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Firedrake: Automating the Finite Element Method
by Composing Abstractions
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Firedrake is a new tool for automating the numerical solution of partial differential equations. Firedrake
adopts the domain-specific language for the finite element method of the FEniCS project, but with a pure
Python runtime-only implementation centered on the composition of several existing and new abstractions
for particular aspects of scientific computing. The result is a more complete separation of concerns that eases
the incorporation of separate contributions from computer scientists, numerical analysts, and application
specialists. These contributions may add functionality or improve performance.

Firedrake benefits from automatically applying new optimizations. This includes factorizing mixed func-
tion spaces, transforming and vectorizing inner loops, and intrinsically supporting block matrix operations.
Importantly, Firedrake presents a simple public API for escaping the UFL abstraction. This allows users to
implement common operations that fall outside of pure variational formulations, such as flux limiters.
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1. INTRODUCTION

The numerical solution of partial differential equations (PDEs) is an indispensable tool
in much of modern science and engineering. However, the successful development and
application of advanced PDE solvers on complex problems requires the combination of
diverse skills across mathematics, scientific computing, and low-level code optimiza-
tion, which is rarely at expert level in a single individual. For the finite element method,
which will be the focus of this work, this set of skills includes at least knowledge of the
system being simulated, analysis of the resulting PDEs, numerical analysis to create
appropriate discretizations, mesh generation, graph theory to create data structures on
those meshes, the analysis and implementation of linear and nonlinear solvers, parallel
algorithms, vectorization, and loop nest optimization under memory constraints.

The development of such software is therefore increasingly a multidisciplinary effort,
and its design must enable scientists with different specializations to collaborate effec-
tively without requiring each one of them to understand every aspect of the system in
full detail. The key to achieving this is to abstract, automate, and compose the various
processes involved in numerically solving PDEs. At some level, this process is a familiar
one: few of the people who write C or Fortran code really understand how the compiler
works, and they need not do so. Instead, the programmer understands the rules of the
language and programs to that model. Similarly, mathematical operations and results
are frequently employed without having their derivation or proof immediately at hand.
In other words, mathematical and software abstractions such as languages and theo-
rems enable a separation of concerns between developing a technique and employing it.

This article presents a new contribution to the automation and abstraction of the fi-
nite element method. Previous work, most especially the Unified Form Language (UFL)
[Alnæs et al. 2014] employed by the FEniCS project [Logg et al. 2012; Logg and Wells
2010], enables scientists to express PDEs in a high-productivity interpreted language
close to the mathematics. Implementations of the finite element method have tradi-
tionally been tightly coupled to the numerics, requiring contributors to have a deep
understanding of both. FEniCS creates a separation of concerns between employing
the finite element method and implementing it. Firedrake goes beyond this by intro-
ducing a new abstraction, PyOP2, to create a separation within the implementation
layer between the local discretization of mathematical operators and their parallel
execution over the mesh. This separation enables numericists to contribute ever-more
sophisticated finite elements, whereas computer scientists, expert in parallel execution
but not in numerics, contribute more advanced execution strategies.

In addition to admitting uniformly high-performance mesh iteration, the introduc-
tion of the additional abstraction layer results in a very compact code base. The result-
ing core Firedrake code has only around 5,000 lines of executable code, whereas the
PyOP2 parallel execution layer has fewer than 9,000 executable lines. This compact-
ness is evidence of the effectiveness of the abstraction choice made and is of immense
benefit to the maintainability and extensibility of the code base.

The rest of the article is organized as follows. Section 2 describes the state of the art in
abstractions for scientific computing, particularly the finite element method. Section 3
details the abstractions, and their implementations, which are composed to form the
Firedrake toolchain. Sections 4 and 5 describe in more detail the Firedrake and PyOP2
abstraction layers, which are the core contribution of this work. Section 6 describes an
extensive computational verification of the performance and capability of the Firedrake
system. Finally, Section 7 presents some current limitations and future extensions.

2. MATHEMATICAL AND SOFTWARE ABSTRACTION OF THE FINITE ELEMENT METHOD

A particular advantage of the finite element method as a class of numerical methods
for PDEs is that the entire algorithm can frequently be described in highly abstract
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mathematical terms. In the simplest cases, the mathematics of the method can be
completely specified by a PDE in weak form, along with the desired boundary conditions
and the discrete function spaces from which the solution and test functions should be
drawn. Of course, a complete mathematical specification of the method is not the same
as an efficient, parallel, and bug-free software implementation. As a result, countless
years of scientists’ time have been spent over the decades implementing finite element
methods in low-level Fortran and C code.

Although hand coding algorithms at a low level can produce efficient code, that ap-
proach suffers from several serious drawbacks. The key among these is a premature loss
of mathematical abstraction: the symbolic structure of differential equations, function
spaces, and integrals is replaced by loops over arrays of coefficient values and individ-
ual floating-point operations. Interspersed among these are parallel communication
calls, threading and vectorization directives, and so forth.

The original abstract mathematical expression of the equations embodies a separa-
tion of concerns: the equation to be solved is separated from its discretization, from the
linear and/or nonlinear solver techniques to be applied, and from the implementation
of the assembly and solvers. A low-level implementation loses this separation of con-
cerns. This has many deleterious effects. First, choices are committed to far too early:
deciding to change discretization or the equation to be solved requires the implemen-
tation to be recoded. Second, the developer must deal with the mixture of equations,
discretization, and implementation all at once. Reasoning about the mathematics of
the code requires the developer to mentally reinterpret series of primitive instructions
as the high-level abstract mathematics that they represent, and any change made to
the desired behavior must be implemented by manually working out the correct series
of primitive operations. Changing and debugging the code in this way also carries the
risks of defeating implementation choices that were made to optimize performance, as
well as the risk of introducing bugs.

2.1. Benefits and Limits of Mathematical Library Interfaces

Given the limitations of hand-writing low-level code, it is unsurprising that much effort
has been devoted to the development of finite element and other scientific software that
maintains something of the mathematical abstraction of the methods. A core feature of
these approaches is that they present a programming environment in which the data
objects correspond to the higher-level mathematical objects found in the finite element
method. For example, there may be data objects corresponding to sparse matrices,
distributed vectors, finite elements, and function spaces.

A common and highly successful approach to this is for these mathematical objects
to be represented as data objects in object-oriented libraries. High-level mathematical
operations are then expressed as operations on these objects, resulting in method calls.
The actual implementation of the primitive numerical operations on arrays of floating-
point numbers is hidden in the implementation of those methods. Deal.II [Bangerth
et al. 2007, 2013] and Dune-FEM [Dedner et al. 2010] are prominent examples of
object-oriented finite element packages, and there are many others. The object-oriented
library approach has also been very successfully applied by leading sparse linear al-
gebra libraries, notably including PETSc [Balay et al. 2014] and Trilinos’ EPetra and
TPetra packages [Heroux et al. 2005].

The library approach is most successful where the mathematical operations specified
by the application developer have a fairly large granularity: for example, in the case of
linear algebra packages, the smallest operations (e.g., scaling vectors or taking a dot
product) still involve an iteration over the entire vector, and operations such as a linear
solve are much larger. This means that the implementation of tight inner loops and
much or all of the parallelism can be hidden from the application developer, thereby
achieving the desired separation of algorithm and implementation.
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Conversely, a key domain of variability in the field of numerical methods for PDEs
lies at the level of the innermost loops: the numerical operations conducted at each
mesh entity (cell, face, edge, or vertex) depend on the PDE being solved and the
numerical method employed. This means that the level of code at which the algorithm
is expressed is at or below the level at which factors such as loop order, data layout, and
function calls become performance critical. Finegrain parallelism, such as threading
and vectorization, may also need to be expressed at this level. In contrast to the
case of linear algebra, in the PDE discretization, a critical part of the user algorithm
describes very fine grain operations, which must be woven together to form an efficient,
parallel implementation. For this reason, library-based finite element packages such
as Dune-FEM and Deal.II require that C++ implementations of integrals expressed
as low-level sums over quadrature points be provided by the application developer.

