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Abstract: We study various aspects of the scattering of generalized compact oscillons in

the signum-Gordon model in (1+1) dimensions. Using covariance of the model we construct

traveling oscillons and study their interactions and the dependence of these interactions on

the oscillons’ initial velocities and their relative phases. The scattering processes transform

the two incoming oscillons into two outgoing ones and lead to the generation of extra

oscillons which appear in the form of jet-like cascades. Such cascades vanish for some values

of free parameters and the scattering processes, even though our model is non-integrable,

resemble typical scattering processes normally observed for integrable or quasi-integrable

models.

Occasionally, in the intermediate stage of the process, we have seen the emission of

shock waves and we have noticed that, in general, outgoing oscillons have been more

involved in their emission than the initial ones i.e. they have a border in the form of curved

worldlines.

The results of our studies of the scattering of oscillons suggest that the radiation of

the signum-Gordon model has a fractal-like nature.
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1 Introduction

Oscillons are localized, time dependent, quasi-periodic solutions observed in many scalar

field models. Their presence was first reported in [1]. In a vast majority of cases, in which

physical models are non-integrable, oscillons radiate very slowly [2–13]. Oscillons can be

created in some dynamical processes like, for instance, in kink-antikink collisions [9, 14–17].

On the other hand, oscillating structures seen in some integrable models, like (e.g. sine-

Gordon model [18–20], affine Toda models [21] and non-linear Schrodinger model [22, 23])
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do not radiate at all and so they can live forever. Such infinitely long living objects are

called “breathers” which distinguishes them from standard oscillons.

In this paper we describe our study of another interesting group of oscillons which share

many properties of oscillons and breathers. A solution of such a type was first discovered in

the signum-Gordon model [24]. The signum-Gordon oscillon is an exact solution which, if

not perturbed, behaves like a breather i.e. it can live forever without emitting any radiation.

This is a very interesting and extremely rare behaviour for time dependent solutions in non-

integrable field theories. Of course, due to the non-integrability of the model a perturbed

signum-Gordon oscillon would emit some radiation. Such radiation often takes the form

of emissions of smaller oscillon-like packages. So, this type of an oscillon can be thought

of as being a stable (or perhaps metastable) time dependent non-topological solution of a

non-integrable model. Moreover, some very special perturbations of such oscillons lead to

more general, exact and infinitely long lived oscillons (generalized oscillons). Such oscillons

were constructed in [25, 26].

The signum-Gordon model [27] is perhaps the simplest example of a wider class of

scalar field-theoretic models with non-analytic potentials. A very important and char-

acteristic property of such models is their possession of compactons [28–33] and scaling

symmetry [34]. This symmetry makes these models relevant in the description of dynamics

of fields in other models with approximate scaling symmetry in the limit of small ampli-

tudes [35–38]. In other words, the signum-Gordon model can be thought of as emerging,

in this limit, from models containing non-analytic potentials. This shows that studies of

solutions of this model are useful and can have relevance in the description of some as-

pects of solutions of other models with non-analytic potentials. Of course, due to an often

encountered rich structure of minima of such more general models, the field configura-

tions with larger amplitudes could also have some nontrivial topology (kinks, skyrmions

etc.) [5, 28, 35, 39] and so their complete dynamics would be essentially different from the

dynamics of the signum-Gordon compactons.

In what follows we present some basic notions about the signum-Gordon model. The

model is defined by the Lagrangian density

L =
1

2
∂µφ∂

µφ− |φ| (1.1)

and its dynamics is described by solutions of the Euler-Lagrange equation

∂µ∂
µφ+ sgn(φ) = 0. (1.2)

The Euler-Lagrange equations contain a term sgn(φ) = ∂
∂φ |φ| = ±1 and so they do not

include the vacuum solution φ = 0. In order to include explicitly the vacuum solution into

the set of solutions of (1.2) we require that sgn(0) := 0. The model (1.1) has naturally

appeared in the study of the behaviour of scalar fields in the vicinity of minima of V-shaped

potentials i.e. potentials whose left and right side derivatives at minima are different from

each other. Such models are perfectly well-defined from a physical point of view. Moreover,

in some cases they can be seen as field-theoretic limits of certain mechanical models, which

certainly admit experimental realizations. In fact, it was such mechanical models that led

to scalar field models with non-analytic potentials [28].
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The physical origin of models with non-analytic potentials is wider than the continuous

limit of mechanical models. Quite recently it was reported in [35] that models with V-

shaped potentials may be obtained from other physical models when a parametrization

associated with the symmetry reduction leads to new field variables that are restricted, i.e

they cannot take arbitrarily large (or small) values. In the case of models with a mechanical

realisation such a restriction is a priori imposed on the system. The restrictions on values

of fields lead to some inconvenience in the description of the dynamics of the system which,

in such a case, is governed by both the Euler-Lagrange equations and the extra condition

on the time derivative of the field. For instance, the mechanical model, from which the

signum-Gordon model originates, has a continuous limit described by the field variable

that satisfies φ̃ ≥ 0. Thus the model possesses the potential with an infinite barrier at

φ̃ = 0 i.e. Ṽ (φ̃) = φ̃ for φ̃ ≥ 0 and Ṽ (φ̃) = ∞ for φ̃ < 0. The field must also satisfy

the reflection condition ∂tφ̃ → −∂tφ̃ at φ̃ = 0. One can avoid such an inconvenient

reflection condition by introducing an auxiliary model with a new field φ ∈ (−∞,∞) and

the potential V (φ) = |φ|.1 This new model is so-called the unfolded model. The dynamics

of this auxiliary field can be mapped onto the dynamics of the physical field through the

folding transformation, see [27]. Thus the signum-Gordon model and other models of this

type can describe behaviour of physical systems with restrictions on the values of scalar

fields.

The signum-Gordon model is certainly non-integrable. This conclusion can be drawn

from the existence of radiation in numerical simulations of generic initial field configura-

tions. In fact, very little is known about the nature of this radiation. In this paper we

describe results of our study of some aspects of the radiation in the signum-Gordon model.

We pay particular attention to the exact time-dependent solutions of the model known

as compact oscillons2 [24, 25], which are our principal candidates for constituents of the

radiation. The signum-Gordon oscillons rely on three principal properties of models with

V -shaped potentials: the existence of compact solutions, their scale invariance (exact or

approximate) and the lack of linearization of small amplitude oscillations. The existence

of compact solutions, like compact oscillons in particular, follows from the fact that mod-

els with standard kinetic and gradient terms in the Lagrangian approach vacuum in a

quadratic manner if the potential has a V -shaped form close to its minimum [28]. The

scale invariance [34] is a straightforward consequence of the form of the field equations. In

the case of the signum-Gordon model the scale invariance is exact because sgn(φ) is a scale

invariant term. A very important consequence of this fact is the existence the self-similar

solutions and oscillons of all scales of energy and length. Thus the perturbed oscillons may

lose energy by the emission of smaller (perturbed) oscillons. We will demonstrate in this

paper that this is exactly what happens and so that the oscillons are main ingredients of

the radiation of the signum-Gordon model. Finally, the absence of linear small amplitude

oscillations follows from the fact that sgn(φ) term cannot be linearized at φ = 0. This

1This potential generates the term sgn(φ) = dV
dφ

in the field equations which justifies the name of the

model.
2In the literature the infinitely long lived oscillons are more often called breathers than oscillons. Here

we keep the name oscillon following the original paper [24].
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implies that, independently of their size, the signum-Gordon oscillons are fundamentally

non-linear field configurations.

The existence of many exact solutions of the signum-Gordon model in (1+1) dimensions

follows from the fact that equation (1.2) reduces to a non-homogeneous wave equation on

segments of the x axis, where the sign of the scalar field is fixed, and so, on each segment,

it has the general solution of the form:

φ(t, x) = F (x+ t) +G(x− t) +
1

4
(x2 − t2), (1.3)

where F and G are arbitrary functions. The main point here is that this reduction is local

i.e. the size and the localization of the segments of constant sign varies with time. This is a

direct manifestation of a non-linear character of the model. Solutions like (1.3) are called

partial solutions. The exact global solution of the model is given by the explicitly known set

of properly patched partial solutions which must hold for arbitrary times. Determining such

a closed set of partial solutions usually generates some small technical difficulties. They

correspond to the unpleasant side of finding solutions of models with V -shaped potentails.

The main aim of this paper is to describe the results of our study of interactions be-

tween two oscillons. Our motivation for such a study follows from the fact that the previous

numerical simulations of models with V -shaped potentials [37] have indeed observed col-

lisions of oscillon-like structures in emerging radiation. The study of systems containing

colliding oscillons may throw new light on the nature of the radiation of the signum-Gordon

model. In particular, we are interested in the scattering processes involving only two os-

cillons. Unfortunately, even such a ‘simple’ scattering process is too complicated for a

purely analytical investigation. For this reason we have used the numerical analysis as our

principal tool and have restricted our attention to initial field configurations which possess

certain symmetries. We hope that our results will find applications not only for models

with a single minimum potential but also for models with multi V -shaped minima that can

support the existence of compact kinks etc.

The paper is organized as follows. In section 2 we present some facts about generalized

oscillons with vanishing total linear momentum. Then, making use of the Lorentz covari-

ance of the model, we construct traveling oscillons. In section 3 we study scattering of two

oscillons. Due to the compactness of the oscillons we construct the initial configurations of

such oscillons by considering simple superpositions of non-overlapping oscillons. Further

on in this section we also discuss shock waves and oscillons with non uniformly moving

borders. The last section presents a short summary of our results and some comments.

2 Generalized oscillons

The generalized oscillons are exact compact solutions of the signum-Gordon model which

are distinguished by the fact that their borders move periodically from left to right and

back again. The first particular solutions of this class, characterized by constant velocity

of the motion, were reported in [25] and, due to this nature of the motion, were called

swaying oscillons. A further generalization of the swaying oscillons to arbitrary periodic

– 4 –



J
H
E
P
0
1
(
2
0
2
0
)
0
0
6

motions of the borders was discussed in [26]. In order to simplify our initial discussions we

first consider the field configurations describing oscilllons swaying with a constant velocity

v. The more general oscillons are discussed later in section 3.5 where we also comment on

the results of scattering of compact oscillons.

Before we go further let us establish the terminology for different types of oscillons

considered in this paper. The oscillons which are a priori exact solutions (like initial field

configurations) will be called the exact oscillons if their borders do not move periodically

or, if they do move, the generalized exact oscillons. The oscillons produced in the process

of the scattering are numerical solutions of the signum-Gordon equation, hence, they are

not a priori exact. They will be called quasi-oscillons in the case of their strong similarity

to the exact oscillons and perturbed oscillons if such a similarity is only approximate i.e.

when they are approximately periodic, emit radiation etc.

2.1 Oscillons at rest

In our work here we are particularly interested in scattering of generalised exact oscillons.

Such oscillons move uniformly (modulo a periodic motion given by v) in a certain reference

frame S. We shall refer to this frame as to the laboratory reference frame. Moreover, we

preserve symbols t and x for coordinates exclusively in this reference frame. On the other

hand, the reference frame of the oscillon is denoted by S′ and called the rest frame of the

oscillon. The precise meaning of expression “rest frame” in the case of generalised exact

oscillons is the following one: it is the inertial reference frame in which the total linear

momentum of the oscillon vanishes. The space time coordinates in S′ are denoted by t′

and x′.

The basic oscillon has period T = 1. Smaller and bigger oscillons, which differ by their

period, can be obtained from the basic one by the scaling transformation which exploits

the scaling symmetry of the signum-Gordon equation, see section 3.1.1. The Minkowski

diagram presented in figure 1 shows regions of validity of the partial solutions φk(t
′, x′),

k = {C,L1, L2, L3, R1, R2, R3} that together describe the motion of the oscillon. These

partial solutions are given by quadratic polynomials in variables t′ and x′ in the rest frame

of the oscillon. Physically relevant parts of the polynomial solutions are restricted to some

intervals of t′ and x′. In order to get a periodic solution for any t′ one has to replace t′ by

a periodic function of t′. Below we discuss this process in detail.

