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Abstract

Implementation of proxy models, such as emulatoighinreduce the computational time
required in a variety of reservoir simulation stdiBy definition, an emulator uses reservoir
properties as input parameters in a statistical ehamnstructed from simulator outputs.
However, incorporation of petrophysical propertidistributions in all model grid-blocks

implies too many input parameters for direct eniatat Currently, most employments of
emulation only consider single-value parameteriratif reservoir properties.

In this work, we propose a methodology to consgpetially-distributed properties, such as
porosity and permeability, in reservoir emulati@chnique. First, we present the process of
finding a procedure to deal with geostatisticalizagions in the emulator and then implement it
in a risk quantification application. Constructiof an emulator in a probabilistic approach
involved: selection of a base model, definitionuoicertain inputs, selection of outputs to be
emulated, sampling inputs to generate scenariosylaiion of scenarios, and building the
emulator. As an application, we used emulatorseteegate risk curves at the final production
time of a synthetic reservoir model.

By implementing the proposed procedure, we showedtl émulators can provide reliable
results during risk analysis in oilfield developrhdfurthermore, with emulators it is possible to
generate risk curves that reproduce simulationdteeat a lower computational cost.

It can be expected that parameterization of peyrmiphl properties will boost the
applicability of the reservoir emulation technigueor instance, emulators can significantly
reduce both the time and computational resourcesadded in various reservoir studies for

high heterogeneity and complex reservoir modell siscfound in the Brazilian pre-salt area.

Keywords: Risk, Petrophysical uncertainty, Proxy model, Resie, Simulation.
1. Introduction

During the initial stage of oilfield developments described by Schiozer et al. (2015), a

reservoir characterization under uncertaintiese¢ired to build possible scenarios. Reservoir
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petrophysical properties distributions are amomgrnthmerous features that must be described at
this point.

From well, core and seismic data it is possiblentmlel spatial distributions for properties
like porosity and permeability, which constitutee theservoir numerical model. So, under
uncertainties, and, in a probabilistic approackiess geostatistical realizations are possible for
a reservoir model. Depending on the purpose ofsthdy, we can generate from hundreds to
thousands of equiprobable geo-realizations. Contibima of these realizations with other
structural, technical and/or economic uncertaintesnpose the different reservoir model
scenarios.

This inherent uncertainty about reservoir feataed behavior translates into a necessity of
quantifying the associated risk to this lack of Wiexige. Among the available tools for risk
appraisal we have production risk curves. In petnl studies context, these curves might
correspond to cumulative oil, gas, or water, prospet-present-value, among other objective
functions.

For a thorough generation process of risk curvies, uncertain solution space must be
covered with a representative sample of all possiBkervoir scenarios. Depending on the
complexity of the model and available computatiomakources, reservoir studies that
implement the numerical simulator can demand aresstee computational effort and CPU
time, i.e., the amount of time used for processasgrvoir numerical models.

Among the alternatives to circumvent this issuefing: (1) simplifications and variations of
the statistical treatment (Schiozer et al., 2018B), sophisticated selection of representative
models (Meira et al., 2015) and (3) use of lowlftgenodels such as proxy models (Zubarev,
2009).

Proxies, also known as surrogates, are mathemagjosdsentations (e.g. regression, kriging,
neural networks, Bayesian emulators etc.) thattérymimic reservoir numerical simulator
outputs at a lower computational cost. The inputsagoroxy model are reservoir model
attributes and its outputs can be observables siscliluid production rates, bottom-hole
pressures, fluid saturation, pressure distributaons so forth.

Therefore, as a substitute of the simulator that loa used to survey the uncertain space,
proxy models might be applied in diverse appligaiovithin reservoir studies such as history
matching (Craig et al., 1996), sensitivity analy&sillick et al., 2006), uncertainty assessment
(Slotte et al., 2008; Mohaghegh et al., 2006), pctidn strategy selection (Avansi et al., 2009),
production forecasting and risk analysis (Amorinalet2012; Polizel et al., 2017).

Furthermore, given the role of uncertainty in regeér studies, the Bayesian framework
represents a natural approach in the proxy-buildmgext (Craig et al., 1996; Cumming et al.,
2009). Some previous works in petroleum studiesehasen carried out involving reservoir

Bayesian emulation. For instance, Cumming and Geild$2009) used emulation technique to
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history-match reservoir models, which were generditg parameterizing reservoir properties
maps with multipliers. Ferreira et al. (2014) usethulators in uncertainty reduction

guantification given availability of production datLater, Ferreira et al. (2015) showed a
methodology to use 4D seismic data to improve uap#y reduction by using emulation of

water saturation maps.

These works demonstrate the applicability of ennutelbut they are characterized by single-
value parameterizations of reservoir properties. ifstance, Cumming and Goldstein (2009)
accounted for porosity and permeability maps bygisnultipliers in pre-defined regions. In
fact, most of employments of proxy models (Cullatkal., 2006; Slotte et al., 2008; Zubarev,
2009; He et al.,, 2016) have been restrained tolesiejue parameterizations of spatially-
distributed properties. As noticed by Mohagheghlef2006), this restriction of proxy models
is mainly due to “curse of dimensionality” giverethigh number of parameters that define a
reservoir geological model. Besides, single-valasameterizations do not preserve geological
consistency (spatial covariance model) requiredairthorough treatment of petrophysical
uncertainty (Chambers et al., 2000). An attempsdive the issue was proposed by Zabalza-
Mezghani et al., (2004). They introduced a jointd@lomethod (JMM) that combines geo-
realizations and proxy-models to account for geicklguncertainty in computationally-
expensive applications such as risk analysis. Asvelby Santos et. al, (2017), implementation
of JMM is difficult for complex cases and presesthnical and practical disadvantages when
compared with other methods such as DLHG propogefdhiozer et al., (2016). Discretized
Latin Hypercube combined with geo-realizations (B} represents well the treatment of
geological uncertainty and reduces the computdtiopat in some reservoir studies. Still,
because of their low computational cost, proxy-n®ddow promise in applications where
evaluation of a high number of reservoir scenasagquired.

