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Abstract

We continue research into a well‐studied family of

problems that ask whether the vertices of a given

graph can be partitioned into sets A and B, where A

is an independent set and B induces a graph from

some specified graph class  . We consider the case

where  is the class of k‐degenerate graphs. This

problem is known to be polynomial‐time solvable if

k = 0 (recognition of bipartite graphs), but NP‐
complete if k = 1 (near‐bipartite graphs) even for

graphs of maximum degree 4. Yang and Yuan

showed that the k = 1 case is polynomial‐time sol-

vable for graphs of maximum degree 3. This also

follows from a result of Catlin and Lai. We study the

general ≥k 1 case for n‐vertex graphs of maximum

degree k + 2. We show how to find A and B in O n( )

time for k = 1, and in O n( )2 time for ≥k 2. Together,

these results provide an algorithmic version of a

result of Catlin and also provide an algorithmic

version of a generalization of Brook's Theorem,

proved by Borodin et al. and Matamala. The results

also enable us to solve an open problem of Feghali

et al. For a given graph G and positive integer ℓ, the
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vertex colouring reconfiguration graph of G has as

its vertex set the set of ℓ‐colourings of G and con-

tains an edge between each pair of colourings that

differ on exactly on vertex. We complete the com-

plexity classification of the problem of finding a path

in the reconfiguration graph between two given ℓ‐
colourings of a given graph of maximum degree k.
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1 | INTRODUCTION

The COLOURING problem asks if a given graph is k‐colourable for some given integer k; that is, if
the vertices of the graph can be coloured with at most k colours, such that no two adjacent
vertices are coloured alike. This is a central problem in graph theory and well known to be NP‐
complete even if k = 3 [35]. A stronger property of a graph is that of being k( − 1)‐degenerate,
which is the case when every induced subgraph has a vertex of degree at most k − 1. Every
k( − 1)‐degenerate graph is k‐colourable, but the converse is not true.

For an arbitrarily large integer k, there exist k‐degenerate graphs that are not k( − 1)‐
degenerate but that can be decomposed into a p‐degenerate induced subgraph and a
q‐degenerate induced subgraph for two small integers p and q. For example, if we take
complete bipartite graphs of degree k, then we can let p q= = 0. If a k‐degenerate graph is
decomposable in this way, it is not only k( + 1)‐colourable but even p q( + + 2)‐colourable.
This leads to the well‐studied problem of identifying graphs whose vertex sets can be
partitioned into two sets A and B such that A and B induce a p‐degenerate graph and a
q‐degenerate graph, respectively; see, for instance, [9,10,32,39,45,46]. If a graph has such a
partition with ℓp q+ = − 2, then we can say that the graph is “robustly” ℓ‐colourable.
For the sake of example: every planar graph is 5‐degenerate, which implies that it is
6‐colourable, but we can improve this to 5‐colourable by applying the result of Thomassen
[46], which states that every planar graph can be decomposed into a 0‐degenerate graph and
a 3‐degenerate graph, or by applying another result of Thomassen [45], which states that
every planar graph can be decomposed into a 1‐degenerate graph and a 2‐degenerate graph.
So being 5‐colourable is a “robust” property of planar graphs (in contrast to being
4‐colourable; there is no p and q with ≤p q+ 2 such that we can guarantee a decomposition
of a planar graph into a p‐degenerate graph and a q‐degenerate graph; see [29] for
p q= 0, = 2 and [20] for p q= = 1).

Research Question. We will apply the notion of “robust” k‐colourability to a central
problem in the area of graph reconfiguration. The k‐colouring reconfiguration graph R G( )k has
as vertices the k‐colourings of G and two k‐colourings are adjacent if and only if they differ on
exactly one vertex ofG. The problem of finding a path between two given k‐colourings in R G( )k

is PSPACE‐hard even if k = 4 and G is planar bipartite [7]. In its complexity classification for
graphs of maximum degree Δ [24] there is one open case k( , Δ) left. As argued in [24], to solve
this case we must answer the following question:
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Is it possible to find in polynomial time a partition A B( , ) of the vertex set of a graph G of
maximum degree k, such that A is 0‐degenerate and B induces a k( − 2)‐degenerate graph?

1.1 | Known existence results

We note that in the above question we must find a partition. This is a different question than
deciding whether such a partition exists. For the latter question, a number of results exist in the
literature. We survey these results, as they are very insightful for our question, although they do
not solve it.

We first note that if we ask whether a graph has a partition into a 0‐degenerate graph and a
q‐degenerate graph, then we can see q as being a distance measure to control how “far” the
graph is from being bipartite. As every 0‐degenerate graph is an independent set, checking if
the distance is 0 is the same as checking bipartiteness, which can be solved in linear time.
Graphs within distance 1 from being bipartite are said to be near‐bipartite. Such a graph has a
near‐bipartite decomposition, that is, a partition A B( , ) of its vertex set, where A is an in-
dependent set and B induces a 1‐degenerate graph, or equivalently, a forest. Deciding whether a
graph is near‐bipartite is NP‐complete [14].

Yang and Yuan [49] proved that the problem remains NP‐complete even for graphs of
maximum degree 4, but becomes polynomial‐time solvable for graphs of maximum degree 3.
To prove the latter result, they showed that every connected graph of maximum degree at most
3 is near‐bipartite except K4 (we let Kk denote the complete graph on k vertices). This char-
acterization was also shown by Catlin and Lai, who proved that the independent set A may
even be assumed to be of maximum size.

Theorem 1 (Catlin and Lai [18]). The vertex set of every connected graph of maximum
degree 3 that is not isomorphic to K4 can be partitioned into two sets A and B, where A is a
maximum size independent set and B is a forest.

Theorem 1 generalizes the k = 3 case of the following earlier result of Catlin.

Theorem 2 (Catlin [17]). For every integer ≥k 3, the vertex set of every connected graph of
maximum degree k that is not isomorphic to Kk+1 can be partitioned into two sets A and B,
where A is a maximum size independent set and B induces a graph that does not contain
a Kk.

Matamala generalized both Theorems 1 and 2.

Theorem 3 (Matamala [39]). For every three integers ≥k 3 and ≥p q, 0 with
p q k+ = − 2, the vertex set of every connected graph of maximum degree k that is not
isomorphic to Kk+1 can be partitioned into two sets A and B, where A induces a
p‐degenerate subgraph of maximum size and B induces a q‐degenerate subgraph.

Before Theorem 3 appeared, Borodin, Kostochka and Toft proved a more general result,
except that the property of the first set having maximum size is not included. We present a
simpler version of their result and refer to [11] for full details.
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Theorem 4 (Borodin et al. [11]). For all integers ≥ ≥k s3, 2, and ≥p p, …, 0s1 such that
⋯p p k s+ + = −s1 , the vertex set of every connected graph of maximum degree k that is

not isomorphic to Kk+1 can be partitioned into sets A A, …, s1 , where Ai induces a
pi‐degenerate subgraph for ∈i s{1, …, }.

Brooks' Theorem [15] states that every graph G with maximum degree ≥k 2 is k‐colourable
unless G is a complete graph or an odd cycle. Recall that every k( − 1)‐degenerate graph is
k‐colourable. Hence Theorems 3 and 4, together with the trivial case k = 2, generalize Brooks'
Theorem.

By choosing p = 0 in Theorem 3 we obtain the following special case, which implies that
every connected graph of maximum degree k except Kk+1 is within distance k − 2 of being
bipartite.

Theorem 5. For every integer ≥k 3, the vertex set of every connected graph of maximum
degree k that is not isomorphic to Kk+1 can be partitioned into two sets A and B, where A is
a maximum size independent set and B induces a k( − 2)‐degenerate subgraph.

Theorem 5 only guarantees that the existence of a partition A B( , ) can be tested in poly-
nomial time. It does not tell us how to find such a partition. Obtaining an algorithmic version of
Theorem 5 corresponds to our research question. We cannot hope to keep the condition that A
is a maximum size independent set, as this would require solving the NP‐complete problem
INDEPENDENT SET for connected cubic graphs [26]. Before giving our results, we first survey some
other algorithmic results.

