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ABSTRACT 
Short-term wind-power forecasting methods like neural networks are trained by empirical risk minimization 
(ERM). The local optimum and over-fitting problem is likely to occur in the model-training stage, leading to 
the poor ability of reasoning and generalization in the prediction stage. To solve the problem, a model of 
short-term wind power forecasting is proposed based on two-stage feature selection and a supervised random 
forest in the paper. Firstly, in data preprocessing, some redundant features can be removed by a variable 
importance measure method and intimate samples can be selected based on relevant analysis, so that the 
efficiency of model training and the correlation degree between input and output samples can be enhanced. 
Second, an improved supervised random forest methodology is proposed to compose a new random forest 
based on evaluating the performance of each decision tree and restructuring the decision trees. A new index 
of external validation in correlation with wind speed in numerical weather prediction has been proposed, in 
order to overcome the shortcomings of the internal validation index that seriously depends on the training 
samples. The simulation examples have verified the rationality and feasibility of the improvement. Case 
studies of measured data from a wind farm have shown that the proposed model has a better performance 
than the original RF, BP neural network, Bayesian network and support vector machines(SVM), in aspects of 
ensuring accuracy, efficiency and robustness, and especially if there is high rate of noisy data and wind power 
curtailment duration in the historical data. 
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I.  INTRODUCTION 

Short-term wind power prediction plays an important role in daily power system operation.  In order to 
improve the accuracy of short-term wind power prediction, the combination of physical and statistical 
models is usually adopted. The accuracy of numerical weather prediction (NWP) can be improved using 
mesoscale and microscale modeling techniques[1-3], and the reliability of the historical database can be 
enhanced by the measured data from wind towers and wind turbine benchmarks [4-6]. However, compared 
with power load and solar power forecasting, the accuracy of wind power prediction is still relatively poor. (1) 
Wind power has lower predictability, weaker periodicity, and more uncertainty and complexity. The 
historical data includes random noise and distortion caused by bad communication or human factors [7-9]. (2) 
Short-term wind-power forecasting methods like neural networks are trained by empirical risk minimization 
(ERM) [10], and it is apt to fall into a local optimal solution and over-fitting in the model-training stage [11],  
which can lead to poor popularization and application in unknown data sets.  

To solve the two problems above, cross-validation and regularization have been proposed in [12-13]. The 
cross-validation method is a traversal algorithm, including k-fold cross validation, leave-one-out cross 
validation (LOO-CV) and hold-out validation. The basic idea is to divide the original sample set into k 
subsets, then to use one subset as test samples and other subsets as training samples, then finally to take the 
mean value from repeated train models as the prediction result. Theoretically, as long as the granularity of the 
subset is small enough, all of the rules in the training sample set will be discovered, but this kind of training 
method is too expensive to calculate. In addition, some rules in the data set to be predicted are still unknown. 
Therefore, [14] has taken day-ahead forecasted wind speed from numerical weather prediction (NWP) as the 
reference to select historical samples used in the model training. By this means, the correlation between the 
training samples and forecast samples are improved, but the generalization ability of the prediction model is 
not proven. In regularization methods, some uncertainty is added into the training objective function, such as 
penalty factors, slack variables and prior distribution. By this means, the principle of empirical risk 
minimization is adjusted to the structural risk minimization(SRM), and the forecasting models can be 
obtained in global optimization [15,16]. For instance, based on the statistical learning theory, support vector 
machines (SVM) can reduce over-fitting of the limited training sample sets [17], but for a large amount of 
training sample sets, the convergence speed of the SVM model is slow due to the computation complexity 
explosion.  