Geostatistical uncertainty, represented by geoza#ins, is not trivial to be consistently
captured by single-value parameterizations. Alsingi property values at each grid cell as
inputs in the proxy construction is unfeasible heseaof the high number of blocks of a typical
model. Thus, there is a need to pre-process rasgmaperties distributions to be considered as
inputs in emulation procedure. This would allow lgdgawith petrophysical uncertainty in a
variety of reservoir studies where emulation camniggemented and computational and human

effort might be reduced.

2. Objective

The main goal of this work is to present a procedimat considers uncertainty of spatially-
distributed reservoir properties, such as porositgd permeability, in emulation of reservoir

model behavior.
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Besides, we build emulators for chosen objectivections with different sizes of training
dataset and then generate production risk curvesngpare with simulation results. Based on
those results, we establish quality criteria toleate emulators that can reproduce risk curves
obtained with simulation.

Finally, we assess the implementation of emulatarsk analysis in terms of error and total

computational cost in comparison with the simulator

3. Methodology

The work proposal concerns the incorporation ofgpdtysical uncertainty, represented by geo-
realizations, as inputs in the building of emulatd®everal attempts were made to solve this
issue along the development of this research. Tée difficulties rely on the high number of
parameters that define a realization and the reidtrrelationship between the set of
petrophysical properties at each grid-block and vesiponses. For a typical simulation model,
realizations are characterized by the values obgity, permeability in the three spatial
directions and net-to-gross ratio (NTG). On theeothand, responses of a given well may
depend upon the characteristics of its region fifiémce along the production period and this
dependency can be difficult to describe in matharabterms.

To overcome these challenges and design a procéuatrallowed us to build and validate
emulators from realizations, we tested combinatiohglivision of reservoir by zones and
selection of grid points (random, evenly spaceddininsion reduction by Principal Variables
(PV)).

At the end, the procedure with better performararesisted in implementation of dimension
reduction of the number of inputs by selectingales using the PV method which is based on
principal component analysis (PCA), in combinatith flow-based zonation and direct
emulation of objective functions. This allowed ws gick representative points within flux
regions and petrophysical properties for the chgzents were used as input parameters in the

proxy modelling.

3.1. General Methodology

The general methodology used for emulator building application in reservoir studies is
based on the general proxy-modelling framework sethfrom Razavi et al. (2012), Ferreira et
al. (2014) and He et al. (2016). The workflow igidéd in five steps as presented in Figure 1.
The main contribution of this work focuses on sfiegrocedure implemented between step 2

and step 3.
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3.1.1. Reservoir Characterization under Uncertainties

The first step of the general methodology consistshe definition of reservoir properties
together with their correspondent uncertainty ranger the purposes of this work, we only
consider uncertainties in properties of the gealaigmodel represented by geo-realizations. As
referred, a realization is numerically charactetibg the spatial distribution values of porosity,
permeability in three spatial directions and negitoss ratio. Therefore, the number of
parameters (order dfo® for a typical simulation model) that characterizesalization depends

on the number of gridblocks of the reservoir nugsdrmodel.
3.1.2. Inputs Sampling

A sampling method is required to generate scen&niothe uncertain reservoir model. In this
specific work, we consider only petrophysical utaiety in our model. Therefore, we do not
require a sampling method to combine uncertaintiestead, equiprobable geo-realizations
define each possible scenario for the reservoiulsition model. The outputs of simulation runs
are used for proxy model building. Moreover, beeamsr final goal is to construct a tool which
is faster than the simulator for applications saslrisk analysis, we evaluate prediction power

of emulators for different sample sizes (trainiageget).
3.1.3. Emulator Building

The idea of using reservoir emulation techniquests in estimating proxy models (PM) with
outputs corresponding to some observable of therves dynamics such as cumulative oil
production for reservoirs. Craig et al. (1996) meed a framework to build emulators. This
consists in building a stochastic representationu(ator) of the computer model (simulator)
outputs for input combinations that were not evi@da Thus, an emulator takes system
properties X) as inputs and returns outpys) that correspond to selected observables of the
problem. The contribution of this work relies onetimanner of pre-processing a high-
dimensional input space that is represented by tgtstecal realizations in the reservoir
simulation problems. For the purposes of this wdhlk, objective functions to be emulated are
cumulative oil, water and gas for a future produttiate. For each selected objective function

we want to emulate, we represent the function as:
fi(xa) = z Bij 8ij(xa) + ui(xa) 1)
j

In Equation 1x, is the subset of input parameters considered enestimation8;; are

scalarsg;; are deterministic functions ang represents a Gaussian process. In particular, the
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deterministic functions and scalars can be estindig a step-by-step regression model
selection (Venables & Ripley, 2002) based on Aikakermation Criteria (AIC). In principle,
the Gaussian process is optionally implementecdhtierpolate residuals, whereas the most of
model output variation is explained by the reg@ss{O’ Hagan, 2006). The AIC-based
modelling used for construction of mathematical eieds a linear regression where the terms
are selected by a stepwise algorithm that imples@ikake Information Criteria in Equation 2.
Given a set of possible predictors the stepwiseessipn runs backward by dropping terms
from the model and looking at improvements of tH€ Aneasure. The selected input variables
that are in the final model are calladive variables. In Equation (2), each model likelihdod

is computed from the model deviance and the variablf. corresponds to equivalent degrees

of freedom.