1.2 | Known algorithmic results

1.2.1 | Special graph classes

As discussed, Yang and Yuan [49] proved that recognizing near‐bipartite graphs is
polynomial‐time solvable for graphs of maximum degree k when ≤k 3 and NP‐complete
when ≥k 4. They also proved that recognizing near‐bipartite graphs of diameter k is
polynomial‐time solvable when ≤k 2 and NP‐complete when ≥k 4. Recently, we solved
their missing case by proving that recognizing near‐bipartite graphs of diameter 3 is NP‐
complete [4]. Brandstädt et al. [12] proved that recognizing near‐bipartite perfect graphs is
NP‐complete. We also proved that recognizing near‐bipartite graphs is NP‐complete for line
graphs of maximum degree 4 [5].

Borodin and Glebov [10] showed that every planar graph of girth at least 5 is near‐bipartite
(see [32] for an extension of this result). Dross et al. [22] asked whether every triangle‐free
planar graph is near‐bipartite. In fact, they proved that if this is not the case, then the problem
of recognizing near‐bipartite graphs is NP‐complete for triangle‐free planar graphs. They
presented a construction that can be easily modified to prove that the problem of recognizing
near‐bipartite graphs is NP‐complete for planar graphs.1

1
TheNP‐hardness reduction in [22] uses a minimal triangle‐free planar graphG that is not near‐bipartite, and it is not known whether such graphs exist. If we

remove the triangle‐free condition, we can replace G by K4 .
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1.2.2 | Minimum independent feedback vertex sets

The problem of finding a decomposition into an independent set A and a forest B where the
size of A is minimum has also been studied. In this context A is said to be an independent
feedback vertex set. Computing a minimum independent feedback vertex set has been shown to
be NP‐hard even for planar bipartite graphs of maximum degree 4, but linear‐time solvable for
graphs of bounded treewidth, chordal graphs and P4‐free graphs [44] (it was already known that
near‐bipartite P4‐free graphs can be recognized in linear time [12]). Recently, we extended the
polynomial‐time result from [44] for P4‐free graphs to P5‐free graphs [5]. We also gave a
polynomial‐time algorithm for computing a minimum independent feedback vertex set of a
graph of diameter 2 [4].

The problem of computing small independent feedback vertex sets has also been studied
from the perspective of parameterized complexity. In this setting, the size of A is taken as the
parameter. Misra et al. [42] gave the first FPT algorithm for this problem, which was later
improved by Agrawal et al. [1].

1.2.3 | Problem variants

The INDUCED FOREST 2‐PARTITION problem is closely related to the problem of recognizing
near‐bipartite graphs. It asks whether the vertex set of a given graph can be decomposed
into two disjoint sets A and B, where both A and B induce forests. Wu, Yuan and Zhao [48]
proved that INDUCED FOREST 2‐PARTITION is NP‐complete for graphs of maximum degree 5
and polynomial‐time solvable for graphs of maximum degree at most 4. The problem variant
where the maximum degree of one of the two induced forests is bounded by some constant
has also been studied, in particular from a structural point of view (see, for instance, [22]).

A similar problem, known as DOMINATING INDUCED MATCHING, asks whether the vertex set of a
graph can be partitioned into an independent set and an induced matching (a set of isolated
edges) and was shown by Grinstead et al. [27] to be NP‐complete. Brandstädt et al. [14] proved
NP‐completeness of another closely related problem: deciding whether the vertex set of a given
graph can be decomposed into an independent set and a tree. As trees, induced matchings and
forests are 2‐colourable, these two problems and that of recognizing near‐bipartite graphs can
be seen as restricted variants of the 3‐COLOURING problem. This problem is well known to be
NP‐complete [36]. However, the NP‐hardness result of Brandstädt et al. [12] for perfect graphs
shows that there are hereditary graph classes on which the complexities of recognizing near‐
bipartite graphs and 3‐COLOURING do not coincide, as 3‐COLOURING (or even k‐COLOURING with
k part of the input [28]) is polynomial‐time solvable for perfect graphs.

A 3‐colouring of a graph is acyclic if every two colour classes induce a forest. We observe
that every graph with an acyclic 3‐colouring is near‐bipartite, but the reverse is not necessarily
true. Kostochka [33] proved that the corresponding decision problem ACYCLIC 3‐COLOURING is
NP‐complete. Later, Ochem [43] showed that ACYCLIc 3‐COLOURING is NP‐complete even for
planar bipartite graphs of maximum degree 4. As every bipartite graph is near‐bipartite, this
result implies that there are hereditary graph classes on which the complexities of recognizing
near‐bipartite graphs and ACYCLIC 3‐COLOURING do not coincide.
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1.2.4 | Generalizations

For a fixed graph class  (i.e.  is not part of the input), Brandstädt et al. [14] considered the
following more general problem:

STABLE()
Instance: A graph G= (V, E)
Question: Can V be decomposed into two disjoint sets A and B, where A is an independent

set and B induces a graph in ?

Note that STABLE() is equivalent to 3‐COLOURING if we choose  to be the class of bipartite
graphs. If we choose  to be the class of k( − 2)‐degenerate graphs, then we obtain the decision
version of the problem we consider in this article.

If  is the class of complete graphs, then STABLE() is the problem of recognizing split
graphs, and this problem can be solved in polynomial time. Brandstädt et al. [14] proved that
STABLE() is NP‐complete when  is the class of trees or the class of trivially perfect graphs, and
polynomial‐time solvable when  is the class of co‐bipartite graphs, the class of split graphs, or
the class of threshold graphs. Moreover, STABLE() has also been shown to be NP‐complete
when  is the class of triangle‐free graphs [16], the class of P4‐free graphs [30], the class of
graphs of maximum degree 1 [38], or, more generally, a class of graphs that has any additive
hereditary property not equal to or divisible by the property of being edgeless [34], whereas it is
also polynomial‐time solvable if  is the class of complete bipartite graphs [23] (see [13] for a
faster algorithm).

The STABLE() problem has also been studied for hereditary graph classes  with either the
property that for all constants c > 0, for n sufficiently large, the number of labelled graphs in
the class with n vertices is at most ncn, or with the property that there exist constants c c, > 01 2

such that, for n sufficiently large, the number of labelled graphs in the class with n vertices is at
least nc n1 and at most nc n2 . (Such classes are said to have, respectively, subfactorial or factorial
speed [21,37].)

By relaxing the condition on the set A being independent we obtain the more general
problem of ( , )1 2  ‐RECOGNITION, which asks whether the vertex set of a graph can be decom-
posed into disjoint sets A and B, such that A induces a graph in 1 and B induces a graph in 2 .
For instance, if 1 is the class of cliques and 2 is the class of disjoint unions of cliques, then the
( , )1 2  ‐RECOGNITION problem is equivalent to recognizing unipolar graphs (see [40] for a
quadratic algorithm). Generalizing STABLE() can also lead to a family of transversal problems,
such as FEEDBACK VERTEX SET. However, such generalizations are beyond the scope of our article.

1.3 | Our results

In Section 2, we consider near‐bipartite decompositions of subcubic graphs (i.e. graphs of
maximum degree at most 3). Recall that by Theorem 1 the only connected subcubic graph that
is not near‐bipartite is K4 (see also [49]) and so near‐bipartite subcubic graphs can be re-
cognized in polynomial time. As Theorem 1 is concerned with partitions where, additionally,
the independent set of the partition is of maximum size its proof is not algorithmic since
INDEPENDENT SET for cubic graphs is NP‐complete [26]. Neither does the proof of [49] yield a
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linear‐time algorithm. We will give an O n( )‐time algorithm that finds a near‐bipartite de-
composition of any subcubic graph with no connected component isomorphic to K4.

We say a partition A B( , ) of the vertex set of a graph is a k‐degenerate decomposition if A is
independent and B induces a k( − 2)‐degenerate graph, so Section 2 is concerned with
3‐degenerate decompositions of graphs of maximum degree 3. In Section 3, we consider, more
generally, k‐degenerate decompositions of graphs of maximum degree at most k for any ≥k 3.
By Theorem 5, the only connected graph with maximum degree k that does not have a
k‐degenerate decomposition is Kk+1, but Theorem 5 does not imply a polynomial‐time algo-
rithm for finding such a decomposition. We give an O n( )2 ‐time algorithm to find a decom-
position for any ≥k 3 (in contrast with theO n( )‐time algorithm in Section 2 for the special case
when k = 3).

Our results in Sections 2 and 3 provide an algorithmic version of Theorem 5 and, as
Theorem 5 generalizes Theorem 2, they also imply an algorithmic version of Theorem 2.

