1	Extensive Holocene West Antarctic Ice Sheet retreat and rebound-
2	driven re-advance
3	Authors:
4	J. Kingslake ¹ *, R. Scherer ² *, T. Albrecht ³ *, J. Coenen ² , R. Powell ² , R. Reese ³ , N. Stansell ² ,
5	S. Tulaczyk ⁴ , M. Wearing ¹ , P. L. Whitehouse ⁵
6	
7	Affiliations:
8	1 Lamont-Doherty Earth Observatory, Columbia University, New York, USA
9	2 Department of Geology and Environmental Geosciences, Northern Illinois University,
10	Illinois, USA
11	3 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association,
12	Potsdam, Germany
13	4 Earth & Planetary Sciences Department, University of California Santa Cruz, Santa Cruz,
14	CA, USA
15	5 Department of Geography, Durham University, Durham, UK
16	* These authors contributed equally to this work.
17	Correspondence to: J. Kingslake (j.kingslake@columbia.edu)
18	Keywords: West Antarctic Ice Sheet, Grounding Line, Ross Ice Shelf, Ronne Ice Shelf, ice-
19	penetrating radar, radiocarbon, PISM Parallel Ice Sheet Model, ice rise, isostatic rebound
20	

21 Numerical models used to predict future ice-sheet contributions to sea-level rise use 22 reconstructions of post-Last Glacial Maximum (LGM) ice-sheet retreat to tune model parameterizations¹. West Antarctic Ice Sheet (WAIS) reconstructions have assumed 23 progressive retreat throughout the Holocene^{2,3,4}, due to a lack of broad-scale evidence for a 24 25 more complex history. Here we show that the WAIS grounding line (GL) retreated several hundred kilometers inland of today's GL, before Holocene isostatic rebound caused it to 26 27 re-advance to its current position. Evidence includes (1) radiocarbon in sediment cores 28 recovered from beneath Ross Sea Sector ice streams, indicating widespread Holocene 29 marine exposure and (2) ice-penetrating radar observations of englacial structure in the 30 Weddell Sea Sector, indicating ice-shelf grounding. We explore the implications of these 31 findings with an ice-sheet model. Modelled GL re-advance requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive Holocene 32 GL retreat in West Antarctica and corroborate previous suggestions of ice sheet re-33 advance⁵. Rebound-driven stabilizing processes were apparently able to halt and reverse 34 climate-initiated ice loss. Whether these processes can reverse present-day loss⁶ on 35 36 millennial timescales depends on bedrock topography and mantle viscosity - parameters 37 that are difficult to measure and to incorporate into ice-sheet models.

Recent evidence suggests that Holocene GL migration in some areas of West Antarctica was more complex than previously assumed^{5,7,8}. In the Weddell and Ross Sea sectors, anomalies in radar-observed englacial structure^{9,10} and isostatic rebound rates⁵ suggest that the GL was recently upstream of its current location. Rebound has been suggested as a negative feedback on ice-sheet retreat^{11,12,13,14} and as a possible cause of GL re-advance⁵, via the grounding of ice shelves^{15,16}. Better constraints on GL history are important. If this history differs significantly from often-used ice-sheet reconstructions² over wide areas, better constrains on past changes

45 could lead to improved ice-sheet models¹ and measurements of ice-sheet mass change¹⁷. To this
46 end, we present new evidence for widespread Holocene GL re-advance in Antarctica from
47 subglacial sediments and radar-observed englacial structure.

48 Multiple boreholes drilled through the Ross Ice Shelf (RISP, WGZ) and the Whillans (WIS/UpB, SLW), Kamb (KIS) and Bindschadler (BIS) ice streams¹⁸ allowed recovery of subglacial 49 50 sediment cores up to 200 km inland of the present Ross Sea Sector GL (Fig. 1). Radiocarbon 51 analyses of 36 till samples indicate the widespread presence of young organic carbon stratigraphically distributed through the upper meter(s) of till. Total organic carbon concentration 52 53 is low, ranging from 0.2 to 0.4%, the majority of which is derived from Tertiary marine deposits¹⁹. Nevertheless, organic carbon in all subglacial sediments analyzed includes readily 54 55 measurable radiocarbon (Extended Data Table 1).

56 Basal melting of meteoric ice is a negligible source of radiocarbon to the subglacial environment (Methods). Subglacial microbes cannot introduce young carbon, as they rely on legacy carbon 21 . 57 58 Contamination of samples by modern carbon is discounted because samples were curated and sealed in different laboratories, vet vielded consistent results. Hydropotential gradients²⁰ and 59 high basal water pressures¹⁸ drive subglacial water towards the GL in this region, discounting 60 subglacial transport of ¹⁴C-bearing materials from the ocean to the core sites. In contrast, 61 62 observations of an active marine community just downstream of the GL, more than 600 km from 63 the open ocean (Methods), demonstrate that radiocarbon is introduced virtually everywhere that 64 ocean waters reach beneath the ice shelf.

We conclude that a small proportion of the organic carbon contained in the sediments was laid down under sub-ice shelf conditions at or upstream of the sediment cores recently enough to allow persistence of measurable radiocarbon. This implies that the Siple-Gould Coast GL was at

68 least 200 km inland of its current position sometime after the LGM. Calculated radiocarbon ages 69 (Extended Data Table 1) are probably significantly older than the most recent marine incursion, due to dilution by more abundant radiocarbon dead material^{4, 21} (Methods: Extended Data Fig. 70 5). Ice flow transports till downstream¹⁸, so the GL may have retreated even farther inland than 71 the core sites (Fig. 1). The proximity of the cores to Siple Dome (SD; Fig. 1), where 350 m of 72 73 thinning coincided with rapid sea-level rise during Meltwater Pulse 1a (MWP-1a) around 14.5 74 kyr before present (BP) (ref. 22), hints that MWP-1a could have triggered GL retreat, though this does not necessarily imply a significant WAIS sea-level contribution to MWP-1a (ref. 4). 75 76 On the other side of the WAIS we conducted a 700 km-long ground-based ice-penetrating radar survey of Henry Ice Rise (HIR; Figs. 1 & 2; Methods). HIR is 7000 km² in area and grounded 77

310-800 m below sea level. Our survey revealed englacial structures inconsistent with presentday slow (<10 m a⁻¹) and cold-based flow conditions (Methods).

80 A series of steep englacial reflectors (Fig. 2d) cluster around a basal topographic high at the 81 northern end of HIR (Fig. 2a). These features intercept the bed, penetrate to 200-300 m above the 82 bed and cross-cut smoothly-undulating isochrones (Fig. 2d; Extended Data Fig. 2). They have 83 similar lateral extents, orientations and spacing to extensional surface crevasses at Doake Ice 84 Rumples (DIR; Fig. 1; Extended Data Fig. 1). At ice rumples, ice that was floating upstream 85 flows onto and over a bedrock high. We interpret the buried features in HIR as marine-ice-filled 86 relic crevasses formed when ice-rumple flow persisted on HIR. The crevasses were probably 87 near-vertical while active and have been buried and deformed to varving extents into steeply-88 dipping structures by complex ice flow (Methods). Further evidence that parts of HIR were 89 previously floating include prominent synclines in internal isochronal layers that increase in 90 amplitude with depth, are unrelated to basal topography and truncate at the bed (Figs. 2b, 2c,

91 Extended Data Fig. 2) – characteristics indicative of past ocean melting⁹.

92 Ice-shelf grounding on the topographic high beneath HIR – first forming ice rumples, then 93 thickening to form the ice rise – can explain the unusual englacial structures. Contact with the ocean generates isochrone synclines where melting is focused at a static GL for long enough²³. 94 95 Ice-rumple flow generates surface crevasses similar to those observed on and downstream of 96 DIR, which were preserved in HIR as flow stagnated. Prior to grounding, the ice shelf likely 97 flowed approximately northward in the location of HIR. Post-grounding thickening upstream of 98 the topographic high explains today's configuration, with the initial grounding point beneath 99 HIR's northern extreme. An alternative interpretation is that HIR persisted throughout the 100 Holocene and recently grew to its current size. However, we argue that complete ungrounding is 101 more likely (Methods). Under either scenario, we interpret a contrast in surface texture, 102 approximately coincident with the onset of relic crevassing (Fig. 2b), as a signature of a past GL 103 configuration (Methods). The formation or re-growth of HIR is expected to have increased the 104 buttressing force exerted by the Ronne Ice Shelf on the upstream ice sheet, with implications for 105 GL migration and mass balance.

106 To explore the cause and implications of ice-rise formation (revealed by radar observations) and 107 ice stream GL retreat and re-advance (revealed by radiocarbon analyses), we turn to numerical 108 ice-sheet modelling. We simulate the post-LGM evolution of the WAIS using the Parallel Ice Sheet Model (PISM)²⁴ with improved descriptions of sub-shelf melting and solid Earth rebound, 109 110 forced by paleo-sea-level and ice-core temperature reconstructions (Methods). A model 111 ensemble investigated first-order sensitivities to independent variations in parameters related to 112 ice flow, glacial isostatic adjustment (GIA), calving, sub-shelf melting, basal traction and 113 accumulation (Methods).

After partially compensating for uncertainty in bed topography (Methods), our simulations
display remarkable agreement with the conclusions of our radiocarbon and radar analyses. Our

116 reference simulation (Methods) demonstrates this agreement (Fig. 3; Supplementary Video 1). In 117 this simulation, rising sea level and surface temperatures during the last glacial termination drive 118 GL retreat through regions currently occupied by the Ronne and Ross ice shelves. The GL 119 reaches a quasi-stable position around 10 kyr BP, up to approximately 300 km inland of the 120 present-day GL (Fig. 3; Extended Data Fig. 3). Retreat exposes nearly all of our core sites and the bed of HIR to the ocean. Approximately $352,000 \text{ km}^2$ of the area currently covered by 121 grounded ice ungrounds during retreat, resulting in lithospheric rebound of up to 175 mm yr⁻¹. 122 123 The rising bed eventually causes the Ross and Ronne ice shelves to ground on bathymetric highs 124 in the locations of present-day ice rises, including HIR. Ice-rise formation increases ice-shelf 125 buttressing, causing the GL to re-advance towards its present-day location (Fig. 3; Extended 126 Data Fig. 4; Methods). In the Amundsen Sea Sector, the GL retreats to its modern position 127 without significant inland retreat and re-advance.

Rebound-driven re-advance causes WAIS to gain ice above flotation equivalent to 33 cm of sea level fall during this simulation (Weddell Sector, 2 cm; Ross Sector, 31 cm). Ice-volume minima in each sector are asynchronous and the minimum in whole ice-sheet volume occurs 1.5 kyr BP, at which time the ice sheet is 20 cm sea-level equivalent smaller than present.

132 The timing and magnitude of simulated GL retreat and re-advance depend on model parameters,

133 forcings, bed topography and spatial resolution (Extended Data Figs. 6 & 7; Methods). For

134 example, increasing mantle viscosity expedites retreat, increases maximum retreat and delays re-

135 advance. Ice-rise formation greatly enhances GL re-advance and is sensitive to bed topography,

136 which is regionally uncertain, and dynamically-relevant topographic features are poorly-

represented at the spatial resolution of the model (Extended Data Fig. 4; Methods).

- 138 Notably, although GL re-advance was not their focus, four previous Antarctic ice-sheet
 - 6

139 modelling studies, employing alternative parameterizations of basal sliding, GL flux and

lithosphere response, also simulate Holocene GL retreat and re-advance in these sectors in some
simulations^{25,26,27,28}.

