1>
= —2b

(5
As a result, we deduce that

H(2bB) < 4b* (ﬁf - D? (%)) < 4b? (ﬁ% - B3 (%)) = 4b*(B} — B1f2) < 0.

Therefore, we get H(2b31) < 0 in any case. Thus the proof is completed.
6.4. Proof of Case (4). We start with defining

D=n"D— (2~ pa)(Le + Lp) = (2 = fig)Lp = 7" D — (2 — pa) Ly — (4 — pg) Ly
Direct calculations show that D? > 0 and
[D] = 7*[D] — 2L, — 4L,

Similar to the proof of Case (3), we assume that (6.2) does not hold. Then
HY(O5(—[D])) # 0. Again, by Theorem 1.2, we can find a divisor E as before. We
write

E=FE+ ML+ MLy,

and let By < E be the effective Q-divisor consisting of all irreducible components
which meet either L, or L, properly. Similar but slightly different from Case (3),
here both A, and A, are integers.

In fact, the proof here is similar to that of Case (3), and we are going to deduce
the same contradiction. However, for the convenience of the reader, we still present
our proof in details and follow the same line as that of Case (3).

Step 1 We start the proof again by showing that Fy # 0.
If not, then F; = 0. It follows that

B> (x" D) — (2 — ju) B(Ly + L) — (2 — i) BL,
2 (2= pe)re = (2= f15)(Aa = Ap)
= (2 a5)Ap — (Ha — fi5) As
> (2= gy — (2 fin)ha.

This implies that A, > A,. Using the same argument as in the proof of Case (3) Step
1, we will get a contradiction. Hence E; # 0 and we still have (7*D)E > 0.

Step 2 We still have several inequalities here as analogues to (6.7) and (6.8) in Case
(3) but with slight changes. We just list them in the following and leave their proofs
to the interested reader.
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For simplicity, we denote
o= (ELy+ELy)*+ (ELy)? — (2~ pto + Ao )(ELy + EL,) — (2 — fig + A\p — Ao ) EL,.
The first inequality corresponding to (6.7) is
0 < ((x* D)E)? — DX(x*D)E) — aD?, (6.11)
and the second one corresponding to (6.8) is simply
a < 0. (6.12)

Moreover, (6.6), (6.4) and (6.5) also hold true here.
Similar to Case (3), we will frequently use the following quadratic polynomial in T

K(T):=T? - (D*T — aD?. (6.13)

Step 3 In this step, we prove the theorem when A\, = 0.
Notice that now

a=(EL,+ ELp)*+ (ELp)* — (2 — pte)(ELy + EL,) — (2 — iz + \p)EL,.
Following the manner of the proof for Case (3), we first claim that
EL, <2 — fis + Ap. (6.14)

Otherwise, EL, > 2—iz+\,, and the inequality (6.12) now implies that EL,+FEL, <
2 — 5. This is a contradiction, because

2 iy <2 fig+ Ay < EL, < EL, + EL, < 2 — p,.

As a result of the above claim, we have A, = 0. In fact, if A, > 0, then by Theorem
1.2 (i), we deduce that

EL,=FEL,+ X\, > DL, + Xy =2 — iz + \p.

This is impossible. Hence A, = 0 and (6.14) now becomes EL, < 2 — iz. Applying
(6.4), we have

[EL, < EL, + jig < 2,

ie, [E]L, <1.

Step 3.1. We first study the case when [E]L, = 0. The proof here is similar to
that of Theorem 4.1. Therefore, we just sketch it here and mention only the key
ingredients, because all the reasoning here follows in the same way.

Now EL, = 0. Then (6.12) becomes

(FL.)? — (2= py)EL, <0,

ie,0< EL; <2—py. By (6.5), we obtain that [E]L, = 1, and thus E; = bB, where
BL,=1,BL,=0and 0 < b < 1. Since 7. B is smooth at x, we have (7*D)E > bf;.
Now (6.13) simply reads as

K(T)=T?— (D*)T — D* (b — (2 — pa)b) = T? — (D*)T + bD*(2 — p — b).
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Applying the previous reasoning that we always use, in order to finish the proof here,
we only need to prove that

b2 B2 +bD*(2 — j1p — B1 — b) = K(bB1) < 0.

When pz > 2, we have 31 = %(4 — p13). Thus

2= pp = pr—b= - <,

Then it is easy to see that
1
K(bB) < VB —bv*D? < 5(32 (4= ps)> —2(2 = pe)® — 2(2 — f13)?) < 0.

