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Abstract

Lanthanide ions accelerate nuclear spin relaxation by two primary mechanisms: dipolar and Curie.
Both are commonly assumed to depend on the length of the lanthanide-nucleus vector, but not on its
direction. Here we demonstrate that this is wrong — careful proton relaxation data analysis in a series
of isostructural lanthanide complexes (Ln=Tb, Dy, Ho, Er, Tm, Yb) reveals angular dependence in both
Curie and dipolar relaxation. The reasons are: (a) that magnetic susceptibility anisotropy can be of
the same order of magnitude as the isotropic part (contradicting the unstated assumption in
Guéron’s theory of the Curie relaxation process), and (b) that zero-field splitting can be much
stronger than the electron Zeeman interaction (Bloembergen’s original theory of the lanthanide-
induced dipolar relaxation process makes the opposite assumption). These factors go beyond the
well researched cross-correlation effects; they alter the relaxation theory treatment and make strong
angular dependencies appear in the nuclear spin relaxation rates. Those dependencies are impossible
to ignore — this is demonstrated both theoretically and experimentally, and suggests that a major

revision is needed of the way lanthanide-induced relaxation data is used in structural biology.

This paper is dedicated to the memory of Professor Nicolaas Bloembergen.



1. Introduction

Despite their reputation for being difficult, unpaired electrons have many applications in nuclear
magnetic resonance:! paramagnetic chemical shifts are used to refine metalloprotein structures,?
paramagnetic relaxation enhancement (PRE) is a valuable source of ligand binding data and imaging
contrast,>* and the recent rebirth of dynamic nuclear polarisation® is starting to yield real clinical
results in cancer diagnostics.®” Chemical shifts originating from both isotropic (Fermi contact shift)
and anisotropic (pseudocontact shift, PCS) parts of the magnetic susceptibility tensor are well under-
stood.>® However, paramagnetic relaxation enhancement models often ignore the effects associated

with the magnetic anisotropy of the lanthanide tag.

Nuclear relaxation anisotropy effects described in this paper have been neglected for so long because
magnetic resonance imaging (MRI) contrast agents traditionally contain magnetically isotropic ions
like Gd**, which simply accelerate proton relaxation all around.® Likewise, most PRE experiments use
Mn?% and Gd** complexes with negligible magnetic anisotropy to maximize the volume affected by
the tag and minimise PCS.1° However, the recently introduced property responsive PARASHIFT con-

1112 yse a different kind of contrast that requires strong magnetic anisotropy in the lan-

trast agents
thanide.'**® In a PARASHIFT probe, a reporter group (e.g. Bu or CFs) is engineered into the ligand
coordinating the paramagnetic ion. The reporter spins must resonate far away from water and fat
signals, and relax sufficiently quickly to permit rapid pulsing used in MRI — relaxation rates of 100-
500 Hz are considered optimal.l® Even more stringent design requirements occur in triple imaging
studies that aim to provide information on tissue temperature and pH. In that approach, an anatom-
ical image from the water signal is obtained simultaneously with images from pH and temperature
probe resonances, which must be well separated in frequency (>20,000 Hz) and must relax at similar
rates.'? The current theories of chemical shift and relaxation do not allow such properties to be pre-
dicted with confidence — even the smallest structural changes caused by the solvent can interfere
with the trends in the paramagnetic shift.!” Progress has only been made by examining trends in the

behaviour of well-defined series of complexes.'®2°

This project started when we found'”?! that pseudocontact shifts predicted by Bleaney’s theory? did
not fit our experimental data for an isostructural series of magnetically anisotropic lanthanide com-
plexes (Ln=Tb, Dy, Ho, Er, Tm, Yb) with octadentate ligands based on triphosphinate derivatives of
1,4,7,10-tetraazacyclododecane. Nuclear spin relaxation rates could not be fitted by the standard

223-28 or explained by any known cross-correlations.?>3® In particular, they

Zeeman limit expressions
appeared to have second and fourth spherical rank with respect to the electron-nuclear direction
vector in the molecular frame of reference. The deviation from the commonly used relaxation theory
expressions was very significant, and would have been problematic in biomolecular structure refine-

ment. The situation clearly called for a more detailed nuclear spin relaxation model.

We therefore present a systematic study of nuclear spin relaxation enhancement in an isostructural

®” expressions

series of lanthanide complexes. We demonstrate that the commonly employed “1/r
for paramagnetic relaxation®2*2836-42 £3j| to describe the observed nuclear spin relaxation rates, and
proceed to derive and discuss more nuanced dipolar and Curie relaxation theories that account for

the effects of magnetic susceptibility anisotropy and — crucially — zero-field splitting.



