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Abstract

Active galactic nuclei (AGNs) that show strong rest-frame optical/UV variability in their blue continuum and
broad line emission are classified as changing-look AGN, or at higher luminosities, changing-look quasars (CLQs).
These surprisingly large and sometimes rapid transitions challenge accepted models of quasar physics and duty
cycles, offer several new avenues for study of quasar host galaxies, and open a wider interpretation of the cause of
differences between broad and narrow-line AGN. To better characterize extreme quasar variability, we present
follow-up spectroscopy as part of a comprehensive search for CLQs across the full Sloan Digital Sky Survey
(SDSS) footprint using spectroscopically confirmed quasars from the SDSS DR7 catalog. Our primary selection
requires large-amplitude ( g 1D >∣ ∣ mag, r 0.5D >∣ ∣ mag) variability over any of the available time baselines
probed by the SDSS and Pan-STARRS1 surveys. We employ photometry from the Catalina Sky Survey to verify
variability behavior in CLQ candidates where available, and confirm CLQs using optical spectroscopy from the
William Herschel, MMT, Magellan, and Palomar telescopes. For our adopted signal-to-noise ratio threshold on
variability of broad Hβ emission, we find 17 new CLQs, yielding a confirmation rate of 20%. These candidates
are at lower Eddington ratio relative to the overall quasar population, which supports a disk-wind model for the
broad line region. Based on our sample, the CLQ fraction increases from 10% to roughly half as the continuum flux
ratio between repeat spectra at 3420Åincreases from 1.5 to 6. We release a catalog of more than 200 highly
variable candidates to facilitate future CLQ searches.
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1. Introduction

Quasars are known to vary on the 10% to 20% level over time
(∼months–years) and across many wavelengths. Their con-
tinuum variability is intrinsic to the central engine, and it causes
a response in the broad emission line (BEL) flux that is usually
lagged and has a smaller amplitude (Peterson et al. 2004; Bentz
et al. 2009). Extreme variations in optical continuum/BEL flux,
besides enabling robust studies of the response between various
emission components, have been caught in recent surveys of the
sky (e.g., Stern et al. 2017; Assef et al. 2018) and can reveal rare,
interesting physics. There are various scenarios for the under-
lying accretion disk structure that could explain strong rapid
variability in active galactic nucleus (AGN). These include
magnetically elevated (or “thick”) disks (Dexter & Begelman
2019), accretion state transitions (Noda & Done 2018),
instabilities arising frommagnetic torque near the inner stable
circular orbit of the accretion disk (Ross et al. 2018), and
misaligned disks Nixon et al. (2012).

Besides variability, quasar spectra yield information on the
structure of the emission regions. The Balmer lines are thought
to provide the most direct measurement of the amount of
ionizing flux relative to the other BELs, and the Hβ BEL is
classically used, along with Hα, to define AGN types
(Osterbrock 1981). The profiles of higher ionization lines seen
in the UV (C IVλλ1548,1550, C III]λ1909) often reveal
powerful outflows (Richards et al. 2011). The Mg IIλ2800 line
is generally less responsive to changes in ionizing flux than the
Balmer lines, presumably due to a larger average formation
radius and/or because it is intrinsically less responsive (Korista
& Goad 2004), but in recent analysis the line has been observed
to reverberate among SDSS-RM quasars similarly to Hβ (Shen
et al. 2016). In the disk-wind model for the BLR described by
Elitzur et al. (2014), the dividing line between a Type 1 and
“true” (unobscured) narrow-line Type 2 AGN is a critical value
of a parameter: L MBH

2 3, similar to the Eddington ratio.
Conversely, obscured Type 2 quasars can mostly be explained

The Astrophysical Journal, 874:8 (21pp), 2019 March 20 https://doi.org/10.3847/1538-4357/ab05e2
© 2019. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-8179-9445
https://orcid.org/0000-0002-8179-9445
https://orcid.org/0000-0002-8179-9445
https://orcid.org/0000-0002-3719-940X
https://orcid.org/0000-0002-3719-940X
https://orcid.org/0000-0002-3719-940X
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0002-4431-0890
https://orcid.org/0000-0002-4431-0890
https://orcid.org/0000-0002-4431-0890
https://orcid.org/0000-0001-8665-5523
https://orcid.org/0000-0001-8665-5523
https://orcid.org/0000-0001-8665-5523
https://orcid.org/0000-0001-8557-2822
https://orcid.org/0000-0001-8557-2822
https://orcid.org/0000-0001-8557-2822
https://orcid.org/0000-0003-2686-9241
https://orcid.org/0000-0003-2686-9241
https://orcid.org/0000-0003-2686-9241
https://orcid.org/0000-0003-4401-9582
https://orcid.org/0000-0003-4401-9582
https://orcid.org/0000-0003-4401-9582
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6965-7789
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0001-6511-4306
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0002-7965-2815
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
https://orcid.org/0000-0001-9034-4402
mailto:cmacleod@cfa.harvard.edu
https://doi.org/10.3847/1538-4357/ab05e2
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05e2&domain=pdf&date_stamp=2019-03-15
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05e2&domain=pdf&date_stamp=2019-03-15


by varying orientation, as can obscured Type 1 AGN (Liu
et al. 2018).

A small fraction of AGN show large changes in Balmer BELs
and are called “changing-look” AGN (CLAGN) if over time they
significantly lose or gain BEL flux (Khachikian & Weedman
1971; Tohline & Osterbrock 1976; Penston & Perez 1984; Cohen
et al. 1986; Goodrich 1989; Storchi-Bergmann et al. 1993;
Bischoff & Kollatschny 1999; Eracleous & Halpern 2001;
Denney et al. 2014; Shappee et al. 2014; Li et al. 2015; Husemann
et al. 2016; Runco et al. 2016). These optical CLAGN are
different from the classical CLAGN discovered in the X-rays
(Risaliti et al. 2009), which are generally associated with large
changes in the X-ray absorption column. Changing-look quasars
(CLQs) have recently been defined as AGN with a bolometric
luminosity L 10bol

44> erg s−1 that exhibit a strong change in
Balmer BELs, usually changing between Types 1 and 1.9 in the
optical, and have been recently discovered in surveys featuring
large sample size and long time baselines (LaMassa et al.
2015; MacLeod et al. 2016; Ruan et al. 2016; Runnoe et al. 2016;
Gezari et al. 2017; Stern et al. 2018; Yang et al. 2018).
Presumably, CLQs are due to the same phenomena as optical
CLAGN, but at higher luminosity and redshift. In the handful of
cases where there exists X-ray coverage before and after the event,
there are no signs of associated changes in absorption (e.g.,
LaMassa et al. 2015), therefore suggesting that strong intrinsic
changes in the central ionizing flux are responsible.

In MacLeod et al. (2016), we performed a systematic search
for CLQs through archival spectra in the Sloan Digital Sky
Survey (SDSS) among quasars with repeat spectra. This method
takes advantage of full-sky photometric surveys to select a
sample of strongly variable quasars. Now, we use follow-up
spectroscopy to uncover additional CLQs. Recently, Rumbaugh
et al. (2018) showed that extremely variable quasars (EVQs,
defined as having Δg> 1mag over any baseline) account for
30%–50% of quasars, and they are systematically at lower
Eddington ratio than their less variable counterparts. The authors
only implied that by extension, CLQs follow this trend. We are
now able to specifically confirm this trend with our follow-up
spectroscopy. We also determine what fraction of highly variable
quasars show strong BEL changes as a function of continuum
flux change using spectral decomposition.

We outline the input photometric data and CLQ candidate
selection in Section 2 and the spectroscopic data and analysis in
Section 3. We present our results from spectroscopic follow-up
of CLQ candidates, including the sample demographics and
CLQ fraction in Section 4. Since the purpose of this work is to

systematically search for physically interesting or rare events that
might shed light on the structure in and around accretion disks,
we only highlight the most significant and dramatic cases.
However, we provide the full candidate sample since it may be
used for studying the highly variable tail of quasar variability.
The results are summarized and discussed in Section 5.