2.2. Domain-Specific Languages for Finite Elements

The desire to express the integrals at the heart of the finite element method in a
high-level mathematical language while still producing efficient low-level code imple-
menting these integrals has led some projects to adopt a different approach. Rather
than writing directly executable code utilizing library calls to access functionality, the
numerics of the finite element method are specified purely symbolically in a special-
purpose language. A specialized compiler or interpreter then uses this input to generate
low-level, efficient code. Within this category, we can distinguish between stand-alone
languages with their own parser and embedded languages implemented in an existing
general-purpose compiled or interpreted language. A prominent example of the former
class is freefem++ [Hecht 2012], whereas UFL [Alnæs et al. [2014] and Sundance [Long
et al. 2010] are examples of finite element domain-specific languages (DSLs) embedded
in Python and C++, respectively.

A well-designed DSL not only enables the application programmer to express her
problem clearly, mathematically, and concisely, but also provides the compiler writer
with a great deal of freedom to make optimal implementation choices, including those
that are too verbose, tedious, and error prone to implement by hand. For example, the
FEniCS Form Compiler (FFC), which takes UFL as its input language, has been used
to develop highly optimized quadrature [Ølgaard and Wells 2010] and tensor reduction
[Kirby et al. 2005] implementations of finite element assembly.

A further benefit of the DSL approach is that the symbolic mathematical form of the
variational problem is available in the program code. This can be exploited to automate
reasoning about the mathematical structure of the problem—for example, to provide
high-level differentiation of the algorithm with respect to any of its inputs. This is em-
ployed by Sundance and FEniCS [Logg et al. 2012] to compute the linearization of the
terms in the equation. It has been further exploited to provide automated adjoint opera-
tors, and thereby adaptive error control, functional optimization, and stability analysis
[Rognes and Logg 2013; Farrell et al. 2013; Funke and Farrell 2013; Farrell et al. 2014].

3. EXPLOITING COMPOSABLE ABSTRACTIONS IN FIREDRAKE

The novel contribution of Firedrake as a piece of mathematical software is to take
the decomposition of the finite element method into automated abstractions further
than previous approaches. In particular, we use a uniform abstraction (PyOP2)
for the specification of iterations over the mesh, motivated by the observation that the
mathematical statement of finite element problems decouples the local computation
from its execution over the whole domain.

Firedrake models finite element problems as the composition of several abstract
processes, and its software stack is composed of separate packages for each. The core
Firedrake package composes these into a largely seamless abstraction for finite element
problems. Figure 1 illustrates the Firedrake software stack, showing the relationships
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Fig. 1. Abstractions composed to create the Firedrake toolchain and the separation of concerns that this
creates. External tools adopted and/or modified from the FEniCS project are in blue, whereas the tools
adopted from the PETSc project are in green. Interface layers are represented in red, and PyOP2 objects
are brown. Our code generation and execution layer is represented in grey, and the underlying execution
platform is shown in orange. For the reasons given later in Section 7.1, this article presents results for only
the CPU backend.

between the various abstractions and software layers. These are described in more
detail in the following sections.

An important benefit of well-designed mathematical abstractions is that they facili-
tate code reuse. Where possible, we have adopted and adapted existing abstractions, as
well as existing implementations of those abstractions. This not only saves re-invention
of previous work but also means that users and developers of those aspects of Firedrake
do not need to learn new interfaces. However, in the case of the tasks of iteration over
the mesh graph and the generation of optimal kernel implementations, there was no
completely suitable existing solution and so new components were created.

3.1. Specification of Finite Element Problems: The FEniCS Language

The end user of Firedrake wants to specify and solve finite element problems. In some
sense, the core part of this is the specification of the weak form of the PDE and the
selection of the appropriate finite elements. UFL is a particularly elegant and powerful
solution to this problem [Alnæs et al. 2014]. It is a purely symbolic language with well-
defined, powerful, and mathematically consistent semantics embedded in Python. This
makes interactive use possible and allows Firedrake to use the original implementation
of UFL directly, thereby automatically maintaining compatibility with other users of
the language. Firedrake adds several extensions to UFL, some of which have already
been merged back into the upstream version.

The specification of the PDE and finite elements is necessary but not sufficient
to specify a finite element problem. In addition to the weak form of the PDE, it is
necessary to specify the mesh to be employed, set field values for initial and/or boundary
conditions and forcing functions, and specify the sequence in which solves occur. UFL
was developed as part of the FEniCS project, which provides a complete finite element
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Listing 1. Firedrake code for the Poisson equation. Here, mesh and degree are assumed to have been defined
previously. UFL functions and operations are defined in orange, whereas other FEniCS language constructs
are defined in blue.

problem-solving environment in the form of the Python interface to DOLFIN [Logg
et al. 2012b]. We refer to the language for finite element problems defined by DOLFIN
and UFL as the FEniCS Language. To ensure compatibility, Firedrake implements (a
close variant of) that language and presents a user interface that is identical in most
respects to the DOLFIN Python interface. Firedrake implements various extensions to
the language, and there are a few features of DOLFIN that are not supported.

A Poisson and linear wave equation finite element problem specified in the FEniCS
Language for execution by Firedrake are shown in Listings 1 and 2 (see Section 6).
Line 1 defines a finite element function space on a given mesh (whose definition is
omitted for brevity) and degree using Lagrange elements. A Dirichlet boundary condi-
tion of value 0 on a region of the domain identified by the markers 3 and 4 is defined
on line 3. Lines 5 through 10 show the UFL code defining the bilinear and linear forms
a = ∇u · ∇v dx and L = f v dx with test and trial functions u and v and forcing func-
tion f . The resemblance to the mathematical formulation is immediately apparent. In
lines 13 through 15, the forms are assembled into a matrix A and Function b with the
boundary conditions applied. The linear system of equations is solved in line 16 for a
Function u defined on line 12.

3.2. Finite Element Tabulation: FIAT

Firedrake employs the FInite element Automatic Tabulator (FIAT) [Kirby 2004], which
implements the classical finite element abstraction of Ciarlet [1978], to support a wide
range of finite elements with relatively few element-specific alterations. The process of
merging Firedrake’s extensions to FIAT back into the original version is under way.

3.3. Iteration over the Mesh Graph: PyOP2

In a typical finite element problem, the operations whose cost in data movement or
floating-point operations is proportional to the size of the mesh will be the dominant
cost. These operations typically fall into two categories: iterating over data structures
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associated with the mesh, and sparse linear algebra. Firedrake’s solution to the former
class of operation is PyOP2 [Rathgeber et al. 2012; Markall et al. 2013].

PyOP2 is a DSL embedded in Python for the parallel execution of computational
kernels on unstructured meshes or graphs. Fundamental concepts are shared with
OP2 [Giles et al. 2011]; however, the implementation differs in ways that are crucial
for the integration with Firedrake and other projects. PyOP2 dynamically generates
code at runtime by leveraging Python to inspect objects and data structures. OP2 relies
on static analysis of an input program that is transformed through source-to-source
translation at compile time, making it very difficult to embed in another application.
Furthermore, PyOP2 provides sparse matrices and other data structures required for
finite element computations, which are not supported by OP2.