2. Nuclear relaxation in lanthanide-nucleus systems

Nuclear spin relaxation in liquid-phase paramagnetic systems in the Zeeman limit is extensively re-
searched and reviewed.??42836-42 The dominant methods are Bloch-Redfield-Wangsness (BRW) the-
ory® that treats spatial motion as an external stochastic process, and the Fokker-Planck equation
that considers the spatial motion explicitly.*®*® This section reviews the classical results obtained in
the limit of strong Zeeman interaction and isotropic magnetic susceptibility, and then proceeds to

derive the expressions that do not make those assumptions.

2.1 The limit of strong Zeeman interaction

For the nuclear relaxation induced by a rapidly relaxing lanthanide ion, the dominant paramagnetic
relaxation mechanisms are dipolar and Curie.? Both originate from the electron-nuclear dipolar in-
teraction, but the Curie mechanism is different in that the nucleus is interacting with the thermal
average of the electron magnetisation (“Curie spin”). This interaction is modulated by molecular mo-
tion but not by electron spin dynamics;?® the resulting interaction presents itself mathematically as

chemical shielding.3® The expressions used in hundreds of recent papers are:?
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with the following shorthands for the spectral power density function and the characteristic times:
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In these expressions, /4, is vacuum permeability, y is the magnetogyric ratio of the nucleus, @, is
the nuclear Zeeman frequency, @; is the electron Zeeman frequency, . is the effective magnetic
moment of the electron, 7 is the electron-nuclear distance, 7, is the second rank rotational corre-
lation time of what is often assumed to be isotropic rotational diffusion, 7 is the longitudinal elec-

tron relaxation time, and 7, is the transverse electron relaxation time.

These expressions have apparently served the magnetic resonance community quite well, particu-
larly in the structural biology of metalloproteins.>®284%5 Detailed derivations are available in the lit-
erature cited above; the multitude of cross-correlations between all the anisotropies involved is also
very well researched.?® However, the obvious and glaring problem with Equations (1) and all asso-
ciated cross-correlations is that the majority of commonly used lanthanide complexes and experi-
mental conditions are not actually in the Zeeman limit — at any reasonable magnetic fields, the dom-

inant interaction by far is the zero-field splitting (ZFS) caused by ligand field.



2.2 The general setting
The most sophisticated current theories of nuclear relaxation in non-gadolinium lanthanide systems

are two-tiered. At the femtosecond-scale “fast” tier, the total electron momentum Hamiltonian®!

A

H,=H,  +H,, (3)

Zeeman

contains the Zeeman interaction term and the ZFS term. Both have stochastic time-dependent com-
ponents that cause electron relaxation. The large amplitude of both terms®? (much bigger than nu-
clear magnetic interactions) and the short time scale of the resulting electron relaxation (picosec-
onds) means that nuclear spin interactions are inconsequential for the dynamics of the electron mo-
mentum. Because ZFS can be stronger than the Zeeman interaction (100-1000 cm™ vs. 1-10 cm™ in
common NMR fields®*?), the interaction representation transformation within relaxation theories
must include the ZFS.%%*3>% The resulting dynamics is seen from a distance as a time-dependent mag-
netic moment /i, (t) It has the average value ﬁ(cq) described by a magnetic susceptibility tensor ¥

, and some dynamics [z(t) around that average in each individual system:

A, (t)zﬁ(eq)"‘ﬁ(t)ﬂ ﬁ(eq) :X'E//Uo (4)

The dynamics in [z(t) are determined by the simultaneous action of Zeeman interaction and
ZFS.%0354 Since both interactions are modulated by ligand cage vibrations, the problem of calculating

the explicit form of zi(¢) is exceedingly difficult.

At the second stage of the theory, z (t) enters the microsecond-scale “slow” tier, where the nu-

clear spin Hamiltonian contains it as an external time-dependent magnetic moment:

I:IN:_7/NjT'(1_60)'E_7N/u0jT'D',HE(t) (5)

where 6, is the chemical shielding tensor provided by the local electronic structure around the nu-
cleus, and D is the dipolar coupling matrix between the nucleus and the lanthanide. A point dipolar

coupling model is sufficient outside the first coordination sphere:
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where 7 is the lanthanide-nucleus distance vector. It is convenient to split i, (t) according to Equa-

tion (4) and to rearrange the Hamiltonian:

I:IN:_7NjT'(1_60+D'X)'E_7NﬂoiT'D'/j(t) (7)

The contribution to the chemical shielding tensor from the lanthanide magnetic susceptibility is now
apparent>?’2¢ —the D -y term gives rise to the pseudocontact shift and the Curie relaxation mech-

anism.%%3¢ |t is convenient to define the full nuclear shielding tensor as follows:
c=06,-D-y (8)

For the purposes of relaxation theory, the stochastic time dependence in 6,  and D comes from
molecular rotation. All three tensors are tied to the molecular frame of reference, but the nuclear
spin is quantised along the external magnetic field. In the lab frame, the Zeeman term in Equation (7)

therefore transforms in the following way under a molecular rotation with a unitary matrix R :



["(1-6)-B —%> I".R(1-6)R"-B (9)