We start our discussion with a set of partial solutions which are valid only in the

interval t′ ∈
[
0, 1

2

]
. These solutions have been given in [25] and they are denoted by the

letter ϕ. Here, we present them in a new notation. In fact, there are seven partial solutions

in the interval t′ ∈
[
0, 1

2

]
. Among them, four solutions are essentially different, namely

ϕC(t′, x′; v) =
(1 + v − 2x′)2 − 4t′(1 + v − 2vx′) + 4(2− v2)t′2

8 (1− v2)
, (2.1)

ϕL1(t′, x′; v) =
t′2

2
− t′x′

1 + v
, (2.2)
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Figure 1. The world sheet of the generalized exact oscillon seen in its own rest frame S′. Only in

the interval t′ ∈
[
0, 12

]
φk = ϕk holds; other partial solutions are given by (2.9). The axes x of the

laboratory reference frame seen in frame S′ have an inclination with respect to axis x′. Here we

present three different cases of inclination corresponding to the velocity u′ = −V of the laboratory

frame S that moves to the left on the diagram S′. The angle of this inclination between axes x′

and x is given by arctan(V ).

ϕL2(t′, x′; v) = −(x′ − vt′)2

2 (1− v2)
, (2.3)

ϕL3(t′, x′; v) =
1

2

(
t′ − 1

2

)(
t′ +

1

2
+

2x′ − 1

1− v

)
. (2.4)

The other three partial solutions ϕRj (t
′, x′; v), j = 1, 2, 3 can be obtained from those shown

above by performing the transformation

x′ → 1− x′, v → −v (2.5)

which gives

ϕRj (t
′, x′; v) = ϕLj (t

′, 1− x′;−v). (2.6)
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Note that the solution ϕC(t, x; v) is invariant under this transformation. Note also that all

solutions ϕk(t
′, x′; v) are negative-valued in their domains.

Each solution ϕk(t
′, x′; v) is valid only in a specific region of the Minkowski diagram.

For this reason we define a few region step functions Πk(t
′, x′; v) which are equal to unity

only in the region in which the given partial solution holds and vanish outside this region:

ΠC(t′, x′; v) = θ(x′ − t′)θ(−x′ − t′ + 1)θ

(
x′ + t′ − 1 + v

2

)
θ

(
−x′ + t′ +

1 + v

2

)
,

ΠL1(t′, x′; v) = θ(x′ − t′)θ
(
−x′ − t′ + 1 + v

2

)
,

ΠL2(t′, x′; v) = θ(−x′ + t′)θ

(
−x′ − t′ + 1 + v

2

)
θ(x′ − vt′),

ΠL3(t′, x′; v) = θ

(
x′ + t′ − 1 + v

2

)
θ(−x′ + t′),

ΠRj (t
′, x′; v) = ΠLj (t

′, 1− x′,−v), j = 1, 2, 3

where θ(z) is the unit step function θ(z) = 0 for z < 0 and θ(z) = 1 for z ≥ 0. One can

check that ΠC(t′, x′; v) = ΠC(t′, 1− x′;−v).

The parabolic functions like (2.1)–(2.4) are not periodic whereas the oscillon is a pe-

riodic solution. In order to give formulas which are valid for any t′, we define two periodic

functions

τ(z) :=
1

π
arcsin(| sin(πz)|), (2.7)

σ(z) := sgn(sin(2πz)), (2.8)

where τ(z) maps any t′ onto the intarval [0, 1
2 ] and σ(z) = ±1 agrees with classical derivative

of τ(z). The functions (2.7) and (2.8) allow us to construct the periodic solutions. They

are presented in figure 2. The function σ(z) is needed to describe the changes of the sign

of the partial solutions at t′ = n
2 . Any partial solution (for arbitrary t′) can be written in

terms of basic solutions ϕk(t
′, x′; v), where k = {C,L1, · · · , R3}, that are valid only on the

interval t′ ∈
[
0, 1

2

]
. The partial solutions presented in the Minkowski diagram in figure 1

have the form

φk(t
′, x′; v) = σ(t′)ϕk(τ(t′), x′; v)Πk(τ(t′), x′; v). (2.9)

The functions (2.7) and (2.8) allow us to introduce a more compact notation than the

one in [37]. Note that here the functions φ−L1/R1
and φ+

L3/R3
have been absorbed into the

definitions of functions φL1/R1
. Similarly, φ−L3/R3

and φ+
L1/R1

have been absorbed into the

definitions of functions φL3/R3
. The total solution is given by a continuous function which

is a sum of non overlapping partial solutions (2.9). The derivative of the oscillon solution

with respect to time is given by

∂t′φk(t
′, x′; v) = ∂zϕk(z, x

′; v)|z=τ(t′)Πk, (τ(t′), x′; v) (2.10)
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Figure 2. Function τ(z) (solid line) and σ(z) (dashed line).
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Figure 3. The profile function φ(t′, x′; v) of the generalized exact oscillon for v = 0.3 at (a) t′ = 0.1,

(b) t′ = 0.4 and (c) t′ = 0.75. The corresponding time derivatives of ∂t′φ(t′, x′; v) are shown in (d)

at t′ = 0.1, in (e) at t′ = 0.4 and in (f) at t′ = 0.75.

where σ2(z) = 1. Note that all the derivatives of the region step functions Πα can be

ignored because the sum of partial solutions is a continuous function so there is no reason

to expect delta functions at the matching points.

In figure 3 we present three snapshots of the generalized exact oscillon solution

φ(t′, x′; v) and its time derivative ∂t′φ(t′, x′; v) at t′ = 0.1, t′ = 0.4 and t′ = 0.75. Solutions

presented in figures (a) and (d) consists of (from left to right) {φL2 , φL1 , φC , φR1 , φR2},
in figures (b) and (e) fn {φL2 , φL3 , φC , φR3 , φR2} and, finally, in figures (c) and (f) of

{φL2 , φL1 , φC , φR3 , φR2}.

2.2 Travelling oscillons

The signum-Gordon equation

(∂2
t − ∂2

x)φ(t, x) + sgnφ(t, x) = 0 (2.11)

is invariant under the Lorentz transformations. Thus, traveling compact oscillons can be

obtained from the non traveling ones by an appropriate Lorentz transformation. In partic-

ular, the oscillon with a non vanishing linear momentum is obtained from the generalized

exact oscillon by a Lorentz boost. In what follows we assume that the laboratory reference
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frame S moves with velocity u′ = ∓V with respect to the rest frame of the oscillon S′.

Thus, the oscillon has velocity u = ±V in the laboratory frame S. The field configuration

that describes the traveling oscillon is a function of coordinates t and x and is given by

performing the transformations

t′ → ξ :=
t− ux√
1− u2

, x′ → ζ :=
x− ut√
1− u2

(2.12)

in (2.9) and obtaining the partial solutions

ψk(t, x; v, u) := σ(ξ)ϕk

(
τ(ξ), ζ; v

)
Πk

(
τ(ξ), ζ; v

)
. (2.13)

The derivatives of the fields with respect to time t are given by the expression

∂tψk(t, x; v, u) =
1√

1− u2

[
∂ξ̄ϕk(ξ̄, ζ̄; v)− uσ(ξ)∂ζ̄ϕk(ξ̄, ζ̄; v)

]
Πk(ξ̄, ζ̄; v)

∣∣∣∣
ξ̄=τ(ξ), ζ̄=ζ

,

(2.14)

where d
dz τ(z) = σ(z) and σ2(z) = 1 at open supports of the partial solutions. Hence, the

travelling oscillon in S is a solution of (2.11) given by a sum of non overlapping partial

solutions (2.13), namely,

ψ(t, x; v, u) =
∑
k

ψk(t, x; v, u), (2.15)

where k = {L1, L2, L3, C,R1, R2, R3}.
Note, that the axis x′ i.e the line t′ = 0 in S′ is not a simultaneity line in S. The

scalar field φ(t′, x′; v) vanishes at the horizontal lines t′ = n
2 , n = 0,±1,±2, . . . which are

shown in figure 1. It shows that the oscillon seen in the laboratory reference frame S has

some isolated traveling zeros. Such isolated zeros are given by points of intersection of

lines parallel to the axis x (given by t = const) with the lines t′ = n
2 . The number of

isolated zeros and the composition of the oscillon (types of partial solutions seen in S at

given instant of time t) depend on the value of the velocity u = ±V which the oscillon has

in S. The axes x and x′ form an angle arctan(V ) so for V < 1
2+v there is only one point of

intersection of straight lines parallel to x′ with the line t′ = n
2 . For 1

2+v < V < 1, a second

isolated zero arises at some value of the time interval.

According to the diagram presented in figure 1, the initial (at t = 0) configuration of

the field in S, obtained by the Lorentz boost of the oscillon given in S′, consists of different

sets of partial solutions corresponding to different values of the velocity V . Let us consider

the oscillon that moves with the velocity u = +V in the laboratory reference frame. The

oscillon configuration ψ at t = 0 consists of (from left to right)

{ψL1 , ψC , ψR1 , ψR2} for 0 < V <
1− v
3 + v

, (2.16)

{ψL1 , ψC , ψR3 , ψR2} for
1− v
3 + v

< V <
1

2 + v
, (2.17)

{ψL1 , ψC , ψR3 , ψR2} for
1

2 + v
< V < 1. (2.18)

The cases (2.17) and (2.18) differ by a sign of partial solutions ψR3 and ψR2 .
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Figure 4. The generalized exact oscillon with the velocity u = +V in the laboratory reference

frame at t = 0. The oscillon is parametrized by v = 0.3. Figures (a), (b), (c) show the initial

shape of the oscillon ψ(t, x; vV )|t=0 whereas (d), (e), (f) show ∂tψ(t, x; v, V )|t=0. Figures (a), (d)

correspond with the oscillon velocity V = 0.1, (b), (e) with V = 0.35 and (c), (f) with V = 0.7.

Figure 4 shows three examples of such field configurations and their time derivatives

at t = 0. All three oscillons have v = 0.3 (which gives 1−v
3+v ≈ 0.212 and 1

2+v ≈ 0.434) and

they differ by the value of velocity V . Figures (a) and (d) were obtained for V = 0.1 and

they correspond to (2.16), (b) and (e) were obtained for V = 0.35 and they correspond

to (2.17) and figures (c) and (f) show the case (2.18) with V = 0.7.

3 Scattering of oscillons

3.1 Initial configurations for scattering process

3.1.1 Two-oscillon configurations

The compactness of exact oscillons allows the construction of some multi-oscillon configu-

rations which are exact solutions of the signum-Gordon equation. The only condition to

satisfy is the non-overlapping of the supports of individual oscillons. A generic initial con-

figuration {Ψ(x),Ψt(x)} containing two travelling oscillons is given by the superposition of

non-overlapping travelling oscillons obtained from generalized exact oscillons φ(t, x; v1) and

φ(t, x; v2) by the transformations which are symmetries of the signum-Gordon equation:

• Poincaré transformatons in (1+1) dimensions: boosts, spatial and temporal transla-

tions, spatial and temporal reflections,

• symmetry of the scale φ(t, x)→ φ(λ)(t, x) = λ2φ
(
t
λ ,

x
λ

)
,

• sign flipping of the field φ→ −φ.

