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ABSTRACT 28 

Fertilization of the ocean by eolian dust and icebergs is an effective mechanism to enhance 29 

primary productivity. In particular, high-nutrient, low-chlorophyll areas (HNLCs) where 30 

phytoplankton growth is critically iron (Fe)-limited, such as the subarctic Pacific and the 31 

Southern Ocean, are proposed to respond to increases in bioavailable Fe-supply with enhanced 32 

phytoplankton productivity and carbon export to the seafloor. While Fe-fertilization from dust 33 

is widely acknowledged to explain a higher export production during glacial periods in the 34 

Southern Ocean, paleoceanographic records supporting links between productivity and eolian 35 

dust and/or icebergs in the North Pacific are scarce. By combining independent proxies 36 

indicative of ice-sheet dynamics and ocean productivity from a single marine sedimentary 37 

record (IODP Site U1417), we present a comprehensive data set of phytoplankton response to 38 

different fertilization mechanisms in the subarctic northeast Pacific between 1.5 and 0.5 Ma, 39 

including the Mid Pleistocene Transition (MPT). Importantly, the timing of the fertilization 40 

events is more strongly controlled by local ice-sheet processes than by glacial-interglacial 41 

climate variability. Our findings indicate that fertilization by glacigenic debris results in 42 

productivity events in ocean areas adjacent to ice-sheets and that these mechanisms may 43 

represent an important, yet rarely considered driver of phytoplankton growth.  44 

 45 

INTRODUCTION 46 

The stimulation of primary productivity through the addition of Fe to the ocean surface, 47 

particularly in HNLC areas, significantly contributes to ocean carbon sequestration (Martin, 48 

1990; Sigman et al., 2010). Field observations and laboratory experiments imply that, in 49 

addition to the input of Fe-rich eolian dust (Martin et al., 1989), delivery of macro- as well as 50 



micronutrients and vertical mixing processes in the vicinity of icebergs foster phytoplankton 51 

growth in high latitude oceans (Duprat et al., 2016; Smith et al., 2007). Such in situ 52 

measurements and remote sensing data suggest a potentially important role for icebergs and 53 

eolian dust in driving primary productivity in HNLC regions, but provide only a snapshot view 54 

of modern ocean biogeochemical feedbacks. Paleoreconstructions, in turn, permit an integrated 55 

view and evaluation of the role of these fertilization mechanisms on export production. Owing 56 

to its proximity to a former major Northern Hemisphere ice-sheet, the Gulf of Alaska (GoA; 57 

NE Pacific) is an area with vigorous temperate glacial erosion of Fe-rich rocks (Gulick et al., 58 

2015; Montelli et al., 2017). Here, we present the first reconstruction of phytoplankton 59 

productivity in the GoA linked to Fe inputs from glacial debris. We focus on sediments 60 

spanning the last important climate transition in Earth’s history, the Mid Pleistocene Transition 61 

(MPT), when the Northern Cordilleran Ice Sheet (NCIS) experienced a significant expansion 62 

(Gulick et al., 2015). Although the exact timing and cause(s) of the MPT are intensely discussed 63 

(Clark et al., 2006; Elderfield et al., 2012; Maslin and Brierley, 2015), the potential for 64 

biogeochemical feedbacks operating in the high-latitude oceans during this crucial time interval 65 

of northern hemisphere ice-sheet growth remains poorly studied. This is the first assessment of 66 

(subpolar) Fe-fertilization mechanisms across the MPT from outside the Southern Ocean (Lamy 67 

et al., 2014; Martinez-Garcia et al., 2011). 68 

We present a multi-proxy record including geochemical, micropaleontological and 69 

sedimentological data obtained from IODP Site U1417 in the GoA (56°57'N, 147°6'W, 4200 m 70 

water depth; DR1; Jaeger et al., 2014). Our results record the interactions between sea surface 71 

temperature (SST), the input of terrigenous material by both eolian as well as ice rafting 72 

processes, and export productivity for multiple glacial-interglacial cycles between 1.5 and 0.5 73 

Ma (Fig. 1). In the absence of eolian dust measurements, elevated contents of land-plant specific 74 

long-chain n-alkanes (depicted by higher terrigenous-aquatic ratios (TAR); Meyers, 1997; 75 

Peters et al., 2004) are used to track terrestrial dust input (Simoneit, 1977). In addition, icebergs 76 



may carry high amounts of terrigenous organic matter to distal ocean sites and are considered 77 

as a further transport agent of these leaf-wax compounds (Knies, 2005; Stein et al., 2009; 78 

Villanueva et al., 1997). Accordingly, at Site U1417, elevated TAR values that coincide with 79 

at ice-rafted debris (IRD) maxima suggest an ice rafting of leaf-wax lipids, while maximum 80 

TAR values accompanied by IRD minima indicate an airborne transport of these compounds. 81 

From the consistent pattern in concurrently high marine productivity indicators and high TAR 82 

values, we deduce that enhanced marine productivity was directly related to the input of 83 

terrigenous matter. Details on individual analytical methods and the age model are provided as 84 