In recent years, artificial intelligence technology and big data theories have developed rapidly. The random 
forest (RF) algorithm as an important branch of ensemble learning theory [18,19] has attracted much 
attention in the field of machine learning because of its strong generalization ability and fast computational 
speed. The paper[20] adopted 179 kinds of machine learning methods and made a comparative study of the 
test data of 121 groups proposed for the University of California at Irvine UCI database set, finally 
confirming that the RF algorithm has more advantages than other methods in the sense of robustness. 
However, the RF algorithm has been widely applied in the field of classification, but less in the application of 
regression forecasting, especially in renewable power prediction. In the article, the RF algorithm is applied to 
the combined prediction of short-term wind power [21,22], and an improved RF model based on the 
two-stage feature selection and decision-trees reorganization is proposed, instead of its unsupervised double 
random sampling process of training samples and characteristic variables, in order to further enhance the 
generalization ability and efficiency of the prediction model. The case studies have shown that the improved 
model has good performance in the aspects of accuracy, efficiency, and robustness. 
II. BASIC PRINCIPLES OF  RANDOM FOREST MODEL 

A machine learning technique is an algorithm that estimates the unknown mapping between its inputs and 
outputs from the observed data. As a theoretical extension of a decision tree, the random forest is a kind of 
ensemble learning method of the classification and regression tree (CART), and has been applied in fields 
such as biological information, medical research, business management and text classification [23]. By 
combining the bagging method and the random subspace theory, the basic principle of RF is to obtain all the 
decision trees by paralleled training of the sample subsets, re-sample the training samples and their feature 



 
 
 
variables randomly, then finally optimize and combine the analysis results of each tree. The flow of the RF 
model is shown in Fig.1:   
 

 

 
 

Fig. 1.  Flow chart of the RF model 
 

Step 1: In the bagging method, suppose the training sample is x, which is affiliated to the sample subsets 

iS . The sample subsets iS are drawn randomly from the original sample set 0S  with replacement, from 

which each decision tree is formed, respectively.  If the size of the training sample subset is N, the probability 
that each sample is not selected can be calculated by Eq. (1) [23] 

  1 1
lim(1 ) 0.368N

i
N

P x x S
N e

                                                                          (1) 

Eq. (1) shows that nearly one-third of the original cases are left out of the training sample. The out-of-bag 
(OOB) samples can be used to get a running unbiased estimation of the generalization error. 

Step 2: Based on the random subspace theory, some feature variables are selected randomly from the 
training samples to help form the decision tree, so that it grows from root to leaf and reaches the expected 
size. Assuming that the number of characteristic variables is m , the node splitting process of each decision 
tree is m2 .The Gini coefficient and the maximum information gain principles are adopted to obtain the 
variable importance measure (VIM). 

 Step 3: All these decision trees constitute the random forest. The ensemble learning theory requires that 
the prediction error of each tree should be less than 50%, so that none of the trees need pruning to ensure the 
training speed of the model.  

Step 4: The unbiased estimation of the generalization error of the RF model is carried out using OOB 
samples [21]. Due to randomness, the prediction performance of one single decision tree is not stable and its 
generalization error may be large, but as the number of decision trees increases, the generalization error of the 
RF will decrease gradually, and finally to a stable limit.  

Step 5: The RF model is used to test the sample set, and the combined forecasting results of multiple 
decision trees are the prediction values of the RF model. 



 
 
 

According to ensemble learning theory, double randomness is introduced into the RF methodology by 
randomly training sampling with replacement using the bagging method, and by randomly extracting specific 
factors (variables) to participate in training each tree, so that the independence and diversity of the decision 
trees can be guaranteed. It is not only conducive to improving computational efficiency by parallel training 
each decision tree, but also to improving the robustness to unknown samples and abnormal data, and 
furthermore to reducing random error. However, the randomness makes the random forest method like a 
black box model, and its internal process is difficult to control, resulting in poor interpretability [24]. Its 
credibility needs to be evaluated by VIM index and OOB errors[25].  

Since the OOB samples obey the same distribution as the training sample set, it is difficult to reflect the 
variation of the forecasting sample set. Therefore, some additional samples need to be added to verify the 
generalization ability by the external validation index[26].  