In Section 4 we prove that the problem of deciding whether a graph of maximum degree
k2 − 2 has a k‐degenerate decomposition is NP‐complete. We do this by adapting the proof of
the aforementioned result of Yang and Yuan [49], which states that recognizing near‐bipartite
graphs of maximum degree 4 is NP‐complete (the k = 3 case). In Section 5 we apply our
algorithms from Sections 2 and 3 to completely settle the complexity classification of the graph
colouring reconfiguration problem considered in [24]. Finally, in Section 6, we give directions
for future work.

2 | A LINEAR TIME ALGORITHM FOR GRAPHS OF
MAXIMUM DEGREE AT MOST 3

To prove the result of this section, we need the following terminology. The claw is the graph
with vertices c v v v, , ,1 2 3 and edges cv cv cv, ,1 2 3; the vertex c is the centre of the claw (see
Figure 1). The triangular prism is the graph obtained from two triangles on vertices u u u, ,1 2 3

and v v v, ,1 2 3, respectively, by adding the edges u vi i for ∈i {1, 2, 3} (see Figure 1). The diamond
is the graph with vertices v w x y, , , and edges vw vx vy wx wy, , , , (see Figure 3). Two distinct
vertices are false twins if they have the same neighbourhood (note that such vertices must be
nonadjacent).

Theorem 6. Let G be a subcubic graph on n vertices with no connected component
isomorphic to K4. Then a near‐bipartite decomposition of G can be found in O n( ) time.

FIGURE 1 The claw and the triangular prism. A near‐bipartite decomposition of the triangular prism is
indicated: the white vertices form an independent set and the black vertices induce a forest
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Proof. We will repeatedly apply a set of rules to G. Each rule takes constant time to
apply and after each application of a rule, the resulting graph contains fewer vertices. The
rules are applied until the empty graph is obtained. We then reconstruct G from the
empty graph by working through the rules applied in reverse order. As we rebuild G in
this way, we find a near‐bipartite decomposition of each obtained graph. We do this by
describing how to extend, in constant time, a near‐bipartite decomposition of a graph
before some rule is undone to a near‐bipartite decomposition of the resulting graph after
that rule is undone. If we can do this then we say that the rule is safe. We conclude that
the total running time of the algorithm is O n( ). It only remains to describe the rules,
show that it takes constant time to do and undo each of them and prove that they
are safe.

Let u be an arbitrary vertex of G. Our choice of u as an arbitrary vertex implies that u
can be found in constant time. We then use the first of the following rules that is
applicable.

Rule 1. If there is a vertex v of degree at most 2 that is at distance at most 3 from u, then
remove v. (Note that v u= is possible; a similar comment can be made for some
of the other rules as well.)

Rule 2. If G contains an induced diamond D whose vertices are at distance at most
3 from u, then remove the vertices of D.

Rule 3. If there is a pair of false twins u u,1 2 each at distance at most 2 from u, then
remove u u,1 2 and their neighbours.

Rule 4. If u is in a connected component that is a triangular prism P, then remove the
vertices of P.

Rule 5. If Rules 1–4 do not apply but u is in a triangle T , then the neighbours of the
vertices in T that are outside T are pairwise distinct (since there is no induced
diamond or K4) and at least two of them, which we denote by x y′, ′, are non-
adjacent (otherwise u belongs to a triangular prism). Remove the vertices of
T and add an edge between x′ and y′.

Rule 6. If u is the centre of an induced claw but has a neighbour v that belongs to a
triangle, then apply one of the Rules 1–5 on v.

FIGURE 2 The graphs used in Rule 7. A near‐bipartite decomposition of each is indicated: the white
vertices form an independent set and the black vertices induce a forest
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Rule 7. If the graph induced by the vertices at distance at most 3 from u contains one of
the graphs H H,1 2 or H3, depicted in Figure 2, with the vertex u in the position
shown in the figure, then remove the vertices of this graph Hi.

Rule 8. If Rules 1–7 do not apply but u is the centre of an induced claw and its three
neighbours u u u, ,1 2 3 are also centres of induced claws, then remove u u u u, , ,1 2 3

and for ∈i {1, 2, 3} add an edge joining the two neighbours of ui distinct from u

and denote it by ei; we say that such an edge is new (note that such neighbours
of two distinct ui and uj may overlap).

Let us show that at least one of the rules is always applicable. Suppose that, on the
contrary, there is a vertex u of a subcubic graph for which no rule applies. Then u and its
neighbours each have degree 3 (Rule 1) and so each either belongs to a triangle or is the
centre of an induced claw. By Rule 5, u must be the centre of an induced claw and
therefore, by Rule 6, the same is also true for each neighbour of u. This implies that Rule
8 applies, a contradiction.

BecauseG is subcubic, each of these rules takes constant time to verify and process. In
particular, in some rules we need to detect some induced subgraph of constant size that
contains u or replace u by some other vertex v. In all such cases we need to explore a set
of vertices of distance at most 4 from u. As G is subcubic, this set has size at most
1 + 3 + 3 + 3 + 3 = 1212 3 4 , so we can indeed do this in constant time.

It is clear that, as claimed, the application of a rule reduces the number of vertices and
that if we repeatedly choose an arbitrary vertex u and apply a rule, we eventually obtain
the empty graph. We now consider undoing the applied rules in reverse order to rebuild
G. As this is done, we will irrevocably colour vertices with colour 1 or 2 in such a way that
the vertices coloured 1 will form an independent set and the vertices coloured 2 will
induce a forest. Thus a rule is safe if this colouring can be extended whenever that
rule is undone. When we reach G, the final colouring will correspond to the required
near‐bipartite decomposition.

We must prove each rule is safe. At each step of reconstructing G, we refer to the graph
before a rule is undone as the subsequent graph and to the graph after that rule is undone as
the prior graph. Note that the application of any of the Rules 1–8 again yields a subcubic graph.
By the result of Yang and Yuan [49], every connected subcubic graph is near‐bipartite, apart
from K4. So we need to ensure that an application of a rule does not create a K4. This cannot
happen when we remove vertices, but we will need to consider it for Rules 5 and 8.

Claim 1. Rules 1–4 are safe.

FIGURE 3 The diamond and triangle (solid edges and vertices) together with their neighbourhoods in a
cubic graph
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In Rules 1–4 we only delete vertices. Rule 1 is safe since if both neighbours of v are
coloured 2, then v can be coloured 1; otherwise v can be coloured 2. We note that from
hereon we can assume that all vertices at distance at most 3 from u have degree 3.

To see that Rule 2 is safe, let D be the diamond with vertex labels as illustrated in
Figure 3. If x′ and y′ are coloured 2, we colour x and y with 1 and v and w with 2.
Otherwise we colour v with 1 and x y, and w with 2.

We now show that Rule 3 is safe. As G is subcubic, every vertex in N u( )G 1 with a
neighbour in N u( )G 1 has no neighbours outside ∪N u u u( ) { , }G 1 1 2 and every vertex in
N u( )G 1 with no neighbour in N u( )G 1 has at most one neighbour not equal to u1 or u2.
Moreover, as G is subcubic, N u( )G 1 contains no cycle. Hence we can always colour u u,1 2

with 1 and the vertices of N u( )G 1 with 2 regardless of the colours of vertices outside
∪N u u u( ) { , }G 1 1 2 . Indeed, every vertex of N u( )G 1 will have at most one neighbour that is

not coloured 1, so cannot be in a cycle of vertices coloured 2 in the prior graph.
Rule 4 is also safe since P is 3‐regular and hence would be a connected component of

the prior graph, so we can colour its vertices by assigning colour 1 to exactly one vertex
from each of the two triangles (which are nonadjacent) and colour 2 to its other vertices
(see Figure 1). This completes the proof of Claim 1.

Claim 2. Rules 5 and 6 are safe.

First, let us demonstrate that Rule 5 is safe. If x′ and y′ are contained in a K4 of the
subsequent graph, then the prior graph contains a diamond whose vertices are at
distance at most 3 from u. This contradicts Rule 2. LetT be the triangle with vertex labels
as illustrated in Figure 3. Suppose x y′, ′ and u′ are coloured 2. Then we colour u with 1
and x and y with 2. The vertices in the prior graph with colour 2 still induce a forest, as
we have replaced an edge in the forest by a path on four vertices. Suppose x′ and y′ are
coloured 2 and u′ is coloured 1. Then we colour x with 1, and y and u with 2. Otherwise,
since x′ and y′ are joined by an edge in the subsequent graph, we may assume that x′ has
colour 1 and y′ has colour 2. In this case we can colour y with 1, and x and u with 2. This
completes the proof that Rule 5 is safe. Since Rules 1–5 are safe, it follows that Rule 6 is
also safe. This completes the proof of Claim 2.