However, as pointed out by Sharp?®>3>4

, the electron magnetic moment is quantised in the molecular
frame of reference when ZFS is much stronger than the Zeeman interaction, as in the cases consid-

ered here. Therefore, the dipolar term in Equation (7) transforms as follows:
I"D-fi(t) —2> TI"-RDR'R-z(t)=1"-RD-ji(¢) (10)

The final nuclear spin Hamiltonian that enters the Bloch-Redfield-Wangsness relaxation theory at the

“slow” tier of the problem therefore is:

I:IN:_7N;T'R(I_G)RT'E_7N/uo]£T'RD'/'7(t) (11)

An important point here is that the two terms in this Hamiltonian are statistically independent be-
cause the dynamics in ,Zz(t) are uncorrelated with the molecular rotation R(t). We can therefore

perform relaxation theory treatment for the two terms separately.

2.3 Anisotropic contributions to the Curie mechanism
Guéron’s original derivation?® uses the dipolar path, but it is clear from Equation (8) that the Curie

relaxation mechanism?3%

may be viewed as belonging to the chemical shift anisotropy (CSA) family
—the magnetic susceptibility centre shields the nearby nuclei; this shielding is anisotropic, and there-

fore causes relaxation.> This section contains an ab initio derivation using the CSA approach.

In the usual case of a vertical magnet, B = [0 0 B ] As prescribed by BRW theory,**** we will
put the isotropic chemical shielding into HO, and its anisotropy into H
Ay (t)==yI"-(1-ReR")-B=H, +H, (1)
) ; ) S a0 (N A 12
H,=w.l,, Hl(t): z ka(t) Kk
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In this expression, @, = —yy (1 O'M)B0 is the isotropic Zeeman frequency of the nucleus. The
anisotropic part is expressed via Wigner D functions @E{QZ of molecular orientation. The irreducible
spherical components of the Hamiltonian QA,EQ are defined in Section 2 of our paper dealing with this
subject.>® The reason for moving into this representation is that BRW theory is formulated in terms
of correlation functions of scalar parameters of the Hamiltonian. ***° These scalar parameters are
conveniently exposed in Equation (12). This notation also corresponds directly to the structure of the

relaxation module of Spinach®® and lends itself easily to automatic symbolic processing.>’

The general form of the Bloch-Redfield-Wangsness relaxation superoperator R for the case of rota-

tionally modulated interactions is:>*°8

=3>>

ln —tH(r n ‘} zH T
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where the rotational correlation functions G,E::;q (r) are trajectory averages of the products of dif-

ferently timed Wigner D functions from Equation (12):

Gl ()= (D (1) (1+7)) (14)



We shall assume isotropic rotational diffusion for the systems in question (this was checked using
HYDRONMR?® in Section 3), in which case

G(ln) — é‘lné‘kpémq e—/(l+l)Dr

o (7) =51 (15)

where ¢ denotes Kronecker symbols. The characteristic decay time of the (usually dominant) second

rank terms is called rotational correlation time:

S (16)
® 6D

where D is the rotational diffusion coefficient. Mathematica worksheets implementing Equations

(12)-(15) are included in the Supplementary Information. Automated symbolic processing®’ yields the

following BRW theory expressions:
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where Ai is the first rank invariant of the total chemical shielding tensor:
5 2 2 2
Acs = (O-XY _O-YX) +(O-XZ _GZX) +(O-YZ _GZY) (18)
and Ai is the second rank invariant:
A2 =52 2 2 _ _
c O-XX + O-YY + O-ZZ O-XXGYY O-XXo-ZZ O-YY O-ZZ +
(19)
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It now becomes clear that there are two reasons why the Curie relaxation rate expressions commonly
used in the literature (Eq. 38-39 in a major review of this subject,?® Eq. 14-15 in Guéron’s original
paper?® and many others) did not predict the angle dependence in the nuclear relaxation rates. The

first reason is that the paramagnetic shielding term actually has not one, but two components:

D.X:[D.Ziso+D.Xaniso] (20)

corresponding to the isotropic and the anisotropic parts of the magnetic susceptibility tensor.
Guéron?® did not consider susceptibility anisotropy. The other reason is that the antisymmetric com-
ponent of the chemical shielding tensor, usually ignored in diamagnetic systems due to its small am-
plitude,® is significant here — the product of two symmetric matrices is only symmetric when they
commute, which is not the case for D and y, ... We therefore have the antisymmetric term in the
shielding tensor that is actually of the same order of magnitude as the symmetric term, and must
therefore be included into the analysis of the nuclear relaxation.>® This term was missed by Guéron
(Eg. 14-15 in his paper?®), but later included by Fiat and Vega (Eq. 22-23 in their paper®’).

The presence of the D -y, . term in the chemical shielding tensor means that nuclear relaxation
rates depend on the angles between the eigenframe of the magnetic susceptibility tensor and the

electron-nuclear direction (Figure 1). The dependence in Equation (20) has a second spherical rank.



