
MNRAS 464, 3991–3997 (2017) doi:10.1093/mnras/stw2671
Advance Access publication 2016 October 17

Looking for dark matter trails in colliding galaxy clusters
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ABSTRACT
If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that
it will be preferentially scattered towards the trailing edge of the halo during collisions
between galaxy clusters. This will temporarily create a non-symmetric mass profile, with
a trailing overdensity along the direction of motion. To test this hypothesis, we fit (and
subtract) symmetric haloes to the weak gravitational data of 72 merging galaxy clusters
observed with the Hubble Space Telescope. We convert the shear directly into excess κ and
project in to a one-dimensional profile. We generate numerical simulations and find that the
one-dimensional profile is well described with simple Gaussian approximations. We detect
the weak lensing signal of trailing gas at a 4σ confidence, finding a mean gas fraction of
Mgas/Mdm = 0.13 ± 0.035. We find no evidence for scattered dark matter particles with an
estimated scattering fraction of f = 0.03 ± 0.05. Finally, we find that if we can reduce the
statistical error on the positional estimate of a single dark matter halo to <2.5 arcsec, then we
will be able to detect a scattering fraction of 10 per cent at the 3σ level with current surveys.
This potentially interesting new method can provide an important independent test for other
complimentary studies of the self-interaction cross-section of dark matter.
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1 IN T RO D U C T I O N

The current best-fitting model of the Universe assumes that
84 per cent of all the matter is in the form of some unknown,
non-baryonic ‘dark matter’ (DM; Planck Collaboration XVI 2013).
In the Standard Model, DM is assumed to be a weakly interacting
massive particle which acts collisionlessly. Despite the relatively
simplistic assumptions, cosmological simulations of cold dark mat-
ter (CDM) have been able to reproduce the large-scale structure of
the Universe up to 10 per cent at a k = 1 h Mpc−1 (Davis et al. 1985;
Percival et al. 2001; de la Torre et al. 2013; Anderson et al. 2014).
However, conclusive observational evidence of a particle DM is yet
to be confirmed (e.g. Aprile et al. 2012; Beskidt et al. 2012; LUX
Collaboration et al. 2014; Daylan et al. 2014).

Although broadly successful, simulations of collisionless CDM
continue to predict many more large galactic sub-haloes which
should form stars (Boylan-Kolchin, Bullock, & Kaplinghat 2011),
and cusps in dwarf galaxies which appear to harbour cores (Dubin-
ski & Carlberg 1991). Moreover, discrepancies have also been seen
in clusters where the gradient of the inner density profile departs
from the expected NFW (Navarro, Frenk & White 1997; Newman
et al. 2013b). Such inconsistencies have been attributed to insuffi-
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cient complexity when simulating astrophysical feedback processes
such as supernova and active galactic nuclei (Schaller et al. 2015).
However, previously proposed extensions to the Standard Model
of particle physics would also resolve these discrepancies. For ex-
ample, cusps would be removed if DM were lighter, allowing DM
particles to free-stream out of potentials (e.g. Viel et al. 2005; Lovell
et al. 2012). Alternatively, a non-zero self-interaction cross-section
can cause the formation of a core, reducing the central densities of
galaxies and removing cusps (Peter et al. 2013; Rocha et al. 2013;
Buckley et al. 2014).

1.1 Constraining σ DM using colliding galaxy clusters

The only way to constrain the self-interaction cross-section of dark
matter is with astronomical observations where DM is present in
sufficient quantity to be detected gravitationally. Several methods
have been used to constrain different models of self-interacting DM
at collision velocities of ∼1000 km s−1. The steady-state shape
and sphericity of relaxed clusters nominally yields tight constraints
(Miralda-Escudé 2002; Peter et al. 2013), but is subject to degen-
eracy between the distribution of DM and baryons (Newman et al.
2013a; Schaller et al. 2015). Galaxy and galaxy cluster mergers
have yielded what has become the most robust constraints on the
cross-section of DM.
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The first constraints derived from colliding galaxy clusters were
placed by measuring the displacement between hot X-ray-emitting
gas and DM in the Bullet Cluster (Markevitch et al. 2004), where
they concluded that σ DM < 1.25 cm2 g−1 . Subsequent stud-
ies used the same assumption and method finding constraints of
σ DM < 3 cm2 g−1 (Merten et al. 2011), σ DM < 4 cm2 g−1 (Bradač
et al. 2008), and σ DM < 7 cm2 g−1 (Dawson et al. 2012); how-
ever, they were limited by sample size and the unknown state of
a single merger. Randall et al. (2008, hereafter R08) simulated the
Bullet Cluster collision using elastic collisions with an isotropic
scattering angle. This resulted in the then tightest constraints of
σ ISO < 0.7 cm2 g−1.