2. Photometry and Analysis

We use imaging data from the SDSS and Pan-STARRS1
(PS1; Kaiser et al. 2002) to select strongly variable quasars for
spectroscopic follow-up. In this section, we describe the input
data and our sample selection (see Table 1 for a summary).

2.1. Optical Photometry

2.1.1. SDSS

The SDSS (York et al. 2000) uses the imaging data gathered by
a dedicated 2.5 m wide-field telescope (Gunn et al. 2006), which
collected light from a camera with 30 2k×2k CCDs (Gunn et al.
1998) over five broad bands—ugriz (Fukugita et al. 1996)—
to image 14,555 unique deg2 of the sky. This area includes
7500 deg2 in the North Galactic Cap (NGC) and 3100 deg2 in the
South Galactic Cap (SGC). SDSS started its imaging campaign
in 2000 and concluded in 2007, having covered 11,663 deg2.
These data are part of the SDSS I/II survey and are described in
Abazajian et al. (2009) and references therein. SDSS-III added
another ∼3000 deg2 of new imaging area in 2008.
The imaging data are taken on dark photometric nights of

good seeing (Hogg et al. 2001), calibrated photometrically
(Smith et al. 2002; Ivezić et al. 2004; Tucker et al. 2006;
Padmanabhan et al. 2008), and astrometrically (Pier et al.
2003) before object parameters are measured (Lupton et al.
2001; Stoughton et al. 2002). The Eighth Data Release (DR8;
Aihara et al. 2011) provides updated photometric calibrations.
The Stripe 82 region of SDSS (S82; 22h24m<R.A.<04h08m

and ∣ decl. 1 .27< ∣ ) covers ∼300deg2 and has been observed
∼60 times on average to search for transient, variable, and moving
objects (Abazajian et al. 2009). These multi-epoch data have
timescales ranging from 3 hr to 8 yr and provide well-sampled five-
band light curves for an unprecedented number of quasars.
In our variability analysis and determination of the source

morphology,14 we include all DR10 primary and secondary

Table 1
Selection of Spectroscopically Variable Quasars

Selection Total # iSDSS<19.5/ Extended Chandra/
Has CRTS Morphology XMM

SDSS Quasars in DR7Q 105783 69420 4392 L
Lacking BOSS spectra 79838 53594 4142 L
EVQs: g 1D >∣ ∣ mag, r 0.5D >∣ ∣ mag
(σ < 0.15 mag), z<0.83 1727 1081 416 L
Lacking radio detection 1403 858 332 103

g 1D >∣ ∣ mag as of 2013 262 203 86 20
Observed spectroscopically (MMT: 64%, 130 105 67 17
Mag.: 15%, WHT: 15%, Pal.: 6%)
CLQs: Hβ (dis)appearance at Nσ(Hβ)>3 17 15 10 0

Note.Each step includes the criteria listed on the previous rows. The rightmost three columns describe prioritized subsets that do not together comprise the full sample
in the leftmost column. Our X-ray catalog is limited to radio-quiet objects.

14 If any epoch has a point-source morphology in SDSS, the object is
considered a point source.
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photometry, as well as observations for point sources in Stripe
82 taken in nonphotometric conditions and recalibrated using
the improved method of Ivezić et al. (2004).

2.1.2. Pan-STARRS 1 3π

Our analysis includes imaging from the PS1 3π survey, in
particular the Processing Version 2 catalog available in a local
Desktop Virtual Observatory (DVO) database (released 2015
January). The overall survey is described in Chambers et al.
(2016); see Magnier et al. (2016a, 2016b, 2016c), Waters et al.
(2016), and Flewelling et al. (2016) for a description of the data
analysis and products. PS1 observations were made with a
1.8 m telescope equipped with a 1.4 gigapixel camera. Over the
course of 4 yr of the 3π survey, up to four exposures per year in
five bands, g r i z y, , , ,P1 P1 P1 P1 P1, have been taken across the full

30d > -  sky. Each nightly observation consists of a pair of
exposures 15min apart to search for moving objects. For each
exposure, the PS1 3π survey has a typical 5σ depth of 22.0 in
the g-band (Inserra et al. 2013). Pan-STARRS imaging
commenced in 2009 and continued through to 2013. Hence,
the addition of the PS1 photometry to the SDSS photometry
increases the baseline of observations from ≈8 to ≈14 yr with
typically several epochs over the overlapping area between the
SDSS and (∼30,000 deg2) PS1 footprints.

2.1.3. Catalina Sky Survey

The Catalina Real-time Transient Survey (CRTS) is an open-
band large-scale survey with dense monitoring by multiple
telescopes of sources brighter than i19.5. See Drake et al.
(2009) for details. The CRTS magnitudes are calibrated to a
V-band zero-point. Where available, CRTS light curves add the
most recent monitoring data (up to 2016), and the largest
number of imaging epochs (typically ∼300 over 10 yr). The
data displayed are averaged in 10 day segments.

2.2. Radio Detections

To exclude potential jet-related variability from our sample
of light curves, we match to the unified radio catalog of
Kimball & Ivezić (2014) using a 30″ matching radius. This
includes data from the FIRST, NVSS, WENSS, GB6 radio
surveys, as well as VLA Low-frequency Sky Survey revised
edition (VLSSr).

2.3. CLQ Candidate Selection

We use optical photometric variability from SDSS and PS1
to select quasars for follow-up optical spectroscopy. This is a
similar selection as in MacLeod et al. (2016), which was based
on Δg>1mag changes among SDSS/PS1 photometry and
repeat spectra in SDSS and the SDSS-III’s Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). To extend
our previous work, we follow up highly variable quasars
lacking recent spectra in BOSS. For selecting targets, we limit
the sample to redshifts z<0.83 so that the Hβ line is within
the optical wavelength range.

In particular, CLQ candidates are selected by requiring
(i) a magnitude change of Δg>1 mag and Δr>0.5 mag
among SDSS and PS1 measurements with errors <0.15 mag,
(ii) no radio detection to exclude jet-related variability, (iii) a
redshift z<0.83, (iv) no BOSS spectrum, and (v) a current
gmagnitude at least 1mag dimmer or brighter compared to the

SDSS spectral epoch. For (v), the photometric data point
nearest in time to the earliest SDSS spectrum is compared to
the most recent PS1 data point. After visual vetting of the
combined SDSS/PS1/CRTS light curves and spectra, we
arrive at 262 CLQ candidates, listed in Table 2. Table 1
summarizes each stage of filtering. We prioritize these
candidates based on a number of factors to most efficiently
use telescope time. These include their morphology to
minimize overlap with the sample from the Time Domain
Spectroscopy Survey (TDSS) “HYPQSO” program, which is
obtaining few-epoch-spectroscopy for hypervariable quasars
(Morganson et al. 2015; MacLeod et al. 2018), but only those
with point-source morphology in SDSS; X-ray detections from
the second release of the Chandra Source Catalog (CSC; Evans
et al. 2018) and/or the XMM-Newton 3XMM-DR5 (Rosen
et al. 2016) catalog, since they afford the opportunity for
follow-up with X-ray observatories; the signal-to-noise ratio
(S/N) in the earlier spectrum; and the most recent photometry
from CRTS. While there is no straightforward algorithm to
select the 130 observed targets out of the 262 candidates,
Table 1 gives the breakdown into three main criteria for
prioritization in the last three columns, for each stage of
filtering.

3. Spectroscopy and Analysis

Starting with a spectroscopic quasar catalog from SDSS, we
target highly variable quasars for new optical spectroscopy. We
describe the SDSS and follow-up spectroscopic data sets in
Section 3.1, and describe our spectral analysis in Section 3.2. A
complete log of the spectroscopic observations and other
relevant information can be found in Table 2.