Once the squares are taken in Equations (18) and (19), spherical ranks up to fourth make an appear-
ance. It is also clear from Equation (20) that the relaxation rate will appear to depend on the sign of

the pseudocontact shift — we shall see an experimental confirmation for this below.
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Figure 1. Schematic illustration of the anisotropy in the Curie relaxation rate with respect to the direction of the
lanthanide-nucleus vector. The contours are XZ plane slices through relaxation rate isosurfaces of equal value.
Left: low field limit with respect to nuclear Zeeman frequency and the rotational correlation time. Right: high
field limit. Green contours: isotropic magnetic susceptibility tensor. Red contours: maximum easy-axis (prolate)
anisotropy xax = 3xiso- Blue contours: maximum easy-plane (oblate) anisotropy xax = —3Xiso/2.

Equations (17) would reduce to Equation (1) if the magnetic susceptibility tensor were isotropic, but
this is absolutely not the case in our systems, or for most lanthanide systems, where y, =y, —x,
can be of the same order of magnitude as y, .Inthe case ofa Tm3* complex from our recent work,?!
Zio = 0.49 A®and y, = 0.39 A% Nuclei at the axial position relative to the eigenframe of y relax
faster in the case of easy-axis anisotropy. In the case of easy-plane anisotropy, their relaxation is
slower compared to the isotropic magnetic susceptibility case. The relaxation rate for the nuclei at
the equatorial position is the same for easy-axis and isotropic cases, but it becomes faster in the case

of easy-plane anisotropy (Figure 1).

The shape of the relaxation profile also depends on the magnetic field — at low field, Ai and Ai
components of the longitudinal Curie relaxation rate are comparable, and therefore the angular de-
pendence has a shamrock shape (Figure 1, left). In the strong field limit, the difference in the denom-
inators of the first rank and the second rank components in Equation (17) makes the contribution
from Ai dominant. The result (Figure 1, right) is a prolate ellipsoid-like shape for easy-axis anisot-
ropy, and oblate for easy-plane. The interplay of the first and the second rank components in Equa-
tion (17) also complicates the magnetic field dependence of Curie relaxation rates — the denomina-

tors now have different multiples of the nuclear Zeeman frequency.

2.5 Anisotropic contributions to the dipolar mechanism

The lanthanide-induced dipolar mechanism of nuclear relaxation has a complicated history.?! The
rates for the dipolar relaxation process in the Zeeman limit were derived by Solomon,?? extended to
the case of an anisotropic g-tensor by Sternlicht,%? and also updated by Koenig® to account for the
possible difference between longitudinal and transverse relaxation rates of the electron; all three

works only considered the symmetric part of the electron-nuclear interaction tensor. The asymmetry



was considered by Nordio and Segre,% who did however miss the electron relaxation rate correction.
The Florence group pointed out that the frequencies entering the spectral power density terms in
the Solomon equation must be modified in the presence of ZFS, and that the equation itself is sus-
pect.®>% Similar conclusions were reached by Kowalewski et al., who pointed out that Solomon equa-

d67,68

tion breaks down in the limit of low magnetic fiel and extended the theory into the slow motion

limit. Several specific cases were analysed and found to depend strongly on the ZFS.%97° The suspi-

cions were taken to their logical conclusion Sharp,*%>3>4

who pointed out that ZFS can be much
greater than the Zeeman interaction even at high field, and in those cases the electron magnetic
moment is quantised in the molecular frame of reference rather than the magnet frame. We will now
follow Sharp and demonstrate that strong ZFS makes the dipolar relaxation rate depend on the di-
rection of the electron-nucleus vector in the molecular frame of reference in a way that is completely
independent from any cross-correlations. The key contribution of this work to the rather voluminous

prior art is that our final expressions are small, general, and easy to use.

If [z(t) is the fluctuating part of the electron magnetic dipole written in the molecular frame of
reference, then the electron-nuclear dipolar interaction operator in the laboratory frame of refer-

ence can be specified by Equation (10), in which case the Hamiltonians are:

H,= o, H, ()=l " R(£)D- fi(2) (21)
where R(t) is the overall molecular rotation matrix and D is defined in Equation (6). Statistical
properties of R(t) are well understood,’? but those of ﬁ(t) are not readily available or easily pre-
dictable because the electron Hamiltonian in Equation (3) is modulated by molecular vibrations, li-
bration of coordinated solvent and other mechanisms with complicated frequency spectra and un-
known statistics?%°3>>%7273 that will imprint themselves onto ﬁ(t). However, it is reasonable to as-

sume is that /i(¢) is not statistically correlated with R(¢).