Two individual oscillons, i = 1, 2, are obtained by transformations

φ(t, x; vi)→ Ψi(t, x) := εiψ
(λi)(t+ t0i, εix+ x0i; vi, ui) ,

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
0
0
6

0.0 0.5 1.0 1.5 2.0

-0.04

-0.02

0.00

0.02

0.04

0.06

(a)

0.0 0.5 1.0 1.5 2.0

-0.2

0.0

0.2

0.4

0.6

(b)

Figure 5. Initial field configuration (a) Ψ(x) and (b) Ψt(x) given by two compact oscillons at

t = 0. Parameters of oscillons v1 = 0.3, v2 = 0.34, u1 = 0.5, u2 = −0.7, x01 = 0, x02 = −1.3 and

t01 = t02 = 0, λi = 1, εi = 1 = εi where i = 1, 2.

where ui are boost velocities, t0i are temporal translations, x0i are spatial translations, λi
stand for scale parameters and εi = ±1 and εi = ±1 for reflections. Let us fix the sign of

vi > 0 because φ(t, x;−v) = φ(t, 1 − x, v) and so the sign of v can be absorbed into the

combination of spatial reflexion and translation.

The initial configuration {Ψ(x),Ψt(x)} is now given by

Ψ(x) := Ψ1(0, x) + Ψ2(0, x), (3.1)

Ψt(x) := ∂tΨ1(t, x)|t=0 + ∂tΨ2(t, x)|t=0 (3.2)

where the non-overlapping of their supports restricts the values of admissible spatial trans-

lations.

It turns out that some of left-over parameters can be omitted without any loss of

generality. The only relevant parameters of the initial configurations involving two oscillons

are those which are not equivalent i.e. they cannot be related by a symmetry transformation.

Thus the set of relevant free parameters contains relative scale, relative velocity etc. In

some cases it will be more convenient fix one of them and so only study the dependence

on the last one.

In figure 5 we present an example of the initial configuration containing two oscillons

which move in opposite directions with velocities u1 = 0.5 and u2 = −0.7. This configu-

ration was obtained by taking the generalized exact oscillons with v1 = 0.3 and v2 = 0.34

and λ1 = λ2 = 1. We have set t0 = 0 and εi = 1 as well as εi = 1. The oscillons were

shifted in space taking x01 = 0 and x02 = −1.3.

3.1.2 Symmetric configurations

A numerical study of the scattering process shows that the process depends on many

parameters like v1, v2, the relative velocity of the oscillons, their initial distance, time

shift and reflections. In order to simplify the set of parameters we have decided to restrict

our considerations to symmetric and anti-symmetric initial configurations which certainly

reduces the number of free parameters. It has turned out that even with this restriction we

have been left with a sufficiently rich set of physical systems. We think that more general

configurations are even interesting; however, their systematic study would have required

much more work so we have decided to put main effort on symmetric configurations.

– 11 –
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(a) Ψ(s)(x).

-0.5 0.0 0.5

-0.5

0.0

0.5

(b) Ψ
(s)
t (x).

Figure 6. Symmetric initial configuration of two compact exact oscillons parametrized by V = 0.8,

v = 0.3, t0 = 0 and x0 = 0.8.
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0.05

(a)

-1 0 1

-0.3

0

0.3

0.6

(b)

Figure 7. Another possible symmetric initial configuration of two compact oscillons parametrized

by V = 0.8, v = 0.3, t0 = 0 and x0 = −0.16.

In order to get a symmetric Ψ(s) or an antisymmetric Ψ(a) configuration we can take

a single exact oscillon parametrized by v and perform a sequence of symmetry transfor-

mations which leads to ψ(t+ t0, x+ x0; v, u)|t=0, where the boost velocity is chosen to be

u = +V with V ≥ 0. The second oscillon can by obtained from this result by the spatial

reflection x→ −x and, optionally, by sign flipping. Naturally, x0 must be chosen in a way

that the support of ψ lies on negative semiaxis x. In such a case the support of the oscillon

and its mirror image do not overlap. The resultant initial symmetric and antisymmetric

configurations are given by

Ψ(s/a)(x) = ψ(t+ t0, x+ x0; v, V )|t=0 ± ψ(t+ t0,−x+ x0; v, V )|t=0,

Ψ
(s/a)
t (x) = ∂tψ(t+ t0, x+ x0; v, V )|t=0 ± ∂tψ(t+ t0,−x+ x0; v, V )|t=0.

(3.3)

Figure 6 shows a symmetric initial configuration {Ψ(s)(x),Ψ
(s)
t (x)} involving two com-

pact exact oscillons obtained this way. A similar antisymmetic configuration can obtained

by flipping the sign of one of the oscillons.

Note that an alternative symmetric (antisymmetric) initial configuration can also be

obtained by taking u = −V and shifting the resulting oscillon to the right i.e. choosing

x0 < 0. The second oscillon is obtained by the mirror reflection x → −x (and possibly

the sign flip). An example of such an initial configuration is shown in figure 7 (shadowed

regions). The configuration shown in figure 6 is marked in figure 7 by curves without

shadowing.

3.1.3 Phase of the oscillon

Unlike for the case of compact kinks, the scattering process of two oscillons depends on the

initial distance between them. This observation follows from the fact that the shape of the
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oscillons changes with time and the outcome of the scattering process depends strongly3

on the shapes of oscillons at the moment when their supports begin to collide. Thus the

phase of the oscillon is another relevant parameter which must be taken into account in

the analysis of the scattering of oscillons. Two traveling oscillons that differ exclusively

by the value of spatial translation are said to have the same phase. The phase of the

oscillon, in its own rest frame S′, is the number α ∈ [0, 1), where the lowest value of α = 0

represents an oscillon configuration at t′ = 0 and the upper limiting value α = 1 = Trest

(for λ = 1) is given by the period of the oscillon. The period of the oscillon in the

laboratory reference frame S, in which the oscillon has a certain velocity V , is given by

Tlab = γ ≡ (1 − V 2)−1/2 and the distance travelled during the period Tlab is γV , thus

ψ(t+ γ, x+ γV ; v, V ) = ψ(t, x; v, V ). The phase of the oscillon in the laboratory reference

frame S can be chosen again as the number α ∈ [0, 1), whose upper limit is given by

Tlab/γ. Note, that two oscillons with the same phase in two different inertial reference

frames describe different field configurations. Below we describe in more detail the choice

of the initial symmetric (antisymmetric) configurations containing two generalized exact

oscillons.

The uniform motion of the oscillons from t = 0 to the moment of the collision results

in a variation of their individual phases or the variation of their common phase in the case

of symmetric (antisymmetric) initial configurations. The variation of the phase depends

on the initial distance between support of two oscillons. Since the oscillons do not interact

until they supports begin to overlap one can eliminate this initial distance without any

loss of generality. This can be done choosing properly the value of spatial translation. The

condition that oscillons begin to collide at t = 0 (their supports touch each other) makes

the parameter of spatial shift a function of the phase i.e. x0 = x0(α).

In order to set up the phase of oscillation at t = 0 one can make use of the translational

symmetry t→ t+ t0 of the signum-Gordon equation. Due to the periodicity of the solution

the parameter t0 can be chosen as t0 = αγ. A sequence of generalized exact oscillons

with different phases α is plotted in figure 8a. The configurations α = 0 and α = 1 differ

exclusively by a spatial translation which implies that they have equal phases. In figure 8b

we plot a worldsheet of the generalized exact oscillon in the laboratory reference frame in

which it moves with the velocity u = +V . The endpoints of the oscillon are marked by

x̃(α) (the left one) and x(α) (the right one). It is pretty clear from this diagram that the

length of the oscillon

L(α) = x(α)− x̃(α) (3.4)

in the laboratory reference frame is a periodic function of the time when v 6= 0 and it is

equal to 1/γ (for λ = 1) when v = 0.

In order to get an initial configuration for the scattering process we translate the

oscillon to the left by a distance x0(α). The second oscillon is obtained by the mirror

reflection of the first one. Hence the initial configurations that are subject of considerations

in this paper are those given by (3.3) with t0 = αγ and x0 = x0(α). In figure 9 we plot the

initial profiles of the field Ψ(s)(x) with different phases.

3This observation follows from our numerical investigation and it will be discussed later on in the paper.
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α = 1.0

ψ(αγ,x; v,V)

x0
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x

(a)

t = 0

t = α γ

t = γ

x0(α)

t' = 0x'
=
0

x̃0(α)

0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

x

t

(b)

Figure 8. (a) Oscillon ψ(γα, x; v, V ) with V = 0.5 and v = 0.3 for sevaral values of α. (b) A

worldsheet of the oscillon and the surface of simultaneity at t = 0.4γ in the laboratory reference

frame.

-1.0 -0.5 0.0 0.5 1.0

-0.04

-0.02

0.00

0.02

0.04

0.06

Figure 9. Symmetric initial configurations of the oscillons Ψ(s)(x) at t = 0 when their supports

begin to collide. The configurations correspond to v = 0.2, V = 1
2+v − 0.1 ≈ 0.3545. The phases of

oscillations are given by α = 0 (solid line), α = 0.1772 (dashed line) and α = 0.6222 (dotted line).

3.1.4 Determination of the endpoints x(α) and x̃(α) of a oscillon

We start with the determination of the function x0(α) which describes the position of

theright endpoint of the oscillon. To obtain it is sufficient to restrict considerations to

v ≥ 0 because any non-travelling oscillon satisfies relation φ(t, x;−v) = φ(t, 1 − x). So

we shall consider here the boosts in two directions, namely u = ±V , where 0 ≤ V < 1.

In all formulae containing “±” the upper sign corresponds to u = +V and the lower one

to u = −V .

The simultaneity line t = αγ in the laboratory reference frame S is described by the

equation

t′ = α∓ V x′ (3.5)

in the reference frame of the oscillon S′. In coordinates in S′ the right border of the oscillon

is a worldline given by

x′ = 1 + vτ(t′), (3.6)

where τ(t′) is a function defined in (2.7). Eliminating x′ from (3.5) and (3.6) we find that
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(a) u = +V .
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t',
0
)

y(
t',
α
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t',
1
)

C E FD

●
● ●

0 0.5 1 1.5 2.

0

0.5

t'

(b) u = −V .

Figure 10. Functions τ(t′) and y(t′, α) for V = 0.5 and v = 0.3 (here V > Vc = 10
23 ). The middle

dashed line represents solution of equation (3.7) with certain α; here α = 0.4.

t′(α) is a solution of the equation

τ(t′) = y(t′, α) (3.7)

where

y(t′, α) ≡ ± 1

vV

(
α− t′ ∓ V

)
is a straight line and τ(t′) is a saw-shape function plotted in figure 10. The plot shows two

cases which differ by the sign of the boost velocity u.

Note that due to the periodicity of the oscillon the parameter α is restricted to the

inteval 0 ≤ α < 1. This can be seen from figure 8b (case u = +V ), where the simultaneity

lines t = 0 and t = γ, parallel to the axis x, cross the left border of the oscillon at

(t′, x′) = (0, 0) and (t′, x′) = (1, 0) and therefore two oscillons seen in the laboratory frame

S at the instants of time t0 = 0 and t0 = γ have the same shape. The same is true for

u = −V case.

Two straight lines y(t′, α) with α = 0 and α = 1, plotted in figure 10a, cross the axis

t′ at t′ = −V and t′ = 1− V . Similarly, in the case u = −V plotted figure 10b, they cross

the axis t′ at t′ = V for α = 0 and t′ = 1 + V for α = 1. In order to cover the whole

range of velocities V ∈ [0, 1) we shall consider the equation (3.7) on two intervals; namely,

on the interval −1 < t′ < 1 for u = +V and on the interval 0 < t′ < 2 for u = −V . The

saw-shape function τ(t′) is given by the pieces of straight lines τ(t′) = at′ + b, where the

coefficients (a, b) have different values for different instants of time t′

(a, b) =



(1, 1) for t′ ∈
(
−1,−1

2

)
(A)

(−1, 0) for t′ ∈
(
−1

2 , 0
)

(B)

(1, 0) for t′ ∈
(
0, 1

2

)
(C)

(−1, 1) for t′ ∈
(

1
2 , 1
)

(D)

(1,−1) for t′ ∈
(
1, 3

2

)
(E)

(−1, 2) for t′ ∈
(

3
2 , 2
)

(F )

.
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There are two different cases dependent on the absolute value of the boost velocity

V = |u|. They are separated by the critical case for which the velocity has value

Vc ≡
1

2 + v
.