142 Radiocarbon in subglacial sediments, radar-observed relic crevassing and ice-sheet modelling, 143 provide corroborating evidence that two large Antarctic catchments re-advanced to their present-144 day configurations during the Holocene (Fig. 3). Previous work is consistent with this 145 conclusion, but cannot confirm or rule-out Holocene retreat and re-advance (Methods). 146 Moreover, previous authors have found evidence for localized re-advance and suggested rebound as a cause^{5,10}. However, ice-sheet reconstructions used to tune ice-sheet models and correct mass 147 balance observations currently do not include large-scale GL re-advance^{1,2}. Updating these 148 reconstructions to include re-advance could impact ice-sheet gravimetry and altimetry¹⁷, and sea-149 150 level projections. Furthermore, we hypothesize that the GL in the Weddell and Ross Sea Sectors 151 may be capable of retreating far inland of its current position without triggering runaway ice-152 sheet collapse.

Our model does not simulate retreat and rebound-driven re-advance in the Amundsen Sea Sector (Fig. 3), where present-day GL retreat is causing concern about future runaway collapse⁶ and recent re-advance could explain observed sub-shelf iceberg ploughmarks²⁹. Our findings motivate future work to examine if rebound-driven mechanisms could slow or reverse this retreat on millennial timescales.

Rising eustatic sea-level and temperatures were major climate-related drivers of ice-sheet retreat during and after the last glacial termination. In contrast, it appears that climate-independent lithospheric rebound and ice-shelf grounding were the main drivers of Holocene GL re-advance. The impact of rebound on the ice sheet depends sensitively on bedrock topography and mantle

- 162 viscosity (Methods). Accurate mapping of potential grounding points and improved
- 163 parameterization of uplift are needed to forecast the direction and rate of future GL migration in

164 West Antarctica.

References

- ¹ DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. *Nature* 531, 591–597 (2016).
- ² Bentley, M. J. Cofaigh, C. Ó. Anderson, J. B. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. *Quat. Sci. Rev.* **100**, 1–9 (2014).
- ³ Conway, H. Hall, B. L. Denton, G. H. et al. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science 286, 280–283 (1999).
- ⁴ Spector, P. Stone, J. Cowdery, S. G. et al. Rapid Early-Holocene Deglaciation in the Ross Sea, Antarctica. *Geophys. Res. Lett.*, 44, 7817–7825, doi:10.1002/2017GL074216 (2017).
- ⁵ Bradley, S. L. Hindmarsh, R. C. A. Whitehouse, P. L. et al. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance. *Earth Planet. Sci. Lett.* **413**, 79–89 (2015).
- ⁶ Scambos, T.A., Bell, R.E., Alley, R.B., Anandakrishnan, S., Bromwich, D.H., Brunt, K., Creyts, T.T., Das, S.B., DeConto, R., Dutrieux, P. and Fricker, H.A. How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. *Global and Planetary Change* 153, 16-34 (2017).

⁷ Goodwin, I. D. Did changes in Antarctic ice volume influence late Holocene sea-level lowering? *Quat. Sci. Rev.* 17, 319–332 (1998).

- ⁸ Halberstadt, A.R.W., Simkins, L.M., Greenwood, S.L. and Anderson, J.B., Past ice-sheet behaviour: Retreat scenarios and changing controls in the Ross Sea, Antarctica. *Cryosphere*, **10**(3), (2006)
- ⁹ Catania, G. A. Conway, H. Raymond, C. F. et al. Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation. J. Geophys. Res. Earth Surf. 111, (2006).
- ¹⁰ Siegert, M. Ross, N. Corr, H. et al. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. *Quat. Sci. Rev.* 78, 98–107 (2013).
- ¹¹ Adhikari, S., Ivins, E.R., Larour, E., Seroussi, H., Morlighem, M. and Nowicki, S. Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth, 5(1), 569 (2014)
- ¹² Gomez, N. Pollard, D. & Holland, D. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. *Nat. Commun.* 6, 8798 (2015).
- ¹³ Greischar, L. L. & Bentley, C. R. Isostatic equilibrium grounding line between the West Antarctic inland ice sheet and the Ross Ice Shelf. *Nature* 283, 651–654 (1980).
- ¹⁴ Konrad, H. Sasgen, I. Pollard, D. et al. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. *Earth Planet. Sci. Lett.* 432, 254–264 (2015).
- ¹⁵ Matsuoka, K. Hindmarsh, R. C. A. Moholdt, G. et al. Antarctic ice rises and rumples: Their properties and significance for ice-sheet dynamics and evolution. *Earth Sci. Rev.* **150**, 724–745 (2015).
- ¹⁶ Thomas, R. H. The creep of ice shelves: interpretation of observed behavior. J. Glaciol. 12, 55–70 (1973).
- ¹⁷ Hanna, E., Navarro, F.J., Pattyn, F., Domingues, C.M., Fettweis, X., Ivins, E.R., Nicholls, R.J., Ritz, C., Smith, B., Tulaczyk, S. and Whitehouse, P.L. Ice-sheet mass balance and climate change. Nature, **498**(7452), 51 (2013)
- ¹⁸ Kamb, B. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. *The West Antarctic ice sheet: behavior and environment* (eds R. B. Alley and R. A. Bindschadler) American Geophysical Union, Washington, D. C., 157–199 (2001). doi: 10.1029/AR077p0157
- ¹⁹ Scherer, R. P. Quaternary and tertiary microfossils from beneath ice stream B: evidence for a dynamic West Antarctic ice sheet history. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **90**, 395–412 (1991).
- ²⁰ Livingstone, S. Clark, C. Woodward, J. et al. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. *Cryosphere* 7, 1721–1740 (2013).
- ²¹ Christner, B. C. Priscu, J. C. Achberger, A. M. et al. A microbial ecosystem beneath the West Antarctic ice sheet *Nature* **512**, 310–313 (2014).
- ²² Price, S. F. Conway, H. & Waddington, E. D. Evidence for late Pleistocene thinning of Siple Dome, West Antarctica. J. Geophys. Res. Earth Surf. 112, (2007).
- ²³ Catania, G. Hulbe, C. & Conway, H. Grounding-line basal melt rates determined using radar-derived internal stratigraphy. J. Glaciol. 56, 545– 554 (2010).
- ²⁴ Winkelmann, R. Martin, M. A. Haseloff, M. et al. The Potsdam parallel ice sheet model (PISM-PIK)-Part 1: Model description. *The Cryosphere* 5, 715 (2011).
- ²⁵ Pollard, D. Chang, W. Haran, M. et al. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. *Geosci. Model Dev.* 9, 1697–1723 (2016).
- ²⁶ Golledge, N. R. Menviel, L. Carter, L. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. *Nat. Commun.* 5, 5107 (2014).
- ²⁷ Maris, M. N. A. Van Wessem, J. M. Van De Berg, W. J. et al. A model study of the effect of climate and sea-level change on the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to 2100. *Climate Dyn.* **45**, 837–851 (2015).
- ²⁸ Pollard, D., Gomez, N., & Deconto, R. M. Variations of the Antarctic ice sheet in a coupled ice sheet-Earth-sea level model: Sensitivity to viscoelastic Earth properties. J. Geophys. Res. Earth Surf. **122**, <u>https://doi.org/10.1002/2017JF004371</u> (2017).
- ²⁹ Graham, A.G., Dutrieux, P., Vaughan, D.G., Nitsche, F.O., Gyllencreutz, R., Greenwood, S.L., Larter, R.D. and Jenkins, A. Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: origin and implications for the history of Pine Island Glacier. Journal of Geophysical Research: Earth Surface, 118(3), 1356-1366 (2013)

166 Supplementary Information

167 A supplementary video accompanies this submission.

168 Acknowledgements

JK and the Weddell Sea fieldwork were funded by Natural Environmental Research Council grant NE/J008087/1, led by Richard Hindmarsh. Logistical support was provided by many members of the British Antarctic Survey's air unit and field operations team. Thank you particularly to Iain Rudkin and Scott Webster for assistance in the field. Thank you also to Schlumberger Limited for a software donation.

174 PISM development is supported by NASA grants NNX13AM16G and NNX13AK27G. TA is 175 supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority 176 program "Antarctic Research with comparative investigations in Arctic ice areas" by grant 177 LE1448/6-1 and LE1448/7-1. We gratefully acknowledge the European Regional Development 178 Fund, the German Federal Ministry of Education and Research and the Land Brandenburg for 179 providing high performance computer resources at the Potsdam Institute for Climate Impact 180 Research. We also thank the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for 181 providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing 182 Centre (www.lrz.de) (project: pr94ga). We thank Christo Buizert for providing ice-core 183 temperature reconstructions, Dick Peltier for access to eustatic sea-level reconstructions, Jan 184 Lenaerts for RACMO surface mass balance data and Stewart Jamieson for providing the 185 RAISED consortiums grounding line reconstructions.

186 RS, JC, RP and ST were funded by NSF WISSARD Project grants ANT-0839107, ANT-

187 0839142, ANT-0838947 and ANT-0839059. Subglacial sediment sample collection at

Subglacial Lake Whillans and Whillans Grounding Zone was facilitated by the United States9

189 Antarctic Program and efforts of multiple field support teams, including the drilling team from

190 the University of Nebraska–Lincoln, the WISSARD traverse personnel, as well as by Air

191 National Guard and Kenn Borek Air who provided air support. WIS, KIS and BIS samples were

192 recovered by Barclay Kamb's program at California Institute of Technology (1988-2001),

193 including RS and ST, and samples from the US Antarctic Program's Ross Ice Shelf Project

194 (1977-1979) cores were made available for study by the US Antarctic Sediment Core Repository,

195 Florida State University. PLW is funded by a NERC Independent Research Fellowship

196 (NE/K009958/1). This research is a contribution to the SCAR SERCE program.

197 We thank Robert Arthern, Robin Bell, Richard Hindmarsh, Carlos Martín, John Southon, Kirsty

198 Tinto for discussions that contributed to this study. We particularly thank David Pollard for

199 sharing ideas and unpublished Penn State model outputs for discussion.

200 Author contributions statement

201 All authors contributed to manuscript preparation. TA, JK and RS are co-lead authors with equal 202 contributions; others are listed alphabetically. JK designed and conducted the Weddell Sea 203 Sector ice-penetrating radar survey and led the preparation of the manuscript. RS, JC, RP, and 204 ST collected and analyzed sub-ice sediment samples as part of the WISSARD and earlier drilling projects in the Ross Sea Sector. NS and JC prepared samples and interpreted ¹⁴C and ¹³C results. 205 206 TA ran the PISM simulations with extended analysis of parameter sensitivity. RR designed and 207 analyzed experiments for disentangling drivers of re-advance. MW analyzed radar data from the 208 Weddell Sea Sector. PLW provided input on parameterization of solid Earth rebound and sea-209 level forcing for the model experiments.

210 Additional information

211 Reprints and permissions information is available at www.nature.com/reprints. The authors 10

- 212 declare no competing financial interests. Correspondence and requests for materials should be
- 213 addressed to j.kingslake@columbia.edu.

214 Figure 1: Basal topography and surface ice flow speed in the Weddell and Ross sea sectors of West Antarctica. a, Basal topography and bathymetry³⁰ and b, ice-surface flow speed³¹ in the 215 216 Ross Sea Sector. The locations of sediment recovery are shown in green. c, Basal topography and bathymetry 30 and **d**, flow speed 31 in the Weddell Sea Sector. In all panels the present-day 217 GL^{32} is in red, the (asynchronous) modelled minimum extent of the GL in each sector is in blue. 218 219 Axes show polar stereographic coordinates in km. Insets show locations in West Antarctica. 220 Labels not defined in the text: Whillans Ice Stream (WIS), Subglacial Lake Whillans (SLW), Ross Ice Shelf Project (RISP)³³. Also labelled are the Institute. Möller and Foundation Ice 221 222 Streams.