From the point of view of the nuclear spin, the structure of the Hamiltonian in Equation (21) is quite
simple — it is a coupling to an oscillating external field:

Iy

H,=w,, H () =ay(t)Ix+ay, (1)1, +a,(t)1,,
a(t)=-ruuR()D-A(t), |4, (1)

The corresponding relaxation rates are easily expressed in terms of autocorrelation functions (trajec-

(22)

<[]

tory average is denoted here and below by angular brackets) of the components of (i(t) —see the

Mathematica worksheet in the Supplementary Information:

R, = ]:<aY (t)ay (t+ z')> eNdr+ I<az (t)a, (1+ r)> dr
R, = I<ax (t)ax (t + r)> e N+ I<az (t)az (t + z')> dr (23)
R, = I<ax (t)ay (1+ r)> eNdr+ T<aY (t)ay (t+ 2')> e ™dr

0

Our task is therefore reduced to computing these autocorrelation functions. Rewriting the matrix

product in Equation (22) explicitly in terms of the Cartesian components of each matrix, we get:



<ak (t)ak (t + 7)> = 71%1/13 Z <rka (Z)daﬁ/uﬂ (t)rke (t + T)dailui (t + T)> (24)

afied

where 7, are elements of R and d;; are elements of D. If we assume that the dynamics of the

electron magnetic moment is uncorrelated with molecular rotation, the average splits:
<ak ()a, (t+ z’)> =y > dyd, <r,m (). (t+ r)><,u/, (), (t+ z‘)> (25)
afel

The autocorrelation functions involving the elements of the rotation matrix are well known. It is rea-

sonable to assume isotropic rotational diffusion here, in which case:

0, _
<rka (1)r, (t+r)>=fe e (26)

where 7, is the rotational correlation time defined in Equation (16). Note that the right hand side

does not depend on &, and that D is a symmetric matrix. This simplifies the sum:

(1) (142)) =L 5, (1), (1) 2

afii

With this in place, our autocorrelation functions become:
2 2
(a,(t)a, (1+7))= %Tr[nzc(f)]e-f/fk (28)
where the autocorrelation tensor of the electron momentum vector is defined as:
G(z)=(a(t)d" (t+7)) (29)

All information about the dynamics of the electron momentum is now hidden inside G(Z’) . After

writing the dipolar matrix out explicitly, we find:

(a4, (1), (1+7)) = é(“—j Do (357 -1 6(7) e 0)

d ) r

where 7 is the unit vector pointing in the same direction as 7 . After plugging this result back into

Equation (23), we get the dipolar relaxation rate expressions:

2 2
R :é(f_;;j 7_12Tr[(319.ﬂ _1)2 G(CON):|

I | (31)
i Hy | 7 P 2
RE :Eﬁﬁj B (3247 1) (G(0)+G ()
Where G(a)) is the spectral power density tensor:
G(a)) = JG(f)e’T/T“e‘i”’rdT (32)

0

This completes the derivation. If the unknown spectral density matrices are treated as fitting varia-
bles, the expressions in Equation (31) are remarkably simple compared to the prior art.*>>*** They
also have the advantage of being compatible with the multitude of sophisticated models for the spec-

tral power density that exist in the literature.%?



2.6 Connection to electronic structure theory
In the special case when the stochastic perturbation in the electron momentum Hamiltonian is much

weaker than the static part, the elements of the autocorrelation tensor in Equation (29) are
G (T) = </Un (t)/Jk (t + T)> =

e e N (33)

=Tr| p™ i1, { expy)| i I H(¢")dr' |) i,
t

where the Heisenberg picture is used,Athe indices n and k run over Cartesian coordinates, p* is the

equilibrium electron density matrix, ]:IE is the commutation superoperator of the electron Hamilto-

nian, and eXp(O) denotes a time-ordered exponential.

The average of the propagator is the subject of the very well developed theory of generalised cumu-
lant expansions.”*”> When the fluctuating part of the Hamiltonian is much smaller than the static

part, GCE expansion to second order is identical to BRW theory,>® therefore:

t+7 A A A
exp(o)(z’ ﬁE (t')dt'j = exp[iH01+Rr} (34)
t

A

where I:I0 is the time average of I:]E (t) and R is the negative-definite electron relaxation superop-

erator. The expression simplifies:
G, (r) = Tr[,beq,[zn exp |:i[:]0T + Iér} ,[zk} (35)

If we work in the eigenbasis of ﬁo, the equilibrium density matrix [)eq = exp(—l:lo/kT) is diagonal.
For a single lanthanide, it is reasonable to neglect cross-relaxation processes, in which case the elec-
tron relaxation superoperator is also diagonal. Its action can then be reduced to an element-by-ele-
ment Hadamard product ekr,[lk = e]%’ o [jk. Writing the trace out explicitly, we obtain:

Gy (7)=2 P (pla,
rq

i®,,T

q)(qla|p)e e (36)

where w,, areenergy differences between eigenstates of the static Hamiltonian, and T =Ty is
the characteristic time with which the element P, returns to its thermal equilibrium value. Taking

the Fourier transform in Equation (32) we get

Gy (@) =Tr| 5%, iy j(@)]] (37

where the components of the spectral power density matrix depend on the frequencies of the tran-

sitions and the corresponding relaxation times:

I (@)

T
S : L.t 1 (38)

= 2
2
1+(a)+a)pq) TR,pq 2-R,pq TR qu

Technically, Equations (36)-(38) connect the formalism to the quantities that can be computed using
electronic structure theory. However, it is unclear how well the diagonal approximation (i.e. the ne-
glect of cross-relaxation processes) holds for the electron relaxation superoperator, or how to obtain

its elements. We therefore recommend Equations (31) for practical data fitting and analysis.