The straight line y(t′, α) crosses maxima of τ(t′) i.e. τ(t′max) = 1
2 at t′max =

{
−1

2 ,
1
2

}
for

u = +V and at t′max =
{

1
2 , 1
}

in the case u = −V . It crosses the minimum τ(t′min) = 0

at t′min = 0 for u = +V and at t′min = 1 for u = −V . The corresponding values of the

parameter α are denoted by α
(±)
l for lower maximum, α

(±)
u for upper maximum and α

(±)
0

for the minimum. The signs “±” correspond to u = ±V . They have the form

α
(+)
l =

1

2
[−1 + V (2 + v)], α

(−)
l =

1

2
[1− V (2 + v)],

α
(+)
0 = V, α

(−)
0 = 1− V,

α(+)
u =

1

2
[1 + V (2 + v)], α(−)

u =
1

2
[3− V (2 + v)].

(3.8)

When the boost velocity takes the critical value V = Vc, the lowest value α = 0

corresponds to α
(±)
l and the highest value α = 1 to α

(±)
u . Thus only two intervals (B) and

(C) for u = +V and (D) and (E) for u = −V are relevant in this case. The interval
(
B
D

)
is

covered by α which satisfies 0 ≤ α ≤ α(±)
0 and

(
C
E

)
is covered by α such that α

(±)
0 ≤ α < 1.

The upper letter stands for the upper sign (+) and the lower one for (−).

When the boost velocity is less than the critical value, V < Vc, then the straight line

y(t′, α = 0) crosses the saw-shape chain τ(t′) at a certain point given by t′ belonging to

the interval
(
B
D

)
and y(t′, α = 1) crosses the chain τ(t′) at the point with t′ that belongs to(

D
F

)
. Thus in this case the relevant intervals are

(
B
D

)
,
(
C
E

)
and

(
D
F

)
. The parameter α takes

values 0 ≤ α ≤ α(±)
0 in the interval

(
B
D

)
, it takes values α

(±)
0 ≤ α ≤ α(±)

u in
(
C
E

)
and values

α
(±)
u ≤ α < 1 in

(
B
F

)
. Note that the intervals

(
B
D

)
and

(
D
F

)
are covered only partially by α.

On the other hand, for V > Vc (the case sketched in figure 10) the relevant intervals

are
(
A
C

)
,
(
B
D

)
and

(
C
E

)
. In the interval

(
A
C

)
the parameter α belongs to 0 ≤ α ≤ α

(±)
l , in(

B
D

)
it belongs to α

(±)
l ≤ α ≤ α

(±)
0 and in

(
C
E

)
it belongs to α

(±)
0 ≤ α < 1. In this case the

intervals
(
A
C

)
and

(
C
E

)
are covered only partially by α.

The solution of the equation (3.7) is given by

t′(α) =
α∓ V (1 + bv)

1± avV
, (3.9)

where the values of (a, b) are determined by the velocity V and the phase α. A position of

the right endpoint of the oscillon, obtained from the spacetime interval, takes the value

x0(α) =
√
γ2α2 − t′(α)2 + x′2,

where x′, introduced in (3.6), is a function of α given by x′(α) = 1 + v
(
at′(α) + b

)
. After

some manipulations one gets

x0(α) =
γ

1± avV

[
(1− V 2)(1 + vb) + α(±V + va)

]
. (3.10)
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This results shows that x0 is a linear function of α in the intervals in which (a, b) remain

constant functions of α.

Next we determinate the function x̃0(α) which describes the position of the left endpoint

of the oscillon. The left border of the oscillon is described by the worldline x′ = vτ(t′)

in the rest frame of the oscillon. In order to get the function t′(α) one has to solve the

equation

τ(t′) = z(t′, α) where z(t′, α) = ±α− t
′

vV
.

Taking τ(t′) = a′t′ + b′ we find that t′(α) is given by

t′(α) =
α∓ b′vV
1± a′vV

.

The coefficients (a′, b′) correspond to 0 ≤ t′ ≤ 1
2 and 1

2 ≤ t
′ < 1 and they are given by

(a′, b′) =

{
(1, 0) for 0 ≤ t′ ≤ 1

2 (C),

(−1, 1) for 1
2 < t′ < 1 (D).

We denote the solutions of the equation τ(t′max) = 1
2 by α

(±)
c . They are given by

α(±)
s :=

1

2
(1± vV ).

For 0 ≤ α ≤ α
(±)
s the line z(t, α) crosses τ(t′) at (C) and for α

(±)
s ≤ α < 1 it crosses τ(t′)

at (D). Finally, taking similar steps for the case of the ‘right endpoint’ we find

x̃0(α) =
γ

1± a′vV

[
(1− V 2)(vb′) + α(±V + va′)

]
. (3.11)

3.1.5 Remarks on the initial configurations

Having determined the expressions for x0(α) and x̃0(α) we can now construct arbitrary

initial configurations containg generalized exact oscillons which begin to collide at t = 0.

In the case of oscillons with |u| < v an additional caution is necessary. In figure 11 we

present the worldsheets of two generalized exact oscillons

Ψ(s)(t, x) = ψ(t+ αγ, x+ x0(α); v, V ) + ψ(t+ αγ,−x+ x0(α); v, V ),

which form a symmetric configuration. The initial field configuration for the scattering

process is given by Ψ(s)(x) = Ψ(s)(t, x)|t=0, Ψ
(s)
t (x) = ∂tΨ

(s)(t, x)|t=0 with |u| < v. Fig-

ure 11b shows that for some values of the phase of the colliding oscillons they would

collide before the instant of time t = 0. This proves that the corresponding configuration

(Ψ(s)(x),Ψ
(s)
t (x)) cannot be obtained by approaching two travelling oscillons. A require-

ment that worldsheets of colliding oscillons have no intersections for t < 0 excludes such

field configurations.

Although we have paid the main attention only to the symmetric (antisymmetric)

initial configurations it is quite clear that nonsymmetric configurations with vanishing
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(a) α = 0.
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t = 0

(b) α = 0.3.

Figure 11. Symmetric configurations with v = 0.8 and V = 0.5 and different phases.

total momentum can be obtained by taking colliding oscillon with different phases. An

example of two oscillons with phases αL and αR is given by

Ψ(t, x) = ψ(t+ αLγ, x+ x0(αL); v, V ) + ψ(t+ αRγ,−x+ x0(αR); v, V ) (3.12)

and shown in figure 12a. This field configuration is obtained by shifting one of the oscillons

by distance x0(αL) (placing it to the left of x = 0) and the second one by x0(αR) and

reflection x → −x (placing it to the right of x = 0). Another possibility is shown in

figure 12b. The first oscillon, with u = −V , is shifted by x̃0(αR) (which places it to the

right of x = 0) and the second oscillon, with u = +V , is shifted by x0(αL) (which places it

to the left of x = 0). In this case

Ψ(t, x) = ψ(t+ αRγ, x+ x̃0(αR); v,−V ) + ψ(t+ αLγ, x+ x0(αL); v, V ).

It is quite clear from diagrams in figure 12 that there exist a set of phases for which the

worldsheets of oscillons overlap for t < 0.

3.2 Antisymmetric configurations

In this section we present some numerical results for the scattering of two oscillons which

form an antisymmetric initial configuration of the signum-Gordon field. We have chosen

antisymmetric initial data to be discussed here first because the result of the scattering of

oscillons in such a case is not as complex as that for symmetric configurations. The fact

that initial configuration is antisymmetric implies that

Ψ(a)(t, x; v, V )|x=0 = 0 (3.13)

for any instant of time t. This condition expresses the vanishing of the net force exercised

on a degree of freedom at x = 0 (e.g. ball, pendulum in a discretized mechanical realization

of the model). In other words, the only effect of interaction between left and right oscillon

is a fixing of the value of scalar field χ = 0 at x = 0. Thus the evolution of the system
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(a) α1 = 0, α2 = 0.3.

0

0

x

t

t = 0

(b) α1 = 0.65, α2 = 0.35.

Figure 12. Generic configurations with v = 0.7 and V = 0.5. (a) shift by the right endpoint, (b)

shift by the left endpoint.

in regions x < 0 and x > 0 effectively splits into two independent problems containing an

initial oscillon and the boundary condition (3.13).

In our numerical study we have evolved an antisymmetric configuration without as-

suming the condition χ = 0 at x = 0. Looking at results presented in figure 13 we clearly

see that the condition (3.13) is satisfied. This effect manifests itself in the presence of

vertical white segments at diagrams which are located at x = 0. Another important obser-

vation is the absence of radiation in the central region of the diagrams independently on

the value of the initial speed of oscillons. The sources of radiation generated in this process

are irregular borders of two outgoing oscillons, see figure 13a.

One can note that irregularities of the border are more likely to appear for small

velocities V of colliding oscillons than for the larger ones. Moreover, in spite of being

irregular the outgoing oscillons radiate significantly less than it would be expected for

strongly perturbed oscillons. In fact, the outgoing oscillons with irregular borders belong

to a more general class of oscillons. We discuss this subject in more deatil in section 3.5.

Another interesting question is the dependence of the scattering process on the phase

α that characterizes the initial configuration. In figure 14 we present the results of the

scattering at V = 0.8 for four values of the phase. The figures show that the evolution of

the initial configurations does not depend much on the value of the parameter α.

Another parameter that the incoming oscillons depend on is the speed v of the oscillon

border in its rest frame. Our numerical studies have shows that irregularities of borders of

two outgoing oscillons increase with increasing of the value of parameter v which determines

the swaying motion of the incoming oscillons. In figure 15 we present the results of the

scattering of an anti-symmetric configuration of oscillons with speed V = 0.8, phase α = 0

and speeds of the border v = 0.47 and v = 0.82. The figures show that as the borders of

outgoing oscillons became more and more irregular the number and size of the oscillons

emitted from these borders increases.

It is quite notable that the radiation generated in the process of the scattering of anti-

symmetric configurations is emitted only from the border irregularities of the outgoing
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(a) V = 0.5.
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(b) V = 0.6.

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

-0.03

-0.06

0

0.03

0.06

(c) V = 0.7.
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(d) V = 0.8.

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

-0.03

-0.06

0

0.03

0.06

(e) V = 0.95.
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(f) V = 0.97.

Figure 13. The dependence of the scattering of oscillons (antisymmetric configuration) on their

initial speed V . The initial configuration contains oscillons with phase α = 0 and no zig-zag motion

of their border.

oscillons. Such oscillons can be interpreted as (strongly) perturbed exact oscillons of the

signum-Gordon model. The surplus of their energy is converted into small oscillons which

are sent away from the irregularities.

3.3 Symmetric configurations

3.3.1 Overview of the numerical results

In this section we present a general overview of the numerical results obtained in the

scattering of solitons described by symmetric initial configurations parametrized by the

boost velocity V and initial phase α. For better transparency we present first only the

cases with v = 0. They are sufficient to provide us a basic feeling about the typical results
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(a) α = 0.1.
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(b) α = 0.5.
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(c) α = 0.75.
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(d) α = 0.9.

Figure 14. The scattering of oscillons (antisymmetric configuration) as a function of their phase

α. The initial configuration contains oscillons with speed V = 0.8 and no zig-zag motion of their

border.
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(a) v = 0.47.
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(b) v = 0.82.

Figure 15. The scattering of oscillons (antisymmetric configuration) in dependence on parameter

v. The initial configuration contains oscillons with speed V = 0.8 and α = 0.

of the scattering. In section 3.3.4 we discuss further examples of oscillons with non-zero

velocity of the border v.

A typical situation with v = 0 is shown in figure 16. Two incoming exact oscillons

form the initial configuration at t = 0. This configuration is adopted as an input for our

numerical simulations.