223 Figure 2: Ice-penetrating radar evidence for grounding of the Ronne Ice Shelf. a, Radar-224 derived ice-bed elevation beneath HIR. See Fig. 1c for location in the Weddell Sea Sector. The present-day GL³² is in red. **b**, Radar lines coloured according to where relic crevasses are found. 225 226 **c**, Normalized elevation ζ_i of an isochrone (Methods). Background images in **a**–**c** are from the 227 MODIS mosaic of optical (red band) imagery over Antarctica (MOA), which reveals Antarctic surface morphology^{34,35}. Green curves in **b** and **c** highlight a contrast in surface texture 228 229 (Methods), running parallel to the present-day GL, the onset of relic crevassing and, on the East 230 side, a prominent isochrones syncline **d**, Radargram displaying examples of undulating 231 isochrones. One isochrone is mapped using the colour map from c. e, Close-up view of near-bed 232 relic crevasses with mean spacing of approximately 450 m.

233 Figure 3: Modelled grounding-line retreat and re-advance due to lithospheric rebound.

WAIS GL position in the reference simulation at 20 kyr BP (violet), with a recent LGM ice-sheet

235 reconstruction in black (ref. 2, scenario B). The ice sheet asynchronously reaches a minimal

extent in the Weddell and Ross sea sectors at 10.2 kyr BP and 9.7 kyr BP respectively (blue).

237 The GL re-advances towards its present-day GL location³⁰ (red). Final simulated GL position is

in green. The locations of Siple-Gould Coast sediment cores and selected ice rises are indicated.

Brown dashed lines show cross-sections used for Extended Data Figs 3, 6 & 7. Red dotted lines

show longitude-defined sectors. Background shading shows basal topography and bathymetry 30 .

241 Methods

242 Sediments

243 Radiocarbon and ¹³C analyses of glacial tills.

244 Subglacial sediments have been recovered during multiple field seasons by hot-water drilling 245 through the southern Ross Ice Shelf and grounded West Antarctic Ice Sheet. Sub-ice shelf core 246 samples include the Ross Ice Shelf Project (RISP, 1978) and the Whillans Ice Stream Grounding 247 Zone (WGZ, 2015), recovered as part of the Whillans Ice Stream Subglacial Access Research 248 Drilling (WISSARD) Project. The WISSARD Project also included cores from beneath 249 grounded ice at Subglacial Lake Whillans (SLW, 2013). Sub-ice stream samples further 250 upstream were recovered from the Whillans (WIS/UpB, 1989, 1991, 1995, SLW, 2013), Kamb (KIS, 1995, 1996, 2000) and Bindschadler (BIS, 1998) ice streams¹⁸. The sediments recovered 251 252 are tills with a matrix derived in part from strata that accumulated during multiple intervals of 253 terrestrial, coastal and open marine deposition in West Antarctica. Source strata integrated into the tills are dated by microfossils^{36,37}. They include terrestrial plant spores dating back to the 254 255 Devonian, but are dominantly Miocene age diatoms, reflecting the abundance of Miocene marine 256 strata in the embayment. The youngest diatoms present are of Pleistocene age, representing 257 direct precipitation in open water during intervals of past ice sheet collapse during MIS-5e (120 kyr BP) or earlier Pleistocene interglacials³⁸. These microfossils predate any measurable 258 259 radiocarbon source in the sub-glacial environment.

260 Bulk sediment samples for radiocarbon measurements were wet sieved with nanopure water

261 through a 63-µm screen to remove coarser mineral matter, then pre-treated using standard acid-

262 base-acid protocols³⁹. The remaining insoluble fraction for each sample was combusted to

263 convert to CO₂ and then graphitized. Samples were then measured using accelerator mass

spectrometry at the W.M. Keck Carbon Cycle Laboratory at the University of California, Irvine.
 14

A subset of samples was also independently pretreated and measured at the Uppsala radiocarbon facility, Sweden, following the same protocol. Due to the inherent age uncertainties, radiocarbon "ages" are presented as raw, uncalibrated values that are not corrected for known reservoir effects. Acid-insoluble organic ¹³C ratios were generated separately at the Environmental Isotope Lab at University of Arizona, following standard methods.

270 In order to minimize the potential for contamination of small samples during analysis, we 271 processed large samples (>150 mg), producing \sim 1 to 2 mg of carbon that was combusted and 272 reduced to graphite, while simultaneously processing numerous primary and secondary 273 standards, ranging in size from very small (<0.1 mg) to large (1.8 mg). To further demonstrate 274 that we have thoroughly explored a wide range of radiocarbon systematics, we also dated base-275 soluble fractions for a subset of samples. The base-soluble fraction (humic acid) resulted in ages 276 that were somewhat older (~1 to 2 ka) than the bulk sediment samples. These age differences are 277 not significant and the results are consistent with our other findings. Multiple fractions that yield 278 similar ages further rule out contamination as a possible explanation of our radiocarbon results.

279 We considered and ruled out sample contamination by modern carbon prior to analysis as a 280 potential explanation of the radiocarbon results. Subglacial samples were recovered between 281 1989 and 2013 and sub-ice shelf samples were recovered in 2015 (WGZ) and 1978 (RISP). SLW 282 (2013) samples were recovered and handled using full clean-access protocols⁴⁰, where all 283 instruments were peroxide washed prior to recovery. Cores and samples were sealed and 284 maintained in a +4 °C environment. Clean access protocols were not employed during earlier 285 sample recovery (WIS, KIS and BIS), though every effort was made to maintain appropriate 286 cleanliness in the field and in the laboratory. These samples were sealed and maintained at 4 C. 287 Subsamples were stored in sealed sections of plastic core liner, plastic bags or in plastic vials. 288 Many of the samples in vials dried out and some of the dried samples have been stored at room

289 temperature in the intervening years. The fact that the older subglacial samples demonstrate the 290 oldest apparent radiocarbon ages argues against introduction of new carbon from microbial or 291 fungal growth on the sample. RISP cores were stored at the Florida State University Antarctic 292 sediment core repository, sealed and chilled. The somewhat younger ages there are readily 293 explained by the long-term exposure to the sub-ice shelf ocean cavity. Despite the different 294 sample storage methods used, radiocarbon results are very consistent, which argues against 295 contamination. Given the small concentration of organic carbon in the samples, a very small 296 amount of contamination with modern carbon would result in some anomalous vounger ages, yet 297 all of our results fall within a narrow range. Given the range of sample sources and storage 298 methods, equal contamination of all the samples consistent with our results is extremely unlikely.

299 Apparent and true ages of sediments.

300 Given the dominant concentration of old (radiocarbon dead) organic carbon in the samples⁴¹, all 301 ages presented are older than the likely age of the pure radiocarbon component; note the 302 calculated "percent modern" column in Extended Data Table 1. We infer post-LGM ages for all 303 samples. Apparent radiocarbon ages for 11 till samples from beneath Whillans, Kamb, and 304 Bindschadler ice streams were obtained for Acid Insoluble Organics (AIO) and span from ca. 20 305 to 35 kyr BP (Extended Data Fig. 5). Rare, small biogenic carbonate fragments from molluscs, 306 foraminifera and calcareous nanofossils have been found in several samples, but these are all Tertiary in age, based on biostratigraphic assessment¹⁹, and no attempt was made to radiocarbon 307 308 date them.

309 Sediments recovered from beneath the southern Ross Ice Shelf (RISP cores; Fig. 1) were

310 radiocarbon dated, generally yielding somewhat younger ages than the ice streams, likely

311 reflecting the longer period of contact with the sub-ice shelf marine cavity. For the most part, the

raw ages appear to correspond to the LGM of the WAIS, which started ca. 29 kyr BP and ended
13.9-15.2 kyr BP (ref. 42). Many lines of geologic evidence document that the LGM GL of the
WAIS was located at or near the Ross Sea continental shelf break⁴³ at the time that corresponds
with the apparent, uncorrected radiocarbon ages in our samples.

For the apparent ¹⁴C ages to represent the true sediment ages, the GL of the WAIS would have to 316 317 be upstream of the core sampling locations and also require all of the carbon pool in the samples to initially have had the standard, modern ${}^{14}C/{}^{12}C$ ratio. However, due to the large oceanic 318 319 reservoir effect in Antarctica even modern amphipods sampled by us in January 2015 through a 320 borehole at the GL of Whillans Ice Stream (WGZ; Fig. 1; Extended Data Table 1) had the 321 fraction of modern radiocarbon at only 0.8669-08746, corresponding to apparent ages of 1075-1145¹⁴C years. Moreover, it is well documented that radiocarbon dates on acid insoluble organic 322 323 matter (AIO) obtained from bulk Antarctic glacigenic sediments are typically biased by admixture of old, ¹⁴C-depleted organic matter^{4,44,45,46}. This old organic material comes from 324 glacial erosion of sediments deposited earlier in the Cenozoic³⁷. The tills of the Ross ice streams 325 are dominated by Tertiary, mostly Upper Miocene^{37,38}, marine source beds that are being 326 actively eroded by grounded ice³⁶. Given the uncertainty concerning the initial mixture between 327 328 'young' and 'old' sources of organic matter, we only know that the real age of the radiocarbon falls somewhere along the exponential-decay lines of ¹⁴C in Extended Data Fig. 5, which 329 intersect the left-hand vertical axes of this figure at the measured values of ¹⁴C fraction modern. 330

Rather than the apparent ¹⁴C ages representing the true sediment ages, it is more reasonable to assume that the WAIS GL was upstream of the till sampling locations subsequent to LGM, and that the calculated ages are biased toward older dates due to the high concentration of ancient carbon (Extended Data Fig. 5). Our assumption is also compatible with relatively low initial fractions of ¹⁴C in sampled sediments, which we expect given that the sampled subglacial areas

336 were exposed to influx of marine-sourced radiocarbon over a geologically short period of time 337 and were located very far from the main locus of regional biological productivity in the Ross Sea. For instance, if our sediment samples received ¹⁴C-bearing marine organics in the Mid 338 Holocene, or ca. 5 kyr BP, the initial fractions of ¹⁴C for these samples could be guite low (ca. 339 340 0.03 to 0.14) to explain the obtained apparent ages. In contrast, if one chooses a time period predating the WAIS LGM, say 30 kyr BP, most of our samples would need to have all of their 341 organic matter completely equilibrated with the oceanic pool of ¹⁴C at that time. Such conditions 342 are difficult to find even in the modern open marine sediments of Ross Sea^{44,45}. 343

The balance of evidence favors post-LGM origin of ¹⁴C-bearing organics in our till samples. However, the radiocarbon data do not allow us to pinpoint more precisely when the proposed retreat and re-advance of WAIS GL took place in the Ross Sea Sector of the ice sheet, or the specific duration of exposure.

348 Potential Input of Radiocarbon from Basal Melting.

Here we check if ¹⁴C in subglacial sediment samples from beneath three different ice streams 349 350 may have been entirely, or at least to significant extent, supplied by basal melting of meteoric ice. Meteoric ice may contain as much as 140 mm³ of air per gram⁴⁷, which translates into ca. 351 0.02 grams of Total Inorganic Carbon (TIC) per m^3 of ice, assuming ice density of 910 kg/m³ 352 353 and pre-industrial Holocene atmospheric concentration of carbon dioxide (280 ppm). Meteoric ice also contains organic matter deposited from the atmosphere^{48,49}. From the latter two 354 355 publications we select 100 μ g per liter as an upper bound on Total Organic Carbon (TOC) 356 concentration in ice coming from the interior of the ice sheet. This assumption yields ca. 0.1 grams of TOC per m³ of ice. TIC and TOC combined give 0.12 grams of carbon per m³ of 357 358 meteoric glacial ice. Basal melting rates vary beneath the Ross Sea Sector of the WAIS but 0.003 m/year provides a representative estimate for the region⁵⁰. At this rate 0.36 grams of carbon per m² of the bed area would be entering the subglacial zone of the ice sheet in each thousand years. Some of this material would be entering subglacial sediments already as organic carbon melted out of the ice whereas the component derived from carbon dioxide trapped in the melting ice would exist as Dissolved Inorganic Carbon (DIC). We assume that the latter could be relatively quickly sequestered by subglacial microbial activity and converted into organic matter²¹.