When py < 2, we have

Bo,w + P2,p b1
P = ’ : =1+Q2—pg)o— . 6.15
YT Bo + Bop — (2 pa) s )52,1 + Ba2,p (6.15)
Notice that by (6.5),
Also, we have
1 1 1
2 < =, (6.16)

(4—ps) = (2—ps) 2

Therefore, as an analogue of (4.9) in the proof of Theorem 4.1, here we deduce that

Bo.a + B2p - B,z + Bap — (2 — 1)

2_Mm_61_b:(1_ﬂm+ﬂﬁ)+(1_A{;‘_Bl)_b

et (2P a )
= (1~ pa + f13) ((2 Nv)ﬂzz_'_ﬁlp'i_ﬂv) b

_ iy P et 2 —
< (1= pg + i) oot Bon (2 — pg + 2f15) — b
iy By Gy
< (1= po + fig) Bowt oy (2 = 240 + 2f25) — b
1 i (1o 20 )
- (1 Mz +/J"U) (1 /8211 _'_527:0) b
25
§b<1_ 52,x+ﬂ2,p) _b
— (27&) b
ﬂ27x+ﬂ2,p '

2
Moreover, by our assumption, D* > 33  + 35 > M Thus it follows that

K(bp1) < b°BF — b°D? <522§1ﬁ2> < b (B = B1(Be + Bayp)) <O.
X P

This completes the proof for this case.
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Step 3.2. We then study the case when [E|L, = 1. This means that there is exactly
one irreducible component A (with the multiplicity 0 < @ < 1) in E; that meets L,
with AL, = 1. Moreover, g, A is smooth at p. Hence (7*D)E > 2a/.

Rather than analogue to the proof of Theorem 4.1, the proof here is more similar to
that of Theorem 5.1 Step 5. Again, we just sketch the proof here and leave some of
the details to the interested reader.

Recall that now (6.13) becomes

K(T)=T?— (D*)T + D*((2 - fig)a — a® + (2 — pz)(ELy + a) — (ELy + a)?)
=T?— (D*)T + D*((4 — pg)a — 2a° + (2 — piy — 2a)EL, — (EL,)?) .

The fact that (7*D)E > 2af; guarantees that K (2a8;) > 0. That is,

0 < 4a®B} — 241 D* + D* (4 — pg)a — 2a* + (2 — py — 2a)EL, — (EL,)?)

= a (4aB} + (4 — pg — 261 — 2a)D?) + D (2 — pz — 2a)ELy — (ELs)?) .
Here we claim that
4af? + (4 — py — 261 — 2a)D? < 0.
Again, our discussion is based on pugz. If py > 2, then gy = %(4 — pg). We simply have
4—py—201—2a=—2a
and thus
4af? + (4 — py — 2B — 2a)D? = a((4 — pz)? — 2D?) < 0.

Now we consider the case when pz < 2. By (6.4), a = EL, > [E|L, — iz = 1 — jiz.
Together with (6.15) and (6.16) again, we have

4—[&5—2[31—2&2(2—#17)4—2(1—[31)—20,

ﬂQ,z + ﬂQ,p
261
< 2a (1 — 7[3271 N 527]0) —2a
P R S
B 40’ (ﬂQ,z + ﬂQ,p) '

Therefore, using the fact that D? > M and (6.16) again, we have

4aﬁ% + (4 —py—261 — 2a)D2 < 4a (ﬁ% — w> <0.

The proof of the claim is completed.
A consequence of the above claim is that

(2 — ptr — 2a)EL, — (EL,)? > 0,

ie, 0< EL, < 2— j; —2a. Together with (6.5) and the fact that a > 1 — /iy, we see
that

1<[FE|Ly <2—pz —2a+p, —fiz=2-—(a+jpz) —a<l—a<l

This is a contradiction. Hence the proof of this case is completed.
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Step 4 From now on till the end of this section, we assume that A\, > 0. Our goal
in this step is to prove that

A, =0, M\p=1 EL,=0, EL,<3—p,, [ElL,=2 jz<1l.  (6.17)

The proof is in the same flavor as that of Case (3). Since there are some differences,
we give an explicit proof here.
We first prove that A, = 0. If not, then A, > 0 and by Theorem 1.2 (i), we have