Claim 3. Rule 7 is safe.

We now show that Rule 7 is safe. Suppose u is contained in H1. We use the vertex
labels from Figure 2. As Rule 1 could not be applied, we find that u has a third neighbour
u3 distinct from u1 and u2. Regardless of whether u3 is coloured 1 or 2, we colour
u u u v w, , , ,1 2 1 with 2 and v v,2 3 with 1 to obtain a near‐bipartite decomposition of G. We
can also readily colour the vertices of H2 or H3 should u be contained in one of them (note
that since H2 and H3 are 3‐regular, these graphs can only appear as connected
components in our prior graph). This completes the proof of Claim 3.

Claim 4. Rule 8 is safe.

Suppose that the subsequent graph contains fewer than three new edges. Then we
may assume without loss of generality that e e=1 2. Then u1 and u2 are false twins at
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distance 1 from u and we can apply Rule 3, a contradiction. So we may assume that the
subsequent graph contains exactly three new edges.

We claim that the application of Rule 8 does not yield a K4. For contradiction, suppose
it does. Let K be the created K4. Then at least one new edge is contained in K . If exactly
one new edge e is contained in K , then K e− is a diamond in the prior graph. Then we
could have applied Rule 2, a contradiction. If all three new edges are in K , then they must
induce either a path on four vertices, a triangle or a claw in the prior graph. In the first
case the prior graph is H2, in the second case the prior graph is H3, and in the third case u
and the centre of the claw are false twins. Thus we would have applied Rule 7 or Rule 3, a
contradiction. Finally, suppose that K contains exactly two new edges, say e1 and e2. If e1
and e2 do not share a vertex, then they cover the vertices of K . Hence the end‐vertices of
e1 are false twins (at distance 2 from u) in the prior graph, since they are both adjacent to
u1 and to each end‐vertex of e2. Then we could have applied Rule 3, a contradiction. If
e v v=1 1 2 and e v v=2 3 4 share a vertex, say v v=2 4, then v1 and v3 are adjacent in the prior
graph and the vertex ∈w K v v v\ { , , }1 2 3 is adjacent only to v v,1 2 and v3. Therefore Rule 7
could have been applied, a contradiction.

Thus an application of Rule 8 does not yield a K4. We note that the three new edges are
distinct else two of u u u, ,1 2 3 would be false twins and Rule 3 would apply. We may colour
u u u, ,1 2 3 with 2 and u with 1. This will yield a near‐bipartite decomposition since even if
the two end‐vertices of a new edge are coloured 2, in the prior graph the vertices coloured 2
will still induce a forest, in which such a new edge is replaced by a path of length 2 (and as
the new edges are distinct each one will be replaced by exactly one path of length 2). This
completes the proof of Claim 4 and therefore completes the proof of Theorem 6. □

3 | A QUADRATIC TIME ALGORITHM FOR GRAPHS OF
BOUNDED MAXIMUM DEGREE

Let ≥k 3 be an integer. Recall that a graphG has a k‐degenerate decomposition if its vertex set
can be decomposed into sets A and B where A is an independent set and B induces a k( − 2)‐
degenerate graph. Note that 3‐degenerate decompositions are near‐bipartite decompositions. In
this section we give anO n( )2 algorithm (Algorithm 1) for finding a k‐degenerate decomposition
of a graph on n vertices of maximum degree at most k for every ≥k 3. (Note that for k = 3 we
can also use Theorem 6.)

Algorithm 1 is stated below. In outline it is very simple: one picks a pair of nonadjacent
vertices with a common neighbour and considers the input graph with this pair removed. If this
altered graph is connected, then it is straightforward to find a k‐degenerate decomposition
(Lemma 2). Otherwise one considers one arbitrarily chosen connected component C of the
altered graph: if C has a simple structure, then again the decomposition can be found
(Lemmas 3–5). Otherwise a further pair of nonadjacent vertices with a common neighbour is
found within C and the algorithm recurses. Before we consider these cases, we need some
further definitions and a short technical lemma (Lemma 1).

For ≥k 1, we say that an order v v v, , …, n1 2 of the vertices of a graphG is k‐degenerate if for
all ≥i 2, the vertex vi has at most k neighbours in v v{ , …, }i1 −1 . It is clear that a graph is
k‐degenerate if and only if it has a k‐degenerate order. If is a k‐degenerate order forG, andW
is a subset of the vertex set ofG, then we let ∣W be the restriction of toW , and letG W[ ] be
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the subgraph ofG induced byW . For a set of vertices ⊆S V , we denote the neighbourhood of S
by ⋃ ∣ ∈N S N u u S S( ) = { ( ) } \G .

We need the following lemma, which is a refinement of Lemma 8 in [24] with the same
proof. We include a sketch of the argument for completeness.

Lemma 1. Let ≥k 2. Let G be a k( − 1)‐degenerate graph on n vertices. If a k( − 1)‐
degenerate order of G is given as input, a k‐degenerate decomposition A B( , ) of G can be
found in O kn( ) time. In addition, we can ensure that ∣B is a k( − 2)‐degenerate order of
G B[ ], the set A is a maximal independent set and the first vertex in  belongs to A.

Proof. Let be v v v, , …, n1 2 . Consider the greedy algorithm that starts with two empty
sets A and B, and, at step i, assigns vi to A unless vi has a neighbour of smaller index
already in A, in which case it assigns vi to B. Clearly the set A is an independent set and
every vertex of B has at least one neighbour in A, so A is a maximal independent set. At
any step i, if the vertex vi is assigned to B, then it has a neighbour of smaller index that
belongs to A. This implies that vi has at most k − 2 neighbours of smaller index that
belong to B. □

A pair of distinct nonadjacent vertices u v{ , } in a graphG is strong if u and v have a common
neighbour in each connected component of the graph G u v\ { , }. In particular, note that if u and
v have a common neighbour and G u v\ { , } is connected, then u v{ , } is a strong pair.

Lemma 2. Let ≥k 3. Let G be a connected k‐regular graph on n vertices that contains a
strong pair u v{ , }. If u v{ , } is given as input, a k‐degenerate decomposition ofG can be found
in O kn( ) time.

Proof. Let G′ be the graph obtained by identifying u and v into a new vertex z with
∪N z N u N v( ) = ( ) ( )G G G . For each connected component C ofG z′\ { }, let zC be a vertex of

C that is adjacent to both u and v in G. We find a k( − 1)‐degenerate order  of the
vertices of G′ as follows. Let z be the first vertex in . Consider each connected
component C of G z′\ { } in turn, and append to  the vertices of C in the reverse of the
order they are found in a breadth‐first search from zC (note that this can be done in
O kn( ) time). Then is a k( − 1)‐degenerate order as every vertex has a neighbour later
in the order except for each zC vertex, which has degree k − 1. It follows from Lemma 1
that we can find a k‐degenerate decomposition A B( , ) of G′ with ∈z A. Then

∪A z u v B( \ { } { , }, ) is a k‐degenerate decomposition of G as G B G B[ ] = ′[ ], and u and v

are nonadjacent so ∪A z u v\ { } { , } is an independent set. □

Lemma 3. Let ≥k 3. Let G be a k‐regular connected graph on n vertices, which contains
a set S of k + 1 vertices that induces a clique minus an edge uv. If S u, and v are given as
input, then a k‐degenerate decomposition of G can be found in O kn( ) time.