365 The basal flux of carbon estimated above needs to be compared to the total stock of carbon in the subglacial till from which our samples are derived. Our radiocarbon measurements show that ¹⁴C 366 367 is present at least within the top 1 m of till recovered from beneath three Ross Sea Sector ice 368 streams. Analyses performed in the University of California, Santa Cruz stable isotope laboratory 369 (UCSC CF-IRMS) on 27 subglacial sediment samples show average TOC of 0.33% (with 370 standard deviation of 0.14%, both expressed in weight % of the dry sedimentary matter). Because the dry density of the till is ca. 1,600 kg m⁻³ (ref. 51), a 1m-thick layer of till contains 371 about 5 kg of organic carbon per m³ of sediment. Even if we assume that all of the carbon 372 373 entering the subglacial zone with basal meltwater is sequestered within the top 1 m of till, it 374 would take about 14 million years to supply the total amount of carbon found in these sediments just from basal melting at the rate of 0.36 grams per 1,000 years. Due to ¹⁴C decay only the 375 376 carbon released by basal melting during the last tens of thousands of years can contribute to the current stock of this radioisotope in till. The remaining ratio, R, of undecayed ¹⁴C in a pool of 377 carbon accumulating through time, t, by addition of new 14 C-bearing matter at a constant rate can 378 379 be calculated from

380
$$R_{\{t\}} = \frac{R_0}{t} \int_0^t e^{-\frac{\varsigma}{\lambda}} d\varsigma = R_0 \frac{\lambda}{t} \left(1 - e^{-\frac{t}{\lambda}}\right),$$

381 where R_0 is the initial ¹⁴C ratio (e.g., modern atmospheric ¹⁴C /¹²C ratio), ς is a dummy variable

of integration, and λ is a constant given as the product of ¹⁴C half life, 5,730 years, and the 382 383 natural logarithm of 2 (i.e., 3,972 years). After 14 Myr the hypothetical subglacial carbon pool 384 resulting solely from a continuous accumulation of carbon released from basal melting of meteoric ice would have average ¹⁴C ratio of only 0.00028 of its initial (e.g., modern) value. This 385 is two orders of magnitude too low to explain the fractions of ¹⁴C measured in our samples. From 386 the equation above we can calculate that the observed fractions of ¹⁴C could only be explained by 387 constant accumulation of carbon with modern initial ¹⁴C over periods of time around 100 kyr 388 389 years or less. However, the flux rate of carbon from basal melting would then have to be around 390 50 grams per thousand years per unit area of the ice base in order to explain the total stock of carbon in the sampled subglacial sediment layer (ca. 5 kg m⁻³). As per our discussion above, such 391 392 rates of carbon delivery from melting basal ice is implausibly high.

393 The analyses presented here did not even take into account the fact that any carbon released from 394 the base of the ice streams has spent thousands to tens of thousands of years stored in the ice itself, which would further decrease its ¹⁴C content. Furthermore, an ice stream base can also be 395 396 composed of basal ice that has been formed by freezing of subglacial waters. Such basal ice would not contain ¹⁴C-bearing carbon dioxide or organic matter. Hence, we conclude that release 397 of ¹⁴C from the base of the ice sheet does not represent a significant source and that inclusion of 398 399 recent marine organic matter during a recent ice sheet retreat is needed to explain the 400 concentrations of this isotope measured in our samples. Furthermore, the radiocarbon results we 401 report are completely consistent with ice-sheet retreat ages inferred by the radar profiles and 402 modeling reported here.

403 A modern analogy from the present-day sub-shelf cavity

404 Hot water drilling through 760 m of ice into 10 m of water in a sub-ice shelf embayment more

than 600 km from the open ocean, at the Whillans Ice Stream grounding zone⁵² (WGZ: Fig. 1) 405 406 revealed a diverse community of organisms – including diverse amphipods, zoarcid and 407 notothenioid fishes, and medusoid and ctenophorid jellies – thriving in fully-marine water. 408 Radiocarbon analysis of appendages from 3 live-captured amphipods vielded raw ages between 409 1075±20 and 1145±20 vr BP (Extended Data Table 1), comparable to the Ross Sea surface water reservoir age⁵³. This GL-proximal community of organisms demonstrates that radiocarbon is 410 411 introduced from the open ocean virtually everywhere that ocean waters reach beneath the ice 412 shelf. A retreating GL would have opened a subglacial marine environment that was immediately 413 colonized by organisms that leave a radiocarbon tracer on their death. This modern sub-ice shelf 414 process illustrates a likely pathway for Holocene radiocarbon to be deposited upstream of the 415 current GL following past GL retreat. Furthermore, porewater chemistry indicative of seawater at Subglacial Lake Whillans (SLW; Fig. 1)²¹ demonstrates that marine waters previously occupied 416 417 the subglacial lake basin.

418 Henry Ice Rise: observations, interpretation and flow history.

419 Henry Ice Rise (HIR) is one of several ice rises in the Weddell Sea that influence the flow of Ronne Ice Shelf and its ice streams. It is currently slow-flowing³¹ and cold based⁵⁴. Based 420 421 primarily on new ground-based ice-penetrating radar data, we hypothesise that HIR formed 422 during the Holocene as the Ronne Ice Shelf grounded on a bathymetric high. Here we describe 423 the radar system and our processing steps, and discuss possible links between surface roughness 424 and englacial structure, which pertain to a potential past GL configuration. We also discuss an 425 alternative interpretation that HIR existed throughout the Holocene, but was in the past 426 significantly smaller than it is today.

427 Radar system

We used the British Antarctic Survey's DEep LOoking Radio-Echo Sounder (DELORES) on HIR to map basal topography and englacial structure⁵⁵. A transmitter producing 2500 broadband radio-wave pulses per second was connecting to a 20 m, resistively-loaded dipole antenna, so that the center frequency of the system in ice was 4 MHz. A receiver unit, positioned 100 m from the transmitter connected to an identical dipole antenna was, triggered by the air wave and sampled the return signal at 250 MHz. The system was towed 50 m behind a snowmobile, driven at ~15 km hr⁻¹ After stacking, this configuration produced traces every ~85 cm along the track.

435 Data processing

436 Traces were geo-located in three dimensions using data from a dual-band GPS unit, mounted at

437 the midpoint of the transmitter and receiver, then interpolated onto a regularly-spaced grid, band-

438 pass filtered and compiled into radargrams. Radargrams were migrated with a 2D Kirchoff

439 scheme, assuming a constant radio-wave velocity, 0.168 m ns^{-1} (ref. 55).

440 Elevations of the ice-bed interface and one of many englacial reflecting horizons, interpreted as isochrones, were determined using the software package Petrel by Schlumberger. The conversion 441 442 from two-way travel time of the radar signal to depth was made assuming a constant radio-wave velocity (0.168 m ns⁻¹). Correcting for the impact of the lower density of the firn on radio-wave 443 444 velocity would decrease the elevation by up to 10 m. As firn densities are unknown on HIR and likely vary spatially, we plot the uncorrected elevation of the ice-bed interface, z_b , (Fig. 2a). The 445 normalized elevation of the isochrone ζ_i is computed from $\zeta_i = (z_i - z_b)/(z_s - z_b)$, where z_i is the 446 elevation of the isochrone and z_s is the ice surface elevation measured with the dual-band GPS 447 448 (Fig. 2c).

449 Surface texture contrasts visible in satellite imagery and surface elevation data.

450 Antarctic satellite imagery can be used to reveal subtle ice-surface topography⁵⁶. The MODIS 22

Mosaic of Antarctica image in Fig. 2 highlights contrasting regions near the northern end of HIR, which we interpret as indicative of contrasting surface roughness. The green curves in Fig. 2b & 2c highlight the boundaries between the regions. The area between the two green curves appears smoother than the two regions between the green curves and the present-day GL. This interpretation is consistent with surface slopes estimated from elevation data collected by the GPS unit mounted on the DELORES radar system (not shown).

The surface-texture contrasts are approximately parallel to the present-day GL and align approximately with the following features reveled by our ice-penetrating radar survey: extensive synclines in internal isochrones (Fig. 2c; Extended Data Fig. 2a), locations where isochrones intercept the bed (Fig. 2b; Extended Data Fig. 2f) and the onset of buried crevasses (Fig. 2b). Here we explain these alignments by proposing that all these features are the signatures of a past GL configuration that persisted during a period either following the grounding of the ice rise, or alternatively, when HIR was at its minimum extent (see next section).

464 Today on the ice-shelf side of the eastern GL of HIR, ice undergoes lateral shear as the ice shelf 465 moves past the relatively slow ice rise. This shear generates a region of dense crevassing 466 (Extended Data Fig. 2g). Deformation in shear margins also warms englacial ice and generates 467 ice-crystal fabric. Both can impact ice effective viscosity, as can crevassing. As the GL swept 468 through the region between the surface-texture contrast and the present-day GL, crevasses 469 generated on the ice-shelf side of the GL would have become inactive, buried and then deformed 470 in the slow moving ice. Simultaneously, englacial temperature and crystal fabric would have 471 evolved in a complex manner as the shear margin migrated in step with GL migration. We 472 hypothesise that, along with spatially heterogeneous basal melting, these changes resulted in the 473 complex pattern of tilted crevasses we observe today.

474 Under this interpretation, the rougher surface texture in the region currently occupied by buried 475 crevasses (Fig. 2) results from spatially-variable ice viscosity caused by variability in the 476 orientation and height of crevasses as well as spatially-variable ice fabric and temperature that 477 have evolved enough to still affect ice flow. In contrast, the ice in the region between the two 478 green curves (Fig. 2) has undergone a simpler flow history, without significant lateral shearing, 479 either because it was immediately upstream of the initial location of grounding (the subglacial 480 high in Fig. 2a) and experienced only longitudinal compression, or because it did not unground. 481 We discuss the latter scenario next.

482 An alternative interpretation: a smaller-than-today, but persistent HIR

483 In the main text and in the previous section we interpret our radar observations to indicate that 484 HIR became completely ungrounded post-LGM, then formed through re-grounding on the 485 topographic high at the northern end of HIR. Some of our radar observations can be explained by 486 an alternative ice-flow history. The GL surrounding HIR may have retreated significantly, 487 exposing areas of the ice base to the ocean, where heterogeneous basal melting deformed and 488 truncated isochrones at the bed. Subsequent re-advance of the GL would have buried crevassing 489 as described above. This would have had an effect on regional ice-shelf dynamics and 490 buttressing, but HIR would have persisted throughout the Holocene. However, if the locations 491 where isochrones are truncated at the bed correspond to areas that ungrounded, then the simplest 492 minimum extent suggested by mapping the layer truncations (Fig. 2b) would involve the ice rise 493 ungrounding over the highest basal topography (Fig. 2a), while remaining grounded over deeper 494 bathymetry. We do not yet understand ice-rise dynamics sufficiently to fully assess if this is 495 possible. However, such a pattern of ungrounding during deglaciation is inconsistent with recent numerical modelling of idealized ice-rise formation⁵⁷. Therefore, we argue that full ungrounding 496 497 and later regrounding is more likely than partial ungrounding.

498 Whether the ice rise ungrounded completely or partially, the buttressing force exerted by the ice

499 shelf on the ice sheet upstream would have been affected. These scenarios could be tested by

500 drilling to the ice-rise base to obtain sediments for radiocarbon analysis and to allow

501 measurement of the englacial temperature $profile^{58}$.