 
III. A SUPERVISED RANDOM FOREST FORECASTING MODEL  

Based on two-stage feature selection and the supervised random forest (RF), a new model of short-term wind 
power forecasting is presented in this paper, as shown in Fig.2.  
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Fig.2  The framework of short-term wind power forecasting model proposed in this paper 

 
(1) The feature selection contains two stages. First, the key features are selected from the historical data 

sources by the VIM index, such as air temperature, air pressure, wind speed, wind direction and other 
meteorological data measured at the tower, and historical data of wind power at the wind farms, and then the 
stream data of those features are converted to daily samples. Second, the intimate samples are identified 
whose correlation index is strongly related to training and forecasting targets reference by wind speed feom 
NWP, making the input and output of the forecasting model satisfy the principle of minimal- redundancy & 



 
 
 
maximal-relevance (mRMR) [27,28].  

(2) The supervised RF is improved to overcome the shortcoming that the OOB error is only adapted to 
verify the internal training sample set. Based on the idea of transfer learning [29], an external test index 
considering numeric weather prediction is proposed to evaluate the forecasting performance of each decision 
tree. Since decision trees that can satisfy merits are allowed to formulate the random forest, the RF of this 
type is called the supervised random forest. 

3.1  Feature selection considering feature importance assessment 

Although the time-scale in short-term wind power forecasting is only 1-3 days and there are hundreds of data 
points (assuming a sampling interval is 15 minutes), the time scale for historical data of each physical 
variable (including temperature, air pressure, humidity, wind direction, wind speed at different heights and 
output power of wind farms) is at least a year with nearly 40 thousand data points [30]. In the massive 
historical data chains with multiple variables, only a few characteristic variables and one part of the data 
samples are strongly related to the forecasting day. The matrix of characteristics correlation between the 
forecasting and historical samples is sparse and can hardly meet the mRMR principles. To eliminate the 
adverse effects of redundant features and unrelated samples, two stages are contained in the data 
preprocessing link. 
3.1.1 Stage one: key feature selection using variable importance measure (VIM)  
Using the VIM index, the importance of 10 feature variables is evaluated, including air temperature, air 
pressure, humidity, wind direction and 10m wind speed, 30m wind speed, 50m hub wind speed, 70m wind 
speed, 100m wind speed and historical wind power . Only key features remain for the following RF model, 
which is constructed by 50 decision trees. There are two methods for evaluating the importance of the 10 
feature variables.  

In method 1, the features are evaluated by the VIM index based on the Gini coefficient principle, as seen 
in Fig.3 (upper). Only those of the seventh and tenth variables, 50m hub wind speed and historical wind 
power, are larger than the average (i.e., the dotted line), and the other variables will be irrelevant.  

In method 2, the features are evaluated by OOB errors. If each feature is used to train the RF model in turn, 
the 10 curves of the generalization error are shown in Fig.3(lower). Again, it is found that the generalization 
errors of two key features, such as 50m hub wind speed and historical wind power, are the lowest, where the 
conclusion is consistent with that of the VIM index. 

The generalization ability of the model before and after feature selection are estimated by OOB error[31]. 
In order to verify the above conclusions, all 10 features and the two key features are input variables to train 
the RF model, respectively. As shown in Fig.4, the forecasting errors of training models before and after 
feature selection are almost the same on different days, but the training cost has decreased significantly, and 
the average value has decreased from 90.9s to 20.6s. This indicates that the training efficiency of the model 
can be greatly improved by the key feature selection.  
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                  Fig.3 Comparison of characteristic importance by different evaluation criteria (a) The VIM index of each variable 
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Fig.4  The effect of feature selection on the training of the RF model (left) Forecasting errors between all the variables and key 
variables (right) Training cost between all the variables and key variables 

 
3.1.2 Stage two: intimate sample identification based on correlation assessment 
The daily samples related to prediction (referred to as the ‘intimate samples’) are identified from the massive 
historical data of the key features, as shown in Fig.5.  

The historical data are cut into a daily data sample set  1 2, ,..., nP P P  1 2, ,..., nV V V , so as to meet the 



 
 
 
short-term wind power forecasting requirements. The correlation degree with reference to the forecasting day 
is calculated, and then samples are arranged in descending order. 