Supplementary Information DR2. 85 

 86 

Sea surface conditions and different Fe-fertilization mechanisms in the GoA 87 

An overall consistent relationship applies at U1417, with intervals of lower SSTs and more 88 

polar waters (%C37:4) coinciding with higher deposition of IRD (e.g., MIS 39, 30, 20), 89 

indicating a direct link between GoA sea surface conditions and NCIS dynamics. A distinct 90 

variability in diatom abundances, biogenic silica (opal; BSi) content and the Ba/Al ratio is 91 

considered to reflect abrupt phytoplankton productivity changes at Site U1417 (Fig. 1). Despite 92 

relatively warm SSTs prior to the MPT (> 1.2 Ma), the occurrence of diatoms was confined to 93 

short-lived events, and a significant rise in diatom abundance and biogenic silica content 94 

occurred only at the onset of the MPT (1.22 Ma, MIS 37; Fig. 1). The association between the 95 

biosiliceous signal and SST is not consistent over the entire record and SST changes do not 96 

appear to be a primary driver of diatom productivity. However, both diatom and BSi signals are 97 

strongly linked to elevated Ba/Al values, recording increased export productivity (Jaccard et 98 

al., 2010), and to higher TAR values (Fig. 1). Today, significant amounts of Fe-rich glacial silt 99 

are deposited along glacifluvial river banks and at glacier termini along South Alaskan coastal 100 

areas and glacial rock flour is transported beyond the continental shelf into Fe-limited pelagic 101 

waters during dust storms (Crusius et al., 2011; Muhs et al., 2016). Evidently, the eolian 102 



transport of this glacial flourǦ derived dust via strong northerly winds is an important 103 

mechanism for the supply of bioavailable Fe to foster phytoplankton blooms in the GoA 104 

(Crusius et al., 2011; Crusius et al., 2017). We hence argue that the TAR peaks coinciding with 105 

diatom, BSi and Ba/Al maxima and IRD minima at Site U1417 reflect intervals of enhanced 106 

eolian export of leaf-wax lipids together with Fe-rich Alaskan dust, leading to productivity 107 

increases in the GoA across the MPT (e.g., at 1.22, 1.15 and 0.99 Ma; Fig. 1; DR3). Similarly, 108 

McDonald et al. (1999) proposed that late Pleistocene diatom productivity events at ODP Site 109 

887 could have been promoted by Fe-supply via dust. 110 

In addition to dust-fertilization, we suggest that also ice rafting of glacial Fe-rich debris 111 

(transported together with glacially reworked organic matter containing leaf-wax lipids) 112 

stimulated productivity at Site U1417. Intervals characterised by enhanced IRD deposition and 113 

high TAR, diatom, BSi and Ba/Al values occurred at e.g. 1.05, 0.91, 0.77 and 0.66 Ma (Fig. 1; 114 

DR3). Recent observations highlight the importance of Fe-fertilization of pelagic ecosystems 115 

from icebergs, accounting for up to 20% of the total carbon export in the Southern Ocean 116 

(Duprat et al., 2016; Smith et al., 2007). The coincidence of ice rafting and elevated marine 117 

productivity events in the GoA suggests that this mechanism also operated during the MPT in 118 

the subpolar NE Pacific. In addition to dust- and iceberg-fertilization, Fe-supply via mesoscale 119 

eddies (Crawford et al., 2007) and volcanic ash (Hamme et al., 2010) may have promoted 120 

phytoplankton blooms in the GoA. However, we consider these mechanisms of only minor 121 

importance at Site U1417 (see DR4 for discussion). 122 

From the early (> 1 Ma) towards the late (> 0.6 Ma) MPT, we note a decrease in predominantly 123 

dust-fertilized productivity pulses, while iceberg-fertilization sustained. This transition could 124 

result from an overall reduction in dust export owing to the persistent expansion of the NCIS 125 

(sealing central Alaskan dust (loess) deposits) and/or a change in atmospheric circulation 126 

diverting Alaskan storm tracks. Deposition of lithic particles by ice rafting, however, does not 127 

per se relate to a higher export production in the GoA and we argue that additional factors 128 



impacted ocean productivity (e.g. nitrate depletion; Galbraith et al., (2008)). Peaks in IRD at 129 

1.27 or 0.82 Ma, for example, do not coincide with higher Ba/Al or opal values but an enhanced 130 

abundance of the C37:4 alkenone (Fig. 1), pointing to a significantly cooler ocean surface. 131 

 132 

Further implications 133 

With regard to the overall environmental evolution in the subpolar NE Pacific, we suggest that 134 

the diatom and opal peaks at 1.22 Ma mark a transition when NCIS growth and, hence, the 135 

production and export of glacigenic dust led to an effective Fe-fertilization in the adjacent GoA. 136 

Whereas eolian dust-fertilization dominated during intervals of reduced glacier extent (i.e., 137 

when coastal plains and glacigenic silt deposits were subaerially exposed; Fig. 2A, B), iceberg-138 

fertilization occurred during intervals of enhanced glaciation when the NCIS terminated on the 139 