We have performed many numerical simulations for distinct velocities and phases of

scattered oscillons. In figure 17 we plot the scattering process of two exact oscillons with
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Figure 16. Worldsheets of two incoming oscillons for v = 0. The oscillons are unperturbed inside

two triangular regions above the line t = 0. The zeros of the oscillon correspond to the intersections

of its worldsheet with a family of dashed lines.

v = 0 and α = 0 for six values of boost velocity V . All initial configurations contain two

exact oscillons whose supports touch each other at t = 0. Numerics shows that the result of

collision strongly depends on the velocity V of colliding oscillons. All six diagrams contain

two main oscillon-like objects (they perhaps can be identified with perturbed oscillons)

that emerge shortly after collision. They move with the velocity which is almost equal to

velocity of colliding oscillons. The emerging oscillon-like objects obtained in the process

of the scattering are significantly less regular when initial velocities of oscillons are small.

For higher velocities the main outgoing oscillons are quite regular. Such field configuration

are very close to the exact (generalized) oscillons. In the rest of the paper we call them

quasi-oscillons. A fundamental difference between diagrams is visible in their central region

where radiation appears in the form of jets. Looking more carefully at the radiation we

see that it contains certain structures that strongly resemble oscillons. They look a bit like

perturbed oscillons. Note also that the emerging oscillons obtained for small velocities V

emit oscillon-like objects directly from their irregular border. A presence of radiation in

the scattering process reflects the non-integrable character of the signum-Gordon model.

In figure 18 we present the numerical results of scattering of two oscillons with V =

0.93, v = 0 for four initial phases α = 0, α = 0.25, α = 0.84 and α = 0.93. The figure

demonstrates that the initial phase of the colliding oscillons is indeed a relevant scattering

parameter. The form of the jets in each subfigure of figure 18 is clearly different. This

difference clearly shows that the result of the scattering process is very sensitive to the

value of the phase α.

Looking at figures 17 and 18 we see that in the first stage of the scattering the inter-

acting oscillons exist on support that shrinks from its initial size 2L to a certain minimal

size 2Lmin where L =
√

1− V 2 is the size of the oscillon in the laboratory reference frame.

This process takes some time ts. For t > ts we observe emerging of two main oscillons and

the appearance of waves of energy identified with radiation. In order to evaluate the time

ts we assume that the left (right) border of the oscillon, which initially moves with velocity

u = V (u = −V ), moves freely with the velocity that the oscillon has in the laboratory

reference frame until it hits the future light cone of the event (0, 0); see figure 16. This

assumption allows to determine the event Ps with the coordinates (ts, xs) in the laboratory
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(b) V = 0.6.
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(c) V = 0.7.
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(d) V = 0.8.
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(e) V = 0.95.
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(f) V = 0.97.

Figure 17. The scatterings of oscillons (symmetric configuration) as a function of their initial

speed V . The initial configurations contain oscillons with phase α = 0 and no zig-zag motion of

their border v = 0.

reference frame. Thus the left border of the left oscillon is given by x = −
√

1− V 2 + V t

and it intersects the light cone line x = −t at

ts =

√
1− V
1 + V

= −xs. (3.14)

The formula (3.14) is valid exclusively for v = 0. Due to the symmetry of the initial con-

figuration we see that the minimal support size of the scattering oscillons can be estimated

by the expression ∆xmin = 2
√

1−V
1+V . In figure 19 we show numerical data (dots) and ana-

lytical curves (solid lines) representing the characteristic time of the scattering ts and the

minimum size of the oscillon configuration ∆xmin at ts.
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(a) α = 0.
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(b) α = 0.25.
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(c) α = 0.84.
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(d) α = 0.93.

Figure 18. The scattering process for initial symmetric configurations containing oscillons with

speed V = 0.93 and no zig-zag motion of their border and different initial phases α.
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Figure 19. The cases of different velocities V . (a) Characteristic time ts and (b) the minimum

size ∆xmin. Dots represent numerical data whereas solid curves stand for expressions ts =
√

1−V
1+V

and ∆xmin = 2ts.

3.3.2 High velocities — formation of shock waves

Next we discuss in more detail some of our numerical results. First we note that for small

velocities the numerical solution is very irregular. Looking at figures 17a–17c we clearly

see a formation of a strongly perturbed oscillon centred at x = 0. This perturbed oscillon

is certainly unstable and it radiates out smaller oscillon-like objects. The situation changes

for scatterings at high velocities as then the numerical solution has a more regular pattern.

In particular, when velocity of incident exact oscillons is close to unity we observe another
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interesting solution. An example of such a solution is presented in figure 17e. The solution

presented there was obtained for the scattering of two exact oscillons with initial phases

α = 0, speeds V = 0.93 and no swaying motion i.e. for v = 0. A very characteristic feature

of this numerical solution is a presence of regular waves that are localized in a diamond-like

shape region on the Minkowski diagram. Such waves emerge shortly after the collision and

eventually decay into a sequence of oscillon-like structures. It turns out that the nature

of these waves can be understood in terms of the so-called shock waves that are exact

solutions of the signum-Gordon model reported in [34].

A shock wave is a particular solution of the signum-Gordon model with two discon-

tinuities that propagate with the speed of light. Here, however, we do not observe such

wavefronts due to the presence of two oscillons that move with subluminal velocities. The

collapse of the wave suggests that our numerical solution is only an approximation to the

exact shock wave which would exist for arbitrary times t > 0.

We can check the hypothesis as to the nature of our wave solution comparing its zeros

to the zeros of the analytical shock wave. According to [34] a shock wave solution belongs

to the class of the signum-Gordon solutions described by φ(t, x) = θ(−z)W (z), where z =
1
4(x2 − t2). The function W (z) obeys the ordinary equation zW ′′(z) +W ′(z) = sgn(W (z))

and it consists of infinitely many partial solutions Wk(z), k ∈ Z matched at points z = −ak.
Each partial solution satisfies the equation zW ′′k (z) + W ′k(z) = (−1)k and the conditions

Wk(−ak) = 0 = Wk+1(−ak) and W ′k(−ak) = W ′k+1(−ak). So, it can be written in the form

Wk(z) = (−1)k
(
z + ak + bk ln

|z|
ak

)
,

where
bk+1

ak
= 2− bk

ak
, and

ak+1

ak
= 1 +

bk+1

ak
ln
ak+1

ak
. (3.15)

Note that we must have b0 = 0 in order to avoid the singularity of the logarithm at

z = 0. The first zero a0 is a free parameter which determines values of all other constants

via recurrence relations (3.15). In particular, one gets b1 = 2a0. Denoting αk+1 := 1
2
bk+1

ak
and yk+1 :=

ak+1

ak
one gets relations (3.15) in the form

αk+1 = 1− αk
yk
, and yk+1 = 1 + 2αk+1 ln yk+1. (3.16)

Note that α1 = 1. Furthermore, it follows from (3.16) that αk+1 is determined by ak and

bk. Solving numerically the second equation of (3.16) one gets yk+1 and so ak+1 and bk+1

can be determined too. Thus we note that the zeros of the field φ(t, x) are localized on the

hyperbolas

xk(t) = ±
√
t2 − 4ak, (3.17)

at the spacetime diagram. A few first such zeros are sketched in figure 20a.

Having determined the analytical form of the positions of zeros we can now fit the zeros

to the numerical data presented in figure 21. First we note that the formation of the waves

in the process of the scattering of two oscillons does not start at t = 0 but at some further

instant of time T0. For this reason the fitting requires, besides a0, another parameter: a
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(a) (b)

Figure 20. The exact shock wave solution for a0 = 1. (a) The solution on the space-time diagram

and (b) the snapshot of the solution for t = 8.0.
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Figure 21. Scattering of two exact oscillons for symmetric field configuration. The incident

oscillons move with the speed V = 0.95 in the laboratory reference frame. The diamond-shaped

structure in the middle resembles the shock wave solution. The fit of ten first zeros was obtained

for a0 = 0.00541 and T0 = 0.282.

time translation T0. Thus xk(t) = ±
√

(t− T0)2 − 4ak. The trajectories of the zeros of the

exact shock wave solution reproduce very well the trajectories of our numerical solution.

This supports our hypothesis about the shock wave character of the regular oscillations

localized in the diamond-shape region of figure 21. Clearly, the numerical shock-like wave

solutions are similar to the exact ones only in a limited region of the Minkowski diagram.

Outside of this region they break and produce oscillon-like structures.

3.3.3 Vanishing of the radiation

In our numerical studies we have also spotted a very interesting case. Namely, some

symmetric initial configurations evolve in such a way that the resulting field contains only

the main quasi-oscillons i.e. the amount of radiation generated in this process is virtually

insignificant. This phenomenon was observed in the high speed range (V approximately

above 0.7) i.e. when two main outgoing quasi-oscillons had very regular form. We have

also found that, for a given velocity V , there are two phases α for which the radiation

is absent. Figure 22 shows two examples of the scattering processes containing initial
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(a) α = 0.414.
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(b) α = 0.914.

Figure 22. The scatterings of the symmetric initial configuration with V = 0.93, v = 0. The

scattered oscillons have phase (a) α = 0.414 and (b) α = 0.914.

(a) α = 0.414. (b) α = 0.914.

Figure 23. Initial profile of the signum-Gordon field and worldsheets of the incoming oscillons for

V = 0.93, v = 0 and (a) α = 0.414, (b) α = 0.914. The zeros are marked by dashed lines. Theirs

positions at t = 0 are given by (a) B(−1)(α) = −0.006, B(0)(α) = −0.204 and (b) B(0)(α) = −0.006,

B(1)(α) = −0.204.

configurations with identical velocities V = 0.93 and different phases α. We have chosen

v = 0 in both cases. The phases of configurations shown in figure 22a and figure 22b differ

by a factor ∆α = 0.5.

The observed difference of phases can be understood by comparing the zeros of the

incoming oscillons in figures (a) and (b). The initial configurations at t = 0 and the

worldsheets of the oscillons for t < 0 are plotted in figure 23. We have also marked there

the zeros of the oscillons. They correspond to the segments of straight lines

x(n)(t) =
t

V
+B(n)(α), where B(n)(α) ≡ γ

2V

(
2α− n

γ2

)
− x0(α). (3.18)

Here x0(α) is given by (3.10) and n = 0,±1,±2, . . . stands for the numbering of the infinite

sequence of zeros. Since x0(α) is a linear function of the phase α then the coefficients

B(n)(α) are also linear functions of α. Expression (3.18) shows that all the zeros of the
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Figure 24. Fraction of the total energy of initial configuration carried out by radiation for v = 0.

oscillon travel with the same speed equal to 1/V . Moreover, this expression also shows that

two consecutive zeros numbered by n and n+1 lie on the same straight line if the phases of

these oscillons differ by a certain value ∆α determined from the equation B(n+1)(α+∆α)−
B(n)(α) = 0 with v = 0. This equation has a solution ∆α = 1

2 . In particular, this shows

that the incoming zeros x(0)(t), shown in figure 23a, and x(1)(t), shown in figure 23b, lie

on the same straight line. Moreover, it can also be checked that both initial configurations

characterized by phases α and α+ 1
2 differ only by the sign i.e. ψ → −ψ when α→ α+ 1

2 ,

see the insertion plots in figure 23b.

The case presented in figure 22 is not unique. Our numerical results suggest that in the

regime of high velocities V one can fine-tune the initial parameters V and α (and also v, see

the next section) in such a way that the outgoing oscillons are not accompanied by almost

any radiation. The absence of radiation demonstrates that the outgoing quasi-oscillon has

virtually the same energy as the incoming exact oscillon. In this case the numerical quasi-

oscillon is very similar to the exact one. In the most common situations there is certain

difference of energies and this difference is explained by the release of a very large number

of small oscillon-like structures. In figure 24 we plot the energy radiated out by the system

as a fraction of its initial energy. Two dark regions in the upper part of the diagram

correspond to the choices of the initial parameters (α, V ) such that this fraction is very

close to zero. Looking at this picture we see that the initial configurations that minimize

the radiation correspond to parameters α and V that lie, approximately, on straight lines.