PyOP2 provides an abstract interface for the definition of operations composed of the
application of a kernel function for each entry in a fixed arity graph. By representing the
computational mesh as such a graph, it becomes possible to represent all of the mesh-
visitor operations in the finite element method as instances of this single abstraction. A
particularly clean separation of concerns is thereby achieved between the specification
of the local kernel functions, in which the numerics of the method are encoded, and
their efficient parallel execution. PyOP2 is the key novel abstraction in the Firedrake
system. It is documented in much more detail in Section 4.

3.4. Unstructured Meshes: DMPlex

PyOP2 has no concept of the topological construction of a mesh: it works with indirec-
tion maps between sets of topological entities and sets of degrees of freedom (DOFs) but
has no need to know the origin of these maps. Firedrake derives the required indirection
maps for input meshes through an intermediate mesh topology object using PETSc’s
DMPlex API, a data management abstraction that represents unstructured mesh data
as a directed acyclic graph [Knepley and Karpeev 2009; Balay et al. 2014]. This al-
lows Firedrake to leverage the DMPlex partitioning and data migration interfaces to
perform domain decomposition at runtime while supporting multiple mesh file for-
mats. Moreover, Firedrake reorders mesh entities to ensure computational efficiency
through communication-computation overlap while also employing mesh renumber-
ing techniques provided by DMPlex to improve cache coherency within the resulting
datasets [Lange et al. 2016].

3.5. Linear and Nonlinear Solvers: PETSc

As noted previously, the encapsulation of solvers for linear and nonlinear systems of
equations is one of the most spectacular success stories for abstraction in scientific
computing. The creation of efficient solver algorithms and implementations is also a
complex and deep research field, which it is not profitable to attempt to reinvent. We
therefore adopt the widespread practice of passing solver problems on to an established
high-performance solver library. PETSc is adopted as a particularly well-established
and fully featured library that provides access to a large range of its own and third-
party implementations of solver algorithms [Balay et al. 2014]. The fully featured
Python interface to PETSc [Dalcin et al. 2011] makes its integration with Firedrake
particularly straightforward. Employing PETSc for both its solver library and for DM-
Plex has the additional advantage that the set of library dependencies required by
Firedrake is kept small.

4. PYOP2

Many numerical algorithms and scientific computations on unstructured meshes can be
viewed as the independent application of a local operation everywhere on the mesh. In
the finite element method, this characterization applies most obviously to the assembly
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of integrals over the domain; however, it also applies to other operations, such as
timestep increments and boundary condition implementation. This local operation
is often called a computational kernel, and its independent application lends itself
naturally to parallel computation.

4.1. Sets

A mesh is modeled in PyOP2 as a graph defined by sets of entities (e.g., vertices,
edges, and cells) and maps between these sets. Sets are used to represent collections
of topological entities: vertices, edges, faces, and cells. Sets are completely abstract
entities: they store no bulk data themselves but only record the number of entities that
they contain and their distribution among MPI processes. A set may also represent
a set of nodes at which data may be stored; this set of nodes need not correspond to
a set of topological entities. This facilitates the support of higher-order finite element
spaces in which varying numbers of DOFs may be associated with various classes of
topological entities. Sets exist only to be the subject of reference of other data objects,
most particularly Maps and Dats.

4.2. Maps

A map associates a tuple of entries in a target set with each entry of another source set.
For example, the source set might be the set of cells in a mesh, and the target set might
be the set of DOFs of a finite element function space. The map could then record, for
each cell, the tuple of DOFs of the target function space that are incident to that cell.

It is important to note that PyOP2 itself has no concept of meshes or function spaces.
The semantic meanings of sets and maps are defined and understood only by the
Firedrake layer. At the PyOP2 layer, these structures are merely objects over which
iteration and indirection can occur.

There is a requirement for the map to be of constant arity—in other words, each
element in the source set must be associated with a constant number of elements in the
target set. The constant arity restriction causes the extent of many tight loop bounds
to be fixed, which creates opportunities for vectorization and other optimizations.
However, it excludes certain kinds of mappings. A map from vertices to incident edges
or cells is only possible on a very regular mesh where the multiplicity of any vertex is
constant. Nevertheless, the full set of maps required to implement the finite element
method is supported.

4.3. Data

PyOP2 supports three core arrangements of mutable data: Dats, which are abstracted
discretized vectors, Mats, which are sparse matrices, and Globals, which represent data
not associated with individual set members. In other words, a Mat is equivalent to a
bilinear operator over a pair of Sets, a Dat is equivalent to a linear operator over a Set,
and a Global is a scalar (a 0-linear operator).

A Dat represents a vector of values, each associated with a particular member of the
Set1 over which that Dat is defined. The Dat presents a completely abstracted interface:
the data may actually reside on one or more accelerators (GPUs) and be distributed
over multiple MPI processes, but the user will not usually observe this. In particular,
Dats are able to reason about the validity and location of their data so that copies to and
from the GPU and halo exchanges over MPI happen automatically and only if required.

A Mat object represents a sparse matrix, a linear operator from the data space
defined on one Set to that defined on another. The matrix interface is actually a fairly
thin layer over PETSc (in the CPU case) or CUSP (in the NVIDIA GPU case), and

1There is actually a thin intermediate Dataset between the Set and Dat to parameterize the size of the data
at each set element, but this is an implementation detail over which we will not dwell.
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linear solves are completely outsourced to those libraries. At this stage, PETSc is the
far more complete system and the only one considered production ready. The primary
role of the Mat object is to match the sparse linear algebra library abstraction to the
PyOP2 abstraction so that a PyOP2 kernel can be employed to assemble matrix entries
efficiently and in parallel.

A Global represents a single tuple of values not connected with a Set. The reason for
including this type, rather than simply employing a native Python numerical type, is
to facilitate reasoning about updating data location. This enables the PyOP2 system
to ensure that a Global always has the correct, consistent value even when updated in
parallel or located on an accelerator.

4.4. Parloops and Kernels

PyOP2’s model of execution is one of parallel loop operations that transform the system
state, consisting of a set of Dats, Mats, and Globals. Each parallel loop operation
executes a kernel function once for each member of a specified iteration set. In finite
element computations, this set is usually the set of a particular class of topological
entities, thereby allowing a stencil operation to be executed over the whole mesh. The
function usually accesses each Dat argument f indirectly through a map m. In other
words, when a kernel function k is called for iteration set entry e, the reference to the
set of values given by f (m(e)) is passed to k. For a computation over cells where k
requires data f defined over vertices, m provides the indices into f for each cell e.

For example, if e is the set of cells in a mesh, f is the set of DOF values of a discretized
field, and m is the map from cells to the incident DOFs, then f (m(e)) will be a reference
to the set of DOF values incident to e.

We term the application of a kernel to a particular set of data a Parloop. Specification
of a Parloop requires a kernel function k, a set of iteration entities E, and data argu-
ments fi(ai, mi), each of which is annotated with an access descriptor ai and indirection
map mi. A Parloop created with arguments (k, E, f0(a0, m0), . . . , fn(an, mn)) encodes the
mathematical algorithm

for all e ∈ E do

k
(

f0(m0(e)) . . . , fn(mn(e))
)

,

where each element mi(e) of fi is accessed according to the descriptor ai as detailed in
the next section.

The kernel only has access to those entries of the Dat arguments that are adjacent
to the current iteration set entry under the map provided. It sees the local ordering of
the Dat entries to which it has access but has no information about the global indices.