Only M2 intimate samples  1 2, ,...,d d MV V V  1 2, ,...,d d MP P P are identified as the input sample set of the RF 

model (M=10). Several correlation indices are optional[32]. In this paper, the entropy correlation index is 
adopted. Details can be found in [33,34].  

Suppose that the variables are YX、 ，then the information entropy H  and mutual information );( YXI  
can be used to quantify the nonlinear mapping relationship between the input and output variables of the 
prediction model.  

2
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 The entropy correlation index is defined as follows： 
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);(
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YXI
I XY                                                                                (4) 

As the correlation between the whole original sample set (daily rated power / p.u.) and training target will 
be very poor. There are a large number of irrelevant samples. Using the correlation evaluation index, some 
intimate samples are selected that are strongly related to the training objectives, and the regularity of the 
training samples is more obvious. 

Before prediction, a wind speed curve after normalization provided by numerical weather prediction 
(NWP) is used to match the intimate sample set, instead of the unknown power curve. The wind speed from 
NWP also has another merit: it contains information from meteorological models (indeed, physical models) 
that’s suitable for daily-ahead prediction. 

The forecasting error and training costs of all samples and intimate samples are shown in Fig.5. It can be 
seen that after the intimate sample selection, the forecasting error MSE has been reduced for every 
forecasting day. The average value has decreased from 0.076 to 0.046, and the training cost has also been 
reduced to less than 0.4 seconds.  
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Fig.5  Wind power forecasting error and training cost before and after sample screening (left) Original sample set and training 

target (right) Close sample set strongly related to the training target 
 

3.2  Supervised random forest based on decision tree reorganization 

3.2.1  Sampling strategy on generalization error using the subagging method 
The bagging method, also called self-aggregation, randomly samples with replacement, and is widely used in 
the ensemble learning theory. It is equivalent to reconstruct the training sample set[35] obeying the same 
probability distribution, so that the curve clusters of the intimate samples can be expanded. 



 
 
 

Random sub-sampling algorithms, such as the subagging method, can be derived from the bagging method 
[36,37]. Assuming that the sampling ratio of training sample sets is n, when n decreases from 1 to 0.1 (n=1 
refers to the bagging method, and n<1 refers to the subagging method), the RF model with 50 decision trees is 
trained successively. The generalization ability is estimated by the OOB error, as shown in Fig 6.  
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Fig.6  Effect on generalization error by different sampling ratios (left) Generalization error by different sampling ratios (right) 

Amplification of generalization error 

Seen from Fig.6 (left), with the number of decision-trees increasing, the curves of the generalization error 
in the RF model decrease quickly, and then tend to a relatively stable lower limit（ mse= 410 ） . However, with 
n smaller, the curves of the generalization error decrease faster, and the convergence of the training model is 
becoming faster, which shows that the subagging method is conducive to improving computational 
efficiency of the RF model. The generalization error curves are amplified near the lower-limit in the 
logarithmic coordinates, as is shown in Fig.6 (right). When n ≥0.5, the lower limits of the generalization 
error are almost at the same level, but the limits are relatively larger when n＜0.5, which shows that it is 
suitable for the RF model when the sampling rate of n is about 0.6. The subagging method, rather than the 
bagging method, is proposed in Fig.2. 

The effects on the generalization error with respect to different sampling proportions are shown in Fig.7. 
The training sample set consists of 20 rows and 96 rows of matrices, in which each row represents a data 
sample of one day, and each column represents data of all sample days at the same time. All rows and all 
columns of the matrix are sampled by subagging. The subN model represents random sampling applied on 
lines; the subV model represents random sampling applied on columns; and the subNV model represents 
sampling applied on all lines and columns.   