Most recently, a study of colliding galaxy clusters attempted to
circumvent the unknowns in cluster mergers by creating a sample
and averaging offsets over many different scenarios (Harvey et al.
2015, hereafter H15). One advantage of exploiting the positional
estimates of haloes to study the cross-section is that the positional
estimate of haloes via weak gravitational lensing is not affected by
many of the problems which are inherent in weak lensing (Harvey
et al. 2013, 2014). The study placed constraints on the long-range
interaction of σ ANI < 0.47 cm2 g−1 at the 95 per cent confidence
limit.

In this paper, we develop a novel method to observe the potential
particle interactions of DM which is independent of the particle
physics. We will outline the proposed new method, test it and then
apply our method to data and present our results.

2 A N E W M E T H O D TO C O N S T R A I N TH E
CROSS-SECTION O F DARK MATTER

Recent simulations have found that an isotropic scattering in the
dark sector can produce a secondary population of particles trail-
ing their parent halo during the collision of two galaxy clusters
(Kahlhoefer et al. 2014; Kim, Peter & Wittman 2016). The result-
ing asymmetry in the density profile of DM would not be accounted
for by any symmetric, parametric model attempting to fit the data.
As a result, once the best-fitting model has been subtracted off, a
residual density correlated with the axis of motion will exist and
hence observable if stacked over many merging events. Further-
more, the mean residual density perpendicular to this axis should
be zero since, although in individual cases the fit will not describe
exactly the distribution of DM, there is no known physical process
which can induce a correlated excess density in the perpendicular
direction. Throughout this paper, we will refer to the axis parallel
with axis of collision, r||, and the axis perpendicular to the axis of
collision, r×, where the axis of collision is the vector joining the
DM to the gas. Specifically, the process is as follows; we also show
the method diagrammatically in Fig. 1.

2.1 Extracting the asymmetric component

During the collision of two galaxy clusters (panel 1 of Fig. 1), DM
interactions will cause particles to scatter towards the rear of the
halo producing a secondary population of DM (panel 2 of Fig. 1).

To extract this second population, first we identify the number
of large-scale (∼Mpc) DM haloes within the cluster merger. We
define a merging cluster by identifying X-ray clusters with bimodal
emission, and then determine the number of DM haloes by the
number of resolved X-ray-emitting gas haloes from the Chandra
X-ray Observatory data (see H15). This means we assume that any
bound halo which is in a state of merger will still retain its gas halo.

Figure 1. During a collision of two galaxy clusters (panel 1), self-
interacting dark matter will be scattered preferentially towards the trailing
edge of the halo causing an asymmetry in the profile of dark matter density
(panel 2). Using weak lensing, a symmetric, parametric model can be fit
to the dark matter density profile and removed to leave any residual dark
matter not accounted for by the fit (panel 3). By rotating all the mergers
into the same axis of collision, (defined by the dark matter to gas vector) the
signal can be stacked over many mergers and extract any potential evidence
for interacting dark matter. The solid cones show the regions we bin along
the r|| axis and the dotted cones the regions we bin along the r×, and the
definitions of the leading and trailing edge.

To estimate the large-scale DM distribution, we use weak grav-
itational lensing. For reviews, please see Bartelmann & Schneider
(2001), Refregier (2003), Bartelmann (2010), Massey, Kitching &
Richard (2010) and Hoekstra & Jain (2008). We first measure the
shapes of distant galaxies which have had their isophotes altered by
the distribution of matter in the cluster along the photons geodesics.
With these shapes and using analytical descriptions of DM haloes,
we use an open-source program called LENSTOOL to fit a DM model to
the data. Since these fields have colliding galaxy clusters with mul-
tiple components, we simultaneously fit multiple, elliptical NFWs
(one for each large-scale halo identified in the X-ray emission;
Navarro et al. 1997), which are symmetric along the major and
minor axes. The density profile of an NFW is given by

ρ/ρ0 = [x(1 + x)2]−1, (1)

where x = r/rs, the radial distance normalized to the scale radius
of the cluster, which itself is related to the virial concentration, cvir,
and virial radius, rs = rvir/cvir. Each DM halo fit therefore has six
free parameters: position (right ascension, declination), virial mass,
NFW virial concentration, ellipticity and position angle. Since we
are only fitting the large-scale halo, and not galaxy-scale haloes, we
do not assume that light traces mass, only that the main component
of the halo follows an NFW. Moreover, we do not fix the mass–
concentration relation as this will most likely not apply in the case
of merging haloes. Like all mass mapping, the derived lensing model
can be subject to mass-sheet degeneracies (Schneider & Sluse 2013,
2014). This will need to be considered in any future interpretation
of scattered DM, but is not currently an issue while we are simply
looking for a detection.