AIC =—-2logL+2x%xe.d.f (2)

3.1.4. Emulator Validation

To guarantee that a built emulator can reproduserveir numerical simulator outputs in any
specific part of an application, we must assesgthdiction quality of each componédpti.e.,
objective functions (OF). The purpose of this prhoe is to confirm that emulator can
encompass simulator results for a random sampledasio. The first diagnostic criterion
considered is the statistical fit measure Adjust@dThis measure is calculated by Equation 3,
whereR is the coefficient of determination,the sample size aridthe number of predictors.
Therefore, Adjusted-R? penalizes the use of spana@uiables in the model.

(1-RH(n-1)

RZg; =1 |[———— ](3)

Then, to verify emulator prediction power, a cruafidation test is performed. This process
involves a qualitative analysis (cross-plots) ohiator against emulator outputs for sampled
scenarios (validation data) that are not usedarethulator building process.

Besides, to quantify prediction quality of emulatowe use a measure of discrepancy
between simulation and emulation results known asmalized root mean square error
(RMSE,) defined by Equation 4. RMSE is a common meafDhen et al. 2016) of difference
between predictions of a model (emulator output) #re actual or observed values (simulator

output).
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In this case, normalized RMSE is a function of groxtputs {), simulator outputgy) and

RMSE,, = (4)

mean(y) of predictions from the training dataset. The ralimation is performed due to the
different orders of magnitude for objective funaso Values of normalizeAMSE, near one
represents a prediction no better than the avavhgetputs used as training data, &MSE,
near zero represents an ideal match between tiee and actual results.

Therefore, we have adjusted-R? (related to traimiat) andRMSE,, (related to validation
data) as measures for diagnostic and emulatortguedsessment, respectively (See Table 1).
Emulator errors that can be tolerated may well ddpgon the application and the purpose of
the study. As stated in the objectives section,aime to set quality criteria for validation of

emulators based on the results of our specificicatbn.

Table 1: Summary of indicators used along this work.

Measure Abbreviation Related to...
Adjusted Coefficient of Y -
determination R Training data
Root mean square error I
(normalized) RMSE, Validation data
Mean average MAPE Risk curves

percentage error

3.1.5. Application

Reservoir emulation can be implemented in sevegrgpli@ations within reservoir studies. The
interest relies on using emulators to substitueergservoir numerical simulator in procedures
that demand a high number of scenario evaluatiodstiaerefore an extensive computational
effort and time. As such, emulators can be usedeweral steps within methodologies for
history matching, sensitivity analysis, uncertairggluction, strategy optimization, risk analysis,
among other applications. In our particular case,use emulators to generate production risk
curves using several sizes of training dataset.idéa is to find the cheaper (least number of
scenarios for estimation) validated emulator toradpce simulator results. To do that, we
assess the accuracy of emulator at reproducingctiske shapes by using an appropriate error
measure, and then we establish quality criteriszefoulator validation. Finally, we evaluate the
error and computational cost for implementatioemiulator in risk analysis.
To measure the computational cost of implementattbnemulation in generation of

production risk curves, we define the implementatime as a sum of total time of simulation
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of training models, the time spent in building #raulator and the simulation time of validation
data.

The error between risk curves is calculated usimg mean absolute percentage error
(MAPE). This gives us a quantification of the accuratgraulator at reproducing the risk curve
obtained with simulation. For a general case winéhave a reference risk curve with points
R; and a predicted risk curve with poiits the MAPE is defined in Equation 5. There are no
hard rules for tolerateMAPE ranges. Accepted intervals may depend upon thefgpstudy
case and purpose. In this case, we deit#dPE tolerance based on the results for selected
reference risk curves obtained with simulationdfenchmark caseMAPE between risk curves
obtained with simulation of 500 and 1000 scenaribey illustration ofMAPE measure refer to

Figure 2.

P —
R;

N
100
MAPE = X Z (5)

Ri|
N

3.2. Consideration of variation in petrophysical propertiesfor emulation

This work concerns the incorporation of petrophgkiancertainty, represented by geo-
realizations, as inputs in building emulators. Tisans bridging the gap between steps 2 and 3
of the general workflow (Figure 1) when we considariation in reservoir spatially-distributed
properties.

The strategy for approaching the problem consrsthe selection of representative points
within flux regions, which petrophysical propertie®uld explain the variability of the
corresponding well responses.

To devise a procedure that allows us to build etordafrom realization inputs, we test
specific workflows. All workflows can be separated two core components: 1) Variable
selection and 2) Zonation. These two componentderéd parameterization of geo-realizations
for use as inputs in emulation. We present thedamponents separately and then we explain

how we used them for the different tests.

3.2.1. Variable Sdection

Given that geo-realizations have the same sourt® @eell logs, sampling, etc.), property
values at each grid cell are correlated involvirggahastic process. For instance, in the model
used in this work, a Sequential Gaussian Simulgi81BS) process is implemented to generate
porosity and permeability spatial property disttibns. The high number of parameters that
define a realization is one of the main difficudtito include geological uncertainty in proxy

modeling. For instance, it is unfeasible to estena&gression models by taking information at

8
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all grid-blocks as inputs because of the high nunabebservations that would be required to
correctly estimate all regression parameters. Bssithere is a lack of efficient computational
techniques to tackle the challenge (Shan & Wangi0p0

Hence, the proposal is to use a dimension redutsicmique for the input parameter space
to decrease the number of parameters that allow dstinguish a realization from another. In
the context of statistical inference (Guyon & HEdis#, 2003; Boukouvalas et al., 2007),
dimension reduction methods can be classifiegrimection and screening methods. If the
belief is that there exists a smaller dimensionrgsgntation, projective methods transform
inputs into a manifold spanned by functions of ioiéd) input values. On the other hand,
screening methods consists in selection of relewgmits (or disregarding spurious ones) than
can act as predictors for modelling.

In this work, we implemented a selection (screenafgepresentative points in porosity and
permeability maps for the training set of realiaati. Three different procedures for variable
selection are tested:

. Random points: We select random points in the grid to act aspaeentative
sample of the whole realization. The idea behind giocedure is to select that an arbitrary
collection of points that does not consider disitifin of reservoir properties.