The loop over the iteration set E is explicitly unordered and parallel: PyOP2 is li-
censed to execute it in any order and using as many threads, vector lanes, or distributed
processes as are available. Indirect access to data creates the possibility that this par-
allel execution may cause write contention—that is, the same piece of data is accessed
via more than one entity in the iteration set. PyOP2 must reason to avoid these con-
tentions using coloring, communication, and copies of data as appropriate. This is made
possible by the specification of access descriptors for all kernel arguments.

The current coloring implementation in PyOP2 is deterministic, which results in
bit-reproducible results when run on the same number of processors. Whether this
feature remains sustainable as hardware parallelism becomes more fine grain is yet to
be determined.

4.4.1. Access Descriptors. Kernel functions modify their data arguments in place. The
critical observation in OP2, which is adopted in PyOP2, is that mesh-based simulation
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kernels modify their arguments in characteristic ways. By explicitly specifying the
character of the operations that the kernel will perform on each Dat, automated rea-
soning about the parallel execution of the Parloop in the presence of indirectly accessed
arguments becomes vastly easier. The available access descriptors are as follows:

READ. The kernel may use previous values of this argument but not set them.
WRITE. The kernel may set the values of this argument, but the kernel’s behavior

does not depend on the previous values of the argument.
RW. The kernel may set the values of this argument and may use the previous

values of the argument. Note that this still does not imply a particular execution
order over the iteration set.

INC. The kernel adds increments to the values of the argument using the equivalent
of the += operator in C.

The reader will immediately observe that READ, WRITE, and INC are special cases of
RW. However, their inclusion enables more sophisticated automated reasoning about
data dependencies than would be possible were all arguments labeled RW.

Any data accessed as READ, RW, or INC is automatically gathered via the mapping
relationship in a staging in phase, and the kernel is passed pointers to local data. After
the kernel has been invoked, any data accessed as WRITE, RW, or INC is scattered
back out in a staging out phase. Only data accessed in INC mode could potentially
cause conflicting writes and requires thread coloring to prevent any contention.

4.4.2. Global Arguments. Global reductions are important operations in mesh-based
simulations. Users may wish to calculate globally integrated quantities, such as energy,
or execute other reductions, such as calculating the maximum Courant number in the
simulation domain. Global data does not have an indirection map relationship with the
mesh: the same global value is visible from every mesh entity. The kernel is therefore
passed an appropriately sized variable into which it can place its contribution to the
reduction operation. Globals have their own set of permitted access descriptors that
reflect this: READ, SUM, MIN, MAX. PyOP2 is free to create multiple variables in
memory corresponding to a single Global to support parallel kernel execution. The
access descriptor enables PyOP2 to subsequently reduce these multiple variables to
a single value. The addition of further reduction access descriptor operations, or even
allowing user-specified reductions, would be straightforward. However, at the time of
this writing, there does not appear to be user demand for this feature.

4.4.3. Matrix Arguments. Mat arguments differ from Dat and Global arguments in sev-
eral important ways. Critically, from PyOP2’s perspective, Mats are write-only data
structures. Operations that read matrices, such as matrix-vector multiply and solving
linear systems, are executed by the sparse matrix library (for CPU execution, this is
PETSc). Consequently, the only access descriptors permitted for Mats are WRITE and
INC. A Mat represents a linear relationship between two sets, corresponding to the
rows and the columns of the matrix, so two maps (which may be identical) are required
to map the kernel contribution to the matrix. In terms that may be more familiar to
the reader conversant with the finite element method, the kernel is responsible for the
local assembly of the integral of a test function against a trial function, and PyOP2
then uses the Maps to execute the global assembly into a sparse matrix.

4.5. Kernel Optimization in COFFEE

Kernels are initialized with either a C code string or an abstract syntax tree (AST),
from which C code is generated. The AST representation provides the opportunity for
optimization through the COFFEE AST optimizer [Luporini et al. 2015], a compiler
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Fig. 2. PyOP2 and PETSc objects of which key Firedrake objects are composed. PyOP2 objects are shown
in blue, references to other Firedrake objects are red, and PETSc objects are purple.

that specializes in advanced optimizations for short loops enclosing nontrivial mathe-
matical expressions of the kind that typify finite element local assembly kernels.

COFFEE performs platform-specific optimizations on the AST with the goals of
minimizing the number of floating-point operations and improving instruction-level
parallelism through the use of single instruction, multiple data (SIMD) vectorization.
The optimizer can detect invariant subexpressions and hoist them out of the loop
nest, permute and unroll loop nests, and vectorize expressions. The last step may
require padding of the data and enforcing alignment constraints to match the target
SIMD architecture. COFFEE supports both Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions (AVX) instruction sets.

5. THE FIREDRAKE LAYER

The role of the Firedrake layer is to marshal the abstractions provided by UFL, FIAT,
FFC, PETSc, and PyOP2 to take finite element problems specified in the FEniCS
Language and efficiently produce solutions.

5.1. Mapping Finite Element Constructs to Data Abstractions

The FEniCS Language presents higher-level mathematical objects than PyOP2.
Firedrake implements these by composing suitable combinations of PyOP2 and PETSc
objects. Figure 2 illustrates this relationship. The Firedrake implementation of oper-
ations in the FEniCS Language consists primarily of selecting the relevant PyOP2
objects and composing corresponding parallel loop calls so that the PyOP2 layer can
undertake the actual calculation.

5.1.1. Mesh Abstraction. The primary functions of the mesh object are to record adja-
cency between the topological entities (vertices, edges, faces, facets, and cells) of the
mesh and to record the mesh geometry. The former of these is encoded in a PETSc
DMPlex that provides arbitrary adjacency relationships [Knepley and Karpeev 2009].

A common approach in PDE toolkits is to treat the coordinates as a special class
of data by, for example, storing the coordinates of each vertex in the mesh. Firedrake
eschews this approach in favor of treating the coordinates as a first-class vector-valued
field represented in a suitable vector-valued function space. An advantage of this
approach is that any operation that can be applied to a field may be applied to the
coordinates. Solving a finite element problem to determine a new geometry field
is therefore straightforward. Representing the coordinates using a fully featured
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function space also presents a mechanism for supporting curved (isoparametric)
elements, support for which is currently available in a branch of Firedrake.

The mesh contains PyOP2 Sets that are proxies for the sets of cells, interior and
exterior facets2 of the mesh. These form the iteration spaces for the PyOP2 parallel
loops and correspondingly are the “source” sets of Maps that encode function spaces.

5.1.2. Function Spaces and Functions. A central and distinct feature of the finite element
method is its representation of all solution fields as weighted sums of basis functions.
The FEniCS Language supports this construction with FunctionSpace and Function
objects. The Function objects store the coefficient values and a reference to the cor-
responding FunctionSpace, whereas the FunctionSpace stores all of the indirections
from the Mesh to the DOFs, and the symbolic information required to access the basis
functions. As Figure 2 demonstrates, this maps in a rather natural way onto PyOP2
data types.

The Function object holds a PyOP2 Dat. This reflects the separation of concerns in
the Firedrake toolchain: the Firedrake layer reasons about the finite element method,
and all of the actual data storage and communication is delegated to PyOP2.

FunctionSpace objects contain PyOP2 Map objects that encode the indirections from
mesh entities to the collections of DOFs required to implement the finite element
method. The cell-node indirection map provides the indices of the nodes incident to
each cell. Equivalently, this is the set of nodes whose associated basis functions may
be nonzero in that cell. The use of the term node here rather than DOF reflects the
treatment of vector and tensor function spaces: the same indirection map is employed
regardless of the number of DOFs at each mesh location, and the indices of the DOFs
are calculated from this.