3.1. Spectroscopic Data

3.1.1. SDSS/BOSS

The final spectroscopically confirmed quasar catalog from
SDSS I/II, based on the Seventh Data Release of SDSS (DR7;
Abazajian et al. 2009), is presented in Schneider et al. (2010).
This catalog contains 105,783 quasars that have luminosities
larger thanMi=−22.0. These quasars form our parent sample,
and are hereafter referred to as the DR7Q catalog.
As described by Richards et al. (2002), the bulk of quasar

target candidates in SDSS I/II were selected for spectroscopic
observations based on their optical colors and magnitudes in
the SDSS imaging data or their detection in the FIRST radio
survey (Becker et al. 1995). Low-redshift, z3, quasar targets
were selected based on their location in ugri-color space, and
the quasar candidates passing the ugri-color selection are
selected to a flux limit of i=19.1. High-redshift, z3,
objects were selected in griz-color space and are targeted to
i=20.2. Furthermore, if an unresolved, i�19.1 SDSS object
is matched to within 2″ of a source in the FIRST catalog, it is
included in the quasar selection. Additional quasars were also
(inhomogeneously) discovered and cataloged in SDSS I/II
using X-ray, radio, and/or alternate odd-color information, and
extending to fiber-magnitudes of about m<20.5 (e.g., see
Anderson et al. 2003).
In MacLeod et al. (2016), we looked for significant changes

in the BELs of quasars that had a second epoch of spectroscopy
in BOSS, which was part of the third incarnation of the SDSS
(SDSS-III; Eisenstein et al. 2011). In this work, we target
quasars that lack a BOSS (DR12) spectrum, with two

3
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Table 2
CLQ Candidates

SDSSJID z morph. Phot. g1 σ1 Phot. g2 σ2 Spec. MJD gPS1 σPS1 Spec. Facility CLQ Nσ

flag MJD1 (mag) (mag) MJD2 (mag) (mag) MJD1 (PS1) (mag) (mag) MJD2 by VI? (Hβ)

000116.00+141123.0 0.404 0 52170 18.696 0.021 56588 21.009 0.071 52235 56588 21.009 0.071 57989 MMT 0 2.6
000904.54−103428.7 0.241 0 51814 17.795 0.028 55860 19.123 0.022 52141 55860 19.123 0.022 58367 MMT 1 8.2
001113.46−110023.5 0.495 1 51865 19.885 0.031 55829 21.308 0.112 52141 55834 21.233 0.113 57989 MMT 1 2.3
001206.25−094536.3 0.566 0 51865 19.061 0.049 56218 21.638 0.148 52141 56218 21.638 0.148 57597 Magellan 1 2.5
001502.38−094439.1 0.336 1 51865 18.877 0.022 56214 20.349 0.073 52138 56218 20.283 0.055 57595 Magellan 0 2.0
002311.06+003517.5 0.422 0 51081 19.584 0.024 55449 18.079 0.032 55480 56206 18.728 0.016 58037 MMT 1 2.4
002450.50+003447.7 0.524 1 52522 18.766 0.030 55449 19.921 0.133 52203 56206 19.814 0.029 57989 MMT 0 0.4
002627.89−101020.5 0.718 0 51814 19.534 0.026 55829 20.611 0.066 52145 55829 20.583 0.063 57596 Magellan 0 0.7
002714.21+001203.7 0.454 0 51081 18.261 0.007 56206 19.466 0.024 51782 56206 19.466 0.024 57726 MMT 0 2.0
004339.32+134436.5 0.527 0 51464 19.349 0.022 55499 21.997 0.146 51879 55829 21.248 0.104 57597 Magellan 1 3.1
005244.14+142807.1 0.652 0 51464 19.254 0.021 55745 20.478 0.034 51871 55745 20.478 0.034 57597 Magellan 0 0.7
012821.43+151956.4 0.548 0 51464 18.669 0.039 55810 20.190 0.032 51893 55810 20.190 0.032 57597 Magellan 0 2.2
012946.71+150457.2 0.365 0 51465 17.700 0.023 55835 20.474 0.098 51898 56246 20.029 0.101 57597 Magellan 0 5.9
013203.46−093153.6 0.190 1 51814 18.439 0.025 56209 19.479 0.024 52178 56209 19.479 0.024 57726 MMT 0 5.7
013458.36−091435.4 0.443 0 51814 18.605 0.022 56209 19.985 0.036 52178 56209 19.970 0.035 57989 MMT 1 5.5
015957.64+003310.4 0.312 1 51819 19.122 0.026 54424 20.284 0.049 51871 55863 19.942 0.044 55201 BOSS 1 −
022556.07+003026.7 0.504 1 52522 19.974 0.029 55508 21.783 0.134 52944 56214 20.710 0.178 55445 BOSS 1 −
022652.24−003916.5 0.625 0 52288 20.252 0.023 55932 22.002 0.089 52641 56214 21.676 0.186 56577 BOSS 1 −
025428.83−004834.9 0.810 0 52585 19.759 0.027 56214 20.831 0.087 52614 56214 20.831 0.087 N/A N/A − −

Note. The full list of 262 candidates are available in the electronic version. Fields are marked with “−” if the repeat spectra were not analyzed (due to either data source or S/N) or not available. The third column lists the
morphology flag (0 for point source, 1 if extended).

(This table is available in its entirety in machine-readable form.)
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exceptions: two of the CLQs from MacLeod et al. (2016),
J002311.06+003517.5 and J225240.37+010958.7, were tar-
geted for follow-up spectroscopy here because they showed a
strong dimming in PS1 since the BOSS spectrum.

3.1.2. William Herschel Telescope (WHT)

Relatively bright (g< 20.5) and highly variable ( gD >∣ ∣
1.3 mag) CLQ candidates were observed on the nights of 2016
February 6–8 and May 30, 31 using the 4.2 m WHT in La
Palma. Observations were performed using the Intermediate
dispersion Spectrograph and Imaging System (ISIS). The 5300
dichroic was used along with the R158B and R300B gratings in
the red and blue arms, respectively, along with the GG495
order sorting filter in the red arm. Typically 2× binning in the
spatial direction was used to improve the S/N, along with a
narrow CCD window to reduce memory usage and readout
times. This setup gives a spectral resolution of R∼1500 at
5200Å in the blue and R∼1000 at 7200Å in the red for a slit
width of 1 0 and nominal total coverage of ∼3100 to 10,600Å
(but effectively further limited by the atmosphere).

Typically, calibration images were taken at the start of each
night, including bias frames, lamp flats, and CuNe/Ar arc lamp
images. Spectroscopic standard stars were observed at ∼2 hr
intervals throughout the night, though this cadence was not
always possible. The slit was oriented at the parallactic angle.
Exposures were taken in 1800 s increments, and the number of
shots on target was adjusted based on the latest PS1
photometry. WHT data were reduced using custom PYRAF
scripts and standard techniques.

For analysis of follow-up spectra from WHT and other
telescopes described as follows, we correct for telluric
absorption where needed by using a standard star observation
at similar airmass and the empirical method described in Wade
& Horne (1988) and Osterbrock et al. (1990).

3.1.3. MMT

Observations of a fainter set of targets were made with the
Blue Channel Spectrograph on the 6.5 m MMT situated on
Mount Hopkins, Arizona. Observations were carried out over
several dates in 2016 to 2018 (see Table 2 for exact dates).
Here, the 300 ℓ mm−1 grating was used with a clear filter and
2× binning in the spatial direction. The central wavelength
setting ranged from 5835 to 6335Å (mostly at 5900Å). To
reduce MMT data, we used the pydis software adapted for
use with Blue Channel data.15 We use three exposures to
remove cosmic rays by taking the median, and we compute the
error in flux as rms N . When three exposures were not
available, we used the errors output by pydis and removed
cosmic rays by filtering large deviations from the background
regions on the smoothed two-dimensional spectrum. The Blue
Channel spectrograph (on MMT) achieves good signal at
observed-frame wavelengths λ<7000Å.

3.1.4. Magellan

To observe most of our targets in the SGC, and most of the
relatively high-redshift targets, we used the Magellan Clay
6.5 m telescope with the Low Dispersion Survey Spectro-
graph 3 (LDSS3)-C spectrograph. Observations were carried
out over the nights 2016 July 26–29. The LDSS3-C instrument

consists of a grism situated behind an aperture plate; we opted
to use the VPH-All grism (covering 4250–10000Å) with the
standard 1 0×4 0 center long slit mask.
The LDSS3-C spectrograph has better efficiency toward

redder wavelengths (7000< λ< 10000Å) than the MMT’s
Blue Channel, so we preferred it for higher-redshift objects.
Reductions were carried out using both standard IRAF
techniques and the pydis software adapted for use with
LDSS3 data.