. Evenly-spaced points. Spaced points are chosen in the reservoir sinoulati
model to reduce the number of total grid informatio the realization. As in the previous
approach, this procedure does not consider vatiabdf petrophysical properties over
realizations, but attempts to select a homogengdashted sample of points.

. Principal variables: The PV approach is a dimension reduction methagolo
based on Principal Component Analysis (PCA) thd¢cse variables that most represent a
problem in a statistical experiment. This methodsua criterion that combines correlation
among variables and loadings on the Principal Corapts (For more details, see Cumming
and Wooff, 2007). For our problem, this technigaieks grid points by using the variances and
correlation matrix of property values among the dfetealizations, allowing the selection of

representative grid points for each property by tpesitions in the ranking.

The objective in this component is to represent dhestatistical realizations with a lower
number of parameters. Property values at seledigdispfor porosity and permeability maps are

then used as inputs to emulate well responses.
3.22. Zonation

This component aims to define the region of intefesvariable selection procedure. Because

of the nature of fluid movements in reservoir, st éxpected that well responses are more
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correlated with petrophysical properties of regiarigere the fluids flow along the production
period. Based on that premise, we tested two @iffieapproaches for defining those regions:

e Location-based: In this method, we correlate well responses withpprties of grid-
blocks near each well by dividing the reservoirseparate regions in accordance
with well locations in the reservoir model. Thisopedure reduces the number of
inputs parameters that must be treated in tandem.

e Flow-based: In this approach, first we evaluate fluids behawlomg the production
period within each well production zone and thenfingde the regions by
distinguishing draining areas. In this case, we chtain overlapping regions for
different wells.

In both approaches, we look forward to relatinguinparameters and simulation outputs for

wells corresponding to the same region.

Then, combinations of both components described/almonfigure procedures for “pre-
processing” geostatistical realizations as inpotemulation. The selection of the appropriate
procedure is based on the model performance inr@acoe to diagnostics and validation
described for step 4 of the general workflow ofufggl. In Table 2 we present a summary of

tested workflows.

Table 2: Combinations of tested workflows to parametegee-realizations.

Procedure  Variable Selection Zonation
1 Random Location-based
2 Spaced Location-based
3 PV Location-based
4 Random Flow-based
5 Spaced Flow-based
6 PV Flow-based

3.3.Proposed procedure

In this section, we outline the generalization fandom case studies of the procedure
(Procedure 6 in Table 2) to consider variation pétglly-distributed properties in reservoir
behavior emulation. The procedure consists inrtigeémentation of a flow-based zonation plus
a selection of variables that considers distributamd variability of petrophysical properties

over a set of realizations, such as Principal \iée®

10



310
311
312
313
314

315
316
317

318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335

336
337
338
339

Thus, the proposed procedure to parameterize @iteakproperties distributions as inputs in
the emulator building can be summarized sgtection of representative grid-block properties
within each well drainage region. As part of the workflow depicted in Figure 1,ghs an
intermediate step between the inputs sampling emdator building that can be considered as a

“pre-process” of inputs as illustrated in Figure 3.

Various approaches can be used for the implementaif the proposal. We present a
procedure (See Figure 4) that was used in the oewant of this work, but alternatives exist

for each step.

Once the inputs space is sampled in step 2 of ¢éhergl workflow, the training dataset is
used twice: On one hand, a small set of scenaiosad for zonation of the reservoir model. On
the other hand, the complete set of training sées# used in the variable selection after zones

are defined for each well. The suggested procedudiwided in three main steps:

a) Sdection of representative models (RMs): As reservoir flow characteristics
depend on the specific scenario, we first proposeelaction of representative models for
identification of drainage areas per well. For amste, we can use the method by Meira et al.,
(2015) which is based on simulation outputs for titaning dataset: oil recovery factor and
cumulative production for oil, water and gas. Timisthod is based on Equation 6 and it consists
in the selection of a set of scenari@), which minimizes a cross-plot functidhbased on
Euclidean distances between objective functionsioibsets of training data. (See details in
Meira et al., (2015)). The number of RMs can vaepehding on the available resources for
analysis. In this study, we recommend ten repratigatmodels, which is a reasonable number

of scenarios to analyze (Figure 5).

Feross(R) = ) FEs(®) = ) i B g(s.R) (6)
1.9

f.g seT

b) Reservoir zonation: This step consists in a flow analysis for the gelbc
representative models to identify drainage regipais well. This procedure can be done, for
instance, by phase-velocities streamlines analyi$is. analysis consists in assessing the flux

lines along the production period of each well highlighting the zones where these lines lie.

c) Input variable selection: Once the drainage regions per well and the
representative models are defined, we implemerariable selection method such as Principal
Variables for the inputs of the whole dataset aining scenarios. After Principal Components

decomposition, this method classifies grid pointaday h; values calculated by Equation 7,

11



340 selecting variables based on eigenvaluig¥ ¢f the decomposition and variables with high
341  loadings 4;;) on important PCs (See details in Cumming and W@®807). In this manner, we
342  obtain the inputs variables per zone that will beduin the emulation of the corresponding well

343 response.

P
h; = E(Aiaﬁ)z (7)
i=1

344 4. Case Study

345  Areference 3D geological model was built basedata from Namorado Field, Campos Basin,
346  Brazil. It has been used to test and compare difteproxy methodologies. In summary, to
347 build a consistent geological model, we followeck threation of structural, facies and
348  petrophysical models.

349 Facies modeling was defined using a Sequentiak#étdi Simulation (SIS) with vertical
350 trend (Ravenne et al., 2002). In a general condéxdpplying SIS, it provides 3D realistic
351 images of the reservoir heterogeneities and isuugef controlling fluid flow and assessing
352  final uncertainties in production (Seifert & Jens&899).