Proof. Let x be a vertex in S distinct from u and v. Let G′ be the graph obtained from G

by deleting S. Each of u and v has exactly one neighbour that does not belong to S and all
other vertices of S have no neighbours outside S. Let t be the neighbour of u not in S, and
let w be the neighbour of v not in S. We may assume that t is distinct from w, otherwise
we are done by Lemma 2. We can find a k( − 1)‐degenerate order of G′ in O kn( ) time
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by taking the vertices in the reverse of the order they are found in a breadth‐first search
from t , and then, if t and w do not belong to the same connected component of G′,
appending the vertices in the reverse of the order they are found in a breadth‐first search
from w. By Lemma 1, we can compute a k‐degenerate decomposition A B( , ) of G′ in
O kn( ) time such that ∣B is a k( − 2)‐degenerate order of B. If both t and w belong to B,
let ∪A A u v′ = { , } and ∪B B S u v′ = ( \{ , }) and, since S u v( \ { , }) is a clique on k − 1

vertices with no edge joining it to B, if follows that A B( ′, ′) is a k‐degenerate
decomposition of G. Assume now without loss of generality that ∈t A (we make no
assumption about whether w is also in A). Then let ∪A A x′ = { } and ∪B B S x′ = ( \{ }).
Then A′ is an independent set. Recall that ∣B is a k( − 2)‐degenerate order of B. We
show that we can append the vertices of S x\ { } to obtain a k( − 2)‐degenerate order of B′.
First add v, then the vertices of S u v x\ { , , } and finally u. It is clear that no vertex has more
than k − 2 neighbours earlier in the order. □

Lemma 4. Let ≥k 3. Let G be a k‐regular connected graph on n vertices containing a
clique K on k vertices whose neighbourhood is of size 2. If K is given as input, a k‐degenerate
decomposition of G can be found in O kn( ) time.

Proof. Let u and v be vertices not in K such that for each vertex in K , its unique
neighbour not in K is either u or v. Neither u nor v can be adjacent to every vertex in K
(as then the other would be adjacent to none, contradicting the premise that the
neighbourhood has size 2). Since ≥k 3, one of u and v has at least two neighbours in K .
Consider the graph G′ obtained from G by removing K and adding the edge uv (if it does
not already exist). Note that u and v each have degree at most k in G′ and at least one of
them, say u, has degree less than k. Therefore, we can find a k( − 1)‐degenerate order
of G′ in O kn( ) time by taking the vertices in the reverse of the order they are found in a
breadth‐first search from u. Thus we can obtain a k‐degenerate decomposition A B( , ) of
G′ by Lemma 1, such that ∣B is a k( − 2)‐degenerate order of G B[ ] and A is a maximal
independent set. At least one of u and v must belong to B. Assume without loss of
generality that either ∈ ∈v A u B, or both u and v belong to B, and, in the latter case,
assume that u has at least two neighbours in K . Consider a neighbour t of u in K . We set

∪A A t′ = { } and ∪B B K t′ = ( \{ }), and claim that A B( ′, ′) is a k‐degenerate
decomposition of G. It is clear that A′ is an independent set since no vertex in K ,
including t , is adjacent to both u and v. Recall that ∣B is a k( − 2)‐degenerate order for
G B[ ]. We must amend it to find a k( − 2)‐degenerate order for G B[ ′] that also includes
the vertices of K t\ { }. We consider two cases.

First suppose ∈v A. Then append to ∣B first the neighbours of u in K t\ { } and then
the neighbours of v. As the vertices of K t\ { } are adjacent to t the only one that could have
more than k − 2 vertices before it in the order is the one that appears last, but this is also
adjacent to v so we do indeed have a k( − 2)‐degenerate order.

Now suppose ∈v B. Then u has a neighbour in G′ that belongs to A (as A is a
maximal independent set). Hence u has at most k − 2 neighbours in B′. Append to ∣B
the vertices of K t\ { }, ending with a neighbour of u (we know there is at least one), then
move u to be the last vertex in the order. Again the only vertex of K t\ { } that could have
more than k − 2 neighbours before it in the order is the one that appears latest in the
order, and by choosing it to be a neighbour of u and putting u last in the order we ensure
that a k( − 2)‐degenerate order is obtained. □

BONAMY ET AL. | 93



Given a graphG, five of its vertices t u v w x, , , , and a set of vertices S, we say that S induces
a u v( , )‐lock with special vertices t w x( , { , }) if ∈t w x S, , and N S u v( ) = { , }G , and both u and v are
adjacent to t , each vertex in w x{ , } is adjacent to precisely one vertex in u v{ , }, andG S[ ] contains
all possible edges except for wt and xt (see Figure 4). We say that S induces a lock if it induces a
u v( , )‐lock with special vertices t w x( , { , }) for some choice of t u v w x, , , , .

Lemma 5. Let ≥k 3. Let G be a k‐regular connected graph on n vertices containing a
u v( , )‐lock S with special vertices t w x( , { , }). If S and u v t w x, , , , are given as input, then a
k‐degenerate decomposition of G can be found in O kn( ) time.

Proof. Since t has two neighbours outside S, it has k − 2 neighbours in S. As S also
contains w and x (which are not neighbours of t), it follows that S t\ { } is a clique on k

vertices. If w and x have the same neighbour in u v{ , }, say u, then N S t t u( \ { }) = { , }G and
so we are done by Lemma 4. We may therefore assume that w and x have distinct
neighbours in u v{ , }. Let G′ be the graph obtained from G by deleting S t\ { } and note that
G′ is connected since t is adjacent to both u and v. Note that both u and v have degree
k − 1 in G′. We can therefore find a k( − 1)‐degenerate order of G′ in O kn( ) time by
taking the vertices in the reverse of the order they are found in a breadth‐first search
from u. Furthermore, since the only neighbours of t inG′ are u and v, both of which have
degree k − 1, by moving t to the start of the order , we obtain a another k( − 1)‐
degenerate order ′ . By Lemma 1, we can therefore find a k‐degenerate decomposition
A B( , ) ofG′ such that ∣′ B is a k( − 2)‐degenerate order on B and ∈t A. Thus both u and
v belong to B. We let ∪A A w′ = { } and ∪B B S w t′ = ( \{ , }), and claim that A B( ′, ′) is a
k‐degenerate decomposition of G. It is clear that A′ is an independent set. We have the
k( − 2)‐degenerate order ∣′ B on B. We obtain a k( − 2)‐degenerate order on B′ by
appending to ∣′ B the vertices of S w t\ { , } beginning with x . Indeed, the only neighbour
of x that is earlier in the order is its single neighbour in u v{ , } (and note that ≤ k1 − 2

since ≥k 3). Furthermore, since ∈w t A, ′, every vertex in S w t x\ { , , } has only k − 2

neighbours in B′. □

FIGURE 4 An example of a u v( , )‐lock S with special vertices t w x( , { , }), where ∣ ∣S = 5. Note that w and x

each have exactly one neighbour in u v{ , }
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A pair of nonadjacent vertices u v, in a graph is a good pair if u and v have a common
neighbour. Note that if a good pair u v, is not strong, then G u v\ { , } must be disconnected. We
are now ready to state and prove the following result.

Theorem 7. Let ≥k 3 andG be a graph on n vertices with maximum degree at most k. If
no connected component ofG is isomorphic to Kk+1, then a k‐degenerate decomposition ofG
can be found in O k n( )2 2 time.

Proof. Wemay assume thatG is connected, otherwise it can be considered componentwise.
IfG is not k‐regular, then it has a vertex u of degree at most k − 1, so we can find a k( − 1)‐
degenerate order ofG inO kn( ) time by taking the vertices in the reverse of the order they
are found in a breadth‐first search from u. In this case, we are done by Lemma 1. For
k‐regular graphs, we use the procedure shown in Algorithm 1 below. (We note that if G is
biconnected then, by [2, Lemma 3], there is always a good pair u v, such that G u v\ { , } is
connected, but this does not aid us in finding an algorithm for general graphs.)

Let us make a few comments on Algorithm 1. As G is regular, connected and not
complete, we can initially choose any vertex as u and find another vertex v to form a good
pair in O k O kn( ) = ( )2 time. If we perform a breadth‐first search (which takes
O n m O kn( + ) = ( ) time) from a neighbour of u that retreats from u or v whenever
they are encountered, we discover a connected component of G u v\ { , }. If the connected
component contains a common neighbour of u and v but is not equal to G u v\ { , }, we
repeat starting from a neighbour of u or v that was not discovered. Thus we discover in
O k n( )2 time that either u v, is a strong pair (if we find all connected components of
G u v\ { , } and they each contain a common neighbour of u and v), or that it is not. We set
C to be one of the connected components of G u v\ { , } arbitrarily. By Lemma 2, we
therefore conclude that Lines 1 and 2 take O k n( )2 time. It is easy to check in O kn( ) time
whether we apply Lemmas 3–5 on Lines 3–5 and applying these lemmas takes O kn( ) in
each case. Now suppose that we do not apply any of these lemmas, in which case we
reach Line 7. We will show that we can find u v′, ′ and, if necessary, C′ in O kn( ) time. If
we find u v′, ′ such that C G u v′ = \{ ′, ′} is connected, then u v′, ′ is a strong pair, so after
executing Line 9, the algorithm will stop on Line 2. In all other cases C′ will be strictly
smaller than C. This means that we apply Line 9 at most O n( ) times, implying that we
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execute Lines 2–9 at mostO n( ) times. This will give an overall running time ofO k n( )2 2 . It
remains to show that if execution reaches Line 7 then we can find the required good pair
u v′, ′ and the connected component C′ in O kn( ) time.