3.1.5. Palomar

We obtained second-epoch spectra of two quasars with
Double Spectrograph (DBSP) on the Hale 200″ Telescope at
Palomar Observatory on UT 2017 May 30, and second-epoch
spectra of an additional six quasars using the same instrument
on UT 2017 June 26. All quasars were observed with single
900s exposures, other than J161602.39+482201.2, which was
observed with two such exposures. We obtained all the spectra
through a 1 5 slit aligned at the parallactic angle using the
600 ℓ mm−1 grating on the blue arm of the spectrograph
(λblaze=4000 Å), the 316 ℓmm−1 grating on the red arm of
the spectrograph (λblaze= 7500Å), and the 5500Å dichroic.
This configuration provides moderate resolution spectra across
the entire optical window. The data were processed using
standard techniques within IRAF, and flux calibrated using
standard stars observed on the same night.

3.2. Spectral Decomposition

We use the QSfit spectral decomposition code from
Calderone et al. (2017) to analyze the SDSS and follow-up
spectra. We fit simple power-law continuum components, iron
optical and UV templates, Balmer continuum, BEL, narrow
emission line, and host galaxy components. The Fe II templates
are based on the narrow-line Seyfert 1 (NLS1) AGN I Zw 1
(Vestergaard & Wilkes 2001; Véron-Cetty et al. 2004), with the
UV iron equivalent width (EW) fixed to avoid a degeneracy
with the continuum slope. The host galaxy template is a typical
AGN host (Silva et al. 1998; Polletta et al. 2007). We adopt the
redshifts and E B V-( ) values from the DR7Q catalog. We
exclude spectra where the median S/N is 2. For an example
spectral decomposition near Hβ, see Figure 1.
For the Hβ line, we start by fitting a single broad plus a

single narrow component with both FWHM values allowed to
vary. The FWHM of the broad component was limited to be
between 900 and 15,000 km s−1, as in Calderone et al. (2017).
The narrow lines were modeled with single components with a
FWHM limited to the range 100 to 2000 km s−1. For some
objects, the broad Hβ component was flagged as having bad
quality (e.g., the FWHM or velocity offset hit a limit). In these
cases, if there was no apparent broad Hβ flux (which was
usually the case), we fixed the FWHM of the broad component
to the full width at 10% maximum of the broad component
from the bright-state spectrum to find an upper limit on the Hβ
flux.16

After fitting each spectrum, we scaled the follow-up
spectrum by a single factor so that the modeled sum of narrow
[O III]λλ4959,5007Å line flux (continuum-subtracted) match-
ed that of the early-epoch SDSS spectrum. In some cases where

15 http://jradavenport.github.io/2015/04/01/spectra.html

16 Our results are not affected whether we use the full width at 10% maximum
or the FWHM of the bright-state Hβ flux for the CLQ dim-state flux.
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Figure 1. Top panels: example of a spectral decomposition for variable quasar J000116.00+141123.0 showing an intermediate luminosity change
( L 3.5 103240

44D ´∣ ∣ ergs−1) and retaining some broad Hβ flux. This object is not classified as a CLQ here because there is still broad Hβ visible in the dim
state, and the significance of the BEL change is N H 3b <s ( ) . In the left panel, the SDSS spectrum, best-fit model, and model components are shown. In the right
panel, the SDSS spectrum is shown in gray, and the spectral decomposition for the follow-up spectrum, in black, is shown. The follow-up spectra are scaled so that the
integrated [O III]λλ4959,5007 Å model narrow-line flux matches that of the SDSS spectrum. Bottom panels: as in the top panels but for J210200.42+000501.8, a
changing-look quasar in a post-starburst galaxy (Cales et al. 2013). In this case, the BEL component fit to the dimmer spectrum was fixed to 10% the SDSS flux and is
considered only an upper limit.
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the [O III] scaling yielded unphysical results, we instead forced
the host galaxy component to match that of SDSS.

Then, using the Monte Carlo resampling technique from
Calderone et al. (2017), we resampled 100 times, taking the
rms of the resulting parameters for their uncertainties.

3.3. Definition of CLQs

The S/N can have a large impact on the visual definition of
CLQs. If the S/N were worse for certain objects (e.g.,
J000116.00+141123.0 shown in Figure 1), they might be
considered CLQs upon visual inspection, as Hβ would be
hidden in the noise. To limit the number of cases that simply
lacked the S/N to rule out a CLQ nature, we use the
significance of the Hβ change to form our CLQ sample.

We calculate the flux deviation,

N f f , 12 1 2
2

1
2l s s= - +s ( ) ( ) ( )

to determine the significance (in units of σ per spectral element)
for the Hβ change. First, we scale the spectra as described in
Section 3.2 and subtract each continuum component to remove
the linear trend across the line. Then, we re-bin the spectra to a
similar resolution in rest-frame wavelength of about 2Å/pix.
Finally, we smooth the resulting spectra using a running
median with a window of 32Å(rest frame). The most extreme
value of Nσ(λ) in the wavelength range of Hβ (4750–4940Å
rest frame), indicative of the amount of Hβ variability, is then
compared to Nσ(4750Å)—that is, the flux deviation just blue-
ward of Hβ. Note that the value Nσ(4750Å) is determined from

Figure 2. CLQ light curves and repeat spectra shown in R.A. order. Left: SDSS and Pan-STARRS g-band (r-band) photometry is shown as blue triangles (orange
crosses). Red data points show archival photometry from CRTS in unfiltered light, averaged every 10 days. The existing spectroscopic epochs are indicated by the
vertical lines. Right: existing spectra for objects in the adjacent left panel (red is SDSS; blue or green is our follow-up), corrected for telluric absorption where needed.
The telluric bands are shown in gray, as are the error bars in flux. The follow-up spectra plotted in green improve the coverage to shorter or longer wavelengths, but are
not included in the analysis (their errors are not shown).
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the smoothed array so that we are not susceptible to outliers in
flux at that wavelength. This method is designed to detect Hβ
variability relative to the 4750Å continuum: if the maximum
N ls∣ ( )∣ of the line exceeds the flux deviation in the neighboring
continuum by a certain amount, the object may be classified as
a CLQ. We compute the maximum flux deviation of the line
relative to the continuum N N4750 4940 4750-s s( – Å) ( Å),
which we express as N Hbs ( ).

We define CLQs as having a visual disappearance (or
emergence) of broad Hβ at a N H 3b >s ( ) level. In Table 2, the
visually identified CLQs are indicated by a “1,” and Nσ(Hβ) is
also provided. At least half of the apparent “CLQs” from our
visual inspection had Nσ(Hβ)<3; these objects would benefit
from better quality spectra to confirm or refute the absence of
broad BEL components.

We note that by using a Nσ(Hβ) definition, we may identify
as CLQs objects whose broad Hβ does not change by a large
amount. However, our definition is primarily a practical one, as

it uses quantities that we can readily measure. An alternative
criterion such as an absolute or relative change in broad Hβ
flux would lead to a different set of ambiguities. Moreover, so
far CLQs have most often been identified by visual inspection
of the spectra without a quantitative definition. Therefore,
we adopt this straightforward definition and explore the
consequences.

4. Results

Using the WHT, MMT, Magellan, and Palomar, follow-up
spectra have been obtained for 130 sources. In Table 2, we list
all objects selected as CLQ candidates and indicate those
already observed with follow-up spectroscopy. Included in the
table are the two g-band photometric measurements leading to
the Δg>1 mag selection (g1 and g2 with associated errors σ1
and σ2), along with their MJDs (MJD1 and MJD2). We also list
the most recent g-band magnitude (gPS1) and spectral epochs
(SDSS and follow-up).