502 **Ice-sheet modelling**

503 Model description and forcings

We used the open-source Parallel Ice Sheet Model (PISM)^{24,59,60}, to perform pan-Antarctic 504 505 simulations using glacial-cycle climate forcings. PISM is a three-dimensional, thermo-506 mechanically coupled ice-flow model with a freely evolving GL and calving front. The hybrid 507 shallow approximation of Stokes flow allows for large-scale, long-term simulations of ice-sheet evolution. Unless otherwise stated, we used surface temperature anomalies from the WAIS 508 divide ice-core (WDC) reconstruction⁶¹, which show a sharp increase of 11 K starting around 17 509 510 kyr BP. For surface accumulation we use the 1980-2000 mean accumulation from the output of a 511 regional climate model (RACMOv2.1, HadCM3, ref. 62) as a base accumulation pattern and scale this pattern by 2% per degree of climatic temperature change from present⁶³ (using the 512 513 WDC reconstruction) and by 43% per km surface elevation change. The latter assumes a linear 514 dependence of air temperature on elevation combined with an exponential dependence of 515 precipitation on temperature. At the ice-ocean interface we use the Potsdam Ice-shelf Cavity mOdel (PICO)⁶⁴, which calculates melt patterns underneath the ice shelves for given ocean 516 517 conditions⁶⁵. Ocean temperature anomalies are computed from ice-core derived surface 518 temperature anomalies convolved with a response function to produce a damped and delayed response⁶⁶. The calving front can freely evolve with calving parameterized to be dependent on 519 principal strain rates at the ice-shelf front⁶⁷. Basal sliding is parameterized using an iterative 520

optimization scheme⁶⁸ modified for the till-friction angle, mimicking the distribution of marine
sediment and bedrock, such that the mismatch to modern surface elevation observations is
minimized.

Sea-level change drives GL migration through the flotation criterion, which determines GL position⁶⁹. We prescribe sea-level changes by considering the height of the sea surface and the height of the sea floor separately. Unless otherwise stated, we use global mean sea surface heights prescribed by the ICE-6G GIA model⁷⁰. According to this model, mean sea-surface height has risen by about 100 m since 14.5 kyr BP. Alternative sea-surface height records were considered as part of the sensitivity analysis discussed below.

530 Changes to the height of the sea floor and bed topography are modelled using an approach that 531 reflects the deformation of an elastic plate overlying a viscous half-space. Calculations are 532 carried out using the computationally efficient Fast Fourier Transform to solve the biharmonic differential equation for vertical displacement in response to ice load change⁷¹. This approach 533 534 can also be used to calculate vertical displacement in response to spatially-varying water load 535 changes (more details below). A key advantage this approach has over traditional Elastic 536 Lithosphere Relaxing Asthenosphere (ELRA) models is that the response time of the sea floor is 537 not considered a constant, but depends on the wavelength of the ice-load perturbation. This 538 formulation closely approximates the approach used within many GIA models⁷¹. Since our 539 ice-sheet model is not coupled to a GIA model we are unable to prescribe self-consistent water 540 load changes or account for feedbacks associated with post-glacial changes to the rotational state of the Earth⁷². The effect of neglecting these processes is discussed below in the section on sea-541 level forcing. 542

543 Bed elevation adjustment

With a resolution of 15 km and uncertain bed elevation, basal conditions and climate forcings,
matching the present-day GL position in the Weddell Sea required raising the ice-sheet bed in
one key location (Bungenstock Ice Rise) to compensate for topographic information lost during
remapping.

The present-day elevations of the sea bed and ice-sheet bed are regionally highly uncertain^{30,73}. 548 549 Furthermore, when remapping observed bed elevations (Bedmap2; ref. 30) from a relatively fine 550 spatial grid (1 km) to the spatial resolution of our simulations (15 km), we lose bed-elevation 551 information in key places. Remapping introduces inherent uncertainty into any low-resolution 552 ice-sheet modelling study, but it is particularly important for the process of ice rise re-grounding 553 that we highlight. For example, at present-day ice rises the remapping of the bed elevation data 554 reduces the apparent peak bed elevation by 36-135 m, while at their steep flanks this difference 555 can be a few hundred meters (Extended Data Fig. 4). We find that in our simulations, if we use 556 bed topography remapped directly from the Bedmap2 compilation, (using a first-order conservative technique⁷⁴), the GL in the Weddell Sea Sector does not re-advance across a 557 558 1.300m-deep trough and often remains near to its Holocene minimum position, far inland of its 559 present-day location, until the end of simulations. This is unrealistic.

560 We have experimented with various approaches to dealing with the uncertainty introduced by 561 remapping bed topography to lower spatial resolutions. These include adopting the maximum 562 Bedmap2 value in each model gridcell either in the regions of individual ice rises or across the 563 whole ice sheet. We also experimented with a sub-grid pinning point scheme, dependent on the thickness of the water column underneath the ice shelf within some uncertainty range⁷⁵ and with 564 565 a simpler uniform adjustment in the region of individual ice rises. Which approach we take 566 affects the timing and magnitude of GL retreat and re-advance. Without clear motivation to 567 adopt a more complex approach, we made the minimum adjustment to the bed that allowed the

568 GL to re-advance in the Weddell Sea Sector: we uniformly raised the bed by 150 m in a 165 km 569 by 180 km area centered on Bungenstock Ice Rise (BIR) only. This rather arbitrary choice is a 570 major limitation of this model ensemble, which prevents us (along with other uncertainties 571 associated with model resolution, forcings, parameters and physics, see below) from extracting 572 information about the timing of GL retreat and re-advance from our simulations.

The purpose of our model experiments is to explore the mechanisms that could have caused readvance and what impacts these mechanisms. It is beyond our scope to explore the range of options to compensate for basal topographic re-mapping errors, but our work highlights that, at least for studying ice-rise re-grounding, resolving this issue will be required if we are to make quantitative predictions of millennial-scale ice sheet behavior.

578 Model ensemble and the reference simulation

579 We performed an ensemble of simulations, each spanning 205 kyr BP to present, in which 580 uncertain parameters were systematically varied and the results were compared to paleo-icesheet datasets and present-day observations^{76,77}. The full results of the ensemble represent a 581 582 likely range of Antarctic ice-sheet chronologies and will be presented elsewhere. Here we are 583 focused on the possible extent and triggers of large-scale GL re-advance during the Holocene 584 and so only discuss in detail mechanisms relevant to this process. We choose one of the 585 ensemble members to act as a reference simulation to demonstrate aspects of model behavior. 586 The reference simulation is chosen from many ensemble members that employ parameters that 587 lie within physically-plausible bounds (Extended Data Table 2) and also achieve reasonable agreement with a commonly-used ice-sheet GL position reconstruction². Despite this GL 588 589 reconstruction not including GL re-advance during the Holocene, as discussed in the main text, 590 many ensemble members, including our reference simulation, simulate the GL retreating

significantly inland of its present-day position and subsequently re-advancing towards it current position. We express ice-mass changes as the above-flotation volume in units of global sea-level equivalent, assuming a constant ocean area of 3.61×10^{14} m² (ref. 78).

594 *The drivers of GL re-advance*

We performed three model experiments (separate from the full ensemble, above) to disentangle 595 596 the causes of re-advance in the Weddell and Ross Sea sectors. We find that both uplift of the bed 597 at the GL and buttressing caused by the formation of ice rises drive re-advance of the GL 598 towards its present-day position in both the sectors (Extended Data Fig. 4). The first experiment 599 ('No uplift'; Extended Data Fig. 4) is identical to the reference simulation except that uplift is 600 halted after 10 kyr BP, i.e. at approximately the time at which the GL in the reference simulation 601 reaches its most retreated position in both sectors (Fig. 3). The GL in the Weddell Sea remains at 602 its 10 kyr BP position for the remainder of the simulation. In the Ross Sea the GL retreats further 603 into the interior of the ice sheet. This additional retreat can be prevented by buttressing, as 604 demonstrated in the second experiment ('No uplift, grounding of ice rises'; Extended Data Fig. 605 4), where uplift is again halted 10 kyr BP, but ice-rise formation is enforced by raising the 606 seafloor in the locations of the Crary, Steershead, Henry and Korff ice rises and Doake Ice 607 Rumples. In this simulation further retreat in the Ross Sea is prevented, but re-advance still does 608 not occur in either sector. We further test the relevance of buttressing via ice-rise formation in a 609 third experiment ('Uplift, no grounding of ice rises'; Extended Data Fig. 4) in which uplift of the 610 bed is allowed, but ice-rise formation is prevented by lowering the seafloor. In this simulation 611 ice-shelf buttressing is reduced compared to the reference simulation. Consequently, the GL 612 remains at its 10 kyr BP position in the Weddell Sea (Extended Data Fig. 4a) and relatively little 613 re-advance occurs in the Ross Sea (Extended Data Fig. 4b). Hence we identify the grounding of 614 HIR, as evident from our radar survey, as critical for GL re-advance in the Weddell Sea in these

615 simulations, while in the Ross Sea neither uplift in the GL region nor buttressing due to ice-rise

616 formation, is alone sufficient to drive GL re-advance to the present-day position.

617 Model sensitivity to forcings

618 Extended Data Fig. 6 plots selected results from our analysis of the sensitivity of the model to

619 various forcings. The retreat of the GL inland of its present-day location and subsequent re-

advance is a common behaviour of the model, however the Holocene minimum extent, and how

621 fast and how far the GL re-advances are all sensitive to forcings.

Since **sea-level forcing** is highly relevant for deglaciation, the responses to four different eustatic sea-level reconstructions were compared (Extended Data Fig. 6a). In our reference simulation we use the sea-level curve from the ICE-6G model⁷⁰. Ref. 79 and ref. 80 provide similar sea-level reconstructions and hence similar model results, with the strongest changes after around 15 kyr BP. The SPECMAP timeseries⁸¹ was used in the SeaRISE intercomparison⁷⁸ and shows a delayed LGM sea-level lowstand as well as a delayed sea-level rise to Holocene conditions and hence the modelled ice sheet exhibits a later retreat and re-advance (Extended Data Fig. 6).

In order to mimic the first-order effects of GIA coupling⁸² (including rotational feedback and 629 630 self-gravitational effects) we experimented with scaling the sea-level forcing time-series by 631 factors of 0.9 and 0.8 (initiated at 35 kyr BP, Extended Data Fig. 6b). We do not attempt to 632 prescribe spatially-varying sea-level forcing, but comparison with independent GIA model output⁸³ suggests that neglect of rotational feedback and self-gravitation of the ocean may result 633 634 in local errors in sea-level forcing on the order of 15-20 m (this range reflects the likely error 635 associated with prescribing sea surface height; deformation of the seabed is self-consistently 636 modeled within PISM). Scaling the uniform sea-level forcing by a factor of 0.9 causes the 637 lowstand to be less pronounced at the LGM (approximately 10 m higher), in comparison to the

638 reference simulation. This affects the LGM GL position, particularly in the Ross Sea, which in 639 turn affects the retreat and re-advance of the GL, because the depression of the bed depends 640 sensitively on the ice-sheet's LGM extent. Scaling by 0.8 may be unrealistic (based on comparison with GIA model output generated using an independent ice-sheet history⁸³; results 641 642 not shown), and interestingly, we note that retreat behind the present-day GL position is not 643 reproduced in this scenario (Extended Data Fig. 6b). We also experiment with a sea-level forcing that is identical to that used in the reference simulation (ICE-6G model⁷⁰) except that the curve 644 645 has been uniformly shifted 2 kyr earlier. The result is that the GL responds with an earlier retreat. 646 This response emphasizes the key role of the sea-level forcing in triggering large-scale GL 647 retreat.