In Fig.7 (left), as the proportion of sampling increases, the forecasting error of the subN model decreases 
first and then increases slightly, the subV model has little change, and the subNV model first descends then 
rises, where the inflection point occurs when the sampling ratio is 50%. With the increase of sampling 
proportion in Fig.7 (right), the training cost of three models increases. The training cost of the subNV model 
increases the most, which indicates that the smaller the sampling proportion is, the higher the efficiency of 
model training is. 
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Fig.7  Effect on generalization error by sample subset  corresponding to different sampling proportions (left) Forecasting error 

(right) Training cost  
 

From the effects on the generalization error with respect to different sampling modes, it can be seen that, 
compared with the original RF model, the forecasting error and training cost of the subN, subV and subNV 
models can be reduced, and the improvement of the subN and subNV models are more obvious. 

 
3.2.2  Decision trees reorganization  based on the external validation index 
The irreverent samples will inevitably be reconstructed from training samples by the bagging method. As a 
result, some of the decision trees will benefit the later prediction process, while others will not. It is suggested 
that decision tree reorganization should be added to the RF process (as shown in Fig.2), in which those trees 
with poor performance are eliminated.   

The evaluation index of the decision tree is essential. OOB error is an unbiased estimate of generalization 
ability in RF models[23], but it only estimates the generalization error of training samples. It is likely to be 
invalid to estimate the generalization error of forecasting samples, due to the great differences between the 
forecasting and training samples in short-term wind power forecasting.  

Forecasting is the use of limited historical data for model training and the application of knowledge 
learned in new environments and new tasks. Based on the idea of transfer learning, it is hoped that the 
features between the source and target domains are as similar as possible[29]. An external validation index 
based on NWP wind speed, called the relevance index, is proposed in this paper. The relevance index is in 
fact the Spearman’s rank correlation of samples. Compared with Pearson's correlation coefficient, 
Spearman's rank correlation coefficient is more appropriate where there is a nonlinear relationship between 
the forecasting results of each decision tree and the NWP wind speed. The new random forest is reformed by 
the decision trees that are strongly related to the wind speed of NWP. 

The rationality of the above proposal is verified by simulation, as shown in Fig.8 (left.1). The relevance 
index of the decision trees ranges from 0.04 to 0.07. If the RF model directly composes all the decision trees, 
the generalization error tends to 0.025 in Fig.8 (right. 1), which is numerical unstable. To solve the problems, 
it is suggested that all decision trees are arranged in ascending order by the relevance index in Fig.8 (left. 2), 
and then a new RF model is restructured, with generalization errors as shown in Fig.8 (right.2). 
Comparatively, the generalization error can quickly decline to 0.005, and then rise up to 0.025 with the 
addition of some trees that are of poor performance. Thus the generalization error of the RF model decreases 
not only with more trees, but is also more closely related to relevance index.  

Therefore, the post evaluation of the decision trees that have been sorted and reorganized is suggested. 
The decision trees with a high correlation coefficient are selected in the later prediction. The generalization 
error of the RF mode is minimum at the inflection point in Fig. 8 (right.2), which indicates the optimal 
number of decision trees. Considering that the number should not be too small to avoid numerical instability, 
it is suggested that the decision trees with a better relevance index than the average are selected, as shown in 



 
 
 
Fig.8 (left.3). The first 50 decision trees are used in combination in the new RF model. This way, the 
generalization error is obviously reduced, as shown in Fig.8 (right. 3).  
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Fig.8  Effect on generalization error of RF model by relevance index of each decision-tree (left) Selection by better relevance index 
than average (right) Improved RF based on decision-trees reorganization 

 

From the effect of the tree selections via different validation methods in RF model calculated 100 times, it 
can been seen that, the modified RF models are screened by the OOB error index and by the external 
validation index are better than the original RF mode in aspect of the forecasting errors and training costs, 
especially by the external validation index, the forecasting error is reduced significantly.  

 

IV. CASE STUDY OF IMPROVED RF MODE ON APPLICATION 

In order to test the feasibility of the supervised RF model, the measured data from a wind farm (installed 
capacity SN=49.5MW) in Jilin Province, China, have been used as an example. In the example, historical data 
on wind power and meteorological data measured by a wind tower, plus NWP data in the range of 5km for all 
12 months in 2015, have been collected. The sampling interval of all data was 15 minutes. These original data 
are divided into two sample sets: the training sample set proposed by Jan-Nov data, and the test samples set 
by the data in December. The time scale in short-term wind power prediction is 96 data-points a day (15min 
per point) and the generalization ability of each prediction model is tested using the monthly average value of 
the daily MSE indices. 