10



2.7 Connection to the Zeeman limit

To illustrate the connection between the relaxation rates derived above in the ZFS limit and their
Zeeman limit counterparts in Equation (1), some less realistic assumptions will now be made. These
are not necessary for the application of Equation (31), but help illustrate the relationship between

the two limits. We need to assume high temperature, in which case

o
=11 (39)
Pra 2J +1
and extreme narrowing on the electron
2 5
TR.pg = TE> (a)+a)pq) . <1 Vp,q (40)

where 7. is the electron relaxation time that is assumed to be the same for all populations and

coherences. With this in place, Equation (37) simplifies into

2.2
G, (@)=Tr[ p0,0, |7, = 2;11Tr[ﬁn/}k] =%Tr[JﬂJk] (41)

The Cartesian components of the total electron momentum operator are orthogonal

T 7 z 2 é‘nk
T J,J, =6, D m =g (J+1)(27 +1) (42)

m=—J

and Equation (41) therefore further simplifies into

J(J+1
o) =2 2 )
After placing this into Equation (31):
2 2 2 2
. J(J+1
Rf“’:g(ﬂj In8s 8 (/+1)z Tr[(3f-fr—l)2} (a4)
3\4r r 3

and noting that the trace is the same for any unit vector 7
A AT 2
Tr| (377" -1) |=6 (45)
we obtain exactly the same expression as the extreme narrowing limit of Equation (1):

2 2,72
Rdip — i & ]/N/LlcffTE (46)
1 3\4r re

where £, = ,uégiJ(J+ 1) . The same happens with the transverse relaxation rate.

That these expressions should be equal between the ZFS and the Zeeman limit is to be expected —
when electron relaxation is much faster than coherent interactions, the dynamics are dominated by

the stochastic noise, and the difference between the two limits disappears.
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3. Experimental results and discussion

The complexes we have studied experimentally are the next stage of our recent research into dual
(relaxation, temperature) and triple (relaxation, temperature, pH) magnetic resonance imaging con-
trast agents!1#1516 Their synthesis and characterisation are described elsewhere.??! The ligand is a
derivative of 1,4,7,10-tetraazacyclododecane with a coordinated pyridyl group and triphosphinate

donors, Ln=Tb, Dy, Ho, Er, Tm, Yb (Figure 2).

Figure 2. A schematic representation of the structure of
the [LnL] complexes used in the experimental part of this
work. Details of synthesis and characterisation are pub-
lished elsewhere.171

It contains a tert-butyl reporter group located about 6.6 A away from the lanthanide, resonating up
to 85 ppm away from the usual proton chemical shift range, and relaxing sufficiently quickly to allow
rapid imaging. Recent studies show that these complexes are 8-coordinate and exist in solution

mostly as a A-AMA twisted square antiprism isomer.’®

cbax

A

B g

: )
cdax c8eq

Figure 3. Relevant atom labels within the structure of [LnL]: (A) the X-ray structure of the Yb complex,’® (B) a fragment of
the same structure showing the axial (ax) and equatorial (eq) protons in the cyclen ring; (C) axial and equatorial protons
with the ligand arm (ap), and within the pyridine ring (py); (D) axial and equatorial diastereotopic protons within the chelate
ring formed by the ring nitrogen and the phosphinate oxygen.
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In our previous work, we have assigned all proton NMR signals in [LnL] spectra and extracted the
anisotropic part of the magnetic susceptibility tensor from pseudocontact shifts and DFT optimized
structures.? The subsequent analysis of proton relaxation showed that the commonly employed Sol-
omon-Bloembergen-Morgan expressions in Equations (1) fail to reproduce the dependence of the

relaxation rate on the proton position relative to the lanthanide (Figure 4).

The plots of the relaxation rate against r”° indicate that it depends not only on the distance to the
lanthanide, but also on the direction of the Ln—H vector. The relaxation rate also appears to depend
on the sign of the magnetic anisotropy (and therefore pseudocontact shift): in the complexes with
easy-plane anisotropy (Ln=Tb, Dy, Ho) the ligand arm protons tend to relax faster than the cyclen

protons, and vice versa in the complexes with easy-axis magnetic anisotropy (Ln=Er, Tm, Yb).