Let us first show that C contains good pairs—that is, that it is not a clique. If C is a
clique, then it contains either k − 1 or k vertices (as each vertex has degree k in G and the
only other possible neighbours of vertices in C are u and v). If C has k − 1 vertices, then
each vertex ofC must be adjacent to both u and v and we would have applied Lemma 3 on
Line 3, a contradiction. If C has k vertices, then each vertex of C is adjacent to exactly one
of u and v (and neither u nor v can be adjacent to every vertex in C, as this would form a
Kk+1, contradicting the fact that G is connected), in which case we would have applied
Lemma 4 on Line 4, a contradiction. Therefore we may assume that C is not a clique.

We need to describe how to choose a good pair u v′, ′ in C. If we can show that u and v
are in the same connected component ofG u v\ { ′, ′} (which must necessarily contain all of
G C\ ), then we are done as either G u v\ { ′, ′} is connected or there is another connected
component C′ of G u v\ { ′, ′} which must be contained in C (and note that in this case C′
can be found in O kn( ) time using breadth‐first search).

If u and v have a common neighbour outside C or at least three common neighbours
in C, then any good pair in C can be chosen as u v′, ′ (as u and v will then be in the same
connected component of G u v\ { ′, ′} as they have at least one common neighbour i.e. not
one of u v′, ′). If u and v have exactly two common neighbours t t,1 2 that both belong to C,
then any good pair other than t t,1 2 can be chosen as u v′, ′. If t t,1 2 is the only good pair inC
(so all other vertices in C are adjacent), then C is a clique minus an edge and must
contain k vertices (t t,1 2 and the k − 2 neighbours of t1 that are not in u v{ , }). Considering
degree, any vertex in C other than t1 or t2 must be adjacent to exactly one of u and v. If
every vertex in C t t\ { , }1 2 is adjacent to, say u, then ∪C u{ } is a clique on k + 1 vertices
minus an edge and we would have applied Lemma 3 on Line 3, a contradiction. We may
therefore assume that at least one vertex in C t t\ { , }1 2 is adjacent to u and at least one is
adjacent to v, so there is a path from u to v avoiding t1 and t2, andG t t\ { , }1 2 is connected, so
we are done.

Finally, suppose that u and v have exactly one common neighbour t that belongs to C.
Then any good pair not including t can be chosen as u v′, ′, as then u and v will be in the
same connected component of G u v\ { ′, ′}. Suppose, for contradiction, that no such pair
exists. ThenC t\ { } is a clique. The vertex t has k − 2 neighbours inC t\ { }. Since ≥k 3, let z
be one of those neighbours. Since t is the only common neighbour of u and v, we have
that z can only be adjacent to at most one of u and v. Therefore, t has a neighbour
nonadjacent to z, so z must have a neighbour nonadjacent to t , which we denote w. As w
is also adjacent to at most one of u and v, it also has a neighbour x that is a non‐
neighbour of t (and cannot be t itself). So C t\ { } contains at least k vertices: the k − 2

neighbours of t plus w and x . As C t\ { } induces a clique, it must have exactly k vertices,
sinceG cannot contain a Kk+1. Thus the setC forms a lock, and so we would have applied
Lemma 5 on Line 5. This contradiction completes the proof. □

Theorems 6 and 7 provide an algorithmic version of Theorem 5. Moreover, Theorems 6 and 7
concern decompositions A B( , ) of the vertex set of a graph where A is independent and B induces a
k( − 2)‐degenerate graph. As B therefore cannot be a clique on k vertices, both theorems also
provide an algorithmic version of Theorem 2. As previously discussed, in these algorithmic theorems
we have necessarily removed the requirement that the independent set A have maximum size.
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4 | HARDNESS FOR GRAPHS OF LARGER MAXIMUM
DEGREE

In this section, we prove that for every ≥k 3, the problem of deciding whether a graph of
maximum degree k2 − 2 has a k‐degenerate decomposition is NP‐complete.

The k = 3 case is the problem of deciding whether a graph of maximum degree 4 is near‐
bipartite and was proven by Yang and Yuan [49, Theorem 3.5]. Our generalization adapts their
proof in a straightforward way. We first need some definitions.

Let ≥k 3 and ≥p 1 be integers. We will construct a graph Hk
p to be used in the NP‐

completeness reduction. The vertices of Hk
p are partitioned into p2 + 1 levels. Level 0 contains a

single vertex. For ≤ ≤i p1 2 − 1, if i is odd, then, for each vertex u in level i − 1, level i contains
a distinct set of k − 1 vertices which induce a clique, which we call an odd‐level clique, and are
each joined by an edge to u, which is said to be their parent. For ≤ ≤i p2 2 , if i is even, then for
each odd‐level clique K in level i − 1, level i contains a distinct set of k − 1 pairwise non-
adjacent vertices which are each adjacent to every vertex of K . We refer to level i as an odd or
even level according to the value of i. We refer to the single vertex in level 0 as the foot of the
graph. We refer to level p2 as the top level. We note that the foot and each vertex in the top level
has degree k − 1, and that every other vertex in Hk

p has degree k2 − 2. We call each collection
of k − 1 vertices in the top level that have the same neighbourhood a top set, and note that there
are k( − 1)p−1 top sets. See Figure 5 for an illustration of H3

3.
Given such a graph Hk

p, let At be a set of vertices that contains one vertex from each odd‐
level clique. Let ( )B V H A= \t k

p
t. Let Af be the set of all vertices in even levels, and let Bf be the

set of all vertices in odd levels. We say that A B( , )t t is a true decomposition of Hk
p, and that

A B( , )f f is a false decomposition of Hk
p. It is easy to check that At and Af are independent sets.

We can see that Bt and Bf induce k( − 2)‐degenerate graphs by considering the vertices ordered
by level, starting from 0. These are k( − 2)‐degenerate orders since, in each of Bt and Bf , each

vertex in the set from level i has at most k − 2 neighbours in the set that belong to level i or
level i − 1. Thus true and false decompositions are k‐degenerate decompositions. The next
lemma shows that every k‐degenerate decomposition is one of these two types.

FIGURE 5 The graph H3
3
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Lemma 6. Let ≥k 3 and ≥p 1 be integers. Let A B( , ) be a k‐degenerate decomposition of
Hk

p. Then A B( , ) is either a true decomposition or a false decomposition.

Proof. Suppose that the foot of Hk
p is in the k( − 2)‐degenerate graph B. We must show

that we have a true decomposition. We will first prove, by induction, that the vertices of
level i are in B if i is even, and that if i is odd, then exactly one vertex from each of the
odd‐level cliques is in B. For i = 0, this follows by assumption. Now suppose that ≥i 1

and i is odd. Then each odd‐level clique K in level i has a parent in level i − 1 that is in B.
Thus at least one vertex in K must be in A, otherwise B would contain a clique on k

vertices and would not be k( − 2)‐degenerate (and clearly there cannot be more than one
vertex of K in A). Finally suppose that ≥i 2 and that i is even. Then each vertex v in level
i is adjacent to a vertex in level i − 1 that is in A. Thus v must be in B, otherwise A is not
an independent set.

Suppose that the foot of Hk
p is in A. We must show that we have a false decomposition.

We will prove, by induction, that the vertices of level i are in A if i is even and in B if i is
odd. For i = 0, this follows by assumption. Now suppose that ≥i 1 and i is odd. Then
each vertex v in level i has a parent in level i − 1 that is in A. Thus v must be in B. Finally
suppose that ≥i 2 and i is even. Then each vertex v in level i is adjacent to each vertex in
a clique on k − 1 vertices in level i − 1 that is in B. Thus v must be in A, otherwise B
would contain a clique on k vertices and would not be k( − 2)‐degenerate. □

We are now ready to prove our hardness result.