5.1.3. Assembling Forms. Solving a variational problem requires the assembly of a lin-
ear system of equations in the linear, and the Jacobian and residual form in the non-
linear case. In the Poisson problem in Listing 1, the bilinear and linear forms a and L
are explicitly assembled into the sparse matrix A and vector b, respectively. Firedrake
hands off assembly computations to PyOP2 Parloops (Section 4.4) with a form-specific
list of arguments constructed as follows. The local assembly kernels for the forms
are generated by FFC as described in the following section. The iteration set is ex-
tracted from the FunctionSpace of the test function v, and the first Parloop argument
is the output tensor. For the bilinear form, this is a Mat built from a pair of maps
extracted from test and trial space, for the linear form a Dat obtained by creating a
new Function on the test space. The second Parloop argument is the coordinate field.
Each coefficient used in the form, such as f in Listing 1, translates into an additional
argument.

5.2. A Modified FFC

The FEniCS project provides FFC, which takes variational forms specified in UFL and
generates optimized C++ kernel functions conforming to the UFC interface [Logg et al.
2012a]. This approach cuts across the abstraction provided by the PyOP2 interface: in
PyOP2, the specification of the kernel is a problem-specific question delegated to the
user (in this case, the PyOP2 user is Firedrake). Conversely, the optimization of the
kernel body for a given hardware platform is a matter for which PyOP2 (specifically
COFFEE) takes responsibility. To reflect this, the version of FFC employed in the
Firedrake toolchain is substantially modified. It still accepts UFL input but produces
an unoptimized (and indeed unscheduled) AST for the local assembly of the form.
Firedrake employs this AST to create a PyOP2 kernel and executes a PyOP2 parallel

2A facet is a mesh entity of codimension 1: an edge of a 2D mesh or a face of a 3D mesh.
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loop to perform global assembly. The modifications required to FFC are such that the
Firedrake version of FFC is effectively a fork and will not be merged back. However,
it is hoped that the UFLACS Form Compiler, currently under development by Martin
Alnæs, will provide a basis for a unified compiler infrastructure.

5.3. Escaping the Abstraction

It is an inherent feature of software abstractions that they create a division between
those algorithms that are expressible in the abstraction and those that are not. In
a well-designed abstraction, the former are concise, expressive, and computationally
efficient. However, any part of an algorithm not expressible within the abstraction
may become impossible to express without completely breaking out of the abstract
framework and coding at a much lower level. It will never be possible to represent
all algorithms with the same level of elegance in a single abstraction. Instead, the
challenge is to ensure that a graceful degradation of abstraction occurs. In other words,
operations that lie a little outside the abstraction should require the user to work at only
a slightly lower level, and access to aspects of the abstraction that are still applicable
should be preserved.

5.3.1. Custom Kernels. The FEniCS Language presents an elegant and powerful ab-
straction for the expression of the core of the finite element method: weak form PDEs
and their solution on piecewise polynomial triangulations of domains. However, it is
frequently the case that real simulation challenges also incorporate non–finite ele-
ment aspects. For example, discontinuous Galerkin discretizations may require shock
detectors and slope limiters, parameterizations of unresolved phenomena may require
complex pointwise operations, and initial conditions may require access to external
data in ways not representable in UFL.

The critical observation is that these operations, and many others, are still charac-
terized by visiting mesh entities and accessing only data local to them: the operations
supported by PyOP2. Firedrake therefore presents the user with the option of specify-
ing a custom kernel in either C or as an AST. This kernel can then be explicitly executed
over the mesh by invoking a parallel loop. If, as is often the case, the data access pat-
terns are equivalent to those of the finite element method, then the user can invoke
the Firedrake wrapper of a parallel loop and let Firedrake extract the correct Maps
and Dats from the Firedrake Function. Alternatively, the user may directly invoke a
PyOP2 parallel loop and extract the PyOP2 data structures manually. In either case,
the automated parallelization provided by PyOP2 remains. In Section 6, Listings 3 and
4 show an example of a randomized initial condition specified with custom Firedrake
and PyOP2 kernels, respectively.

5.3.2. Direct Access to Data Structures. At a more direct level, the user may also elect
to directly access the data in the Firedrake data structures. Since Firedrake is a pure
Python library, the user can then deploy the full armory of Python, NumPy, and com-
patible libraries. PyOP2 employs the introspection capabilities of Python so that even
in this case it remains aware of the data that has been accessed and modified. PyOP2
ensures that copies and halo exchanges occur as necessary to make sure that the user’s
view of the data is current and correct, and that algorithmic correctness is maintained.

5.3.3. Access to Generated Code. For debugging purposes, it is sometimes useful for
the user to access the C code that PyOP2 generates. This is accessible both in the
disk cache and in memory attached to the relevant PyOP2 parallel loop object. In the
particular case of C code that fails to compile (most commonly due to a syntax error
in user-provided custom kernel code), the error message provides the location of the
generated source file and the compiler error log.
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5.4. Additional Features Facilitated by the Firedrake Abstraction

5.4.1. Factorization of Mixed Function Spaces. When solving PDEs with multiple unknown
solution fields, the standard finite element approach is to seek a solution in the mixed
function space given by concatenating the function spaces of the solution fields. The
test function naturally is drawn from the same space. UFL represents a form defined
over a mixed function space as a single form. FFC then constructs a single mixed kernel
that iterates over the combined set of basis function of the test space and (in the case
of a bilinear form) the trial space. In DOLFIN, this is then assembled into a single
monolithic sparse matrix.

In contrast, Firedrake takes the UFL form, represented as an AST, and employs
symbolic manipulation to split it into forms for each combination of constituent test and
trial space. This results in separate forms for each block of the mixed system, and FFC
then creates kernels for those individual blocks. The resulting kernels have simpler
loop structures, which aids COFFEE in producing highly optimized implementations.
Bilinear forms are then assembled into a hierarchical matrix structure, comprising
a matrix for each block combined using PETSc’s nested matrix facility (see p. 86 of
Balay et al. [2014]). Using PETSc’s compressed sparse row storage, the insertion of
entries into submatrices is expected to be faster than into a monolithic matrix due
to the smaller number of nonzero columns (which have to be searched) in each row.
This furthermore enables more efficient exploitation of block solver techniques such
as Schur complements. A simulation employing mixed function spaces is presented in
Section 6.4. A much more detailed exposition of the mixed form splitting algorithm is
presented in Section 5.2.3 of Rathgeber [2014].

5.4.2. Pointwise Operations. Users often need to change the values of fields by means
other than solving a variational problem. For example, when employing a Runge-Kutta
timestepping scheme, variational problems are solved for the updates to fields, but the
actual updates are linear combinations of fields. Similarly, users frequently choose to
calculate forcing functions pointwise in terms of other functions or may rescale the
coordinate field. All of these are achievable by writing custom kernels; however, they
are expressed much more naturally by writing assignments of expressions in which the
variables are Function objects. These expressions are then compiled to form a kernel
function that is applied pointwise over the mesh. The explicit wave equation code
shown in Listing 2 illustrates the simplicity of the user code required. The increments
for p and ψ both employ the pointwise expression compiler.

5.4.3. Immersed Manifolds and Extruded Meshes. The support for domains that are mani-
folds immersed in higher-dimensional spaces introduced in Rognes et al. [2013] extends
directly to Firedrake. Furthermore, Firedrake has extended the algebraic representa-
tion of finite elements and basis functions in UFL, FFC, and FIAT to enable the algo-
rithmic creation of tensor product finite elements on quadrilateral, triangular prism,
and hexahedral cells [McRae et al. 2016a]. A particularly important class of meshes in
high aspect ratio domains, such as the atmosphere and ocean, is composed of layers of
triangular prism or hexahedral cells aligned in the vertical direction. The PyOP2 ab-
straction has been extended to exploit the structure induced by this vertical alignment
to create very high speed iteration over such “extruded” meshes documented in Bercea
et al. [2016].