353 Petrophysical modeling of porosity was defined gsin3D stochastic modeling, SGS, to
354  perform the petrophysical modeling of porosity; conmg well logs, distribution values for
355 omni-directional variograms and 3D facies model cantrol and condition the porosity
356  distribution (Dubrule, 1998; Kelkar, M., & PerezQ@). This is a kriging-based method in
357  which un-sampled locations are visited in a randoder until all are visited. Porosity was then
358  simulated, reproducing per-facies distribution agwtd from the blocked well data. The same
359  SGS algorithm was used to model permeability digtion.

360 Following the structural and properties modelirtgwas necessary to define the rock and
361 fluid properties. The rock fluid properties, repeted by oil and water relative permeability
362  curves and capillary pressure, were created baseda dataset of four different rock types.
363  The fluid properties were also modelled througlea PVT data sample. The oil density of the
364 model is 881.81 kg/m3 (28.97 °API) at stock tankditons (101.32 kPa and 15.6 °C). The
365  bubble point pressure is 20,909.73 kPa and resdemperature is 85°C. The oil viscosifyo},
366  gas viscosity |(g), the oil (Bo) and gas (Bg) formation volume tacand the solubility ratio
367 (Rs) are coupled to the PVT curves as shown inrEigu Then, in our studies, we used the

368 results of the black-oil fluid model.

369 For the purpose of this work in considering theiat&on of petrophysical properties in

370 emulation, we selected a two-dimensional represientaf the full-field fluid-flow numerical
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simulation model to test and validate the proposethodology. This model was named as
META-2D (Figure 7).

META-2D comprises a black oil fluid model and res®gr with four vertical producers and
one injector, arranged in a five-spot configuratas shown in Figure 7. This 2D model is
composed of a 400 blocks (20x20x1) in a regularizecher-point grid with mean block
dimensions of 92x92x150 m. The rock compressibit.3 x 10~° kPa~! and bubble point
pressure i20,909.7 kPa. The total production time for the model is 20 rgeainder the
following operating and monitoring well conditions:

* Liquid rates are produced with the maximum possitalee for the field, 2,000
m3/day;

e Minimum production pressure is 18,633 kPa (190kgfjc

* Water cut is 90%, maximum gas-oil ratio is 200 nd*amd minimum oil rate is 20
mé/day for monitoring and closing conditions forogucers, if the condition is
reached;

« Water is injected at the maximum possible ratdHerfield, 5,000 m3/day;

e Maximum injection pressure is 34,323 kPa (350 kgfjc

Geo-realizations that represent each scenarioeoSitinulation model are characterized by
spatial distributions of effective porosity and meability (totaling 800 parameters).
Considering that it is a representative model ef fill field, the average simulation running
time for a single scenario is 30 seconds. Despmtegoa fast model, the preliminary goal is to
validate the proposed procedure and then implereimt more complex cases with high

execution time in subsequent studies.

5. Resaults

In this section, we present the results of implaiation of the methodology described
above. First, we show the process of emulator mgldrhen, we evaluate models obtained with
different training dataset sizes in terms of predic quality. Next, we use them to generate
production risk curves and compare them with sithutaresults. Finally, we evaluate the
implementation of emulator in risk analysis in teraf the computational cost and accurateness

respect to simulation results.

Reservoir characterization and sampling

This section describes steps 1-2 of the methoddleggribed. Simulation results for subsets

of 1,000 scenarios (training data), where onlygg@tysical uncertainty is considered, are used
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to build the proxy models for cumulative oiV/), gas (,) and water I¢},) production. In

Figure 8, we have the characterization of permislidr the training dataset.

Emulator building and validation

This section comprehends the steps 3-4 of the gemnsgthodology. In the first part we
present a description of the process of findingappropriate procedure to parameterize geo-
realizations in order to construct emulators f@ ¢hosen objective functions. In the second part
of the section we show the assessment of emulatiesned with the selected procedure for

different sizes of training dataset.

Procedures for emulator building

We selectedV,, G, andW, at final production time as output variables whbegavior we
try to emulate (See Figure 9). On the other hamalti parameters selected from each procedure
(See Table 2) are used in the estimation of regnessodels for objective functions at each
well. The active variables (subset of the initialested inputs) are chosen by a stepwise
algorithm based on Aikake Information Criteria useduild regression models.

We tested various procedures to build emulatorsdbgcting random points, evenly-spaced
and using PV for regions defined by location argirdige area for each well. The first attempt

consisted in dividing the reservoir in zones byaton (procedures 1-3 in Table 2).

The location-based zonation procedure consisteddiinding the reservoir in four
proportional regions (each with 100 grid-blocks)aiccordance with the location of the four
producers in the model. In Figure 10a, we illustthie active variables selected for the quadrant
corresponding to the zone of producer 2.

For this approach, we selected 40 grid-blockgpfameability and 40 for effective porosity
(defined as porosity times net-to-gross, whichseduas input in the simulator calculations) per
region, using each one of the three variable-gelechethods. The premise was that most of
variability of each well response could be expldin®y the petrophysical properties of grid
blocks around the well. For the first tested praced (with location-based zonation), this
turned out to be true fd¥,, andG,. We obtained models with acceptable predictiorityutor
those objective functions. However, behavior of alative water seemed complex and its
variability could not be explained by this locatibased zonation and selection of points with
any of the three approaches. Further tests by daiaints outside each region indicated that
behavior of well responses, in particuldl,, was better represented by points spread over the
whole reservoir model. For this reason, we propaseanation approach that was based on

drainage area for wells.
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For the flow-based zonation approach (procedurésid-Table 2), streamline analysis
showed that drainage area for each well compribedwthole reservoir extension. Then, we
selected 160 values for permeability and 160 fad-block effective porosity in the whole
reservoir, using the three variable selection ma#ghdn Figure 10b, we illustrate the active
variables chosen by AIC in the reservoir to expldin behavior of well 2. As shown, this
automatically selected gridblocks (explainable afalés) are more concentrated around the
corresponding well.