Using the best-fitting parametric mass model for the merging
cluster, we remove this signal from the data, producing a residual
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map. We do this by projecting the source galaxies which are in the
‘image plane’, back to the ‘source plane’, effectively delensing the
effect of the cluster. Hence, we remove the signal directly from the
shear and not the mass density. If the fit is a good one, the ‘source
plane’ galaxies now should have no residual gravitational shear
signal (and should be completely randomly orientated). From these
‘source plane’ galaxies, we can generate a residual map of the DM
which is not accounted for by the fitted model (panel 3 of Fig. 1).

2.2 Stacking the signal

In order to detect the potentially very small excess in mass caused by
asymmetry in the cluster profile, we stack the galaxies from many
fields of clusters. Given that each cluster has a different merging
velocity and direction, first we define a frame of reference for the
halo, where the origin is the best-fitting peak position of the DM
halo, and the direction of the x-axis is the vector between this origin
and the position of the X-ray-emitting gas. We define this axis as
the axis of collision, r|| and its orthogonal axis, r×. We rotate all the
galaxy positions into this coordinate frame and then normalize all
the distances from the origin to the magnitude of the vector between
the DM peak position and the X-ray-emitting gas, δDG. This means
that a r||/δDG = 1 is the separation between gas and DM.

By normalizing to δDG, we will mitigate any inherent uncertain-
ties associated with the collision impact parameter. First, because
it will down weight those interacting haloes which have not sep-
arated their halo, and secondly, any small shift in asymmetry will
be fractionally the same whether the halo has gone through a direct
core–core passage, or whether the cluster collision was a minor
deflection (Harvey et al. 2014). This should mean that any second
population of particles will scatter to the same point along the vector
between the DM and the gas.

2.3 Creating a one-dimensional density profile

Having stacked many galaxies from an ensemble of clusters into
the same reference frame, we create a surface density map using the
Kaiser–Squires formalism (Kaiser & Squires 1993), which relates
the observed shapes of galaxies to the projected surface density
along the lines of sight. This gives us a two-dimensional map in
the reference frame of the collision axis, again normalized to the
magnitude of the DM–gas separation. Since this requires a regular
grid, we create a two-dimensional density map with a bin width of
δx = δy = 0.1δDG; we also Gaussian smooth the map by 0.3δDG. We
verify that the Gaussian kernel has no impact on the results, only
that it smooths out some of the noise due to discrete pixels in the
map.

Finally, we project the two-dimensional free-form residual sur-
face density map into one dimension along the axis of collision,
examining the profile in radial bins along the r|| axis, taking care
only to bin up to the 45◦ axis dividing r|| and r×. By normalizing
each cluster by the distance between the DM and gas, it is unclear
exactly how the errors will propagate through to the final result. To
quantify this, we create simulations of the method and pass them
through the analysis pipeline to the see the effect.

3 SY S T E M AT I C S A N D E R RO R PRO PAG AT I O N

This method relies heavily on accurate and precise models of the
large-scale DM halo of a colliding galaxy cluster. However, the
best-fitting models derived from weak gravitational lensing data are
sensitive to a variety of statistical and systematic errors. In order to

estimate and understand how these uncertainties propagate through
to our final result, we conduct a number of numerical tests.

Modelling the process to understand the key systematics is very
difficult. The process of fitting the shear with NFW profiles and then
reconstructing the residual map using a free-form mass mapping is
very time-consuming and processor intensive. In order to efficiently
explore the parameter space for possible biases, we model this
process with 2D Gaussian haloes for the projected surface density
of our haloes. We will find later that the data well fits a Gaussian
and does not prefer a more complicated model. Hence we construct
a test-bed consisting of a two-dimensional density field with two
Gaussian haloes: one located at the centre of a field 3 arcmin ×
3 arcmin mimicking a DM halo, and a second halo 40 arcsec to the
west of the halo mimicking a gas halo, similar to that of the Bullet
Cluster.