Figure 2. (Continued.)
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The repeat spectra for the highest-confidence CLQs with
Nσ(Hβ)>3, numbering at 17, and the corresponding light
curves are shown in Figure 2. Lower-confidence CLQs with

N1 H 3b< <s ( ) are shown in the Appendix (Figure 7). The
light curves suggest a strong dimming (or brightening) between
the spectral epochs, but in most cases there is not enough
photometric sampling to resolve the timescale for the change.
The CRTS data resolve the time of transition more often than the
SDSS/PS1 light curves, but due to the unfiltered bandpass,
the CRTS light curves are less sensitive than the g-band to blue
continuum variability. The results from light curve modeling
(following Kozłowski et al. 2010; MacLeod et al. 2010) and
characterization (following Kim et al. 2011) of the SDSS/PS1 or
CRTS photometry essentially confirm our selection of CLQ
candidates: that they have a large change in flux at some point
between the SDSS and Pan-STARRS data (leading to longer
characteristic timescales). Among those CLQ candidates that we
followed up spectroscopically, we notice no overall difference
between the light curves of CLQs versus non-CLQs.

4.1. Distribution of Luminosity Changes and Flux Ratios

The luminosity change at 3240Å, calculated from the simple
power-law continuum component from QSfit (Section 3.2), is

plotted against the luminosity change of Hβ in Figure 3. The
uncertainties were determined from the rms of model
component fits from 100 Monte Carlo realizations of the data;
then the errors in luminosity from both epochs are added in
quadrature to compute the error in LD∣ ∣. The flux changes are
shown in the adjacent panel. There is a positive correlation
between continuum change and BEL change, whether
measured in luminosity or in flux.
The final CLQ sample is shown by red diamonds in Figure 3.

We find that CLQs are interspersed throughout the entire
distribution. There also exist cases where either the broad
components did not vanish completely, despite substantial
continuum luminosity change, or the signal to noise was not
deemed sufficient for a CLQ classification (e.g., see Appendix
A). When multiple follow-up spectra exist, the spectrum with
highest S/N was chosen for the comparison with SDSS and is
listed in Table 2. The resulting luminosities are given in
Table 3.
To determine more clearly how the line varies relative to the

continuum, we compute the flux ratio between the bright and
dim states. If the flux ratios are proportional to each other, that
would mean a constant EW and suggest a constant spectral
energy distribution (SED) during the transition. Figure 4 shows

Figure 2. (Continued.)
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the flux ratio L L3240,high 3240,lowl l( ) against L LH ,high H ,lowb b .
We see that strong Balmer line variability is associated with the
largest continuum variations. Given the number of lower limits
and the large scatter, it is not clear whether the relative flux
changes are proportional without a larger sample. The marginal
distributions are shown for both axes so that the location of
CLQs relative to the tail can more easily be seen. The CLQ
fraction is displayed as a function of L L3240,high 3240,lowl l( ) in
the right panel of Figure 4.

4.1.1. Highly Variable Quasars and Intermediate Transitions

Among the objects that do not exhibit strong BEL changes in
the follow-up spectrum, in many cases this is due to a
rebrightening since the last PS1 epoch, as revealed by CRTS
photometry. Roughly half the observed cases were found to
have recent brightening by several tenths of a magnitude. When
excluding the rebrightened sources, we find a CLQ confirma-
tion rate of 20% to 50% for flux deviations N H 3 1b >s ( ) – ,
respectively, from our follow-up.

Among the non-CLQs that did show a strong continuum
change, in some, the BEL flux remained after clearly
responding to the change in the continuum level—for example,
J000116.00+141123.0 and J012946.71+150457.2 (Figures 1
and 5). In Section 4.2.5, we elaborate on the latter object. See
Figure 8 for more objects with significant continuum and BEL
variability that still retain a small portion of the broad Hβ line.
For example, the object J233843.40-105719.5 in the last panel
of Figure 8 lost all the 3240Å power-law continuum flux. This
object might be classified as a Type 1.8, since it still has broad
Hα and a slight amount of broad Hβ in the dim state.

In several other candidates, Balmer BEL flux was retained in
the dim state simply because the fractional luminosity change
was relatively small (i.e., they were very luminous before
dimming). For this reason, we find that the largest change in Hβ
or 3240Å luminosity is a non-CLQ (J025619.01−004501.3 at

z= 0.72; Figure 3 left panel). However, this changes when
instead considering the flux ratio between high and low states
(Figure 4). Moreover, by comparing Figures 3 and 4, the CLQ
fraction is more sensitive to the fractional continuum luminosity
change rather than the absolute change.

4.2. Other Behavior and Objects of Interest

4.2.1. Strong He IIλ4686 Å Variability

Figure 2 (top panel) shows an example of a CLQ
(J000904.54-103428.7) with vanishing BELs, and a particu-
larly strong change in He IIλ4686Å. In reverberation mapping
studies of NGC 5548 (Fausnaugh et al. 2016), He II is seen to
respond quickly and strongly to continuum variations, implying
that the size of the He II emission region is very close to the
ionizing continuum source. A strong He II change is also seen
in Mkn 110 (Kollatschny & Bischoff 2002), and the source
J013203 shown in Figure 5, although broad Hβ is still clearly
present in the dim spectrum.

4.2.2. NLS1 AGN: J123359.12+084211.5

J123359.12+084211.5 (Figure 2) shows a remarkable
change in Fe II emission in a NLS1 AGN. See Blanchard
et al. (2017) for a similar spectral change in a NLS1.
J123359.12+084211.5 has a relatively small continuum
change and large Eddington ratio compared to the other CLQs,
making it a noticeable outlier.

4.2.3. The Post-starburst Quasar J210200.42+000501.8

The source J210200.42+000501.8 (Figures 1 and 2) was
classified in Cales et al. (2013) as a post-starburst quasar. The
authors presented a follow-up spectrum taken prior to our
MMT spectrum when the quasar was at an intermediate stage
between the two spectra listed here, based on the light curve.

Figure 3. Absolute value of the 3240 Å continuum and Hβ change in luminosity (left panel) and flux (right panel) for all analyzed CLQ candidates with a median dim-
state S/N near Hβ of > 5. The CLQs, defined as having absent broad Hβ at one epoch by at least Nσ(Hβ)>3, are over-plotted as red diamonds. Red horizontal
arrows indicate lower limits on CLQs, corresponding to upper limits on the amount of Hβ flux.
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Table 3
Spectral Decomposition

SDSSJID L3240,SDSS Error in L3240,SDSS LH ,SDSSb Error in LH ,SDSSb L3240,2 Error in L3240,2 LH ,2b Error in LH ,2b

10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( ) 10 erg s42 1-( )

J000116.00+141123.0 509.9 7.2 7.02 0.22 184.1 5.1 1.77 0.05
J000904.54−103428.7 341.5 2.0 4.27 0.05 201.0 0.4 <2.55 0.03
J001113.46−110023.5 244.5 7.3 2.19 0.21 41.5 0.1 0.56 0.10
J001206.25−094536.3 644.5 5.4 4.08 0.28 158.4 9.2 <1.24 0.23
J001502.38−094439.1 133.2 3.0 1.95 0.08 52.4 1.7 1.14 0.08
J002311.06+003517.5 936.3 3.6 10.02 0.19 378.5 9.8 <4.92 0.29
J002450.50+003447.7 691.5 5.0 4.60 0.28 464.8 1.7 <5.74 0.25
J002627.89−101020.5 1040.9 20.8 9.96 0.91 884.6 37.7 4.76 2.24
J002714.21+001203.7 579.9 7.6 7.47 0.54 816.8 2.0 4.45 0.35
J004339.32+134436.5 215.6 5.6 6.60 0.30 8.3 0.0 <0.27 0.00
J005244.14+142807.1 590.4 17.8 6.95 0.47 288.8 0.3 12.45 1.50
J012821.43+151956.4 666.3 8.8 6.66 0.25 303.8 8.6 4.06 0.14
J012946.71+150457.2 568.4 6.8 12.57 0.19 314.4 5.7 3.47 0.14
J013203.46−093153.6 139.5 0.5 1.47 0.03 76.0 0.9 1.54 0.08
J013458.36−091435.4 771.6 4.7 6.35 0.13 365.6 2.0 0.92 0.46
J025505.68+002522.9 744.5 1.3 7.52 0.09 181.1 12.0 5.88 0.28
J025606.03+001634.8 316.3 8.7 3.47 0.34 503.8 6.4 4.52 0.21
J025619.01−004501.3 1594.1 23.2 19.87 0.93 562.3 12.1 5.24 0.34
J033702.66+010627.5 108.6 4.6 1.79 0.14 343.1 22.9 7.56 1.11

Note. The subscript “SDSS” denotes the earlier epoch, SDSS spectrum, and the subscript “2” denotes the follow-up spectrum. The full list of 109 fits are available in the electronic version.