In total, 320 property values (inputs) represemtedalization in this approach. This is a very
large number of inputs parameters for the AIC regian algorithm. The strategy was to build
“partial” models for subsets of the 320 and comlime selectedctive variables by the step-
wise algorithm to build a single proxy-model thepresented the behavior of each objective
function.

To compare the performance of the proposed proesdwe sampled 400 scenarios and
quantified the prediction quality of built emulatdsy using th&®MSE,. Results are presented in
Table 3.

Table 3: Comparison of performance for tested proceduresrdgeRMSE,, for 10 trials.
Procedures
1 2 3 4 5 6

Cumulative Oil Np
PROD1 | 046 051 044 0.32 0.34 0.25
PROD2 0.38 0.41 0.37 0.30 0.26 0.23
PROD3 041 0.47 040 0.32 0.31 0.25
PROD4 | 0.46 0.49 044 0.36 0.39 0.29

Cumulative Gas Gp
PROD1 0.45 0.51 0.44 0.32 0.33 0.24

PROD2 0.39 041 0.37 0.29 0.25 0.23
PROD3 041 048 041 0.32 0.32 0.24
PROD4 0.43 046 0.42 0.35 0.39 0.28

Cumulative Water Wp
PROD1 054 0.54 050 0.50 0.47 0.41

PROD2 |0.83 0.83 0.81 0.52 0.44 0.42
PROD3 0.49 0.53 0.48 0.41 0.39 0.34
PROD4 |0.69 0.7/0 0.69 0.65 0.57 0.58

According to results of tests presented in Tabler8cedure 6 (described in Section 3.3) was
the best performing (lower prediction error meadusg RMSE, ) approach that allowed us to
build models explaining the observables behavioa danction of the properties of selected
grid-points within the reservoir. For the purposéhe present work, results and application are

obtained by implementing Procedure 6 to represenirgalizations in emulation.
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Emulation for selected procedure

In Figure 11, we present the Adjusted-R? for beitiulators with procedure 6 as a function
of the number of scenarios used as training datanRhis data, we observe that there is not
best case for Adjusted-R?, so we must look at tldiptive power of those models. Overfitting
cases where Adjusted-R? is high but prediction iquas poor, must not be disregarded.
Therefore, we are treating Adjusted-R? as an irtdicgiagnostics) but not as definitive
criterion for model assessment. Non-monotonic tsefidgure 11) for models built with less
than 300 scenarios correspond to smaller numbgriradipal variables selected as predictors for
these cases, given that number of sample sizeslithe number of predictors for proper

regression.

A cross-validation test was performed to obtainualitative evaluation of regression models
of each objective function. For this process, 2@enarios were sampled and simulated
(Validation data). Figure 12 presents a comparigbreross-validation plots for cumulative
water in well 2 emulators built with 100 and 30@rsarios. As observed, regression models
with higher Adjusted-R2 do not perform better giroelucing simulator results than regression
models with smaller coefficient of determinatiorhi§ result implies an over-fitted regression
for emulators built with a small training datadsttdoes not work well for validation scenarios.
We are then compelled to assess the prediction ipofvhe built emulators using RMSE. In
summary, we can say Adjusted-R? is a good indic&ioemulator prediction power, but it is

not definitive.

Prediction quality assessment

As proposed, we implemeRMSE,, to evaluate prediction power of built proxy-modeier
this case we build emulators for 10 different tragndataset samples of equal size. Then, we
calculated the average of normaliZRMSE,, for each case using a validation dataset. Results
are plotted in Figure 13 as a function of sizeraiiing dataset.

A referenceRMSE, curve is established from the training data useadch case. This
prediction error for training data represents aimim for RMSE,, of validation data given that
emulator is fitted for the training scenarios. Froatmalized RMSE values found in Figure 13,
we observe that results obtained for validatioradake above reference values obtained from
training data, as expected. The superpositioRM$E, curves forN, andG, is reflecting a
consistency of the procedure since reservoir presswabove the fluid saturation pressure.

In addition, there is an indication that more tnagnpoints does not necessarily translate into
more prediction power. TRRMSE,, reached a specific plateau for models at all wel#/,,, G,
and some wells fd#,. In the case df},, RMSE,, values obtained for PROD4 are above the

reference value in comparison with other wells.sTimplies a more complex variability of the
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objective function and confirms a lower predictijpower as indicated by smaller Adjusted-R2

values.

Being a proxy model, we expect emulator do notaepce exactly simulation results. Then,
the issue is how much discrepancy we can toleTdte.answer may depend on the application
we consider. For instance, for production strategiymization studies we might demand better
emulator prediction quality than for uncertaintguetion studies in an initial field development
plan. In this study, we use emulators to substititeulation in generation production risk
curves at an early phase of oilfield developmemmngequently, based on the error estimation
(MAPE) of risk curves obtained for emulators in gamson with simulation results, we
establish a “rule of thumb” criterion that might bsed to discern whether a specific emulator

can substitute a simulation study in such applcati

Application: Production risk curves

We implement emulators in a risk analysis proceflreilfield in early stage of production.
We use emulators to generate production risk cur@dts for the final production time (7,305
days) and compare the results with those obtaigeing the reservoir numerical simulator for
a medium fidelity model. For this purpose, we selacrisk curve constructed with 1000

simulated scenarios as reference risk curve.