The gas halo is scaled by the cosmological baryon
fraction(�B/�DM = 0.17) to the DM halo (Planck Collaboration
XVI 2013). We then add in a third Gaussian halo into the sim-
ulation, mimicking a second population of scattered particles. In
Robertson, Massey & Eke (2016), they find that during a colli-
sion about ∼23 per cent of particles scatter for a cross-section of
1 cm2 g−1 within 400 kpc. This scattered fraction is for particles
which initially belong to the smaller (bullet) halo of the Bullet Clus-
ter, which scatter from a particle belonging to the main halo during
the collision. The value is sensitive to different halo masses and
concentrations, but we take this as representative of large galaxy
clusters. Assuming that the number of particles which scatter in-
creases linearly with cross-section, we directly compare this method
to the constraints gained in H15 of σ DM < 0.47 cm2 g−1, and hence
we create a second Gaussian, 10 per cent of the main halo, situated
8 arcsec from the main halo, (or 0.2δDG). We then vary different
sources of uncertainty and identify how each affects the detection
of the second population of particles.

In order to replicate the model fitting and subtraction procedure
(see Section 2.1), we subtract a different Gaussian from the simu-
lated density field and analyse the data exactly as we have outlined
in the previous section. We then introduce various uncertainties into
the Gaussian model which we use to subtract off the data and see
how this affects the results. These uncertainties include, random
(statistical) and systematic error in the estimate of the peak position
of the DM halo, a systematic bias in the estimate of the size of the
DM halo and the amplitude of the DM halo and a statistical and
systematic bias in the estimated position of the gas halo. We then
free these different parameters up, run 100 Monte Carlo realizations
and stack each realization (see Section 2.2). This simulation will
address how uncertainties in the position of each halo propagate in
to the uncertainty on the normalization length, δDG, and ultimately
the results.

Having stacked each Monte Carlo realization, we then project
the 2D residual density distribution into a one-dimensional profile
along the estimated axis of collision r|| (see Section 2.3).

Fig. 2 shows the result of the Monte Carlo simulations. There are
six panels with each one simulating a different source of uncertainty.
The top panel of each figure shows the one-dimensional density
profile trailing (T) the DM, δ�T. The simulated gas halo can be
clearly seen at a distance of 1δDG (by definition) from the origin.
The small second simulated population of scattered particles can
also be seen at ∼0.2δDG; however, in many of the simulations, this
is sub-systematic and cannot be resolved. The second panel in each
figure represents the difference between the trailing (T) and the
leading (L) edge δ�T − δ�L. Each panel is in units of M� pc−2

and is simulating the following:
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Figure 2. We numerically simulate the method with a two-dimensional density field test-bed, with a large-scale dark matter halo, a gas halo and a second
population of scattered particles. We vary different sources of uncertainty and study how this may affect its potential detection. The top-left panel shows the
effect of different statistical uncertainties on the estimated peak position of the dark matter halo (in arcseconds). The middle-left panel shows the effect of
a systematic bias in the estimate of the size/characteristic scale radius of the dark matter (in fractional error). The bottom-left panel shows the effect of a of
mis-centring the gas halo (in arcseconds) The top-right panel shows the effect of a bias in the position of the dark matter halo (in units of δDG) The middle-right
panel shows the effect of systematically under- or over-estimating the normalization/amplitude of the dark matter halo (in fractional error). The bottom-right
panel shows the effect of statistical error in the gas halo position (in arcseconds).

(i) Top-left panel: the effect of two-dimensional statistical noise
(x and y) on the estimate of the DM halo position. We find in order
to resolve the second population of particles each halo must have
an RMS of <0.05δDG (∼2.5 arcsec).

(ii) Middle-left panel: the effect of a bias on the estimate of the
typical size/scale radius of the DM halo. We find that although this
affects the excess surface density profile along the tail, the difference
between the tail and the lead is zero, and therefore the method is
insensitive to this.

(iii) Bottom-left panel: the effect of a bias on the estimate of the
position of the gas halo. A large bias acts to smear out the gas halo
bump and move the position of the sub-structure along the radial
line. This will be important to handle in the case we attempt to
interpret any excess in future experiments.