(This table is available in its entirety in machine-readable form.)
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The SDSS spectrum was obtained during a flaring event.
Another dramatic CLQ, J101152.98+544206.4 (Runnoe et al.
2016), was found in a post-starburst galaxy, but the light curve

bright phase exceeded a short-lived flare, leading the authors to
conclude that it was not a tidal disruption event (TDE) or a
supernova.

Figure 4. Left: flux ratio at the 3240 Å continuum versus the Hβ flux ratio for CLQ candidates. The CLQs are over-plotted as red diamonds (and arrows) as in
Figure 3. The “high” and “low” Hβ fluxes are labeled according to the continuum level, so the ratios may sometimes be <1 if the continua are similar, possibly due to
slightly inaccurate scaling of the follow-up spectrum. Black arrows indicate locations of objects that fell outside the plotted range due to small low-state flux levels.
The line with unit slope is the expectation for a linear response of BEL flux to the continuum variability. The marginal distributions are shown on either axis, where
CLQs are shown in red and the overall sample is the black dashed histogram. Right: CLQ fraction as a function of continuum flux ratio for three different thresholds in
Nσ(Hβ).

Figure 5. Left: SDSS, PS1, and CRTS light curves for CLQ candidates J013203 (top) and J012946 (bottom), observed 2016 December 4 with MMT and 2016 July 28
with Magellan, respectively. Right: repeat spectra for each source in the adjacent left panel. J013203 shows a disappearance of He II (see Section 4.2.1). J012946
shows an remarkable disappearance of the red half of the Balmer BELs with Nσ(Hβ)=6 in response to a relatively large continuum change (Section 4.2.5).
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4.2.4. Flickering CLQs J002311.06+003517.5
and J225240.37+010958.7

The objects J002311.06+003517.5 and J225240.37+010958.7
were both presented as CLQs in MacLeod et al. (2016). They both
showed a significant dimming in PS1 since the latest BOSS
spectra, so we observed them with Magellan in 2016 July and
with MMT in 2017 October. The emerging and disappearing
Balmer BELs appear to be associated with dramatic brightening
and dimming in the light curves, and they have recently turned off
again (see Figures 2 and 7). J225240.37+010958.7 has a boxy
Hβ profile (see Section 4.2.5) and exhibits only one dramatic flare
over the course of the light curve, whereas J002311.06+003517.5
shows persistent large-amplitude variability throughout its light
curve.

4.2.5. Asymmetric Broad Balmer Line Profiles

The following sources displayed asymmetric, boxy, or
velocity-shifted broad Balmer emission lines. These are rare
features seen usually in low-luminosity quasars, and are
interesting because they may indicate a rotating disk (e.g.,
Strateva et al. 2003) or a supermassive black hole binary
(Runnoe et al. 2017). In general, where detectable, the Hβ and
Hα profiles behaved similarly, but the Mg II profile did not
behave in the same way as the Balmer line profiles.

1. J141213.61+021202.1 (Figure 7): This object has lost
the broad Hβ component by a factor of 1.43 in flux
(although at a <2σ level per spectral pixel), with a
relatively small continuum change of a factor 1.24. In the
earlier (bright) state, the broad component was signifi-
cantly blueshifted relative to the narrow component.

2. J220537.71-071114.5 (Figure 2): This CLQ exhibits a
redshifted broad Hβ component in the bright state, before
it disappears completely. It also displays a down-turn of
the UV part of the spectrum, possibly similar to the
change seen in J1100-0053 (Ross et al. 2018).

3. J012946.71+150457.2 (Figure 5): This source main-
tained a blue contribution to the broad Balmer lines
among both (bright and dim) states, but loses the red half
of the BEL in the later dim state. This behavior is very
rare among AGN. The strong change in BEL luminosity
is evident in Figure 3, where the luminosity change is
nearly L 9 10H

42D = ´b∣ ∣ erg s−1.
4. J143455.31+572345.0 (Figure 2): This object is listed as

a disk-emitter (DE) quasar in Strateva et al. (2003) and
therefore is targeted as a DE QSO by the TDSS few-
epoch-spectroscopy program (described in MacLeod
et al. 2018).

5. There are additional examples of boxy or asymmetric
Balmer profiles in our sample; for example, in
Section 4.2.4, we described the CLQ J225240.37
+010958.7, which has a noticeably extended red wing
in the Hβ profile. The object J224829.47+144418.0
shown in Figure 7 shows a very similar profile. A more
detailed analysis is needed to classify all of them, which
is outside the scope of this work. In particular, we are
unable to determine whether boxy profiles are more or
less frequent among the CLQ population because we lack
a good benchmark sample to compare with, and the line
profiles of CLQs may change shape as they dim, which
would not generally be detectable given the dim-state
S/N typical here. A time-resolved transition between
states would be especially useful in searching for
emerging boxy profiles in dimming CLQs. We defer
further discussion of profile shapes to a future paper.

4.3. Distribution of Eddington Ratios

The Eddington ratio is an important physical quantity that
has been found to drive many features of quasar spectra and
time variability. To test for any trend with Eddington ratio, we
follow the procedure in Rumbaugh et al. (2018) of constructing
a less variable (non-EVQ) control sample and comparing the
Eddington ratio distributions. In particular, for each quasar in
the highly variable (Δg> 1 mag, Δr> 0.5 mag) sample, we
select a quasar at similar redshift and luminosity that does not
meet the variability threshold, and form a control sample. Our
results indicate that CLQs are indeed at lower Eddington ratios
than the control sample (Figure 6). Values of L/LEdd from Shen
et al. (2011) are adopted for each source, so the distribution
shown is mostly for the bright-state spectra, although a handful
of values will be for the dim state (e.g., J233317 from
MacLeod et al. 2016, which has L Llog 2.97Edd = -( ) ). The
3240Å continuum luminosity typically changes by a factor of
four, so the bolometric luminosity (and therefore Eddington
ratio) will be significantly smaller for the dim-state spectra. We
estimate the Eddington ratios in the dim state by simply

Figure 6. Top: the distribution of Eddington ratio for z<0.83 extremely
variable quasars in SDSS/PS1 (EVQs, our parent sample; in green), a less
variable control sample matched in redshift and luminosity (in solid black), the
full DR7 sample (dotted), and DR7 quasars with confirmed BEL changes
(CLQs; in purple). The thin red histogram shows the distribution of the
estimated dim-state values for CLQs that were analyzed in Section 3.2. Each
histogram has been normalized to have unit area. Red vertical dashed lines
indicate the predicted critical values from Nicastro (2000) above which BELs
should be observable, for two different SMBH masses. Bottom: as in the top
panel but for the quantity L Mlog 1.5 10bol

38
BH
2 3´( [ ]), similar to the Eddington

ratio,where the BH mass is in units of solar masses (this particular way of
expressing this quantity was chosen for simplicity). The quantity L Mbol BH

2 3 is
the critical parameter in the disk-wind model of Elitzur & Ho (2009) and
Elitzur et al. (2014) that determines whether or not a BLR can form. The red
vertical dashed line indicates the predicted critical value above which BELs
should be observable in this model.
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dividing the DR7 values by the amount that the 3240Å
continuum luminosity has dimmed, based on our spectral
decomposition described in Section 3.2. The thin red histogram
shows the distribution of the estimated dim-state values for
CLQs that were analyzed in Section 3.2. Note that the
bolometric luminosity may have dimmed by a larger amount
than the 3240Å continuum, so the red histogram is only a
rough estimate of the true distribution of Eddington ratios in the
dim state.