In order to compare risk curves we compute simulamoulator discrepancy using the mean
absolute percentage error (MAPE). In our specitfuclyg case, it was noticed that for MAPE
values close or larger than 0.5%, dissimilarityw@sn risk curves is visually significant. This
means we can use MAPE=0.5% as the tolerated cutadffe for dissimilarity between risk

curves obtained with validated emulator and refezeesult.
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Table 4: Mean absolute percentage error (MAPE %) for pradoaisk curves. We highlight the case for
accepted MAPE with smaller training dataset size

Training PROD1 PROD2 PROD3 PROD4
dataset

size Np Wp Gp Np Wp Gp Np Wp Gp Np Wp Gp

100 0.15 046 0.10| 0.15 0.83 0.20| 0.16 053 0.14| 0.10 0.73 0.15
150 0.11 0.23 0.17| 011 0.64 0.12| 0.11 0.14 0.12| 011 0.45 0.13
200 0.23 020 0.22| 0.14 094 0.09| 011 0.27 0.11| 0.13 0.49 0.15
250 0.15 029 0.15| 0.08 | 1.05  0.12 | 0.11 0.10 0.09| 0.15 0.21 0.16

300 0.13 0.21 0.14| 010 0.20 0.10| 0.22 0.12 0.11 | 0.18 0.29 0.19

350 0.11 023 0411|009 0.22 0.07| 009 0.10 0.07| 023 0.32 0.14
400 0.09 0.28 0.09| 0.0 0.15 0.08| 0.09 0.12 0.10| 0.13 0.30 0.12
450 0.08 0.25 0.0 0.0vr 021 0.08| 008 0.12 0.07| 024 0.29 0.12
500 0.0vr 0.19 0.07| 0.0/ 022 0.08| 0.08 0.11 0.07| 0.13 0.32 0.13
550 006 0.16 0.07| 0.06 021 0.07| 009 0.14 0.09| 024 0.35 0.15
600 0.06 0.16 0.07| 0.06 0.20 0.08| 0.09 0.14 0.09| 0.14 0.30 0.14
650 0.06 0.19 0.07| 0.0/ 022 0.08| 0.09 0.15 0.09| 0.12 0.32 0.12
700 006 020 0.06| 0.06 021 0.08)| 009 0.16 0.08| 0.213 0.30 0.12
750 006 0.19 006 | 0.06 023 0.08| 008 0.15 0.07| 011 0.31 0.11
800 0.06 0.20 0.07| 0.06 0.24 0.08| 0.08 0.14 0.07| 0.11 0.30 0.11
850 006 0.16 0.06 | 0.0y 0.26 0.08| 008 0.13 0.07| 020 0.32 0.11
900 0.06 0.17 0.06 | 0.06 0.23 0.07| 0.07 0.14 0.07| 0.11 0.35 0.10
950 005 0.16 0.06 | 0.0y 0.23 0.07| 007 0.14 0.07| 011 0.33 0.10
1000 0.06 0.18 0.06 | 0.07 0.23 0.07| 0.07 0.13 0.07| 0.10 0.38 0.10

According to MAPE results in Table 4, the case vetthaller number of scenarios that meet
this criterion is the emulator built with 300 sceaa (Cross-validation plots fa¥,, emulators
are found in Figure 14). This configures the cheapalidated emulator that can reproduce
simulator results in this application. Then, acaogdo results in Figure 11 and Figure 13, we
can establish the criteria adjusted R-squared grehtin 0.8 and normalized RMSE smaller
than 0.5 as quality measure for emulators thatodkpmre simulator results in this application.
This represents sufficiency condition based on our specific case, noting tis&tcurveld,, of
PROD4 was reproduced by an emulator outside themreended criteria ranges. It is also
noted that for number of scenarios greater than 8df@rences among MAPE values are not
significant and no relevant variation of predictis curves is observed.

As indicated from the MAPE assessment, comparigaisk curves obtained in Figure 15
and Figure 16 shows that the emulator built with 8@mple scenarios is capable of reproducing
production risk curves (1000 trials for emulatod amulator) forV,, andW, for all wells at the
selected evaluation time. Besides, the curve nbthivith the simulation outputs of the 300
scenarios is also plotted. Results show that coownstructed with emulator outperforms the risk
curve for 300 simulated scenarios at reproduciegtithe curve $m 1000). In these plots, the

reference point corresponds to a synthetic reabtgcted for the study case that derives from a
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finer grid model constructed for research purpo$escomplement the comparison, Figure 17

shows the results for the field as an integratibimaividual wells.

Implementation assessment

To compare the computational effort required byng®mulation, we record the time spent
in the estimation of regression models for each bemof scenarios in the training dataset.
Based on that, we define implementation time addtad time invested in the simulations used
as training data, plus the actual time of estinmatib regression models and the time spent in
simulation of validation data. In this assessmevd, are not including the human resource
required to learn and implement the emulation tieghn

In Figure 18, we plot the calculated implementatione for each case considered ifgy;

W, andG,. The threshold time corresponds to simulation@d Scenarios which is considered
as “good enough” case compared to reference casedaitg to a MAPE analysis. We find that
the cheapest validated emulator (obtained with &¥harios) that reproduces reference risk
curves within the established error tolerance eager (20% less time) than the “good enough”

case using simulation.
6. Conclusonsand remarks

Previous works in reservoir emulation dealing wghtrophysical uncertainty treated the
problem in a restrictive way. For instance, soméhefm are characterized by implementation of
multipliers or lack of geological consistency. Alidated approach to deal with spatially
distributed inputs, such as permeability and ptydsi emulation was proposed and tested in a
risk analysis application. We evaluated the prémlicoower of emulators built with different
number of initial scenarios and built productiorskricurves that were assessed against
simulation results. We showed that the proxy-modmsstructed are able to reproduce

production risk curves fav,,, W, andG, obtained through simulation at the selected evalna

time within the tolerated discrepancy. Furthermaiording to our analysis:

* For emulators built with proposed procedure, AdjdsR? greater than 0.8 and
normalized RMSE smaller than 0.5 represent an ‘ofiftlfnumb” sufficiency criteria to
validate emulators that can be used to generatduption risk curves that match
simulation results within a MAPE tolerance cut-off 0.5%. For our case study, the
guality criteria were met for emulators built wiBB0 scenarios. Small improvement in
prediction power is obtained with more training misi at the expense of more

computational resources.
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e For our study case and the established criteriapauiator constructed with 300
scenarios can reproduce reference risk curvesnguatanith simulation at a cheaper
computational cost (20% less). Despite being alsgah compared to what can be
expected from using proxy models, it can be undetsbecause we are using a model
that represent a portion of a full complex resaraoid which is fast to run.