(iv) Top-right panel: the effect of a bias on the measured position
of the DM (positive towards the gas, negative away from it). Both the
gas and any scattered DM will lag behind the unscattered DM, and
could systematically shift the estimated position for the parametric
model in the trailing direction (since gravitational lensing probes
all matter along the line of sight). Subtracting off a symmetric
model which lags behind the unscattered DM would lead to the
unscattered DM, contributing an excess surface density in the lead

direction. Calculating the expected size of the shift in estimated
position due to any gas or scattered DM is beyond the scope of this
work. However, here we find that future experiments will require a
bias of δr|| < 0.1δDG in order to make a detection.

(v) Middle-right panel: the effect of a bias on the estimate of the
normalization of the DM halo. We find that the profile of the trail -
lead excess surface density is left unbiased.

(vi) Bottom-right panel: the effect of two-dimensional statistical
error on the estimate of gas position. This acts to smear out the
position of the gas peak, and shift it slightly towards smaller δDG.
There is no observable effect on the second population of scattered
particles.

We conclude that the key error in this measurement is the precision
with which we can estimate the position of each individual DM
halo. Given that we understand how the different systematics and
statistical errors affect the method, we now apply it to data.

4 TH E DATA

We adopt the H15 sample of 30 galaxy clusters containing a total
of 72 merging sub-structures. These have been observed by the
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Figure 3. The stacked results from 72 merging galaxy haloes. Left: the stacked contribution for the projected mass density map, �, before the best-fitting
NFW halo is removed from each cluster field. Right : the stacked residual projected surface density map, 	� after the best-fitting NFW halo is removed from
each cluster field. The cone shows the bins we use to project this map into the one-dimensional profile, plus labels identifying lead and trail edges (the same as
in Fig. 1). The distances are normalized to the separation of the gas and dark matter.

Hubble Space Telescope (HST) and Chandra X-ray Observatory.
For each sub-structure, H15 measured the best-fitting mass profiles
as described by the six NFW parameters, plus the X-ray positions
and the flux-weighted galaxy density distributions. We find for our
sample that 〈δDG〉 = 25 ± 2 arcsec, which means the free-form
kappa map has a pixel size of δx = δy = 0.1δDG = 2.5 arcsec and
a Gaussian smoothing kernel with a width of 7.5 arcsec. For more
information on this data set, please see H15.

5 R ESULTS

5.1 Two-dimensional free-form surface density map

We present the results of carrying out our new method on the 72
interacting cluster haloes. We test whether the potential interactions
of DM produce an asymmetry in the DM profile. Fig. 3 shows the
excess surface density derived from the KS93 free-form method
before (left-hand panel) and after (right-hand panel) we remove
the best-fitting NFW model using LENSTOOL. We also show in the
right-hand panel the binning we use to project this two-dimensional
map into a one-dimensional profile in the next section plus labels
identifying the leading and trailing edges of the merging clusters.
We clearly see in the left-hand panel the mean mass profile from
the ensemble of clusters before the best-fitting model is removed,
and the right-hand panel which appears to be consistent with noise.

5.2 One-dimensional residual surface density profile

In order to further test whether it is consistent with noise, we project
this two-dimensional free-form residual surface density map (right-
hand panel of Fig. 3) into one dimension along the axis of collision,
examining the profile in vertical bins along the r|| axis, taking care
only to bin up to the 45◦ axis dividing r|| and r×. The black points
in the top panel of Fig. 4 show the results from the stacked data for
δ�T, the projected residual surface density profile. The black points
in bottom panel of Fig. 4 give the difference between the trailing and
leading surface densities, with the subscripts ‘T’ and ‘L’ referring to
profile trailing the halo and leading the halo, respectively. We find

Figure 4. The projected profile of the stacked excess surface density map in
Fig. 3. The black points are the results from the stacked data. The black solid
line represents the best-fitting error-model of all the associated uncertainties
with the grey region showing the 1σ error in this model.

that there is an excess surface density around r = 0.5δDG at the ∼2σ

level and r = 1.25δDG at the ∼4σ level. The significance of the first
bump disappears when comparing the trailing and leading edges,
however the second bump becomes more prominent. This excess
is sufficiently distant to be consistent with baryonic gas which has
been stripped during the collisions, however its offset from δDG = 1
is curious.