For V < 0.7 the outgoing oscillons are quite irregular; see for instance figure 17a. Usually,

some radiation can be seen in the vicinity of outgoing irregular perturbed oscillons and

this radiation is emitted from these irregularities. In consequence, the determination of

the energy of outgoing oscillons is less reliable for small velocities.

3.3.4 Oscillons with v 6= 0

In this section we present some of our results on the scattering of generalized exact oscillons

i.e. oscillons which depend on v — the parameter controlling the swaying motion of the
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Figure 25. Worldsheets of two incoming generalized oscillons with v 6= 0. The oscillons are

unperturbed inside two triangular regions above the line t = 0. The zeros of each oscillon correspond

to the intersections of its worldsheet with a family of dashed lines.

oscillon endpoints. In figure 25 we show the wordsheets of two such oscillons. The config-

uration at t = 0 was taken as the initial data for our numerical simulation. In similarity

to the case v = 0 we can find the expressions for the characteristic time of the scattering

ts and the minimum support size ∆xmin = 2|xs| by solving the equations x = −L(α) + wt

and x = −t. We have found

ts =
L(α)

1 + w
= −xs, where w ≡ V + v

1 + V v
, (3.19)

where L(α) ≡ x0(α) − x̃0(α) is the size of the oscillon at t = 0. x0(α) is given by (3.10)

and x̃0(α) by (3.11).

An interesting question now arises of how the replacement of v = 0 by v 6= 0 modifies

the results of the scattering processes. For instance, we can take a v 6= 0 generalization

of the symmetric initial configuration with V = 0.93 and α = 0.414. In figure 26a we

present the result of the scattering for v = 0.02. We see that even such small value of the

parameter v is sufficient for the appearance of shock waves which further transform into a

cascade of oscillons. This demonstrates that the scattering process is quite sensitive to the

value of the parameter v. In order to minimize this radiation one can adjust properly the

parameter α. We have found that in this specific case the radiation vanishes for α = 0.420

and α = 0.918, see figure 26b and 26d. For higher values of v there was much more

radiation emitted during the process of scattering.

In figure 27 and figure 28 we present the cases of v = 0.2 and v = 0.7. In both cases

we have found two values of the phase α that minimize the radiation.

Looking carefully at the initial configurations we see that there is a significant difference

between the case v = 0 and v 6= 0. In figure 29 we present the initial field configurations

that minimize the radiation. Comparing configuration Ψ(s)(x; v, V, α + ∆α), where ∆α is

taken from the numerical simulations, with Ψ(s)(x; v, V, α) we see that the configuration

with α+∆α is not equal to the negative of the configuration with α. The difference between
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(b) α = 0.420.
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(c) α = 0.914.
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(d) α = 0.918.

Figure 26. The scattering process for the initial symmetric configuration containing oscillons with

speed V = 0.93, velocity of the border v = 0.02 for different phases α.
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(a) α = 0.414.
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(b) α = 0.469.
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(c) α = 0.914.
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(d) α = 0.949.

Figure 27. The scattering process for initial symmetric configuration containing oscillons with

speed V = 0.93, velocity of the border v = 0.2 and different phases α.

– 30 –



J
H
E
P
0
1
(
2
0
2
0
)
0
0
6

3 2 1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

-0.03

-0.06

0

0.03

0.06

0.09

(a) α = 0.414.
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(b) α = 0.594.
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(c) α = 0.914.
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(d) α = 0.047.

Figure 28. The scattering processes for the initial symmetric configuration containing oscillons

with speed V = 0.93, velocity of the border v = 0.7 for different phases α.
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Figure 29. Initial configurations that minimize the radiation for V = 0.93.

Ψ(s)(x; v, V, α + ∆α) and −Ψ(s)(x; v, V, α) increases with the increase of v. On the other

hand, Ψ(s) → −Ψ(s) is a symmetry of the signum-Gordon equation so if Ψ(s)(x; v, V, α)

minimizes the radiation then −Ψ(s)(x; v, V, α) minimizes the radiation too. Thus, for any

set of parameters (v, V ) there are four different initial configurations ±Ψ(s)(x; v, V, α) and

±Ψ(s)(x; v, V, α+ ∆α) that minimize the radiation. They reduce to two for v = 0.

In figure 30 we have plotted the fraction of the initial energy carried by the radiation.

The figure was produced for v = 0.45. The dark regions, corresponding to very low values

of the radiated energy, are less regular when compared with figure 24 for the case of

vanishing v.

3.4 Non-symmetric configurations

The simplest non-symmetric configurations are described by oscillons that differ only by

their phases. In order to probe this class of scatterings, we use initial conditions given

– 31 –
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Figure 30. Fraction of the total energy of the initial configuration carried out by the radiation

for v = 0.45.
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(a) αL = 0, αR = 0.4.
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(b) αL = 0, αR = 0.816.
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(c) αL = 0, αR = 0.876.
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(d) αL = 0.7, αR = 0.097.

Figure 31. The scattering process for initial configuration containing oscillons with speed V = 0.93,

velocity of the border v = 0 and different phases αL and αR.

by (3.12) taken at time t = 0. In figures 31a–31d we plot four cases of the time evolution

for these processes. Interestingly, there are all non-symmetric configurations for which no

radiation is present. Figures 31b and 31d show two of these cases.

In order to have a clearer picture of the amount of input energy converted into the

radiation, we present a density plot much like the ones presented in figures 24 and 30,

except that in this case we have fixed the values V = 0.93 and v = 0, and we vary the

parameters αL and αR (now independent of each other). This plot is shown in figure 32.

The case αL = αR corresponds tothe symmetric configurations of the initial conditions,

and is marked in the plot as a black dashed line. This line passes through two minima in

the emitted radiation, as is expected according from the results discussed in section 3.3.
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Figure 32. Fraction of the total energy of initial configuration carried out by the radiation as

a function of phases αL and αR of incoming exact oscillons for V = 0.93. The black dashed

line corresponds to the set of all such symmetric configurations and the white dot-dashed lines

correspond to the set of all such anti-symmetric configurations.

Along this line, the plot has a coincident set of values with the plot in figure 24 along the

line given by V = 0.93. Also, as mentioned in section 3.3.3, for null swaying speed of the

oscillon endpoints (v = 0), a shift of 1
2 in the phase of a given oscillon produces the same

oscillon with a sign change in the value of its field and its time derivative. For this reason,

the relation αR = αL ± 1
2 corresponds to the anti-symmetric initial field configurations.

This relation is marked in the figure as the two dot-dashed white lines. In agreement with

the results from section 3.2, these lines lie on top of the dark regions that correspond to

no-radiation zones.

The plot can be seen as periodic both in αL and in αR (although the phase is originally

defined as a value between 0 and 1, the field configuration is precisely the same for both

these values), leaving it with a toroidal topology. So, the two black strips marked by the

white dot-dashed lines form a belt around the torus and become a single continuous region.

We note, still, a second strip of no-radiation forming a 90 degree angle with these lines.

One could expect the eventual vanishing of radiation in non-symmetric initial scattering

configurations e.g. figures 31b and 31d. Yet, the regularity of this region (it is a straight

line) is quite remarkable and requires further considerations.

We present a similar plot with αL fixed in which we varied αR and V . This plot is

presented in figure 33 and, along the line given by V = 0.93, its values coincide with those

of figure 32 for αL = 0.

We note that the strip along αR = 1
2 corresponds to the anti-symmetric configurations

and so it shows little or no radiation around it. Below the value V ' 0.7 there appears a

large irregular region devoid of radiation. From the standpoint of numerical stability of our
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Figure 33. Fraction of the total energy of the initial configuration carried out by the radiation as

a function of the input speed V and phase of right input oscillon αR while holding fixed the right

input oscillon’s phase αR = 0.

methods for the measurement of radiation in regions of low V , as mentioned in section 3.6,

this region could well be a numerical artefact. In a brief investigation of this hypothesis,

though, we have found this void to be an accurate description and the region, indeed,

represents a zone of no-radiation interactions for very low energy input (low boosts). So

the value V ' 0.7 is critical in the sense that, below it, the entire region for this particular

set of values in the parameter space, generates initial conditions to the scattering that

produces no radiation, and the region, itself, does not seem to have a very well defined

shape.

One possible explanation of this void is that there is, indeed, some generation of

the radiation in the scattering process but this radiation happens to be absorbed by the

outgoing oscillons, which in turn makes them become more perturbed. This hypothesis can

be checked by considering the energy of each individual outgoing oscillon in this region. In

figures 34a and 34b we plot the energy balance of each outgoing oscillon compared to its

initial energy. This balance is calculated by

∆EL ≡ 1− 2EL
E

,

∆ER ≡ 1− 2ER
E

,

where EL is the energy of the left outgoing oscillon (which entered the interaction region

from the right), ER is the energy of the right outgoing oscillon and E the total input

energy. Note that the plot in figure 33 shows the value of the amount of energy lost to the

radiation, which is given by

Erad

E
= 1− EL + ER

E

=
1

2
(∆EL + ∆ER),

so that the total radiation is just the sum of the energy balances of individual scattered

oscillons.
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Figure 34. Balance of energy after the interaction (in percentage of incident energy) for each

oscillon, where (a) is for the left outgoing main oscillon and (b) the right outgoing main oscillon.
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Figure 35. Scattering process for V = 0.5 and αR = 0.642, with parameters αL, vL, vR all set

to zero.

From our figures (figures 34a and 34b) we see that each oscillon looses/gains a consid-

erable amount of energy in the process. This amount, in some casees, is close to up to 15%

of each oscillon’s incident energy, yet the total radiation generated is no larger than about

5.5% of the total incident energy. In figure 35 we present the case for V = 0.5, αL = 0,

αR = 0.642, vL = 0 = vR, which corresponds to a configuration that produces no radiation

(as it is located within the void region) and, at the same time, has a relatively large energy

transfer between the two interacting oscillons (the energy balance plots of these regions

show a large energy change of both oscillons). Note that the left input oscillon (outgoing

towards the right) is larger than the one outgoing to the left. Most such configurations

seem to reproduce this behaviour, and the channel through which this energy is transferred,

in all cases, seems to be related to the scale of the outgoing oscillons.

3.5 Oscillons with accelerating borders

Looking at figure 17 and figure 13 we note that the outgoing oscillons are significantly

different from the exact generalized oscillon with uniformly moving endpoints. The main

difference is in the form of worldlines describing the borders of the oscillons which take

the form of continuous curves rather than zig-zag piecewise straight lines. Moreover, the

curves are surprisingly regular in shape and this suggests that the outgoing objects are
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not just simple perturbations of the generalized exact oscillons. Recently, in [26] further

generalization of the signum-Gordon oscillins has been proposed. This generalization leads

to the emergence of oscillons with borders that are described by arbitrary time-like curves.

Here we present a construction of oscillons with curvilinear borders and produce some plots

of such oscillons after applying to them Lorentz boosts.

3.5.1 General properties

For an oscillon with period T the complete solution can be constructed from the restriction

of the solution ϕ(t, x) to the interval 0 ≤ t ≤ T/2. Similarly to the oscillons already known,

we can get periodic and localized solutions imposing the conditions

ϕ(0, x) = ϕ

(
T

2
, x

)
= 0, (3.20)

∂tϕ(0, x) =


0 if x < 0

f(x) if 0 ≤ x ≤ T,

0 if x > T

(3.21)

where f(x) is a continuous function such that f(x) ≤ 0 for all 0 ≤ x ≤ T and f(0) = f(T ) =

0. As a consequence, we assume that the solution ϕ(t, x) is negative for 0 ≤ t ≤ T/2.

The oscillon solution is localized in the sense that it is nonzero only in the region

between two time-like curves γL and γR — the borders of the oscillon, see figure 36. The

right border is a displacement by T of the left curve, so that the size of the oscillon remains

constant. For t ∈ [0, T/2] the borders move to the right by ∆ and, for t ∈ [T/2, T ], the

borders move in the opposite direction — returning to the original position.