648 Sea-level changes also impact the load of the ocean on the sea bed. This triggers bed deformation, 649 which will affect GL migration. By default, this second-order effect is not accounted for in PISM. 650 However, we carried out exploratory simulations that do account for it (not shown), and find that 651 when GL retreat is accompanied by an increase in eustatic sea-level, the additional ocean load 652 partly counteracts the unloading associated with GL retreat. Accordingly, the GL retreats further 653 inland than in the reference simulation. On the other hand, sea bed uplift following GL 654 retreat reduces the water load in marine sectors, this further amplifies uplift, which supports GL 655 advance. These interesting second-order effects do not qualitatively affect model behavior, but 656 they do impact the magnitude of GL retreat and re-advance via their influence on LGM extent in 657 both the Weddell and Ross sectors.

658 For surface **temperature forcing** our reference simulation uses a reconstruction of the WAIS

659 divide ice core (WDC)⁶¹. The results are similar when an alternative reconstruction from the

660 EPICA Dome C ice core (EDC)⁸⁴ is used (Extended Data Fig. 6c). However, the GL responds to

the slightly warmer LGM conditions in the EDC case with less LGM advance and hence a less

severe retreat in the Ross Sea Sector. For comparison, we also force one simulation with a
temperature record pertaining to the start of the Last Interglacial Period (from the EDC core), in
which an earlier and stronger warming leads to an earlier and stronger GL retreat, particularly in
the Ross Sea Sector.

Accumulation in the reference simulation is coupled to changes in surface temperature by 666 667 imposing a 2% precipitation change for each degree variation from present-day temperatures 668 (Extended Data Fig. 6d, violet curves) due to climatic changes (constrained by ice core data) and 669 a 43% precipitation per km of surface elevation change. We experimented with two alternative 670 time-dependent accumulation forcings and two constant accumulation scenarios. Using either a 671 scaling of 5% per degree of WDC-temperature change or an independent WDC-derived accumulation reconstruction⁸⁵ leads to lower mean accumulation and a less advanced LGM GL 672 673 position(Extended Data Fig. 6d). The less advanced LGM GL almost eliminates GL retreat 674 inland of its present position and re-advance, particularly in the Weddell Sea. When 675 accumulation is kept constant at LGM conditions (2% per degree scaling of the EDC temperature 676 at 25 kyr BP; Extended Data Fig. 6d), which correspond to lower accumulation than today, the 677 GL retreats inland of its present-day location in both sectors, but only partially re-advances in the 678 Ross Sea and does not re-advance in the Weddell Sea. When accumulation is kept constant at 679 present-day values (Extended Data Fig. 6d) GL retreat starts earlier than in the reference 680 simulation, particularly in the Ross Sea. In both sectors the GL retreats and re-advances in a 681 similar way to the reference simulation, but with different timings: in the Weddell Sea the GL re-682 advances several thousand years earlier than in the reference simulations, while in the Ross Sea 683 re-advance is delayed in comparison to the reference simulation.

684

686 Next we use selected members of the ice-sheet model ensemble to demonstrate the sensitivity of the model to various parameter values. Analysis of the full model ensemble, including a 687 688 systematic validation of the full range of parameter combinations against present-day conditions and reconstructions of paleo conditions 28,77 , will be presented elsewhere. Here we present the 689 impact of single parameter perturbations. In general, we find that retreat of the GL inland of its 690 691 present-day location and subsequent re-advance occurs over a wide range of parameter choices, 692 but the Holocene minimum extent, and how fast and how far the GL re-advances are all sensitive 693 to these choices.

Mantle viscosity affects model behavior because it defines the rate and pattern of the 694 695 deformation of the ice-sheet bed and sea floor. Our reference simulation uses a mantle viscosity of 5×10^{20} Pa s. The ensemble also covered a value considered typical for pan-Antarctic model 696 simulations and used as the default value in PISM $(1 \times 10^{21} \text{ Pa s}; \text{Extended Data Fig. 7a})$. We 697 698 selected the lower value for our reference simulation to account for the weaker mantle beneath the WAIS⁸⁶. An even lower viscosity ($\sim 1 \times 10^{20}$ Pa s; Extended Data Fig. 7a) has also been tested. 699 700 In the lowest viscosity case, GL retreat inland of the present-day position is prevented as the bed 701 responds too quickly to ice unloading. We find the fastest GL retreat rates for higher viscosities. 702 The most inland position reached by the GL is similar in each case, except the lowest viscosity 703 case, and re-advance occurs earlier for lower mantle viscosity. In summary, we find that GL 704 retreat and re-advance occurs in a plausible but confined range of mantle viscosity values.

Flexural rigidity is associated with the thickness of the elastic lithosphere and has an influence on the horizontal extent to which bed deformation responds to changes in load. Previous studies based on gravity modeling suggest appropriate values for our study with a focus on West

Antarctica lying within the range of 5×10^{23} to 5×10^{24} N m (refs. 87, 88). Our reference simulation marks the upper end of this range (Extended Data Fig. 7a). For lower values, 1×10^{24} to 5×10^{23} N m, we find GL retreat beyond its present-day location and re-advance as in the reference simulation. However maximum retreat is delayed in the Ross Sea sector, so readvance of the GL does not reach its present-day location in that sector.

713 **Enhancement factors** are used in ice modeling to account for anisotropy and other unresolved 714 rheological properties. PISM employs one enhancement factor for the shallow-shelf 715 approximation (SSA) component of the constitutive law and a second enhancement factor for the 716 shallow-ice approximation component. Increasing the SSA-enhancement factor (Extended Data 717 Fig. 7b) and/or decreasing the SIA-enhancement factor (Extended Data Fig. 7c) produces a less 718 advanced LGM GL position. This is because larger values of the SSA-enhancement factor 719 produce faster ice streams and thinner ice shelves, and smaller values of the SIA-enhancement 720 factor produce thicker grounded ice. For a less advanced LGM GL, retreat initiates earlier and 721 progresses more slowly, and does not reach as far inland before retreat is halted.

PISM uses a generalized sliding parameterization formulated as an exponential sliding law⁶⁰. In the reference simulation we use a **sliding exponent**, q = 0.75 (Extended Data Fig. 7d). In the plastic case (q = 1), the LGM GL is less advanced and retreat starts earlier (Extended Data Fig. 7d). For smaller values of q retreat occurs generally later in the Weddell Sea and retreat in the Ross Sea is less pronounced.

Two other parameters associated with the sliding parameterization are the decay rate of till
water and the effective overburden pressure⁶⁰. Within the range explored by the ensemble,
both parameters have only a moderate effect on LGM GL extent and the timing of retreat, and do
not affect whether or not the GL retreats inland of its present-day location and re-advances

731 (Extended Data Fig. 7e).

732 A final sliding-related parameter is the **till friction angle**, which varies spatially and for our reference simulation is optimized⁶⁸ to minimize the mismatch between modelled and observed 733 734 surface elevation, but is constrained to be larger than 2°. Reducing the minimum value to 1° 735 leads to a smaller LGM extent and hence a slower retreat and larger minimum extent (preventing 736 retreat past the present-day GL position in the Weddell Sea) (Extended Data Fig. 7f). Instead of 737 optimizing the till friction angle using observed surface elevations, it can also be defined as a 738 linear piece-wise function of bed topography, with 2° used in areas below -500 m (this is the default approach in PISM)⁶⁰. This also reduces the LGM extent and, in the Ross Sea, reduces the 739 740 retreat of the GL inland of its present-day extent. Ocean forcing in our simulations is modelled with PICO⁶⁴. PICO employs parameters for 741 742 overturning strength and heat exchange. Modification of the parameter values affects the 743 LGM GL extent and hence the rate and timing of retreat (Extended Data Fig. 7g). However, GL 744 retreat and re-advance are produced as robust features for extreme parameter values, even if 745 melting is omitted or prescribed as a constant at present-day values. Calving is parameterized as eigencalving (dependent on strain rates)⁶⁷. A parameter K is the 746 747 constant of proportionality between calving rate and horizontal spreading rate of ice 748 shelves(Extended Data Fig. 7h). K is assumed constant and uniform. Our reference simulation uses $K = 1 \times 10^{17}$ m s. LGM GL position is less advanced for smaller eigencalving values, and GL 749

retreat less pronounced, likely due to additional ice-shelf buttressing resulting from less calving.

751 **Resolution dependence**

752 Our simulations, in common with all millennial-timescale ice-sheet simulations, suffer from

resolution significant limitations related to the maximum practical spatial resolution that they can employ.
 35

754 Just like the model parameters considered in the previous section, the spatial resolution can be 755 treated as a quantity that affects the results of the simulations and should be investigated. This is 756 particularly true in our study as ice-shelf grounding on bathymetric highs with relatively small 757 horizontal dimensions has proven to be so important for the large-scale evolution of the ice sheet. 758 A sensitivity analysis aimed at examining the sensitivity of this behavior to resolution (analogous 759 to the exercise described above) is highly limited by computational resources. For example, 760 doubling the spatial resolution incurs at least a ten-fold increase in computational cost. 761 Ensembles with systematically-varied parameters of simulations that span the full spin-up over 762 two glacial cycles (205 kyr) currently are only possible with a spatial resolution of 15 km. 763 Shorter duration simulations (that only cover the last 20 kyr) are possible using a resolution of up 764 to 7 km, if they are initiated at 20 kyr BP by remapping the spun-up state of a 15 km resolution 765 simulation. (Unfortunately, this remapping means that, despite higher resolution, the bed topography is no better resolved with respect to observations³⁰ than the 15 km resolution 766 767 simulations.) Higher resolution simulations generally reproduce the pattern of GL retreat and re-768 advance, but the increase in resolution strongly impacts the timing and magnitude of changes 769 (Extended Data Fig. 8). Due to the influence of resolution on other model parameters, a full 770 ensemble analysis at higher resolution would be required to fully characterize the resolution 771 dependence of our simulations. Furthermore, these simulations would need to use the higher 772 resolution throughout the 205 kyr spin-up period in order to benefit from better-resolved bed 773 topography. This is unfeasible with currently-available computing resources.

774 Geophysical and terrestrial evidence consistent with re-advance.

Previous geophysical and terrestrial observations are consistent with our proposed sequence of
retreat and re-advance, but do not yet provide a coherent pattern of retreat and re-advance. Their

777 spatial coverage is currently insufficient to reveal the full complexity of Holocene retreat and re-778 advance. In the Weddell Sea, ref. 55 presented evidence that Korff Ice Rise (KIR; Fig. 1) has 779 been in a steady configuration since around 2.5 kyr BP. However, prior to that time KIR could 780 have undergone significant flow disturbance, including near-complete ungrounding and 781 regrounding (as occurs in our reference simulation; Supplementary Video 1), if subsequent 782 steady ice flow has had sufficient time to remove englacial evidence of such a flow disturbance. 783 See ref. 55 for details of this interpretation. Radar over Bungenstock Ice Rise (BIR; Fig. 1) 784 suggests a reorganization in flow as early as 4 kyr BP (ref. 89), while regional uplift rates suggest that BIR may have been ungrounded between 4-2 kyr BP (ref. 5). In the Ellsworth⁹⁰ and 785 Pensacola Mountains^{91,92}, exposure dates do not provide evidence for, but are consistent with 786 787 thinning below present and re-thickening within the last ~4 kyr (ref. 93). Ref. 94 noted that 788 radar-derived basal topography upstream of a subglacial basin beneath the Institute and Möller 789 ice streams suggests a former GL position more than 100 km upstream of today's grounding line, 790 although they did not suggest that this was a Holocene GL position.