6. EXPERIMENTS

Firedrake is a tool chain capable of solving a wide range of finite element problems,
which is demonstrated in this section through experiments chosen to cover differ-
ent characteristics of its implementation. These include assembling and solving a
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stationary Poisson problem, the nonlinear time-dependent Cahn-Hilliard equation
and the linear wave equation using an explicit timestepping scheme. Implementation
aspects investigated are assembly of left- and right-hand sides for regular and mixed
forms, solving linear and nonlinear systems, evaluating expressions, and using field-
split preconditioners. All benchmarks represent real-world applications used in fluid
dynamics to model diffusion, phase separation of binary fluids, and wave propagation.

The principal contribution of this article is to describe the composition of abstrac-
tions and consequent separation of concerns achieved in Firedrake. A comprehensive
performance evaluation is beyond its scope, and indeed a comprehensive performance
evaluation of a single problem might easily occupy an entire article. Instead, this sec-
tion is designed to enable the reader to develop an impression of the broad performance
characteristics of Firedrake.

We have chosen to compare against DOLFIN for two reasons. The first is that it is
the package that provides the closest analogue to Firedrake—many of the same test
cases can be run from nearly the same code. The second reason goes to the heart of the
difficulty of conducting fair performance comparisons. By using someone else’s code,
it is difficult to avoid the risk that any performance deficiency is due to inexpert use
rather than an inherent flaw. By employing DOLFIN on ARCHER using the compi-
lation flags recommended by the DOLFIN developers and using test cases based on
DOLFIN examples, we minimize the chance that any performance deficiencies are due
to incorrect use of the software.

Source code for all benchmarks and the scripts used to drive them are available as
part of the firedrake-bench repository hosted on GitHub. The particular version used
in these experiments has been archived on Zenodo [Rathgeber and Mitchell 2016].

6.1. Experimental Setup

Computational experiments were conducted on the UK national supercomputer
ARCHER, a Cray XC30 architecture [Andersson 2014] with an Aries interconnect
in Dragonfly topology. Compute nodes contain two 2.7GHz, 12-core E5-2697 v2 (Ivy
Bridge) series Intel Xeon processors linked via a QuickPath Interconnect (QPI) and
64GB of 1,833MHz DDR3 memory accessed via eight channels and shared between the
processors in two 32GB NUMA regions. Each node is connected to the Aries router via
a PCI-e 3.0 link. For the reasons given later in Section 7.1, execution is always one core
per MPI process: OpenMP is not employed.

Firedrake and PETSc were compiled with version 4.9.2 of the GNU compilers3 and
Cray MPICH2 7.1.1 with the asynchronous progress feature enabled was used for
parallel runs. The Firedrake component revisions used are archived on Zenodo and
are accessible via the DOIs in the relevant citation: Firedrake [Mitchell et al. 2016],
PyOP2 [Rathgeber et al. 2016], FIAT [McRae et al. 2016b], COFFEE [Luporini et al.
2016], ffc [Logg et al. 2016], PETSc [Smith et al. 2016], and PETSc4py [Dalcin et al.
2016]. The DOLFIN used as a comparator is revision 5ec6384 (July 12, 2015) and is
linked to the same PETSc version as Firedrake.

Generated code is compiled with -O3 -fno-tree-vectorize in the Firedrake and -O3
-ffast-math -march=native (as suggested by the FEniCS developers) in the DOLFIN
case.

Unless otherwise noted, DOLFIN is configured to use quadrature representation
with full FFC optimizations and compiler optimizations enabled, and Firedrake makes
use of COFFEE’s loop-invariant code motion, alignment, and padding optimizations
described in Luporini et al. [2015] using quadrature representation. Meshes are

3Due to technical limitations in accessing the license server, Intel and Cray compilers cannot be used on
ARCHER compute nodes and are therefore unavailable to PyOP2’s just-in-time compilation system.
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reordered using PETSc’s implementation of reverse Cuthill-McKee in the Firedrake
case and DOLFIN’s mesh reordering, respectively.

Benchmark runs were executed with exclusive access to compute nodes, and process
pinning was used. All measurements were taken preceded by a dry run of the same
problem to prepopulate the caches for kernels and generated code to ensure that compi-
lation times do not distort measurements. Reported timings are the minimum of three
consecutive runs.

6.2. Poisson

Poisson’s equation is a simple elliptic PDE. A primal Poisson problem for a domain
� ∈ R

n with boundary ∂� = �D ∪ �N is defined as follows:

−∇2u = f in �, (1)
u = 0 on �D, (2)

∇u · n = 0 on �N. (3)

The weak formulation reads: find u ∈ V such that∫
�

∇u · ∇v dx =
∫

�

f v dx ∀v ∈ V, (4)

where V is a suitable function space satisfying the Dirichlet boundary condition u =
0 on �D.

This benchmark demonstrates assembly of a bilinear and linear form into a sparse
matrix and vector, and solving a linear system with a preconditioned Krylov method.

6.2.1. Problem Setup. The domain � is chosen to be the unit cube [0, 1]3, represented
as a fully unstructured mesh. The source term f is

f (x, y, z) = 48π2 cos(4πx) sin(4πy) cos(4πz) (5)

with known analytical solution

u(x, y, z) = cos(4πx) sin(4πy) cos(4πz). (6)

Since the operator is symmetric positive definite, the problem is solved using a CG
solver [Hestenes and Stiefel 1952] with the HYPRE BoomerAMG algebraic multigrid
preconditioner [Falgout et al. 2006] on a unit cube mesh of varying resolution and for
varying polynomial degrees. Listing 1 shows the Firedrake code for this problem.

6.2.2. Results. Strong scaling runtimes for matrix and right-hand side assembly and
linear solve comparing DOLFIN and Firedrake on up to 1,536 cores are shown in
Figure 3 for problems of approximately 0.5M to 14M DOFs for first and third order,
respectively.

Parallel efficiency for the strong scaling results with respect to a full node (24 cores)
is shown in Figure 4.

Weak scaling runtimes and efficiencies for P3 basis functions are shown in Figure 5
separately for the intranode case for up to 24 cores and the internode case for 24 to
1,536 cores. Within a node, processes share resources, particularly memory bandwidth,
which limits achievable performance for these bandwidth-bound computations. Scaling
beyond a node, resources per core remain constant, and the limiting factor for scalability
is network communication latency.
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Fig. 3. Poisson strong scaling for degree one (left), two (center), and three (right) basis functions. Overhead
for right-hand side assembly is indicated by the horizontal dash-dotted line. Note that times are logscale.
Solve time clearly dominates in all cases, particularly for higher order and in the strong scaling limit, where
the scaling flattens out at around 10k DOFs per core. Firedrake is faster at assembling left- and right-hand
sides in almost all cases, demonstrating the efficiency of low overhead assembly kernel execution through
PyOP2. Matrix assembly is considerably faster in the strong scaling limit in particular for low order, which
can be attributed to Firedrake’s way of enforcing strong boundary conditions described in Section 5.5 of
Rathgeber [2014]. Right-hand side assembly has a considerably faster sequential base line for Firedrake
such that it is affected by nonparallelizable overheads in the strong scaling limit sooner than DOLFIN. The
sequential overhead indicated for Firedrake in this figure causes the scaling to flatten out much earlier than
for matrix assembly. The time spent on right-hand side assembly, however, is negligible such that the overall
runtime is not greatly affected.