In Elitzur & Ho (2009) and Elitzur et al. (2014), the quantity
L Mbol BH

2 3 was found to be the critical parameter in a disk-wind
model that determines whether or not a BLR can form. The
bottom panel of Figure 6 shows the distribution of this quantity
for the same subsamples as in the top panel. The vertical red
dashed line shows the critical value that divides Type 1 and
true Type 2 AGN.

We discuss the implications of this analysis in Section 5.1.

5. Discussion

The two fundamental questions we can address are: (a) What
is the CLQ rate among highly variable AGN? (b) Is the loss or
emergence of BEL flux in CLQs due to a rare and different
physical mechanism than that causing variability in the overall
population of quasars? We find a CLQ confirmation rate among
highly variable quasars of 20%, dependent on our luck with the
timing of follow-up observations for some objects. While the
CLQ fraction among highly variable quasars was estimated to
be > 15% in MacLeod et al. (2016), they took the ratio of
CLQs to the total number of highly variable quasars (on
timescales of ∼8 yr rest frame), regardless of the timing of the
SDSS and BOSS spectral epochs. For our follow-up, we
generally only target those quasars that are currently at least
1 mag brighter or dimmer compared to the g-band magnitude
near any previous spectral epochs.

We also find that strongly varying quasars often show a large
contrast in Balmer BELs between dim and bright states, so
when defining CLQs simply based on (dis)appearing broad Hβ,
the resulting CLQ fraction is highly dependent on the
significance of the change, Nσ(Hβ). In terms of the flux ratio,
CLQs are among those variables with the largest changes, with
the CLQ fraction increasing from 10% to roughly half as the
continuum flux ratio between states at 3420Å increases from
1.5 to 6.

Based on this analysis, CLQs are consistent with being
simply the tail of a continuous distribution of quasar variability
episodes. However, the sample would benefit from a much
larger size, especially at the highly variable tail, to address this
question. We discuss the possibilities in Section 5.2. Our
results indicate that CLQs in the dim state have lost a
substantial fraction of their continuum luminosity compared to
other quasars. It is clear that this aspect causes the BLR to react
significantly, possibly structurally, to the continuum change.

The “flickering” CLQs J225240.37+010958.7 and
J002311.06+003517.5 (Section 4.2.4) show that objects with
substantial broad BEL variability appear to repeat this behavior
whenever the continuum varies significantly. Similar persistent
variability has also been seen in SDSSJ022556 (MacLeod
et al. 2016) and Mkn 1018 (Husemann et al. 2016).
Furthermore, Rumbaugh et al. (2018) find longer characteristic
timescales and larger variability amplitudes, as measured from
SDSS S82, for the sample of EVQs found in DES/SDSS data.
This result makes sense in view of the red noise variability

power spectrum of quasars, where the power index of −2
toward higher frequencies leads to larger variability amplitudes
on longer timescales. These findings suggest that previously
identified strong variability predicts the same behavior in the
future. It is possible that a small fraction of the CLQs presented
here and elsewhere exhibit physically distinct variability from
the rest of quasar population, but that most of the CLQs are
actually just the extreme tail of regular quasar variability. Here,
we discuss the physical properties of CLQs on average, and
leave a detailed analysis for particular sources for future study.

5.1. Physical Origin of CLQ Variability

Studies have investigated whether disappearing BELs in the
optical are likely to originate from extrinsic or transient events
(e.g., Goodrich 1989, 1990; LaMassa et al. 2015; Merloni et al.
2015; Ruan et al. 2016; Runnoe et al. 2016; Gezari et al. 2017).
In MacLeod et al. (2016), we found that variable extinction by
dust cannot account for BEL flux changes relative to the
continuum in CLQs, nor the observed timescales. In general,
the flares are longer lived than the typical TDE (Guillochon
et al. 2014), and pre-existing narrow emission lines in CLQ
spectra are not expected for a single TDE outburst. The CLQs
studied here are all z<1 and lack foreground spectral features,
so their variability is unlikely to be the result of lensing by a
foreground galaxy (see, e.g., Quimby et al. 2014). Furthermore,
erratic variability and multiple flaring episodes are evident in
the light curves of CLQs, as opposed to single Paczyński
curves one might expect for high-amplitude microlensing by a
single foreground star in a faint foreground galaxy (Bruce et al.
2017). Therefore, extreme variability is likely intrinsic to the
quasar and not due to lensing.
We are now able to specifically confirm a trend with

Eddington ratio from our follow-up spectroscopy, and it is
consistent with the well known anti-correlation between
Eddington ratio and variability amplitude (e.g., Wilhite et al.
2008; MacLeod et al. 2010). We find that CLQs have lower
Eddington ratios than a control sample matched in redshift and
luminosity, as suggested by Rumbaugh et al. (2018). Since
CLQs seem to occupy this region of physical parameter space,
as Rumbaugh et al. point out, BEL (dis)appearance in general
is not likely to be due to variable obscuration, TDEs, or
microlensing by foreground stars, unless these events are
strongly preferred in quasars with lower Eddington ratio.
Interestingly, the CLQs are found near the critical luminosity

below which the BLR disappears (Elitzur & Ho 2009, vertical
line in bottom panel of Figure 6). This supports a picture where
the accretion rate in CLQs is barely enough to support a broad
line region, assuming a disk-wind model for the BLR. Nicastro
(2000) also assume a disk-wind model and derive a critical
threshold in Lbol/LEdd for BLR disappearance as a function of
black hole mass (vertical lines in top panel of Figure 6). Here,
we assume a maximum accretion efficiency of η=0.06 and a
viscosity coefficient of α=0.1 as in Nicastro (2000). The
CLQs begin to reach this threshold if we estimate Lbol/LEdd in
the dim state (conservatively assuming the same SED as in the
bright state). Assuming the variability is indeed due to an
accretion rate change, and that the estimated dim-state values
for CLQs as well as the adopted values for η and α are not too
inaccurate, our results indicate that the Elitzur & Ho (2009)
model for the disk-wind BLR may provide a good description
of CLQs, as the CLQ distribution would need to be a factor of
10 lower in Lbol/LEdd before reaching the Nicastro (2000)
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critical threshold between quasars that do and do not have
a BLR.

Understanding the various physical processes that occur at
low accretion rates is therefore highly relevant to the study of
changing-look variability. A key question is how to connect the
observed timescales for CLQ transitions with theoretical
timescales for accretion disks. The expected timescale for a
major accretion rate change is the viscous timescale (Krolik
1999). However, the expected viscous timescale in the optical-
emitting region of the disk is orders of magnitude longer than
what is observed for CLQ transitions (for a summary of the
timescale problem, see Lawrence 2012). Various solutions to
the problem of observed transition timescales have been
proposed, some involving thermal instabilities, as we discuss
later. The results from Husemann et al. (2016) on Mkn 1018
indeed support a disk temperature change associated with the

CLQ event, based on the measured temperature in both states
and corresponding luminosity dependence. Additionally, the
timescale is consistent with a thermal timescale for an accretion
disk. Other theoretical timescales include the dynamical and
sound-crossing time; the former is usually too short to explain
the observations, whereas the radial sound-crossing time is
usually too long (e.g., see table in Lawrence 2016). Either the
instability (or instabilities) must propagate throughout the disk
far faster than the viscous timescale, such as over a thermal
timescale, or our calculation of a viscous timescale is off by
orders of magnitude.
State of the art simulations of the thermal instability in the

radiation-dominated region of accretion disks by Jiang et al.
(2016) indicate that disks with lower-metallicity gas are more
prone to thermal instability, as the iron opacity bump is less
effective as a stabilizing mechanism. Therefore, a reliable way

Figure 7. As in Figure 2, but for lower-significance CLQs with N1 H 3b< <s ( ) . Light curves and repeat spectra shown in R.A. order. Left: SDSS and Pan-STARRS
g-band photometry is shown as blue triangles. Red data points show archival photometry from CRTS. The existing spectroscopic epochs are indicated by the vertical
lines. Right: existing spectra for objects in the adjacent left panel (red is SDSS; blue or green is our follow-up), corrected for telluric absorption where needed.
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to measure the metallicity in the inner regions of quasars may
be relevant to the interpretation of CLQs.