The conditions (3.20) and (3.21) are satisfied if we take the following ansatz for the

non-zero part of the solution:

ϕ(t, x) =


F (x+ t)− F (x− t+ T ) + t2

2 −
T 2

8 if − t < x < t

F (x+ t)− F (x− t) + t2

2 if t < x < T − t

F (x+ t− T )− F (x− t) + t2

2 −
T 2

8 if T − t < x < T + t,

(3.22)

where F (x) satisfies:

F (T ) = F (0)− T 2

8
, (3.23)

dF (x)

dx
=
f(x)

2
. (3.24)

For less general oscillons, we can demand that the solutions approach zero smoothly

at the left border γL i.e. the partial solution (3.22) for −t < x < t gives

∂xϕ(t, x)|γL = 0, (3.25)
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Figure 36. Borders γL and γR of the oscillon and the supports [0,∆ + T/2] and [∆ + T/2, T ]

of f(x).

where points belonging to the curve γL have coordinates related by x = x(t). Expressing

condition (3.25) in light-cone coordinates

y± = x± t (3.26)

we get (
1 +

dy+

dy−

)(
1− 2

dy+

dy−

)
∂+ϕ(y+, y−)

∣∣∣
γL

= 0, (3.27)

where we have used the fact that (y+, y−) are related and dy+
dy−

= −1
2
dx
dt . Since γL is a

time-like curve
∣∣∣dy+dy−

∣∣∣ < 1
2 and so condition (3.27) is equivalent to ∂+ϕ(y+, y−)|γL = 0.

This leads to F ′(y+) = −1
4(y+− y−) for the first expression in (3.22). Taking into account

expression (3.24) we finally get

f(y+) = −1

2
(y+ − y−), (3.28)

where y− = g(y+) is a function of y+ representing the left border of the oscillon (worldline

γL). Similarly, demanding that ∂xϕ(t, x)|γR = 0 at the right border of the oscillon γR we

get a condition which, when written in terms of y−, takes the form ∂−ϕ(y+, y−)|γR = 0.

Then, from the last expression in (3.22) we get

f(y−) = −1

2
(y+ − y−). (3.29)

Here y+ = h(y−) is a function of y− representing the right border of the oscillon (worldline

γR). Note that for points on γL we have 0 ≤ y+ ≤ T/2 + ∆ and for points on γR we have

T/2 + ∆ ≤ y− ≤ T . Thus, (3.28) determines f(x) for 0 ≤ x ≤ T/2 + ∆ and (3.29) for

T/2 + ∆ ≤ x ≤ T .

Using this formalism, all oscillon solutions limited by a pair of identical time-like curves

can be constructed by plugging the a priori given trajectories of the border in (3.28)

and (3.29). The trajectories should have a form that one can to describe them explicitly

as y− = g(y+) for γL and y+ = h(y−) for γR. The only remaining problem is to integrate

the resulting expressions to get F (x) — and consequently ϕ(t, x).
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3.5.2 Example

The first interesting example we have found is an oscillon with borders having a constant

acceleration a in the instantaneous rest frame of the border. In what follows we will use

units in which c = 1. In the reference frame of the oscillon, in which the border has

acceleration γ−3a, the trajectory describing the motion of such borders takes the form

x(t) = x0 +
1

a

[√
1 + (at+ γ0v0)2 − γ0

]
, (3.30)

where v0 is the velocity of the border at t = 0, γ0 = (1−v2
0)−1/2 and x0 = 0 (x0 = T ) for γL

(γR). Note that if the oscillon has no extra motion then its rest frame is just the laboratory

reference frame. Using the light-cone coordinates y± = x± t we put the expression (3.30)

into the form y− = g(y+), where x0 = 0, and y+ = h(y−) and where x0 = T . Then

plugging these expressions into (3.28) and (3.29) we get our explicit expression for f(x):

f(x) =

−
x
2

(
1 + B

x+A

)
if 0 ≤ x ≤ T

2 + ∆

x−T
2

(
1 + A

x−T+B

)
if T

2 + ∆ ≤ x ≤ T,
(3.31)

where

A =
γ0(1 + v0)

a
, (3.32)

B =
γ0(1− v0)

a
. (3.33)

Once we know f(x), it is possible to integrate it and get partial solutions ϕk(t, x) with

k ∈ {C,L1, L2, L3, R1, R2, R3}, each one valid in a specific subset of the region between γL
and γR. Such solutions are given by:

ϕC(t, x;A,B) = −AB
4

+
1

4
(x+ t+B − T )(x− t+A) + t

(
t− T

2

)
− AB

4
ln

∣∣∣∣ 1

AB
(x+ t+B − T )(x− t+A)

∣∣∣∣,
(3.34)

ϕL1(t, x;A,B) =
t

2
(t− x−B) +

AB

4
ln

∣∣∣∣x+ t+A

x− t+A

∣∣∣∣, (3.35)

ϕL2(t, x;A,B) =
AB

4
− 1

4
(x+ t+A)(x− t+B)

+
AB

4
ln

∣∣∣∣ 1

AB
(x+ t+A)(x− t+B)

∣∣∣∣, (3.36)

ϕL3(t, x;A,B) =
1

2

(
t− T

2

)
(x+ t+A)− AB

4
ln

∣∣∣∣x+ t+B − T
x− t+B

∣∣∣∣ (3.37)
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where AB = a−2. Similarly to the oscillons previously presented and discussed we can

relate the solutions ϕRi(t, x) to the solutions ϕLi(t, x) through the transformations:

x→ T − x, (3.38)

v0 → −v0, (3.39)

a→ −a. (3.40)

Note that the last two transformations are equivalent to the transformations:

A→ −B, (3.41)

B → −A. (3.42)

Thus we have

ϕRi(t, x;A,B) = ϕLi(t, T − x;−B,−A). (3.43)

Once again we can write the complete solution with the help of the step functions.

We have

ΠC(t, x; a, v0) = θ

(
x+ t− T

2
−∆(a, v0)

)
θ(x− t)×

× θ
(
−x+ t+

T

2
+ ∆(a, v0)

)
θ(−x− t+ T ), (3.44)

ΠL1(t, x; a, v0) = θ(x− t)θ
(
−x− t+

T

2
+ ∆(a, v0)

)
, (3.45)

ΠL2(t, x; a, v0) = θ

(
x− 1

a

(√
1 + (at+ γ0v0)2 − γ0

))
×

× θ(−x+ t)θ

(
−x− t+

T

2
+ ∆(a, v0)

)
, (3.46)

ΠL3(t, x; a, v0) = θ(−x+ t)θ

(
x+ t− T

2
−∆(a, v0)

)
, (3.47)

ΠRi(t, x; a, v0) = ΠLi(t, T − x;−a,−v0), (3.48)

where ∆ = x(T/2)− x0 and so is given by

∆(a, v0) =
1

a

√1 +

(
a
T

2
+ γ0v0

)2

− γ0

. (3.49)

The periodicity of the solution can now be taken into account by involving the gener-

alized forms of the functions τ(z) and σ(z) for an arbitrary period T :

τ(z) =
T

π
arcsin

∣∣∣sin(πz
T

)∣∣∣ (3.50)

σ(z) = sgn

(
sin

(
2πz

T

))
. (3.51)
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Thus, the complete solution has the form:

ϕ(t, x; a, v0) =
∑
k

σ(t)Πk(τ(t), x; a, v0)ϕk(τ(t), x;A(a, v0), B(a, v0)) (3.52)

where A(a, v0) and B(a, v0) are given by (3.32) and (3.33).

Comparing the generalized exact oscilons presented in figure 37 with numerical solu-

tions presented in figure 17 and figure 13 we conclude that there is certain similarity between

outgoing oscillon-like object produced in the scattering process and the exact oscillons with

non-uniformly moving endpoints. This suggests that the process of the scattering of two

exact oscillons can lead to the production of field configurations corresponding to perturbed

generalized oscillons with non-uniformly moving endpoints. In some cases these perturba-

tions can be almost zero and when this happens one can call the outgoing oscillon-like field

configurations quasi-oscillons with non uniformly moving endpoints. The transformation

of oscillons from one class into the oscillons belonging to another class during the scattering

process is an open problem which requires further investigations.

3.6 Fractal nature of the radiation

In this section we discuss the interesting possibility that the radiation generated in the

process of the scattering of oscillons has a fractal-like nature. There are two facts that

suggest this. Firstly, many numerical simulations show that the radiation of the signum-

Gordon model is dominated by oscillating structures that look like travelling oscillons.

Such oscillon-like structures are generated as radiation during the scattering of oscillon-

like objects. Alternatively, they are emitted from strongly perturbed oscillons. In fact,

a production of small-size oscillons during the evolution of perturbed oscillons has been

conjectured in ref. [24]. Our work presented in this paper and also in [37] suggests that this

conjecture is true. Secondly, the oscillon-like field configurations exist at arbitrarily small

scales. Although the numerical approach does not allow for the arbitrary good resolution

we know that the existence of exact oscillons with any size is guaranteed by the dilation

symmetry of the signum-Gordon equation (1.2). This symmetry implies that for any real

number λ > 0 and any solution of the signum-Gordon equation φ(1)(t, x) the function

φ(λ)(t, x) := λ2φ(1)

(
t

λ
,
x

λ

)
(3.53)

is also a solution of (1.2). Looking at energy of solutions we see that it scales according to

E[φ(λ)] = λ3E[φ(1)] (3.54)

where

E[φ(1)] :=

∫ ∞
−∞

dx

[
1

2
(∂tφ(1))

2 +
1

2
(∂xφ(1))

2 +
∣∣φ(1)

∣∣] . (3.55)

Taking for φ(1)(t, x) the generalized exact oscillon on a segment x ∈ [0, 1] with E[φ(1)] = 1
24

and applying (3.53) we obtain exact oscillons with arbitrarily small sizes.

Looking, for example, at figure 27a and 27c we see that the number of collisions between

oscillon-like objects that form radiation grows significantly with time. Each such a collision
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(f) V = 0.8, a = 5.

Figure 37. Generalized exact oscillon with uniformly accelerated border for different values of the

boost velocity V and acceleration a.

process is a source of new smaller oscillon-like objects. Certainly, we do not expect that

oscillon-like objects seen in our numerical simulations are exact oscillons. On the other

hand, many of them are surprisingly regular and sufficiently stable. They all possess

characteristics necessary to be called quasi-oscillons. Less regular oscillon-like structures

“decay” emitting smaller and more regular oscillating objects. The emission of smaller

oscillons is a physical mechanism allowing strongly perturbed oscillons to get rid of a

surplus of their energy. Summarizing, we can say that interaction between individual

oscillon-like objects (constituents of radiation) produces more and more such objects during

their evolution.

Finally, we note that the relation (3.53) is quite general and it allows us to take as a

solution φ(1)(t, x) not only a single oscillon but the whole diagram. Certainly, there is no

qualitative difference between scattering processes involving two oscillons with λ = 1 and a

scattering of smaller oscillons with λ� 1. In principle, the whole diagram (like figure 27a
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Figure 38. Scattering process of two oscillons: (b) blow-up of the rectangular region in (a); (c)

blow-up of the rectangular region in (b).

and 27c) could repeat itself at any length scales. Such repetitions of structures involving

oscillons at all length scales in the spacetime diagram suggest a possible fractal-like nature

of the radiation. This statement still has a status of a conjecture and it certainly deserves

further investigation. Below we present only some preliminary results of a numerical study

which reinforces this idea.

In order to check our hypothesis we have perform high resolution simulations of the

scattering processes and then looked at the spacetime diagrams representing the result.