To understand the shape of this result, we use our simulations
from our systematics test in Section 3, except adding an additional
free parameter which is gas mass fraction. This results in seven free
parameters: the statistical and systematic error in the DM position,
the systematic bias in the estimate of the radius and amplitude
size of the DM halo, the statistical and systematic error in the
estimate of the position of the gas peak, the gas mass fraction and
the fraction of scattered particles which are in a second population
trailing the DM. We run a Monte Carlo Markov Chain (MCMC)
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Figure 5. The expected detection (statistical) significance of a second pop-
ulation of scattered particles for a given scattering fraction and sample
size (assuming we can estimate the position of a single dark matter halo
to <0.05δDG). We highlight the estimated expected sample sizes from the
Hubble Space Telescope and the forthcoming Euclid mission.

with Metropolis Hastings sampling, simultaneously fitting both the
trailing data and the trailing–leading data (i.e. both the panels in
Fig. 4). We sample to find the best-fitting noise parameters. The grey
regions in Fig. 4 show the best-fitting model with the associated 1σ

error. Even with simple Gaussian assumptions, we can reproduce the
shape of the data well. We find that that the data best fits a model
with statistical scatter in the position of DM of 0.15 ± 0.07δDG,
systematic offset in the position of DM of 0.0002 ± 0.0006δDG, a
bias in the amplitude of the DM of −9 ± 10 per cent, a systematic
error in the radius of the DM haloes of −32 ± 8 per cent, and
a statistical and systematic error in the position of the gas peak
of 0.08 ± 0.2δDG and 0.23 ± 0.03δDG, respectively. We estimate
the trailing gas mass fraction Mgas/Mdm = 0.13 ± 0.035. Finally,
we find no evidence for a second population of particles, with the
fraction at 0.03 ± 0.05.

The sensitivity of our data and precision of the DM mapping
means that we are not sensitive to σ DM ≤ 1 cm2 g−1. In order to be
so, we require our statistical error in the position of the DM halo
to be three times smaller. However, with the error bars deduced in
Fig. 4, we can predict the power of future experiments.

6 FUTURE PROSPECTS

To estimate the statistical power of this technique for future surveys,
we generate a second population of particles as before, except with
varying scattering fractions. Assuming a linearity between number
of scattered particles and cross-section and that all particles are
scattered in to the tail of the halo, we can estimate the probability
of a detection for a given cluster sample size. For each scattering
fraction and sample size, we simulate an observation. We then fit a
model to the simulated data and through an MCMC determine the
detection significance. Fig. 5 shows the results. The bottom x-axis
shows the simulated scattering fraction, and the top x-axis shows
the respective estimated cross-section. The black dotted lines show
the sample size expected by the end of the HST lifetime, and the
upcoming Euclid mission (Laureijs et al. 2011). We find that with

HST we could be able to detect scattering fractions of <10 per cent
at the 3σ level. However, in order to reach the precision required
in the DM models, we will require the sample to have high-quality
redshift estimations and cluster member identification.

7 C O N C L U S I O N S

We test the hypothesis that DM interacts through non-gravitational
forces and is therefore scattered towards the rear of a cluster during
collisions, creating asymmetry in the distribution of DM along the
merger axis. Using the sample of 30 merging galaxy clusters ob-
served by the HST and Chandra X-ray Observatory used in H15, we
fit and subtract the best-fitting symmetric NFW halo. We measure
the residual distribution of mass not accounted for by the NFW fit.
We project the surface density along the axis of collision, and we
test for residual mass leading or trailing each cluster, and perform
the same measurement along the perpendicular axis as a null test.
We detect at 4σ significance, a mass peak at 1.23δDG, which we at-
tribute to the gas mass in the cluster, unaccounted for by the lensing
model. We measure the gas fraction at Mgas/Mdm = 0.13 ± 0.035.
Through numerical simulations of Gaussian haloes, we find that the
one-dimensional excess profile can be well fit by a simple model of
the noise, and find that we can reproduce the shift in the gas mass
if we have a statistical and systematic error in the position of the
gas peak of 0.08 ± 0.2δDG and 0.23 ± 0.03δDG, respectively. This
model finds no evidence for any second population of scattered
particles with a scattering fraction estimate of f = 0.03 ± 0.05.
Furthermore, we find that the limiting factor in this method is the
statistical precision to which we can estimate the position of the DM
halo. Future studies will require positional precision of <0.05δDG

(∼<2.5 arcsec); however, should we meet this requirement, current
samples from the HST could have the potential to detect scattering
fractions of <10 per cent (σDM � 0.4 cm2 g−1) at the >3σ level. In
order to interpret any excess over the noise model, we will require
hydrodynamical simulations with self-interacting DM simulations.

We present here an interesting method which shows promise for
current and future surveys. In a bid to measure and confirm detec-
tions of self-interacting DM, this method provides an independent
test for scattering DM which will be required in the event of any
detection.
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