Fig. 4. Poisson strong scaling efficiency with respect to a full node (24 cores) on up to 1,536 cores for
degree one, two, and three basis functions (left to right). The Firedrake matrix assembly shows the highest
efficiency across the board, whereas the right-hand side assembly tails off compared to DOLFIN due to the
faster baseline performance. Solver efficiencies are almost identical, with a slight advantage for Firedrake
at third order.
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Fig. 5. Weak scaling performance for third-order Poisson basis functions with 50k DOFs per core. Scaling
is shown intranode (1 to 24 cores) relative to a single core (left) and internode (24 to 1,536 cores) relative
to a single node (right). Within a node, DOLFIN shows better efficiency for assembly due to Firedrake’s
faster sequential baseline. In particular, Firedrake right-hand side assembly drops off significantly from one
to three and three to six cores due to resource contention, leading to DOLFIN overtaking from six cores.
Beyond one node, Firedrake shows better assembly efficiency, although DOLFIN remains faster overall for
right-hand side assembly. Solver runtimes and efficiencies are almost identical both intra- and internode.

6.3. Linear Wave Equation

The strong form of the wave equation, a linear second-order PDE, is given as

∂2φ

∂t2 − ∇2φ = 0, (7)

∇φ · n = 0 on �N, (8)

φ = 1
10π

cos(10πt) on �D. (9)

To facilitate an explicit timestepping scheme, an auxiliary quantity p is introduced:

∂φ

∂t
= −p, (10)

∂p
∂t

+ ∇2φ = 0, (11)

∇φ · n = 0 on �N, (12)

p = sin(10πt) on �D. (13)
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Listing 2. Firedrake code for the linear wave equation. The constant factor for the φ update and the form
and the constant factor vdx for the p update are precomputed such that only ∇φ · ∇v dx is assembled at
each timestep. The expressions phi_update and p_constant are purely symbolic and are used by Firedrake
to generate and execute pointwise update calculations when the assign, +=, and −= operations are called.
assemble(v*dx) is the lumped mass, an integral that is calculated outside the form and then symbolically
substituted into the pointwise update of p. p_form is similarly a symbolic integral that is numerically
calculated by the assemble call in the p update. This means that the p update amounts to assembling the
right-hand side of (14) and then using this to approximately solve (11) by scaling with the timestep and
multiplying (DOF by DOF) with the inverse lumped mass matrix.

The weak form of (11) is formed as follows: find p ∈ V such that∫
�

∂p
∂t

v dx =
∫

�

∇φ · ∇v dx ∀v ∈ V (14)

for a suitable function space V . The absence of spatial derivatives in (10) makes the
weak form of this equation equivalent to the strong form so that it can be solved
pointwise.

An explicit symplectic method is used in time, where p and φ are offset by a half
timestep. Timestepping φ in (10) is a pointwise operation, whereas stepping forward p
in (14) involves inverting a mass matrix. However, by lumping the mass, this operation
can be turned into a pointwise one, in which the inversion of the mass matrix is replaced
by a pointwise multiplication by the inverse of the lumped mass.

This benchmark demonstrates a numerical scheme in which no linear system is
solved, and therefore no PETSc solver is invoked. The expression compiler is used
for the p and φ updates, and all aspects of the computation are under the control of
Firedrake. The implementation of this problem in Firedrake is given in Listing 2.

6.3.1. Results. Strong scaling performance is shown in Figure 6 for up to 384 cores and
is limited by the measured nonparallelizable overhead indicated by the horizontal lines
in the graph. Weak scaling runtimes and efficiencies are shown in Figure 7 separately
for the intranode case for up to 24 cores and the internode case for 24 to 384 cores.
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Fig. 6. Strong scaling (left) and parallel efficiency (right) for the p and φ updates of the explicit wave
equation shown in Listing 2. Horizontal dashed (dotted) lines show the nonparallelizable overhead for the φ

(p) updates. Given these overheads, models for expected runtime are shown for both updates. The φ update
is a very simple expression executed as a direct loop and follows the projected scaling curve (dashed) based
on the sequential runtime and the overhead almost perfectly. The p update involves assembling a vector,
which is executed as an indirect loop and requires exchanging halo data. Therefore, the measured scaling
trails behind the projected scaling due to communication overhead already starting at three cores. Caching
of the assembled expressions in the expression compiler keeps the sequential overheads low.

6.4. Cahn-Hilliard Equation

The final experiment presented in this section is the fourth-order parabolic time-
dependent nonlinear Cahn-Hilliard equation, based on a DOLFIN demo,4 which
involves first-order time derivatives, and second- and fourth-order spatial derivatives.
It describes the process of phase separation of the two components of a binary fluid:

∂c
∂t

− ∇ ·
(

M∇
(

df
dc

− λ∇2c
))

= 0 in �, (15)

∇
(

df
dc

− λ∇2c
)

· n = 0 on ∂�, (16)

∇c · n = 0 on ∂�, (17)

with c the unknown fluid concentration, f a nonconvex function in c, M the diffusion
coefficient, and n the outward pointing boundary normal.

Introducing an auxiliary quantity μ (the chemical potential) allows the equation to
be restated as two coupled second-order equations:

∂c
∂t

− ∇ · M∇μ = 0 in �, (18)

μ − df
dc

+ λ∇2c = 0 in �. (19)

4http://fenicsproject.org/documentation/dolfin/1.6.0/python/demo/documented/cahn-hilliard/python/docume
ntation.html.
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Fig. 7. Weak scaling performance for the explicit wave equation with 84k DOFs per core. Scaling is shown
intranode (1 to 24 cores) relative to a single core (left) and internode (24 to 384 cores) relative to a single
node (right). Timings are for 100 timesteps. The φ and p updates show a similarly high level of efficiency
intranode, only dropping to about 80% for 24 cores. Across nodes, scaling is almost perfect for both φ and p
updates.

The time-dependent variational form of the problem with unknown fields c and μ is
given as follows: find (c, μ) ∈ V × V for a suitable function space V such that∫

�

∂c
∂t

q dx +
∫

�

M∇μ · ∇q dx = 0 ∀ q ∈ V, (20)

∫
�

μv dx −
∫

�

df
dc

v dx −
∫

�

λ∇c · ∇v dx = 0 ∀ v ∈ V . (21)

Applying the Crank-Nicolson scheme for time discretization yields∫
�

cn+1 − cn

dt
q dx +

∫
�

M∇ 1
2

(μn+1 + μn) · ∇q dx = 0 ∀ q ∈ V, (22)

∫
�

μn+1v dx −
∫

�

dfn+1

dc
v dx −

∫
�

λ∇cn+1 · ∇v dx = 0 ∀ v ∈ V . (23)

6.4.1. Problem Setup. The problem is solved on the unit square, represented as a fully
unstructured mesh, with f = 100c2(1 − c2), λ = 0.01, M = 1, and dt = 5 · 10−6. The
function space V is the space of first-order Lagrange basis functions.

Firedrake allows the initial condition to be set by defining a custom Kernel and
executing a parallel loop, in which the expression may be written as a C string. The
custom Kernel used to set the initial condition is shown as Listing 3. For comparison,
an equivalent Kernel using the lower-level PyOP2 interface is provided in Listing 4.

To solve the mixed system, a GMRES solver with a fieldsplit preconditioner using a
lower Schur complement factorization is employed. When solving a mixed system with
a 2 × 2 block matrix with blocks A, B, C, D, the Schur complement S is given by

S = D − C A−1 B, (24)
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Listing 3. Code for a custom Firedrake kernel setting the random initial condition for the fluid concentration
c in the Cahn-Hilliard example. Inclusion of extra headers to use library functions and an extra piece of
setup code to be executed only once are not usually required for custom kernels.