Alaskan continental shelf and discharged icebergs to Site U1417 (Fig. 2C, D). We note that, 140 

during the latter intervals, strong katabatic winds may have sustained an (airborne) export of 141 

dust from areas that remained ice-free (DR3). 142 

Interestingly, the higher dust input at Site U1417 at approximately 1.22 Ma coincides with an 143 

enormous increase in dust delivery to the subantarctic Atlantic (Martinez-Garcia et al., 2011). 144 

Ocean cooling as well as increasing latitudinal temperature gradients are considered to have 145 

accounted for an equatorward movement of oceanic fronts and a strengthened atmospheric 146 

circulation leading to a higher dust export to the subantarctic Southern Ocean during the MPT 147 

(Kemp et al., 2010; Martinez-Garcia et al., 2011; McClymont et al., 2013). We suggest that the 148 

expansion of polar waters in the high northern latitudes and the growth of the NCIS (affecting 149 

surface albedo and orography) could have induced similar atmospheric shifts promoting dust 150 

export events in the GoA at the onset of the MPT. Comparisons between northwestern and 151 

eastern records of subpolar North Pacific paleoproductivity, however, reveal that although SSTs 152 

in both areas developed in a similar fashion, the patterns of Mid Pleistocene primary 153 

productivity did not. While export production generally decreased in the Bering Sea due to an 154 



increase in sea ice cover (Kim et al., 2014), the productivity events observed in the GoA point 155 

to an efficient, yet sporadic, ocean fertilization from the input of NCIS-sourced glacigenic 156 

terrestrial matter (and Fe) across the MPT. 157 

We note that the productivity pulses at Site U1417 are neither exclusively confined to glacials 158 

nor to interglacials. This pattern contrasts to the western subarctic Pacific and the Bering Sea, 159 

where opal production increased primarily during Pleistocene interglacials (Kim et al., 2014).  160 

The productivity pulses at Site U1417 may reflect local feedback mechanisms between South 161 

Alaskan glacier dynamics (controlling ice-proximal dust production and dispersal), and an 162 

immediate response of the marine ecosystem, yet they highlight potentially relevant 163 

mechanisms to elucidate hitherto neglected interactions in the land-ocean-atmosphere system 164 

during glacial-interglacial transitions. We propose the GoA as a case example of a Pleistocene 165 

ice-proximal marine environment where ice-sheet dynamics exhibited a significant control on 166 

primary productivity and potentially also CO2 draw-down. In fact, with the intensification of 167 

Pleistocene Northern Hemisphere glaciation and sea-level lowering, extensive sub-aerial pro-168 

glacial (coastal) outwash plains developed not only in South Alaska but also along the 169 

Laurentide Ice Sheet and European Ice Sheets, and these areas should be considered as 170 

potentially important sources of Fe-bearing glacigenic silt (Bullard et al., 2016) for areas where 171 

seasonal Fe-limitation restricts phytoplankton growth (Moore et al., 2006; Nielsdóttir et al., 172 

2009). Further exploration of sedimentary archives from high-latitude ocean areas adjacent to 173 

(paleo) ice-sheets that permit correlations between productivity proxies and terrigenous 174 

compounds are required to evaluate the potential impacts of glacigenic dust- and iceberg-175 

fertilization on phytoplankton productivity across the MPT and beyond. Importantly, such data 176 

would provide for a quantitative assessment of whether these processes could have accounted 177 

for an amplification of glacial-interglacial cycles, or if they even contributed to an appreciable 178 

CO2 draw-down during the MPT.  179 

 180 
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FIGURE CAPTIONS 311 

 312 

Figure 1: Records of phytoplankton productivity (diatom concentration, BSi content, Ba/Al), 313 

terrigenous-aquatic ratio (TAR), IRD (3-point running average of wt.% coarse sand grains) 314 

deposition, and SST (UK37, UK
37', %C37:4) at Site U1417 compared to the 18O isotope stack 315 

(Lisiecki and Raymo, 2005) over 1.5 - 0.5 Ma. Blue shadings highlight glacial intervals. Filled 316 

and hollow circles mark high productivity events stimulated by iceberg- and eolian dust-317 

fertilization, respectively. Gray numbers mark Marine Isotope Stages (MIS). 318 

 319 

Figure 2: Site U1417 (56°57’N, 147°6’W) and different Mid Pleistocene environmental settings 320 

in the study area and associated fertilization mechanisms. Brown shadings refer to modern 321 

Alaskan loess deposits (after Muhs et al., 2016). A, B: Reduced ice-sheet coverage (pale blue 322 

shadings) and a predominantly eolian export of glacigenic dust to Site U1417. C, D: Periods of 323 

an extended NCIS (2C; after Kaufman et al., 2011) with marine terminating glaciers and ice-324 

rafting of glacigenic debris across the GoA. Green shadings indicate assumed area of dust- and 325 

iceberg-fertilized high productivity in the GoA through the MPT. 326 
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