Similarly, in the Ross Sea exposure-age dating in the Trans-Antarctic Mountains (e.g. ref. 3,4, 43, 95) may be consistent with our conclusions, but cannot confirm or rule-out re-advance. Geophysical observations have hinted at recent re-advance. Borehole temperatures have been used to date the grounding and formation of Crary Ice Rise (CIR; Fig. 1b) to 1.5-1.0 kyr BP (ref. 58) and ice-penetrating radar surveys of Kamb Ice Stream indicates that the GL was upstream of its current location during the last few centuries⁹. However, it is unclear if the latter observation is evidence for a long-term large-scale re-advance, or for relatively-small-scale GL fluctuations.

798 In both sectors, it is unclear if these varied observations from diverse glacial environments

799 (outlet glaciers, ice streams, ice rises, nunataks), paint a consistent picture of the timing of retreat

800 and re-advance. Our work does not provide any detailed timing constraints; the timing of

801	simulated GL migration depends on uncertain bed topography and model parameters, and further
802	work is needed to extract timing information from our radiocarbon and radar observations. We
803	leave to future work the important task of unravelling a retreat-readvance chronology consistent
804	with all observations.
805	Code Availability
806	PISM code used in this study can be obtained from https://doi.org/10.5281/zenodo.1199066.
807	Results and plotting scripts are available from the authors on request. Scripts for processing and
808	plotting radar data are also available on request.
809	Data Availability
810	Ice-penetrating radar data can be obtained from the UK Polar Data Centre: http://doi.org/99d. A
811	simple MATLAB script for viewing the raw radar data is also provided at this link. The
812	radiocarbon data supporting the findings of this study are available in Extended Data Table 1.
813	

- ¹⁰ Fretwell, P. Pritchard, H. D. Vaughan, D. G. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica *The Cryosphere* 7, (2013).
- ³¹ Rignot, E. Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet *Science* 333, 1427–1430 (2011).
- ³² Depoorter, M. A. Bamber, J. Griggs, J. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. *Nature* **502**, 89 (2013).
- ³³ Lipps, J. H. Ronan, T. & DeLaca, T. Life below the Ross ice shelf, Antarctica. *Science* **203**, 447–449 (1979).
- ³⁴ Haran, T., Bohlander, J., Scambos, T. et al. MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map. Boulder, Colorado USA: National Snow and Ice Data Center. http://dx.doi.org/10.7265/N5ZK5DM5. (2005)
- ³⁵ Scambos, T., T. Haran, M. Fahnestock, T. Painter, and J. Bohlander. 2007. MODIS-based Mosaic of Antarctica (MOA) Data Sets: Continentwide Surface Morphology and Snow Grain Size. Remote Sensing of Environment 111(2): 242-257. http://dx.doi.org/10.1016/j.rse.2006.12.020.
- ³⁶ Scherer, R. P. Quaternary and tertiary microfossils from beneath ice stream B: evidence for a dynamic West Antarctic ice sheet history. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **90**, 395–412 (1991).
- ³⁷ Coenen, J.J., Inferring West Antarctic subglacial basin history and ice stream processes using siliceous microfossils. *M.S. Thesis*, Northern Illinois University, DeKalb, IL, (2016)
- ³⁸ Scherer, R. P. Aldahan, A. Tulaczyk, S. et al. Pleistocene collapse of the West Antarctic ice sheet. Science 281, 82–85 (1998).
- ³⁹ Abbott, M. B. & Stafford Jr, T. W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada Quat. Res. 45, 300–311 (1996).
- ⁴⁰ Priscu, J.C., Achberger, A.M., Cahoon, J.E., Christner, B.C., Edwards, R.L., Jones, W.L., Michaud, A.B., Siegfried, M.R., Skidmore, M.L., Spigel, R.H. and Switzer, G.W., 2013. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. *Antarctic Science*, 25(5), pp.637-647.

References

- ⁴¹ Rosenheim, B. E. Santoro, J. A. Gunter, M. et al. Improving Antarctic sediment 14 C dating using ramped pyrolysis: An example from the Hugo Island trough. *Radiocarbon* 55, 115–126 (2013).
- ⁴² Clark, P. U. Dyke, A. S. Shakun, J. D. et al. The last glacial maximum. Science 325, 710–714 (2009).
- ⁴³ Anderson, J. B. Conway, H. Bart, P. J. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. *Quat. Sci. Rev.* 100, 31–54 (2014).
- ⁴⁴ Andrews, J. T. Domack, E. W. Cunningham, W. L. et al. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. *Quaternary Research* 52, 206–216 (1999).
- ⁴⁵ Licht, K. J. & Andrews, J. T. The 14 C record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarctic, and Alpine Research 324–333 (2002).
- ⁴⁶ McKay, R. Dunbar, G. Naish, T. et al. Retreat history of the Ross Ice Sheet (Shelf) since the Last Glacial Maximum from deep-basin sediment cores around Ross Island. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 260, 245–261 (2008).
- ⁴⁷ Martinerie, P. Raynaud, D. Etheridge, D. M. et al. Physical and climatic parameters which influence the air content in polar ice. *Earth Planet. Sci. Lett.* **112**, 1–13 (1992).
- ⁴⁸ Federer, U. Kaufmann, P. R. Hutterli, M. A. et al. Continuous flow analysis of total organic carbon in polar ice cores. *Environmental science & technology* **42**, 8039–8043 (2008).
- ⁴⁹ Antony, R. Mahalinganathan, K. Thamban, M. et al. Organic carbon in Antarctic snow: spatial trends and possible sources. *Environ. Sci. Technol.* **45**, 9944–9950 (2011).
- ⁵⁰ Joughin, I. Tulaczyk, S. MacAyeal, D. R. et al. Melting and freezing beneath the Ross ice streams, Antarctica. J. Glaciol. 50, 96–108 (2004).
- ⁵¹ Tulaczyk, S., Kamb, B. and Engelhardt, H.F. Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio. *Boreas* 30(2), 101–114 (2001)
- ⁵² Christianson, K. Jacobel, R. W. Horgan, H. J. et al. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from icepenetrating radar. J. Geophys. Res. Earth Surf. 121, 1954–1983 (2016).
- ⁵³ Hall, B. L. Henderson, G. M. Baroni, C. et al. Constant Holocene Southern-Ocean 14 C reservoir ages and ice-shelf flow rates. *Earth Planet. Sci. Lett.* 296, 115–123 (2010).
- ⁵⁴ Van Liefferinge, B. & Pattyn, F. Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica. *Clim. Past* **9**, 2335 (2013).
- ⁵⁵ Kingslake, J. Martín, C. Arthern, R. J. et al. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities. *Geophys. Res. Lett.* **43**, 9103–9112 (2016).
- ⁵⁶ Ely, J. Clark, C. Ng, F. et al. Insights on the formation of longitudinal surface structures on ice sheets from analysis of their spacing, spatial distribution, and relationship to ice thickness and flow. J. Geophys. Res. Earth Surf. 122, 961–972 (2017).
- ⁵⁷ Favier, L. & Pattyn, F. Antarctic ice rise formation, evolution, and stability. Geophys. Res. Lett. 42(11), 4456-4463 (2015).
- ⁵⁸ Bindschadler R. A., Roberts E. P. & Iken A. Age of Crary Ice Rise, Antarctica, determined from temperature-depth profiles. Ann. Glaciol. 14, 13–16 (1990).
- ⁵⁹ Bueler, E. & Brown, J. Shallow shelf approximation as a "sliding law" in a thermomechanically coupled ice sheet model. J. Geophys. Res. Earth Surf. 114, (2009).
- ⁶⁰ The PISM authors. PISM, a Parallel Ice Sheet Model: User's Manual (2016), based on development revision e9d2d1f8 (March 7th, 2017).
- ⁶¹ Cuffey, K. M. Clow, G. D. Steig, E. J. et al. Deglacial temperature history of West Antarctica. *Proceedings of the National Academy of Sciences* 113, 14249–14254 (2016).
- ⁶² Ligtenberg, S. van de Berg, W. van den Broeke, M. et al. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. *Clim Dyn* **41**, 867–884 (2013).
- ⁶³ Frieler, K. Clark, P. U. He, F. et al. Consistent evidence of increasing Antarctic accumulation with warming *Nature Climate Change* 5, 348– 352 (2015).
- ⁶⁴ Reese, R., Albrecht, T., Mengel, M. et al. Antarctic sub-shelf melt rates via PICO. Cryosphere Discuss. 2017, 1-24 (2017).
- 65 Schmidtko, S. Heywood, K. J., Thompson, A. F. et al. Multidecadal warming of Antarctic waters Science 346, 1227–1231 (2014).
- ⁶⁶ Li, C., von Storch, J. S., & Marotzke, J. Deep-ocean heat uptake and equilibrium climate response. *Climate Dynamics*, **40**, 1071-1086 (2015).
- ⁶⁷ Levermann, A. Albrecht, T. Winkelmann, R. et al. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat *The Cryosphere* **6**, 273 (2012).
- ⁶⁸ Pollard, D. & DeConto, R. A. simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica *The Cryosphere* 6, 953 (2012).
- ⁶⁹ Feldmann, J., Albrecht, T. Khroulev, C. et al. Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol. **60**, 353–360 (2014)..
- ⁷⁰ Stuhne, G. & Peltier, W. Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica. J. Geophys. Res. Earth Surf. 120, 1841–1865 (2015).
- ⁷¹ Bueler, E., Lingle, C. S. & Brown, J. Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations Ann. Glaciol. 46, 97– 105 (2007).
- ⁷² Milne, G., Mitrovica, J. X. & Davis, J. L. Near-field hydro-isostasy: the implementation of a revised sea-level equation. *Geophys. J. Int.*, **139**, 464-482 (1999).
- ⁷³ Pritchard, H. D. Bedgap: where next for Antarctic subglacial mapping? *Antarctic Science* **26**, 742–757 (2014).
- ⁷⁴ Jones, P.W. Monthly Weather Review, 127, 2204-2210 (1999).
- ⁷⁵ Pollard, D. and DeConto, R.M., 2012. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geoscientific Model Development, 5(5), p.1273.
- ⁷⁶ Briggs, R. D. Pollard, D. & Tarasov, L. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. *Quat. Sci. Rev.* 103, 91–115 (2014).
- ⁷⁷ Pollard, D., Chang, W., Haran, M., Applegate, P. and DeConto, R. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. *Geosci. Mod. Dev.*, 9(5) (2016)
- ⁷⁸ Bindschadler, R. A. Nowicki, S. Abe-Ouchi, A. et al. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol. 59, 195–224 (2013).
- ⁷⁹ Lambeck, K. Rouby, H. Purcell, A. et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 15296–15303 (2014).
- ⁸⁰ Bintanja, R. & Van de Wal, R. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. *Nature* 454, 869 (2008).

- ⁸¹ Imbrie, J. D. & McIntyre, A. SPECMAP time scale developed by Imbrie et al., 1984 based on normalized planktonic records (normalized O-18 vs time, specmap.017) (2006).
- ⁸² Gomez, N. Pollard, D. & Mitrovica, J. X. A 3-D coupled ice sheet-sea level model applied to Antarctica through the last 40 ky. *Earth Planet. Sci. Lett.* 384, 88–99 (2013).
- ⁸³ Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., & Thomas, I. D. A new glacial isostatic model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. *Geophys. J. Int.* **190**, 1464-1482 (2012).