The improved RF model will be compared with the original RF, BP neural network and Support Vector 
Machine(SVM) from three aspects of performance: the generalization error, computation efficiency and 
model robustness [38].The main parameters of the model are as follows:  

1) The number of decision trees in the improved RF model is set to 50. 
2) The number of the hidden-layer nodes is set to 50, and the training algorithm of the BP neural network 

is L-M optimization (Levenberg-Marquardt), while one of Bayesian neural networks is Bayesian regulation.  



 
 
 

3) The kernel function of the SVM is the radial basis function(RBF), whose penalty parameter is C=1. 
The parameters of the above models are set, in reference to the typical function from the MATLAB 

R2013b. 

4.1  Generalization ability analysis 

By comparison of the training error and the prediction error of daily data, it can be seen that, the fitting effect 
of the training data by the BP neural network model is the best but its prediction result of the testing data is 
the worst as it is over fitting on the model-training phase, due to the ERM principle. If model-training is 
appropriately magnified by the SRM principle, the prediction error of the test data will decrease, which 
implies the generalization ability will be enhanced. 

In addition, several calculations show that the numerical stability of the prediction results using the neural 
network model is rather poor, and the uncertainty of the prediction results is large as a result of random 
initialization of network parameters (i.e. connection weights and thresholds). To quantitatively analyze the 
above conclusions, the maximum fitting error of the model training (that is, training target threshold) varies 
from 10-5 to 1, and the corresponding prediction errors using the neural network, SVM and RF models are 
shown in Fig. 9. 

As can be seen in Fig.9, with the training target threshold increasing, the prediction error of the BP neural 
network decreases first and then increases, and the error band that stems from numerical instability tends to 
narrow. Therefore, the threshold of the training target is proposed as 10-2 at the turning point of the error band 
in Fig.9, and the average of the prediction results is obtained to eliminate numerical instability by cross 
validation.  
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Fig 9  Influence on prediction results by training target threshold 

Compared with the neural network model, the numerical stability of the SVM and RF models are better, 
and they are less affected by the threshold of the training target. The reason is that the objective function of 
SVM in the training stage is the SRM principle, instead of ERM, and the problem of local over-fitting may 
then be solved. In the RF model, randomly re-sampling and OOB error estimation plays the same role as 
cross validation. As far as the prediction error is concerned, the prediction error of the RF model is lowest and 
its generalization ability is stronger than the other models. 

4.2  Comparison of forecasting performance of different models 
The forecasting errors and training costs at different dates are calculated by the above five models, as shown 
in Fig.15. The monthly MSE of daily forecast results is adopted to evaluate the generalization ability of the 
different models.  

The forecasting errors and training costs when calculating 100 times is shown in Fig.10, and the average 



 
 
 
is shown in Tab.1. It is shown that the training cost of the BP neural network is the shortest, but its forecasting 
error is the maximum and its numerical stability is the worst. The forecasting error of the supervised RF 
model proposed in this paper is the smallest, and relatively stable. The training cost is a little longer, so the 
advantage is obvious.  
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Fig.10  The forecasting error and training cost of five different models calculated at 100 times (left) Forecasting error of different 

models (right) Training cost of different models 

 
TABLE  I  COMPARATIVE ANALYSIS OF DIFFERENT MODELS 

Different Models 
The original 
RF model  

The improved 
RF model 

BP neural 
network model 

Bayesian 
network model  

Support Vector 
Machine model  

Forecasting error 
MSE(%) 

0.0548  0.0500 0.1343 0.0597 0.0790  

Training cost 
（s） 

0.3402 0.2972 0.1798 0.3489 1.9008 

4.3  Comparison of Noise Robustness 
The white noise with a signal noise ratio (SNR)=2%,4%,6%,8%,10% is added to each input and output 
sample, and the forecasting error and training cost of different modes can be obtained, which is applied to the 
testing samples set, as shown in Fig.11.   