e cyclen 5
3r A arms 15+ B
m  pyridine % 1 %
g 2} % % 3 1.0t
= ¢ ; ]
: st 2 R
1} ., . 05} i
A ® e 1 L
a D 2
L Tb Dy Ho
0 ' L : 0 : : : 00" l l l
0 2 4 6 2 4 6 0 2 4 6
&5 4] axial .
| i
0.4
. t . "
< 2| 0: 02} L]
: % ; e
} 0.2 = b ‘k
i & equatorial
11 i 0.1} .
. 0 1 | ! |
. Er R Tm . Yb
o ' ' ' 0.0 ' ' ' 00 : : :
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
10™ r® (A®) 10“r® (A®) 10 r® (A)

Figure 4. Proton longitudinal relaxation rates in isostructural [LnL] (Ln=Tb, Dy, Ho, Er, Tm, Yb) complexes, measured in D,0O
at 300 K and 1.0 Tesla, and plotted against the inverse sixth power of Ln-H distance. Data points for cyclen protons are
shown as blue circles, data for protons in the ligand arms as red triangles, and data for pyridine protons as black squares.
The group highlighted in the Yb panel with rectangle contains axial protons with Ln-H distance of 3.4-3.7 A; the group
highlighted by the ellipse contains equatorial protons with Ln-H distance 4.2-4.4 A. Point positions are similar in the other
five plots. There are obvious deviations from the inverse sixth power distance dependence, which would be a straight line
on these plots. Ligand arm protons tend to relax faster than cyclen protons in the complexes with easy-plane anisotropy
(Ln=Tb, Dy, Ho) and vice versa in the complexes with easy-axis magnetic anisotropy (Ln=Er, Tm, Yb).

In the case of protons, we can neglect the relaxation contribution from the “native” diamagnetic
chemical shielding tensor 6, — its anisotropy is of the order of 10 ppm’’, much smaller than the
contribution from the paramagnetic centre. The fact that Equations (17) depend on the square of the
anisotropy makes it a very reasonable approximation. We can therefore say that, for proton relaxa-
tion theory purposes, ¢ ~ —D -y . For most other nuclei, the contribution from 6, would have to be
included. Effectively this means that we have neglected the diamagnetic CSA contribution to the re-

laxation rates because it is tiny (typically a few Hz) compared to the rates reported in Figure 4.
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Figure 5. The ratio of Curie relaxation rate to the dipolar relaxation rate as a fuction of magnetic field computed for 'H, 13C
and °N for a small molecule (left) with a rotational correlation time of 420 ps, and a protein (right) with tz=4 ns. Typical
magnetic parameters for Tm(lll) paramagnetic centers were used: te=0.1 ns, Uef=7.5 Bohr magneton units.

Our measurements were carried out at 1.0 Tesla where the Curie relaxation rate is expected to be
much smaller than the dipolar relaxation rate (Figure 5), but it was included anyway — both the first
and the second rank contribution in Equation (17). Paramagnetic chemical shielding tensors were
estimated using the DFT optimized structure and the susceptibility tensor anisotropy extracted using
the PCS data published earlier.?! The isotropic part of the susceptibility tensor was obtained from
CASSCF calculations (0.8108, 0.9679, 0.9578, 0.7829, 0.4863, 0.1697 A® for Tb, Dy, Ho, Er, Tm, Yb
respectively) — see the Supplementary Information of our previous paper!’ for technical details of the
CASSCF procedure. The rotational correlation time was obtained from the DFT geometry using the
bead model”® implemented in HYDRONMR®® (n = 1.04 cP for D,0 at 27°C, resulting in Tz = 420 ps). To
avoid over-parameterisation, the small predicted Curie relaxation rate was fixed and only the six in-

dependent elements of G (a)N) in Equation (31) were varied using robust linear regression.

I Lk Y T W s Ho
o % 2F b
N i -
T 2 # ¢ 1.0
<
1
0
Er , Tm ] dipolar Yb I
al |l o075f 1 0.4 - [l Curie 2nd rank 1
[ Curie 1st rank
N ® experiment
%
o

Figure 6. Analysis of the protons longitudinal relaxation rates measured in D,O at 300 K and 1.0 Tesla for [Ln.L] series (black
circles). The computed Curie relaxation rates shown in blue (second rank) and red (first rank) colours, the dominant dipolar
contribution is shown in yellow colour (see text for details).
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The fitting results are shown in Figure 6. The Curie relaxation contribution at 1.0 Tesla is much smaller
than the dipolar contribution, and the anisotropy in the longitudinal relaxation is chiefly due to the
anisotropy of dipolar relaxation. This means, that at the field of 1.0 Tesla, we are in the “ZFS limit”
discussed by Sharp.4®*3>% This is further illustrated in Figure 7. Ab initio calculations suggest that the

assumption of the ZFS limit for the systems in question is valid for all available NMR fields.