⁸⁴ Jouzel, J. Masson-Delmotte, V. Cattani, O. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

- ⁸⁵ Fudge, T. Markle, B. R. Cuffey, K. M. et al. Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. *Geophys. Res. Lett.* **43**, 3795–3803 (2016).
- ⁸⁶ Hay, C.C., Lau, H.C., Gomez, N., Austermann, J., Powell, E., Mitrovica, J.X., Latychev, K. and Wiens, D.A. Sea Level Fingerprints in a Region of Complex Earth Structure: The Case of WAIS. *Journal of Climate*, 30(6), 1881-1892 (2017)
- ⁸⁷ Ji, F., Gao, J., Li, F., Shen, Z., Zhang, Q. and Li, Y., Variations of the effective elastic thickness over the Ross Sea and Transantarctic Mountains and implications for their structure and tectonics. Tectonophysics, 717, (2017).
- ⁸⁸ Chen, B., Haeger, C., Kaban, M.K. and Petrunin, A.G., 2017. Variations of the effective elastic thickness reveal tectonic fragmentation of the Antarctic lithosphere. Tectonophysics, *in press*.
- ⁸⁹ Siegert, M. Ross, N. Corr, H. et al. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. *Quat. Sci. Rev.* 78, 98–107 (2013).

⁹⁰ Hein A. S. et al. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. *Nat. Commun.* **7**, (2016).

- ⁹¹ Balco G. et al. Cosmogenic-nuclide exposure ages from the Pensacola Mountains adjacent to the Foundation Ice Stream, Antarctica. *Am. J. Sci.* **316**, 542–577 (2016).
- ⁹² Bentley M. J. et al. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. *Quat. Sci. Rev.* **158**, 58–76 (2017).
- ⁹³ Whitehouse P. L. et al. Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica. Journal of Geophysical Research: Earth Surface. J. Geophys. Res. Earth Surf. 122, 371–397 (2017).
- ⁹⁴ Ross, N., Bingham, R.G., Corr, H.F., Ferraccioli, F., Jordan, T.A., Le Brocq, A., Rippin, D.M., Young, D., Blankenship, D.D. and Siegert, M.J. Steep reverse bed slope at the grounding line of the Weddell Sea sector in West Antarctica. *Nature Geoscience*, 5(6), 393 (2012).
- ⁹⁵ Todd C., Stone J., Conway H., Hall B. & Bromley G. Late Quaternary evolution of Reedy Glacier, Antarctica. *Quat. Sci. Rev.* 29, 1328–1341 (2010).

816 Extended Data Captions

817 Extended Data Figure 1: Crevassing at Doake Ice Rumples. a, Radarsat Antarctic Mapping Project (RAMP)⁹⁶ image showing the surface expression of ice-shelf crevasses in synthetic 818 819 aperture radar data. Light areas indicate high backscatter from (near)surface reflectors interpreted 820 to be surface crevasses. Crevasses form over and immediately downstream of Doake Ice 821 Rumples. We hypothesize that crevasses once formed in a similar manner over the topographic high beneath the northern tip of HIR. **b**, Close-up view of the crevasses (black box in **a** shows 822 823 location), whose spacing (100-300 m), orientation (perpendicular to the flow of the ice shelf) and 824 lateral extent (~10 km) are similar to the steeply-dipping reflectors discovered near the bed of the 825 northern tip of HIR (e.g. Extended Data Fig. 2g) in the region of a topographic high. Yellow curves are flow lines computed from satellite-derived surface velocities³¹. Flow is from bottom 826 to top. Polar stereographic coordinates are in km. The present-day GL^{32} is in red. 827

828 Extended Data Figure 2: Relic crevasses in Henry Ice Rise. a, Radargram aligned

829 perpendicular to the divide ridge (inset shows location). One undulating isochrone is highlighted. 830 The colours show normalised elevation, **b** and **c**, close-up views of the regions indicated in **a** by 831 the boxes. In both close-up panels, diffractors (hyperbolic reflectors) are interpreted as 832 expressions of relic crevasses (data is unmigrated). The red vertical dashed line in c is the present-day GL^{32} . **d**, **e** and **f**, Radargrams aligned approximately perpendicular to northern relic 833 834 crevasses (d and e show migrated data). In c ($6 \le x \le 8$ km) and f ($0.3 \le x \le 1.4$ km) isochrones 835 intercepting the bed are evident. g. Three relic crevasses mapped across several radar lines over a 836 RAMP image⁹⁶. Inset shows an oblique, three-dimensional view of the features over an 837 interpolated surface showing the bed elevation $z_{\rm b}$ (Methods). Crevasse spacing in these areas 838 ranges between approximately 200 m and 600 m. The arrow indicates the view direction of the 839 oblique view.

840 Extended Data Figure 3: Grounding-line retreat and lithospheric rebound. Cross-sections 841 along transects through the Weddell (left) and Ross (right) Sea sectors, at 5 kyr intervals (for 842 transects see Fig. 3). Horizontal axis shows distance from the present-day GL. Vertical blue 843 dashed line shows position of maximum GL retreat. a and b, 15 kyr BP, with GL close to the 844 continental shelf edge. c and d, 10 kyr BP, GL retreat to approximately its minimum, most 845 retreated location. e and f, 5 kyr BP, both ice shelves have grounded on sub-ice-shelf bathymetric 846 highs due to seafloor uplift. g and h, Present day, the GL has re-advanced to approximately the 847 present-day configuration in response to the grounding of the ice shelf and uplift at the GL. The 848 Crary (CIR), Bungenstock (BIR) and Henry (HIR) ice rises are labelled in g and h. The Whillans 849 Ice Stream (WIS) and Subglacial Lake Whillans (SLW) sediment core locations are labelled in **d**. Blue dotted lines show the observed present-day ice-sheet bed, ocean floor and ice surface³⁰, 850 851 remapped on to the 15 km grid of the ice-sheet model.

852 Extended Data Figure 4: The drivers of re-advance and the impact of bed re-mapping. a

853 and b, Results from four simulations (the reference simulation, and three additional experiments) 854 designed to examine the cause of re-advance in the a, Weddell and b, Ross Sea sectors 855 (Methods). The most inland GL location in the reference simulation around 10 kyr BP is in blue. The colour map shows the flow buttressing number⁹⁷ at 9.5 kyr BP for the 'No uplift, grounding 856 857 of ice rises' experiment. The ice front position is in grey. Background images over the grounded 858 ice sheet are from MOA (ref. 34). c, Basal topography and bathymetry in the Weddell (GL in 859 red) according to a 1 km resolution dataset, constrained by geophysical observations (Bedmap 2; 860 ref. 30). **d**, Conservative remapping of these data to 15 km resolution. Remapping significantly 861 lowers the apparent maximum bed elevations beneath ice rises in the Weddell Sea Sector: 135 m 862 at Korff Ice Rise (KIR), 112 m at HIR, 36 m at Bungenstock Ice Rise (BIR). The present-day GL is in red^{30} . 863

864 Extended Data Figure 5: True and apparent ages of radiocarbon. Eleven grey lines show the exponential ¹⁴C decay curves connecting the ${}^{14}C/{}^{12}C$ ratios (scale on the left-hand-side axis) 865 measured on AIO from our subglacial sediment samples to the apparent radiocarbon ages 866 calculated from these measurements. The latter calculation assumes that the initial ${}^{14}C/{}^{12}C$ ratios 867 868 in AIO was equal to the modern ratio in radiocarbon dating standards. As discussed in the text 869 and methods sections, organic matter in Antarctic glacigenic sediments frequently contains an admixture of old ¹⁴C-dead material^{44,45}. The record of oxygen isotopes in water ice from the 870 871 WAIS Divide ice core (green line with scale on the right-hand-side axis) provides climatic 872 context for the period between now and 35 kyr BP (ref. 98). Three key climatic periods are labeled: WAIS LGM = Last Glacial Maximum for WAIS⁹⁹, ACR = Antarctic Cold Reversal, and 873 874 Holocene.

875 Extended Data Figure 6: Model sensitivity to forcings. Time series of GL migration 876 demonstrating model sensitivity in the Weddell (middle panels) and Ross (right panels) sea sectors to different **a**, sea-level reconstructions^{70,79,80,81}, **b**, scalings of the sea-level forcing to 877 878 mimic self-gravitational effects, c, surface temperature forcings and d, accumulation forcings. The constant LGM accumulation uses the EPICA Dome C core⁸⁴ and a scaling of 2% per degree. 879 880 Temperature and accumulation are expressed relative to the present-day. GL positions are 881 relative to present day position (vertical dashed line) along transacts shown in Fig. 3. In all 882 simulations the GL is in its most advanced position, up to 1000 km beyond its present-day 883 position, before MWP1a (14.4 kyr BP, horizontal dotted line). During the Holocene the GL 884 retreats up to 500 km upstream of its current location and usually re-advances towards its 885 present-day position. Grey shading indicates spread of GL response and grey curves show the 886 mean of each sensitivity experiment. In each case the violet curve shows the reference 887 simulation. GL positions (based on marine and terrestrial geological evidence) from the RAISED

888 reconstruction with associated uncertainty are shown in $black^2$.

889 Extended Data Figure 7: Model sensitivity to parameters. Time series of GL migration 890 showing model sensitivity in the Weddell and Ross sea sectors to **a**, mantle viscosity μ , and the 891 flexural rigidity of the lithosphere, D, b and c, enhancement factors E_{SSA} and E_{SIA} , d, sliding law 892 exponent q, e till water decay rate T and till effective pressure fraction N, f, minimum till friction 893 angle and the method used to derived friction angle (Methods), g PICO ocean model parameters 894 for overturning strength C and heat exchange q and h, the dependence of calving rate on ice-895 shelf spreading rate K (Extended Data Table 2). In each panel the violet curve shows the reference simulation. GL positions (based on marine and terrestrial geological evidence) from 896 the RAISED reconstruction with associated uncertainty are shown in $black^2$. 897

898 Extended Data Figure 8: Model sensitivity to spatial resolution. The results of three 899 simulations using different grid resolutions: \mathbf{a} , 15 km (reference simulation; identical to Fig. 3), 900 **b**, 10 km and **c**, 7 km. Due to computational limitations the two higher resolution simulations 901 only cover the last 35 kyr, so lack a higher resolution spin-up period, but display similar 902 Holocene retreat and re-advance driven by isostatic rebound to the reference simulation. 903 However, LGM extent and GL re-advance in the Weddell Sea are significantly smaller in the 904 higher resolution simulations. A full exploration of the resolution dependence of the model 905 requires using higher resolution during entire simulations for all ensemble members. This is 906 currently limited by computing resources. Background shading shows basal topography and bathymetry³⁰. 907

908 Extended Data Table 1. Results of radiocarbon and δ^{13} C analyses of subglacial sediments.

909 Carbon isotope results, including percent modern carbon, calculated age, analytical error and

910 independently measured δ^{13} C. Low percent modern carbon relative to dominant ancient

- 911 (radiocarbon dead) carbon skews apparent ages older than the actual age of the marine
- 912 connection discussed here. The light δ^{13} C results also point to a significant old carbon source.

913 UpB is the upstream portion of the WIS.

914 Extended Data Table 2. Key model parameters with modelled retreat and re-advance. Key

- 915 model parameters that have been varied as part of a sensitivity study of our ice-sheet model
- 916 (Methods). In each case the value used in the reference simulation is given as well as the range
- 917 over which the parameters were varied during the sensitivity study. Also provided is a summary
- 918 of the impact this parameter has on the model behavior in relation to the retreat of the GL past its
- 919 present-day location and subsequent re-advance. See Methods for a detailed discussion of model
- 920 sensitivities.

References

 ⁹⁶ Jezek K. C., Curlander J. C., Carsey F. Wales C. & Barry R. G. RAMP AMM-1 SAR Image Mosaic of Antarctica, Version 2. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: <u>http://dx.doi.org/10.5067/8AF4ZRPULS4H</u> (2013).
 ⁹⁷ Fürst, J. J. Durand, G. Gillet-Chaulet, F. et al. The safety band of Antarctic ice shelves. *Nature Climate Change* 6, 479–482 (2016).
 ⁹⁸ WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. *Nature* 520, 661–665 (2015).
 ⁹⁹ Clark, P. U. Dyke, A. S. Shakun, J. D. et al. The last glacial maximum. *Science* 325, 710–714 (2009).