In this preliminary work, we have implemented theuéator in a straightforward application
because our focus was the development of the puoeefbr consideration of variability

spatially-distributed properties in emulation. T potential of this tool is expected to be
more relevant when working with simulation interesistudies (e.g. history-matching
workflows) and complex models such as carbonakrvess in Brazilian pre-salts. Because of
the difference between emulator and simulation ingitimes, computational cost saving from
using emulators can be bigger as complexity, hgtareity and size of reservoir model
increase. Notwithstanding, complex cases also maane training data for emulators, so the
trade-off between model complexity and computatidinge saving is a crucial issue of further

research.
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Nomenclature

Latin letters Unit
Adj-R2 Adjusted coefficient of determination

a;j PCA loadings

By Gas-Formation volume factor

B, Oil-Formation volume factor

f Objective function f

fi Emulated output i

Feross Cross-plot function

g Objective function g

gij Deterministic functions

Gp Cumulative gas production m3
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Greek letters
Bij

Ai

Hg

Ho
Abbreviations
AIC

CPU

DLHG

JMM
MAPE
NTG
OF
PCA
PM

PV measure

Number of predictors

Model likelihood

Sample size

Number of points in risk curve
Cumulative oil production
Predicted data

Coefficient of determination
Normalized RMSE
Reference data

Gas-Oil ratio

Subset of training data
Training data

Gaussian Process
Cumulative water production
Input vector

Active variables

Simulator outputs

Proxy outputs

Mean of training data outputs

Regression scalars
PCA eigenvalues
Gas viscosity

Oil viscosity

Aikake information criteria

Central Processing Unit

Discretized Latin hypercube with
realizations

Joint-model method

Mean average percentage error
Net-to-gross ratio

Objective function

Principal component analysis

Proxy Model

geo-

m3

m3
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PV Principal variables

PVT Pressure-Volume-Temperature
RM Representative Model

RMSE Root mean square error

SGS Sequential Gaussian simulation
SIS Sequential indicator simulation
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Figure Captions
Figure 1: General methodology flowchart for emuldtoilding and application in reservoir studies

Figure 2: lllustration of MAPE. Measure of discrepg between risk curves obtained with emulation and
simulation. a) Good case. b) Bad case.

Figure 3: Diagram for parameterization of inputsnfirgeostatistical realizations
Figure 4: Suggested procedure for parameterizatiomputs from geostatistical realizations.

Figure 5: lllustration of RMs selection method byikh et al. (2015). Selection of 10 models for gtud
case. a) Risk curve for field cumulative oil. b)o€s-plot for field cumulative oil and cumulative ter

Figure 6: META-2D — Fluid modeling. (a) oil viscogi(uo) and gas viscosityu§), (b) oil (Bo) and gas
(Bg)formation volume factor and (c) Gas-oil ratRs].p,, is the bubble point pressure.

Figure 7: Grid-block effective porosity map reatina for META-2D model.

Figure 8: Permeability (mD) characterization for M&2D model. a) Random geostatistical realization.
b) Mean values for training dataset. c) Standasdadion for training dataset.

Figure 9: Production variables scenarios used gtive functions in emulation at final productitme
7,305 days. a) Scenarios for cumulative oil. b)nacies for cumulative water.

Figure 10: lllustration of PV + AIC model selectidor emulators built with 300 scenarios for Np of
PROD2. Red dots correspond to porosity and bladk tto permeability active variables. a) Points
selected near well location. b) Points selectediferwhole zone.

Figure 11: Summary of emulator building. Adjustetif&® regression models

Figure 12: Cross-validation comparison far,, emulators. Straight black line represents coinueeof
emulator (Y) and simulator results (T). Coefficiaitdetermination for the model and prediction erro
(RMSE,) for validation data are reported. a) Cumulativat®¥ Producer 3. Emulation with 100 scenarios.
b) Cumulative Water Producer 3. Emulation with 3@énarios.
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Figure 13: Normalized RMSE values as a functionwhber of scenarios used to build emulator. Results
correspond to average of 10 different samples.

Figure 14: Cross-validation plots between simulaand proxy constructed with 300 scenarios for
Cumulative Oil. Straight black line represents cadence of emulator (Y) and simulator results @)).
Producer 1. b) Producer 2. c) Producer 3. d) Preddic

Figure 15: Comparison of Cumulative Oil Np risk wes obtained with 300 scenarios emulator and
reference curve. a) Producer 1. b) Producer 2rajiRer 3. d) Producer 4.

Figure 16: Comparison of cumulative water Wp riskves obtained with 300 scenarios emulator and
reference curve. a) Producer 1. b) Producer 2rajuRer 3. d) Producer 4.

Figure 17: Field results as integration of sepagatelators for the four wells. a) Field Cumulat®#. b)
Field Cumulative Water. ¢) Field Cumulative Gas.

Figure 18: Implementation time for Np, Wp and Gpuéators. We have emulators wiRMSE, smaller
than 0.5 with implementation time less than esshiell threshold. Results for 300 scenarios higlhdijht
in violet box.
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Highlights
e A procedure for consideration of spatially-distributed properties in reservoir behavior
emulation is proposed.
* Theprocedureis based on a selection of representative grid-block properties within well
drainage regions.
« Implementation of the proposed procedure in emulator building provides reliable results

for risk curves generation in oilfield development.