The fitting indicates that the anisotropic contribution to dipolar relaxation can reach 50% of the iso-
tropic part. The obvious difference in the prediction quality between Figures 4 and 6 is a good illus-

tration of the fact that relaxation anisotropy cannot possibly be ignored.
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Figure 7. Ab initio simulation of the [DyL] energy levels splitting in the presence of the magnetic field (along z-axis in the
molecular frame), computed using Spinach”® (see the Supplementary Information for the source code and the ZFS Hamil-
tonian parameters obtained form a CASSCF calculation performed as described in our previous paper'’). The Zeeman limit
for the lowest energy level is reached only at very high magnetic field. ZFS is the dominant contribution up to 50 T.

The best fit components of the electron momentum autocorrelation matrix G(a)N) in Equation (31)
are presented in Table 1, along with the standard error returned by the robust linear regression pro-
cedure. In the case of erbium, due to the small number of data points and large uncertainties, the

standard linear regression was employed.

Table 1. The best-fit parameters of the electron magnetic moment autocorrelation matrix components G [10%°J2/T?s] and
the corresponding standard errors extracted from the robust linear regression of R; data using Equation (31).

Gk Tb Dy Ho Er Tm Yb

value SE value SE | value | SE value SE |value| SE | value | SE

xx | 1754 | 159 494 308 | 456 | 103 | -915 | 563 | -27 19 62 15

Xy | —-859 | 112 | -1180 | 230 | 640 | 62 | -1010 | 558 | -52 15 =25 13

xz | =207 | 126 451 267 98 106 | -373 | 426 | -105 | 21 | -102 | 17

yy | 2285 | 159 | 2696 | 289 | 913 | 211 | 2261 | 458 65 20 53 13

yz | =351 | 136 -30 256 | =352 | 84 | -1102 | 582 29 21 -8 14

zz | -196 | 136 518 185 | 800 | 103 | 2754 | 297 | 647 19 333 12
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The spectral power density tensor G(a)N) extracted by fitting is strongly anisotropic. A very notable
observation is the expected 90° turn of the orientation of the eigenframe between Tb, Dy, Ho com-
plexes and Er, Tm, Yb complexes. Unlike the axiality parameter of the susceptibility tensor, the axial-

ity of G (a)N) does not change sign when switching from easy-plane to easy-axis lanthanide systems.

Although the physical meaning of G(a)N) is clear, it is unlikely that more detailed information (such
as the ZFS tensor) can be extracted from it. As an order of magnitude estimate, we can say that
G, ~ Tu X kT | 14, —that would give us estimates for the electron relaxation time. Performing the
calculations produces 7, =0.5,0.4, 0.2, 0.5, 0.1 and 0.3 ps for Th-Yb complexes respectively. These
numbers are in surprisingly good agreement with the values known for similar isostructural series.®
A more accurate determination of electron relaxation parameters from G(a)N) would require the
knowledge of the electronic structure theory energies and integrals that enter Equations (37) and
(38). This is, in principle, possible — but would require a combination of CASSCF calculations and in-
depth analysis of the statistics of stochastic ZFS fluctuations in lanthanide complexes in liquid state;

this will be the subject of our next paper.

8. Conclusions and outlook

Lanthanide-induced nuclear relaxation is strongly anisotropic, and must be treated as such — any
analysis based on the distance variation alone is at best a crude approximation (Figure 4). Except for
Gd(lll) complexes, any biomolecular structure refinement work using lanthanide spin tags must take
this anisotropy into account, or risk significant errors. Prior work using “1/r®” models for lanthanides

with a significant ZFS should be treated with appropriate caution.

The effects observed in this work go deeper than just a cross-correlation between the lanthanide
magnetic susceptibility and the electron-nuclear dipolar interaction. Rather, they are the conse-
guences of (a) zero-field splitting (ZFS) being greater than the Zeeman interaction, with the result
that the electron magnetic moment is quantised in the ZFS eigenframe rather than along the mag-
net;4%535% (b) the anisotropy of the magnetic susceptibility tensor being of the same order of magni-
tude as the isotropic part; (c) the product of the magnetic susceptibility tensor and the electron nu-
clear dipolar tensor having significant antisymmetric, as well as anisotropic, components.®’ In the
theoretical treatment presented in this paper we have accounted for all of these effects. Our final

expressions in Equations (17) and (31) are small, general, and easy to use.

The classics may be accused of ignoring all three effects — Guéron?® only considered isotropic suscep-
tibility in his pioneering treatment of the Curie mechanism (Equation 38-39 in a major review of this
subject,®® Equation 14-15 in Guéron’s original paper,?® and many others); the same applies to the

dipolar relaxation process that goes back to Solomon and Bloembergen,??*

who were also working
in the Zeeman limit. It wasn’t until 2016 that violations were seen:*® in reality, Curie relaxation rates
also depend on the angle that the lanthanide-nucleus vector makes with the principal axes of the
magnetic susceptibility tensor.3>3” There is also a deeper aspect: paramagnetic chemical shielding
tensors are unusual because of their large asymmetry,3” which is negligible in diamagnetic cases,®°
but becomes very important for the systems reported here — the product of two symmetric matrices

is only symmetric when they commute, which is not the case for D and 7 .
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