Theorem 8. For every ≥k 3, the problem of deciding whether a graph of maximum
degree k2 − 2 has a k‐degenerate decomposition is NP‐complete.

Proof. The problem is readily seen to belong toNP. We will use a reduction from 1‐IN‐k‐
SAT with positive literals only. An instance of this problem is a set of variables
X x x= { , …, }n1 and a set of clauses C C= { , …, }m1 such that each clause Ci is of the form

∨⋯ ∨x x( )i ik1
with ≤ ⋯ ≤x x n1 < <i ik1

. The question is whether there exists a truth
assignment that makes exactly one variable in each clause true, which we call a good
truth assignment. The problem 1‐IN‐3‐SAT with positive literals only is well known to be
NP‐complete (see Garey and Johnson [25]) and it is easy to find a reduction to 1‐IN‐k‐SAT
with positive literals only.

Given an instance X( , ) of 1‐IN‐k‐SAT, we construct a graph G as follows. Let
⌈ ⌉p m= 1 + logk−1 and note that Hk

p has at least m top sets (and the number of
occurrences of each variable in  is at most m). For each variable xi, let Gi be a copy of
Hk

p; we call these graphs variable gadgets. For each clause Cj, let Fj be a clique on k

vertices; we call these graphs clause gadgets. Let each vertex in Fj represent a distinct
variable in Cj: if a vertex in Fj represents the variable xi, then we label it xi

j. Let G be the
disjoint union of the variable and clause gadgets plus the following set of edges: for each
variable xi in each clause Cj, select a distinct top set in Gi and add an edge from each
vertex in the top set to xi

j.
The degree inG of each vertex in each variable gadget is as in Hk

p except that a vertex
in a top set might have an additional neighbour in a clause gadget and so have degree k.
The degree of each vertex in each clause gadget is k2 − 2, Hence, the maximum degree of
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G is k2 − 2. See Figure 6 for an example. We claim that there is a good truth assignment
if and only if G has a k‐degenerate decomposition.

First suppose that there is a good truth assignment. We will find a k‐degenerate
decomposition A B( , ) of G. We add the vertices of each variable gadget Gi to A and B in
such a way that, on G A B, ( , )i induces a true or false decomposition if xi is true or false,
respectively. A vertex xi

j in a clause gadget is added to A if xi is true and is otherwise
added to B. We must show that A is an independent set. As the restriction of A to the
variable gadgets is an independent set, we only need to show that if a vertex xi

j in a
clause gadget is added to A, then it has no neighbour in A.

As only one variable in Cj is true, xi
j is the only vertex from Fj in A (and xi

j has no
neighbours in any other clause gadget). The neighbours of xi

j inGi are in a top set and so
in an even level. By the definition of a true decomposition, this implies that they are all in
B. We must show that B is k( − 2)‐degenerate. By taking orders of the variable gadgets
one after the other, we can find a k( − 2)‐degenerate order of all the vertices of B from

FIGURE 6 The graph G constructed from an instance of 1‐IN‐3‐SAT with ∨ ∨x x x= (( ),1 2 3

∨ ∨ ∨ ∨x x x x x x( ), ( ))1 3 4 2 3 4
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the variable gadgets. Then we precede this with the vertices of B in clause gadgets in any
order.

To check that this is a k( − 2)‐degenerate order, we need only consider the vertices in
the clause gadgets and their neighbours. For each vertex of B in a clause gadget, the only
vertices before it in the order are its neighbours that are also in clause gadgets and in B

(and there are at most k − 2 of these, since only one vertex from each clause gadget is in
A). The only vertices in a variable gadget with neighbours in a clause gadget are in a top
set. However, a vertex in a top set belongs to B if and only if we have a true
decomposition of the variable gadget, in which case its neighbour in the clause gadget
belongs to A. We conclude that A B( , ) is a k‐degenerate decomposition of G.

Now suppose that G has a k‐degenerate decomposition A B( , ). We know, by Lemma 6,
that the restriction of A B( , ) to a variable gadget is either a true or false decomposition.
We assign the value true or false to xi according to the decomposition of the variable
gadgetGi. We know that exactly one vertex xi

j in each clause gadget Fj is in A (otherwise
B contains a clique on k vertices or A is not independent). If we can prove that xi

j is in A

if and only if Gi has a true decomposition, then we have assigned exactly one variable
from each clause the value true.

If xi
j is in A, then Gi must have a true decomposition, otherwise the vertices in the top

set adjacent to xi
j are also in A. If xi

j is in B, then Gi must have a false decomposition,
otherwise the k − 1 vertices in the top set adjacent to xi

j are in B and so are k − 2 vertices
in the adjacent odd‐level clique, and all these vertices together induce a graph in which
every vertex has degree at least k − 1, which cannot be a subgraph of a k( − 2)‐degenerate
graph. We conclude that our truth assignment is good. □

5 | AN APPLICATION: RECONFIGURATIONS OF VERTEX
COLOURINGS

Our interest in finding k‐degenerate decompositions stems from an open problem in the area of
graph reconfigurations. For a graph G and an integer ≥k 1, the k‐colouring reconfiguration
graph R G( )k has vertex set consisting of all possible k‐colourings ofG and two vertices of R G( )k

are adjacent if and only if the corresponding k‐colourings differ on exactly one vertex. The
following problem has been the subject of much study; see e.g. [6-8,19,24,31]:

Given a graph G on n vertices and two k‐colourings α and β of G, find a path (if one exists)
in R G( )k between α and β.

We will considerG to be connected since finding a path from α to β in a disconnected graph
can be divided into the problem of finding paths between the restrictions of α and β to each
component. In this section, we are concerned with determining, for every pair k( , Δ), the
complexity of this problem on graphs with maximum degree Δ. Later in this section, we will
prove the following result using Theorem 7.

Proposition 1. Let G be a connected graph on n vertices with maximum degree
≥Δ 3. Then it is possible to find a path in R G( )Δ+1 (if one exists) between any two given

(Δ + 1)‐colourings in O n( )2 time.
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In [24, Theorem 6], three of the authors of the current article proved Proposition 1 in all
cases except where the input graph G is Δ‐regular. Their argument used the fact that if G has
maximum degree Δ, but is not Δ‐regular, thenG is (Δ − 1)‐degenerate. In this case it is possible
to translate a structural result of Mihók [41] (also proved by Wood [47]) into an O n( )2 ‐time
algorithm, as shown in [24]. However, this does not work if G is Δ‐regular.

The following theorem and proof demonstrate that Proposition 1 indeed fills the gap left by
past work on this problem.

Theorem 9. Let ≥Δ 0 be a (fixed) integer. LetG be a connected graph on n vertices with
maximum degree Δ. The problem of finding a path (if one exists) between two k‐colourings
α and β in R G( )k is

– O n( )‐time solvable if ≤ ≤k1 3;
– O n( )2 ‐time solvable if ≥k 4 and ≤ ≤ k0 Δ − 1;
– PSPACE‐hard if ≥k 4 and ≥ kΔ .

Proof. In [31], the problem was shown to be solvable in O n m( + ) time on (general)
graphs with n vertices andm edges for ≤k 3. AnO n( )2 time algorithm for the case where
≥ ≤ ≤k k4, 0 Δ − 2 was presented in [19]. In [7], PSPACE‐hardness for ≥ ≥k k4, Δ

was proved. This leaves only the case where ≥k 4 and kΔ = − 1, which follows from
Proposition 1. □

It was already known [24, Theorem 2] that for every connected graph on n vertices with
maximum degree ≥Δ 3, there is a path of length O n( )2 between any two given (Δ + 1)‐
colourings in R G( )Δ+1 unless one or both of the (Δ + 1)‐colourings is an isolated vertex in
R G( )Δ+1 . To prove Proposition 1, we have to show how to find such paths between colourings
in R G( )Δ+1 in O n( )2 time. Apart from using Theorem 7, this requires us to replace several
structural lemmas of [24] by their algorithmic counterparts. As we have also managed to
simplify some of the arguments from [24], we present a self‐contained proof of Proposition 1. In
fact, most of the work will be done in the proofs of a series of lemmas.