In figure 38a we plot the two main outcoming oscillons and the radiation in the central

region between these oscillons. Looking in more detail at the region inside the rectangle

in figure 38a which we replot in figure 38b we see that there exist a huge number of

smaller oscillons invisible in the previous picture. Choosing another rectangular region of

figure 38b which we replot in figure 38c we see that, again, it contains many oscillating

structures. This result supports our idea of the fractal-like nature of the radiation of the

signum-Gordon model.

4 Conclusions

In this paper we have reported our results on the scattering of compact oscillons in the

signum-Gordon model in one spatial dimension. We have looked at two qualitatively dis-

tinct initial configurations — symmetric and anti-symmetric one. In both cases the initial

configurations consisted of exact compact solutions. Due to the compactness of oscillons
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there was no problem with their overlapping at t = 0. In fact we also evolved oscillons

whose supports touched each other but did not overlap at t = 0. A time dependence of the

shape of oscillons was responsible for the existence of an additional scattering parameter

which we called the phase of the oscillon. This phase was a important quantity and the

properties of the scattering process depended very strongly on it.

Looking at the results of the scattering of oscillons we have found that there was

a significant qualitative difference between symmetric and anti-symmetric initial config-

urations. The emission of radiation for anti-symmetric configurations was restricted to

situations where outgoing oscillons had irregular borders. Such irregular borders act as

sources of radiation which has the form of showers of smaller oscillons sent out from the

borders. The central region of the Minkowski diagrams just after emergence of outgoing

oscillons was free of radiation. On the other hand, symmetric configurations produced

much more radiation than the anti-symmetric ones. In this case the radiation was emitted

mainly in the central part of the Minkowski diagram where structures similar to exact

shock wave solutions of the signum-Gordon model were formed. These waves were not

stable and, eventually, they decaysed into cascades of oscillons. We have spotted that

there were special values of the phases of colliding oscillons for which there was almost no

radiation. We suspect that this fact was associated with the absence of the shockwave-like

structures between outgoing oscillons. The relation between the collapse (decay) of the

shockwave-like solution and the appearance of a cascade of oscillons has been found to be

a very interesting subject and it requires more thorough analysis than we could carry out

in the present paper. We hope to report more on this subject in near future.

Comparing incoming oscillons with outgoing ones we have spotted that, in general,

the later ones belong to a wider class of oscillons. This class is characterized by a non-

uniform motion of the border of the oscillon in its own rest frame. In our numerical

study many of the outgoing oscillons had borders described by a segment of the worldline

curve whereas for incoming oscillons these borders were segments of straight lines. Thus

the collision transformed the compact oscillons of a very special class into more general

compact oscillons.

We have also looked at the radiation of the signum-Gordon model and have found

that it possessed what looked like a self-similar structure. Since the model has the scalling

symmetry one can show that an exact compact oscillon can have arbitrarily small support

and energy. Our numerical studies have shown that small quasi-oscillons were emitted from

perturbed oscillons or appeared in the scattering processes of two oscillons-like structures.

Since, in general, they were also perturbed the process of emission repeated itself (in

principle infinitely many times). This mechanism of emission of oscillons from perturbed

objects and the fact that oscillons existed at arbitrarily small scales suggests to us the

emergence of dynamical fractals i.e. of the fractal structures in the spacetime diagrams.

Final remarks.

1. Our investigations of the scattering processes have been based primarily on the nu-

merical integration of the signum-Gordon equation. The complexity of this process

excludes any analytical approach to this problem. We have made many attempts to
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calculate analytically the evolution of the initial profile containing two exact oscil-

lons. Unfortunately, even before the emergence of main oscillons we have encountered

technical difficulties in the construction of partial solutions. Moreover, the number

and localization of any partial solution depends on the initial data. In contradiction

to the standard analytical non-linear models the perturbative approach cannot be

used in the case of signum-Gordon model because of the non analytical character

of the potential V = |φ| at φ = 0. Hence, the small perturbations of the vacuum

solutions are always nonlinear.

2. One can get some analytical results considering the decay of shock waves in a cascade

of oscillons. This subject has been recently studied and the results have been reported

in [40].

3. Of course, we can also think of the comparisons of our results with those obtained in

other models, such as the Sine-Gordon model of λφ4 model. However, these models

are basically very different as they do not possess compact solitons. Of course, their

solitons are exponentially localised and some studies of such solitons have also been

performed in much detail. The most comparable studies involved looking at the

properties of Sine-Gordon kinks on scattering on various obstructions (potential wells

or barriers) and the effects of the obstructions on the properties of the basic solitonic

structures. The obstructions generated the emission of kink-antikink pairs, either in

the form of breathers or as invidual pairs. And for perturbed models, which still had

solitonic solutions, one had emission of long lived breathers (basically oscillons) or

annihilations. An interested reader can look at papers [41–44] and references therein.

A Comments on the numerics

The numeric results presented in this paper have been generated by the use of the standard

4th-order Runge-Kutta method, integrating the system via the discrete timesteps ∆t. The

second-order equation in time has been decomposed into a coupled system of two first-order

equations

φ(x, ti) = φ(x, ti−1) + ∆t ψ(x, ti−1) (A.1)

ψ(x, ti) = ψ(x, ti−1) + ∆t

(
d2φ(x, ti−1)

dx2
− sign

(
φ(x, ti−1)

))
, (A.2)

where ti = n∆t (n = 1, 2, · · · ) and ψ(x, t) = ∂φ
∂t . The spatial dimension was made discrete

over N sites of width ∆x, so it had width L = N ∆x.

In most of our simulations we have used a spatial resolution of N = 215 (for L = 6

this corresponds to ∆x ' 1.8 × 10−4). There were two exceptions to this. The first one

corresponded to the case of the fractal, which in order to generate and capture the small

scale details we had to us N = 220 (in this case, the simulation space length was L = 12,

leading to ∆x ' 1.14× 10−5). The second exception corresponded to the generation of the

diagrams of describing the percentage of energy lost to radiation (e.g. figures 24, 30) and
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the balance of energy after the interaction (figures 34a and 34b). Since the value of each

pixel of these images is computed based on one entire simulation, in order to speed up the

computations (in the case of figure 32, we have used 3502 = 122500 simulations) we had

performed lower resolution simulations, with N = 212.

The timestep value, in all our simulations, was given by the relation a = ∆t
∆x and we

have used in all our simulations a = 0.1.

Finally, we would like to point out to the reader the need of some caution while dealing

numerically with the very small scale structures appearing within the fractals. This is

further explained in section B.

B Caveats

We would like to add a few comments on the difficulties associated with the numerical

integration of the signum-Gordon equation. The main difficulty has origin in the fact that

the radiation contains perturbed oscillons of arbitrarily small sizes. Certainly, oscillons

smaller than the size of numerical domain cannot be seen in the simulation. An obvious

solution involves increasing the number of points in the grid. We have run many simulations

changing the number of points and comparing the results. Such tests have shown that very

small oscillons are very sensitive to the number of points. In some cases, changing the

number of points by a factor of two resulted in the appearance or even disappearance of

some tiny structures whereas bigger structures remained stable under this procedure. A

similar problem was spotted in simulations of a special type of self-similar solutions with

an infinite number of zeros on a finite segment. In that case the numerical solution and the

analytical one diverged after a very short time (the numerical solution was very unstable),

and the increase of the simulation resolution resulted in only very small in stability. On the

other hand, our numerical simulations of the exact oscillons did not lead to visible instability

within intervals of time corresponding to many oscillon periods. Also, the simulations of

exact shock waves were very consistent with the analytical solutions. Thus, in the regions

dominated by radiation (or the special self-similar solutions) the solutions of the model

were found to be sensitive to the initial conditions. In this sense, the signum-Gordon

model shares some properties with chaotic systems. This property is, for instance, one

of the main difficulties in generating of high resolution fractals. However, although some

results were quite sensitive to the details of the details of the numerical procedures, most

of them were not and we strongly believe in their validity.
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[15] T. Románczukiewicz and Y.M. Shnir, Some Recent Developments on Kink Collisions and

Related Topics, in A dynamical perspective on the φ4 model, Nonlinear Systems and

Complexity Series, volume 26, P. Kevrekidis and J. Cuevas-Maraver eds., Springer, Cham

Switzerland (2019) [arXiv:1809.04896] [INSPIRE].

[16] D. Bazeia, E. Belendryasova and V.A. Gani, Scattering of kinks in a non-polynomial model,

J. Phys. Conf. Ser. 934 (2017) 012032 [arXiv:1711.07788] [INSPIRE].

– 46 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/search?p=find+J+%22PismaZh.Eksp.Teor.Fiz.,24,15%22
https://doi.org/10.1103/PhysRevD.49.2978
https://arxiv.org/abs/hep-ph/9308279
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D49,2978%22
https://doi.org/10.1142/S0218271807009954
https://arxiv.org/abs/hep-th/0602187
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,D16,219%22
https://doi.org/10.1103/PhysRevD.100.116005
https://arxiv.org/abs/1906.04070
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.04070
https://doi.org/10.1103/PhysRevD.85.085033
https://doi.org/10.1103/PhysRevD.85.085033
https://arxiv.org/abs/1201.1934
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D85,085033%22
https://doi.org/10.1103/PhysRevD.74.124003
https://arxiv.org/abs/hep-th/0609023
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D74,124003%22
https://doi.org/10.1103/PhysRevD.78.025003
https://arxiv.org/abs/0802.3525
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D78,025003%22
https://doi.org/10.1103/PhysRevLett.105.081601
https://arxiv.org/abs/1002.4484
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,105,081601%22
https://doi.org/10.1007/JHEP01(2018)101
https://doi.org/10.1007/JHEP01(2018)101
https://arxiv.org/abs/1706.09234
https://inspirehep.net/search?p=find+J+%22JHEP,1801,101%22
https://arxiv.org/abs/1806.04412
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.04412
https://arxiv.org/abs/1907.07145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.07145
https://doi.org/10.1103/PhysRevD.98.123512
https://doi.org/10.1103/PhysRevD.98.123512
https://arxiv.org/abs/1809.07724
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D98,123512%22
https://doi.org/10.1007/JHEP03(2019)131
https://arxiv.org/abs/1812.04007
https://inspirehep.net/search?p=find+J+%22JHEP,1903,131%22
https://arxiv.org/abs/1809.04896
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.04896
https://doi.org/10.1088/1742-6596/934/1/012032
https://arxiv.org/abs/1711.07788
https://inspirehep.net/search?p=find+J+%22J.Phys.Conf.Ser.,934,012032%22


J
H
E
P
0
1
(
2
0
2
0
)
0
0
6

[17] A. Alonso-Izquierdo, Kink dynamics in the MSTB model, Phys. Scripta 94 (2019) 085302

[arXiv:1804.05605] [INSPIRE].

[18] M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, Method for solving the Sine-Gordon

equation, Phys. Rev. Lett. 30 (1973) 1262 [INSPIRE].

[19] M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, Nonlinear-Evolution Equations of

Physical Significance, Phys. Rev. Lett. 31 (1973) 125 [INSPIRE].

[20] L.A. Ferreira and W.J. Zakrzewski, A Simple formula for the conserved charges of soliton

theories, JHEP 09 (2007) 015 [arXiv:0707.1603] [INSPIRE].

[21] D.I. Olive, N. Turok and J.W.R. Underwood, Affine Toda solitons and vertex operators,

Nucl. Phys. B 409 (1993) 509 [hep-th/9305160] [INSPIRE].

[22] M. Tajiri and Y. Watanabe, Breather solutions to the focusing nonlinear Schrodinger

equation, Phys. Rev. E 57 (1998) 3510.

[23] D.J. Kedziora, A. Ankiewicz and N. Akhmediev, Second-order nonlinear Schrödinger

equation breather solutions in the degenerate and rogue wave limits, Phys. Rev. E 85 (2012)

066601.
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