A recent idea that would explain the fast CLQ variability
invokes a cooling front due to a sudden change in torque
applied by the magnetic field at the inner-most stable circular
orbit (Ross et al. 2018; Stern et al. 2018). Another idea
involves an advection-dominated accretion flow (ADAF; Noda
& Done 2018). In the latter scenario, the BLR disappearance is
triggered by a sudden drop in accretion rate, leading to an
ADAF in the inner disk; the consequence is a harder SED.
Dexter & Begelman (2019) suggested that all quasar accretion
disks are actually magnetically elevated, leading to larger scale
heights and shorter variability timescales than expected in
standard thin disk theory (Shakura & Sunyaev 1973). In this
case, CLQs may simply be the tail of a continuous distribution
of quasar variability.

Multi-wavelength observations for more CLQs are needed,
as the SED can suggest certain physical environments. For
example, X-ray repeat spectroscopy for a handful of sources

rules out variable absorption as the cause of variability
(LaMassa et al. 2015, and references therein), as well as do
mid-IR light curves (e.g., Ross et al. 2018; Stern et al. 2018).
One of the best studied sources, NGC 2617 (Shappee et al.
2014), has simultaneous UV–IR monitoring along with X-rays
that show reprocessed emission from a central X-ray source
with no signs of dust obscuration along the line of sight to the
central engine. Through SED modeling, Kubota & Done
(2018) determined that X-ray reprocessing becomes increas-
ingly important at lower accretion rates, but it cannot account
for all the optical-UV variability in SDSS quasars.

5.2. Future Work

Our sample is dominated by dimming events (or “turn-off”
CLQs) because of the sample construction: because our parent
sample is the DR7 quasar catalog, most have broad BELs in the
early state. Only two of the CLQs presented here are
transitioning to a bright state (J105553.51+563434.4 and

Figure 7. (Continued.)
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J214852.50−000554.7; Figure 7). The turn-off CLQ frequency
is likely balanced by turn-on events, unless we expect the
population to be evolving. A major piece of future work is
therefore to establish a suitable parent sample and method for
searching for turn-on events. The challenge in starting from a
galaxy catalog is how to produce reliable photometry for just the
(mildly active) nuclei of extended galaxies, as well as how to
efficiently sift through a sample an order of magnitude larger than
the quasar sample. For a recent effort, see Drake et al. (2019).

Another outstanding question is why the Mg II BEL, formed
at a similar ionization energy as the Balmer lines, is generally
less responsive to strong changes in the continuum (see also
Cackett et al. 2015). Given that reverberation mapping studies

in the past have typically focused on lower-redshift quasars,
where Mg II is outside the optical wavelength range (although
see Shen et al. 2016), characterizing the response of the Mg II
line is an important goal. We leave the Mg II BEL variability
measured from these follow-up spectra for a future publication
(D. Homan et al. 2019, in preparation).
Having well-sampled light curves for quasars is essential for

determining the timescales associated with the transitions and for
selecting targets for follow-up. Therefore, future multi-band
surveys in the time domain such as the Large Synoptic Survey
Telescope (Ivezic et al. 2008; LSST Science Collaboration et al.
2009), PS2 (Chambers 2014), Zwicky Transient Facility (ZTF;
Bellm 2014), as well as, for brighter AGN, the ongoing All-Sky

Figure 7. (Continued.)
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Automated Survey for SuperNovae (ASASSN; Shappee et al.
2014), should provide many interesting targets for contempora-
neous spectroscopic follow-up. For example, ZTF commenced
in 2018 March and is monitoring 15,000 deg2 of the Northern
Sky in g and r bands with a cadence of 3 nights down to a
magnitude of 20.5mag over a baseline of 3 yr. While we can
predict which variability episodes are uncommon with respect to
the overall quasar population (e.g., Graham et al. 2017), one
issue is how to efficiently flag CLQs in photometric monitoring
data before they change, so that we can spectroscopically
monitor them in the optical during the transition. Predictive
modeling, where the expected variability is predicted either for a
given night or over a particular timeframe, could prove useful
here (see Graham et al. 2019).

It is unclear whether the same physical processes are
occurring in/around the accretion disks in EVQs. But there
are some hints of outliers and interesting objects; this problem
will also be easier to solve with larger data sets of repeat quasar
spectroscopy. Samples have recently grown substantially in the
SDSS-IV TDSS (Morganson et al. 2015; MacLeod et al. 2018),
forming a pilot to even larger spectroscopic surveys upcoming in
SDSS-V (Kollmeier et al. 2017). A sample of newly discovered
CLQs from SDSS-IV will be presented in C. MacLeod et al.
(2019, in preparation). The ideal survey would provide dense
cadence repeat spectroscopy of a large sample of quasars—for
example, via time domain objective prism survey, or a many-
band space mission such as SPHEREx (Doré et al. 2018) or the
Time-domain Spectroscopic Observatory.17 One potential result
from a large survey of repeat quasar spectroscopy is to expand
the sample size of CLQs with multiple spectra before, during,
and after the transition. With a larger sample size, we can detect
and characterize discontinuities in the overall variability
distributions associated with CLQ behavior.
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Appendix A
Less-significant CLQs and Near CLQs

We show in Figure 7 the visually identified CLQs with
relatively low significance, in the range 1<Nσ(Hβ)<3. In
Figure 8, we present some examples where the Hβ line lost
much of its broad component along with some dimming of the
continuum, but not enough to classify it as a CLQ.17 https://pcos.gsfc.nasa.gov/physpag/probe/TSO-Probe-WhitePaper-submit.pdf
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Appendix B
Previously Missed Archival, Serendipitous CLQ

In MacLeod et al. (2016), we performed a systematic search
for CLQs among quasars with repeat archival spectra in SDSS/
BOSS. There, we only inspected objects that had both SDSS and
BOSS epochs, unless the object was in S82; then we inspected

all epochs, even if they were all in earlier SDSS (pre-BOSS).
One source, J115355.88+112554.2, had two early SDSS
spectral epochs that already confirm the object as a CLQ (see
Figure 9). Although this object was missed by the MacLeod
et al. (2016) selection since it lacks a BOSS epoch and is not in
S82, it was selected as a CLQ candidate in the present work.

Figure 8. Near-CLQs from WHT/MMT/Magellan. See the caption for Figure 2.
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Appendix C
Comparison to Published CLQs

SDSS J141324+530527.0 (SBS 1411+533) at z=0.456
(Wang et al. 2018) is present in DR7Q, but was not selected as a
candidate CLQ here since it only shows amagnitude change of
−0.86±0.05 in g from SDSS to PS1. SDSS J012648.08
−083948.0 (Ruan et al. 2016) would also be missed by this
selection since it only varied byΔg=0.78mag, but it was not in
our parent sample since (a) it is not in DR7Q and (b) it has a
BOSS spectrum. SDSS J233602.98+001728.7 (Ruan et al. 2016)
is not present in DR7Q, nor is the CLQ iPTF 16bco (Gezari et al.
2017) or the CLQs from Yang et al. (2018). SDSS J101152.98
+544206.4 (Runnoe et al. 2016), as well as the CLQs from
MacLeod et al. (2016), meet the selection criteria here but already
had confirming BOSS spectra, so we did not follow them up
(except for the two that turned back off, described in
Section 4.2.4). However, we list the CLQs from Runnoe et al.
(2016) and MacLeod et al. (2016) in Table 2 for completeness.
The CLQ WISE J105203.55+151929.5 (Stern et al. 2018) is
present in DR7Q and is selected here as a CLQ candidate, though
we did not perform follow-up photometry for this source.
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