According to Fig.11, the forecasting errors of the 5 models are increased after increasing the white noise 
with a different SNR. The BP neural network and SVM rank first and second, which indicates that they are 
sensitive to noise. The training cost of the Bayesian network model is greatly influenced by the noise with the 
increase of the SNR. The supervised RF model proposed in this paper has the least increase in forecasting 
error, and the training cost is basically irrelevant to the noise, which is good performance on anti-noise.  
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Fig.11  Influence on forecasting results with noise (left) Forecasting error with different SNR (right) Training cost with different 

SNR 



 
 
 
4.4  Robustness of wind power curtailment 
Wind power curtailment results in a serious distortion in the historical data. In the paper, the robustness of the 
forecasting model will be evaluated after the wind power curtailment (setting the value to nearly zero) 
samples are added. Taking the RF, BP neural network and SVM model, for example, the prediction results 
are shown in Fig.12. The curtailment happened in the early morning. The original prediction has some 
nonzero values during the period. Since they does not impact the prediction accuracy evaluation, they are 
settled to zero for better comparison. 
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Fig.12  Distorted data resulting from wind power curtailment of 2 hours in length (upper) using the RF model (middle) using the BP 

neural network model (lower) using the SVM model 

 

In view of the different beginning time and the different length of the wind power curtailment duration in 
the historical data, the research on the robustness of the above five forecasting models is discussed.  

It is seen from Fig.13 that at different times of wind power curtailment of 2 hours in length, the 
forecasting error of the SVM and BP neural network is larger and more unstable than the others, and the SVM 
is the most time-consuming.  

It is seen from Fig.14 that with wind power curtailment increasing, the forecasting error of the SVM 
model and the BP neural network model increases rapidly, and the numerical stability is not good enough. 
The robustness of the improved RF model proposed in this paper is the best. The reason for this is that the 
randomly re-sampling of training samples in the RF model is equivalent to reconstructing the original 
training samples, weakening the dependence on historical samples in the model training. In particular, using 
the subagging method in a random sampling strategy may reduce the adverse effects of abandoned wind data 
on the training model, and improve the tolerance to abnormal data in the RF model.  
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Fig.13  The wind power curtailment of 2 hours in length at different times (left) Forecasting error with different times (right) 
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Fig.14  The duration of wind power curtailment is prolonged by half an hour (left) Forecasting error to different extent (right) 
Training cost to different extent 

 
V. CONCLUSIONS 

To solve the over-fitting problems of the BP neural network in the model-training stage, the RF model rooted 
in ensemble learning has been applied to short-term wind power forecasting, whose random re-sampling 
strategy makes the forecasting model more adaptive to the fluctuation and randomness of wind power. 
However, the RF model still requires some improvement to enhance the interpretability of the black-box 
model, and a new model of short-term wind power forecasting has been proposed based on two-stage feature 
selection and a supervised random forest in this paper. The specific conclusions are as follows: 

(1)Due to the obvious sparsity of a correlation matrix between the forecasting and historical daily samples, 
the redundant features and irrelevant samples have been eliminated from the training sample set, in the data 
pretreatment of two-stage feature selection by VIM index and relevant analysis, and it has been verified that 
both the model training efficiency and the degree of correlation between input and output samples are 
improved.  

(2) A supervised random forest model based on decision trees’ reorganization has been constructed, in 
order to improve the interpretability of the original RF model. An external validation index referring to the 
NWP wind speed, called the relevance index, has been proposed to avoid the defect of the existing OOB error, 
which still depends on the training samples as the internal validation. The case study shows that the external 
test index can further enhance the generalization ability of the RF model.  



 
 
 

(3) Taking the measured data of a wind farm as an example has proved that, compared with the original RF, 
BP neural network, Bayesian network and SVM model, the improved RF model has a better effect in aspects 
of ensuring accuracy, efficiency and robustness, especially if there is high rate of noisy data and wind power 
curtailment duration in the historical data.  
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