EL,=FEL,+ X —Xe > DL+ Xy — Ao =2 — fig + \p — A
By (6.12), the above inequality forces that
(ELy + ELp)?* — (2 — pw + Mo )(EL, + EL,) < 0,

ie, 0 < EL, 4+ EL, <2 — iz + Ay. On the other hand, both A;,\, > 0 now. Thus
Theorem 1.2 (i) also implies that

2 — pie = D(Ly + Lp) < E(Ly + Lp) = ELy + EL, — X,

It is a contradiction.
We then prove that A, = 1 and FL, = 0. In fact, by Theorem 1.2 (i), A, > 0 implies

EL, =EL, —\oL? > DL, +2\y = (2 — p12) — (2 — fig) + 2X\e = 2\y — iz + fis.

We claim that EL, < 2 — fiy — A,. Suppose on the contrary that FL, > 2 — fiy — A,.
Then by (6.12), EL, + EL, < 2 — piz + A,. Thus we have

ELy, <2~ iz + M — ELy <2 — iy + A — (200 — o + fig) = 2 — flg — Aa,

which is again a contradiction. Hence the claim holds. Since A, is an integer, this
claim simply implies that A\, = 1 and EL, < 1 — fiz. Moreover, by (6.4), we deduce
that [E]L, < EL,+ iz <1, ie., [E]L, =0 and EL, = 0.

For the rest of (6.17), we notice that [E] = [E] + L,. Thus Theorem 1.2 (i) yields

[E1Ly = ([E] = Ly)Ly > [D]L, +2 =2.

On the other hand, now (6.12) becomes (EL,)? — (3 — pz)EL, < 0 in this case, which
is equivalent to 0 < EL, < 3 — p,. Combine this with (6.5), we deduce that

’—E]Lm SEL$+/'LLE_//)‘17<3_[L’L_}"

All the above inequalities force that [E|L, = 2 and thus iz < 3 — [E|L, = 1. This

completes the proof of this step.

Step 5 In this step, we complete the whole proof when A, > 0. The proof can be

reduced to that for Case (3), so we just sketch it here.

In fact, (6.17) shows that there are only two possibilities for Ej:

(1) Ey = b1 By + by B3, where by,by > 0, by + b2 < 3 — g, B1L, = BoL, = 1 and
Ble = BQLP = 0,

(i) Ey =bB, where 0 < 2b < 3 — g, BL; =2 and BL, = 0.

We still denote b := 2422 if we are in Case (i). Then EL, = 2b and (6.13) can be

simplified as

K(T)=T?— (D*)T — D* (46> — 2(3 — p1z)b) .
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Notice that this is exactly the same as H(7') in Case (3) when A, > 0.
The rest of the proof is routine, and we only need to show that
4b* 6% 4 2bD?(3 — iy — B1 — 2b) = K (2b6;) < 0.
A key fact here is that by (6.5), we have
20 =FEL, > [E|Ly — pio + ft5 = 2 — i + f1z.
When pz > 2, 51 = %(4 — 113). Thus the above inequality yields
3—M—¢31—2b:1—”9”%‘15—21)@—217:—1).
Therefore, we have
K(2bB3;) < 4b°B7 — 26D < b (4 — pg)® — 2(2 — pa)® — 2(2 — 13)%) < 0.
When py < 2, we deduce that

B B2,z + B2,p
© Bap A+ Bop— (2— g
Notice that we have

051 1 1 1

B
ﬁ2,1} + 62,;) .

b1 ):1+(2_Nﬁ>

— < —.
Bou+Bap Lozt Bop—(2—py) " (4—pg)—(2—pz) 2
Therefore, we can just adopt the proof in Case (3) almost identically to conclude that
3_N1_ﬁ1 —-2b= (2+ﬂv_ﬂm)+(1_ﬂv_ﬁl)_2b

— @ty ) — (@ gD
- (2 + i Mm) ((2 Mv)ﬂZz + ﬂ?,p
A

§(2+ﬂﬁ_ﬂw)_m(2+ﬂﬁ_ﬂw)_2b
s T sP

N B
<2 (1 W +BM> 2b

Y N S
B 2b (ﬂQ,x + ﬂ2,p) ’

B1(B2,z + ﬁ2,p)> <0
T .

+—ﬂg> —2b

Thus it follows that
K(2b81) < 40° (Bf -

This completes the whole proof.
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