Listing 4. Code for a custom PyOP2 kernel equivalent to the Firedrake kernel in Listing 3.

and the lower factorization is an approximation to

(
A 0
C S

)−1

=
(

A−1 0
0 S−1

) (
I 0

−C A−1 I

)
, (25)

where A−1 and S−1 are never explicitly formed.
An approximation to A−1 is computed using a single V-cycle of the HYPRE Boomer-

amg algebraic multigrid preconditioner [Falgout et al. 2006]. The inverse Schur com-
plement, S−1, is approximated by

S−1 ≈ Ŝ−1 = H−1MH−1, (26)

using a custom PETSc mat preconditioner, where H and M are defined as

H = √
a〈u, v〉 + √

c〈∇u,∇v〉 ∀v ∈ V × V (27)

M = 〈u, v〉 ∀v ∈ V × V (28)

with a = 1 and c = dt∗λ
1+100dt [Bosch et al. 2014].

6.4.2. Results. Strong scaling runtimes for up to 1,536 cores comparing Firedrake and
DOLFIN for solving the nonlinear system, assembling the residual and Jacobian forms,
and evaluating the initial condition on an 8M DOF mesh for 10 timesteps are shown
in Figure 8. Weak scaling runtimes and parallel efficiencies are shown separately for
1 to 24 cores intranode and 24 to 1,536 cores internode in Figure 9.
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Fig. 8. Strong scaling (left) and parallel efficiency (right) for a Cahn-Hilliard problem with 8M DOFs for 10
timesteps on up to 1,536 cores. Both Firedrake and DOLFIN achieve close to linear scaling for assembly down
to 10k DOFs per core. Firedrake is consistently faster by about a factor of 2, demonstrating the efficiency
of assembling mixed spaces using the form splitting approach described in Section 5.4.1. Evaluating the
initial condition with Firedrake is faster by about two orders of magnitude, demonstrating the efficiency of
expression evaluation using a PyOP2 kernel as opposed to a C++ virtual function call required for DOLFIN.
Scaling flattens out in both cases from about 40k DOFs per core due to nonparallelizable overheads. Solver
scaling is initially equivalent, with Firedrake gaining significantly starting from about 80k DOFs per core.
This is due to the use of a PETSc MATNEST, which is more efficient when using a fieldsplit preconditioner
by avoiding expensive copies for extracting subblocks of the matrix. The parallel efficiency for strong scaling
shows initial advantages for DOLFIN for assembly due to the faster sequential baseline of Firedrake,
which catches up at 10k DOFs per core. Efficiency for evaluating the initial condition shows an advantage
for DOLFIN again due to a faster Firedrake baseline and is considerably lower than assembly due to
nonparallelizable overheads. Solver efficiency is considerably higher for Firedrake.

6.5. Performance Discussion

The experiments presented were selected to demonstrate the performance of Firedrake
in several different regimes. By drawing together the results, we can make some ob-
servations on the impact of the introduction of the PyOP2 abstraction layer and its
implementation.

6.5.1. Assembly in Comparison with DOLFIN. First, assembly of linear and bilinear forms
in Firedrake is consistently much faster than in DOLFIN. There are several features
of Firedrake that impact on this. Critically, the PyOP2 interface is an abstract basis
for code generation, whereas the UFC interface imposed by DOLFIN is a C++ abstract
interface [Alnæs et al. 2012]. This means that PyOP2 kernels can be completely inlined,
whereas DOLFIN kernels result in multiple virtual function calls per element. The
COFFEE optimizations have been found to result in up to a fourfold increase in speed
over the quadrature optimizations in FFC [Luporini et al. 2015]. The speedup is most
pronounced in the case of the Cahn-Hilliard equation, which employs mixed function
spaces. In this case, a performance increase is expected due to the form splitting
optimization (see Section 5.4.1).

6.5.2. Scaling Performance. The weak scaling performance of pure Firedrake code (i.e.,
excluding the PETSc solver) beyond one node is uniformly excellent. Within one node,
resource contention results in significantly less than perfect efficiency, but this is ex-
pected. In the strong scaling regime, the fixed overhead per field of some hundreds of
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Fig. 9. Weak scaling performance for the Cahn-Hilliard problem with 50k DOFs per core for 10 timesteps.
Scaling is shown intranode (1 to 24 cores) relative to a single core (left) and internode (24 to 1,536 cores)
relative to a single node (right). Intranode scaling is very similar for Firedrake and DOLFIN with very good
efficiencies for all but the solve. Firedrake is faster for assembly and solve by about a factor of 2 and almost
two orders of magnitude for the evaluation of the initial condition. Internode, weak scaling for assembly is
almost perfect and even superlinear for Firedrake. Efficiency for the initial condition stabilizes at just below
70%. However, the efficiency of the DOLFIN solve slumps, which can be attributed to memory allocations
and deallocations required for building the monolithic preconditioner, whereas Firedrake exploits the PETSc
MATNEST.

microseconds (Figure 8) results in loss of optimal scaling at a significantly higher DOF
count than would be completely optimal. Reduction of the fixed overhead therefore
remains an important development objective.

7. CURRENT LIMITATIONS AND FUTURE EXTENSIONS

7.1. Accelerators and Threads

This article presents only performance results for MPI parallel execution on CPUs,
with instruction-level vector parallelism facilitated by COFFEE. As Figure 1 shows,
PyOP2 also supports execution using OpenMP threads or OpenCL on the CPU, and
OpenCL and CUDA on the GPU. Preliminary performance results on these platforms
were published in Markall et al. [2013]. However, the available hybrid parallel and
GPU linear solver libraries are far more limited than PETSc’s MPI-only functionality.
The Firedrake developers have therefore given priority to achieving high performance
and feature completeness for the CPU backend using MPI and vector parallelism. The
other backends are fully functional in the sense that form assembly is supported, and
solving is supported to the limits of the relevant solver backends. This demonstrates
the utility of the PyOP2 interface in isolating such implementation matters from the
specification of the algorithm. However, at this stage, only the MPI CPU backend is
considered to be of production quality and suitable for full documentation here. Given
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the increasingly finegrain parallelism of both CPU and accelerator hardware, hybrid
parallel approaches combining message passing with shared memory approaches will
be a future direction of development.

7.2. hp-Adaptive Finite Element Methods

Support for p-refined finite element methods requires lifting the restriction of PyOP2
maps to fixed arity described in Section 4.2. Permitting variable arity maps and the
consequent variable trip count loops in kernels would impede many of the low-level
optimizations applied by COFFEE such that both classes of maps should be supported
independently. The map storage format would also be required to record the arity of
each source element. A more promising option would be to support container maps
containing several maps of different arity and corresponding kernels to match. This
would enable the support of not onlyp-refinement but also mixed geometry meshes.

7.3. Firedrake Adjoint

Farrell et al. [2013] demonstrated that the mathematical abstraction captured by the
FEniCS Language can be exploited to automate the generation and highly efficient
execution of the tangent linear and adjoint models corresponding to forward models
written in that language. Dolfin-adjoint,5 the software implementing Farrell et al.
[2013], operates on objects at the FEniCS Language level. Using only a short Python
wrapper module, dolfin-adjoint has been extended to support Firedrake solvers writ-
ten using unextended versions of the FEniCS Language. The user-defined extension
kernels described in Section 5.3 are not supported by this Firedrake-adjoint, as they
cannot be differentiated using UFL’s intrinsic symbolic operations. The extension of
Firedrake-adjoint to employ traditional algorithmic differentiation methods to custom
kernels is planned for the future.
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