At several places in these proofs we seek to show that from some given colouring α of a
graph G, we can find a path in R G( )Δ+1 to another colouring with some specified property.
Rather than explicitly referring to paths in R G( )Δ+1 , we think, equivalently, in terms of re-
colouring vertices of G one by one to turn α into the colouring we require.

We now define a number of terms that we will use to describeG and its vertices with respect
to a (Δ + 1)‐colouring α. A vertex v is locked by α if Δ distinct colours appear on its neighbours;
note that in this case every neighbour of v has a unique colour. A vertex that is not locked is
free. Clearly a vertex can be recoloured only if it is free. A vertex v is superfree if there is a colour
≠c Δ + 1 such that neither v nor any of its neighbours is coloured c, that is, ≠c α u( ) for any u

in the closed neighbourhood ∣ ∈ ∪N v u uv E v[ ] = { } { }G of v. A vertex v can be recoloured
with a colour other than Δ + 1 if and only if v is superfree. For any two distinct colours

∈j k, {1, …, Δ + 1}, a j k( , )‐component is a connected component in the subgraph ofG induced
by the vertices coloured j or k. As we continually recolour, these terms should be assumed to be
used with respect to the current colouring unless specified otherwise. We let Lα denote the set
of vertices u with colour α u( ) = Δ + 1. We say that α has the lock‐property if Lα is nonempty,
and every ∈u Lα is locked and so are all its neighbours.
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If α has the lock‐property and ui is a vertex in Lα, then, for every ∈ ≠j k j k, {1, …, Δ}, , we
denote the unique neighbour of ui coloured j by vi j, , and the graph α G[ ] i

j k, is the j k( , )‐
component containing vi j, . We note that α G[ ] i

j k, and α G[ ] i
k j, may or may not be equal. We will just

write Gi
j k, if there is no ambiguity. We say that we compactα if we determine a path in R G( )Δ+1

from α to a (Δ + 1)‐colouring α* of G with ∣ ∣ ∣ ∣L L<α α* .
The crucial ideas in the proof of Proposition 1 are that, first, for a (Δ + 1)‐colouring α of G

that is not an isolated vertex in R G( )Δ+1 , it is possible to compact α in O n( ) time and so, by
repetition, obtain a colouring that only uses Δ colours, and, second, that finding paths between
pairs of colourings in R G( )Δ+1 that each use only Δ colours is straightforward.

Lemma 7. Let G be a connected graph on n vertices with maximum degree ≥Δ 3. Let α
be a (Δ + 1)‐colouring of G such that ≠ ∅Lα . Given a free vertex v in N L[ ]α , we can
compact α in O (1) time.

Proof. Let ∈u Lα be a neighbour of v. First suppose that u is free. Let ≠c Δ + 1 be a
colour not used on N u[ ]G . We can determine c in O (1) time, as Δ is a constant. Then we
can recolour u with colour c. Now assume that u is not free, that is, u is locked.
We determine a colour c′ not used on N v[ ]G in O (1) time and note that ≠c′ Δ + 1. We
recolour v with colour c′, and now u is free and can be recoloured with ≠α v( ) Δ + 1.
Hence, we have compacted α in O (1) time. □

Lemma 8. LetG be a connected graph on n vertices with maximum degree ≥Δ 3. Let α be
a (Δ + 1)‐colouring of G. Let j and k be distinct colours in {1, …, Δ}. Given a j k( , )‐
component D such that no vertex coloured j in D has a neighbour in Lα, we can recolourG in
∣ ∣O V D( ( ) ) time from α to the (Δ + 1)‐colouring α′ with

– α v α v′( ) = ( ) for all ∉v V D( ),
– α v j k α v′( ) = + − ( ) for all ∈v V D( ) (i.e. the colours on D are swapped).

Proof. We recolour all vertices of D that have colour j with colour Δ + 1. This yields a
new (Δ + 1)‐colouring, as none of these vertices has a neighbour in Lα. We then recolour
all vertices of D that have colour k with the colour j. Again this is a valid operation as, by
the choice of D, all their neighbours that were given colour j by α are now coloured
Δ + 1. We finally recolour all vertices of D that were given colour j by α (and so have
Δ + 1 in the current colouring) with the colour k. This yields the (Δ + 1)‐colouring α′.
Moreover, the running time of doing this is linear in the size of D. □

Lemma 9. Let G be a connected graph on n vertices with maximum degree ≥Δ 3. Let α
be a (Δ + 1)‐colouring ofG that has the lock‐property. Let ui be a vertex in Lα and let j and
k be two distinct colours in {1, …, Δ}. If Gi

j k, is not a path where each end‐vertex is locked
and no vertex is superfree, then we can compact α in O n( ) time.

Proof. We start with two observations. If a vertex ∈v V G( )i
j k, has degree at least 2 in

Gi
j k, , then v has two neighbours with the same colour, so it is free, and therefore, by the

lock‐property, not adjacent to Lα. If a vertex ∈v V G( )i
j k, has degree at least 3 inGi

j k, , then
v is, in fact, superfree.
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As vi j, is in N u[ ]G i , by the lock‐property, we know that vi j, is locked. Hence vi j, has
degree 1 in Gi

j k, . We now perform a breadth‐first search in Gi
j k, starting from vi j, . This

takes O n( ) time, as Δ is a constant. We stop if we find a superfree vertex w or else if we
have visited all vertices of Gi

j k, .
First suppose that we found a superfree vertex w. As all vertices closer to vi j, than w in

Gi
j k, are not superfree, they must have degree 2 and form a path P from vi j, to w. As the

internal vertices of P have degree 2 in Gi
j k, , they are free and so have no neighbour in Lα

by the lock‐property. Since w is superfree, there is some colour ≠c Δ + 1 with which we
can recolour w. As colours j and k appear on N w[ ]G , we find that ∉c j k{ , }. After we
recolour w with c, we note that Gi

j k, (defined with respect to this new colouring) is a
j k( , )‐component where no vertex coloured k has a neighbour in Lα. We apply Lemma 8

and note that now ui has no neighbour coloured j. We therefore recolour ui with j and
have compacted α in O n( ) time.

Now suppose that we found that no vertex in Gi
j k, is superfree. Then no vertex of Gi

j k,

has degree more than 2. HenceGi
j k, is a path or cycle. Since vi j, has degree 1, we find that

Gi
j k, must be a path. Let z be the end‐vertex ofGi

j k, other than vi j, . As no vertex of the path
Gi

j k, is superfree and vi j, is locked, z must be free by the assumption of the lemma. Hence,
every vertex of Gi

j k, apart from vi j, is free, which means that no vertex of Gi
j k, with colour

k has a neighbour in Lα by the lock‐property. We apply Lemma 8. Afterwards we can
recolour ui with colour j to compact α in O n( ) time. □

Lemma 10. LetG be a connected graph on n vertices with maximum degree ≥Δ 3. Let α
be a (Δ + 1)‐colouring of G that has the lock‐property. Let ui1 and ui2 be two vertices in Lα
(possibly u u=i i1 2

) and let j j k, ,1 2 1 and k2 be in ≠ ≠j k j k{1, …, Δ}, ,1 1 2 2. If Gi
j k,
1

1 1 and Gi
j k,
2

2 2

are two distinct paths, each with locked end‐vertices and no superfree vertices, then Gi
j k,
1

1 1

and Gi
j k,
2

2 2 do not intersect on a free vertex.

Proof. For contradiction, suppose thatGi
j k,
1

1 1 andGi
j k,
2

2 2 intersect on a free vertex w. Then
w is an internal vertex on each of Gi

j k,
1

1 1 and Gi
j k,
2

2 2. Moreover, the two neighbours of w in
Gi

j k,
1

1 1 are disjoint from the two neighbours of w in Gi
j k,
2

2 2, otherwise j k j k{ , } = { , }1 1 2 2 , in
which case G G=i

j k
i
j k, ,

1

1 1

2

2 2, a contradiction. Thus w has four neighbours that use only two
colours between them. So w has at most Δ − 2 colours in its neighbourhood. This means
that w is superfree, a contradiction. □

Lemma 11. LetG be a connected graph on n vertices with maximum degree ≥Δ 3. Let α
be a (Δ + 1)‐colouring of G that has the lock‐property. Let ui be a vertex in Lα such that for
every two distinct colours h h, ′ in G{1, …, Δ}, i

h h, ′ and Gi
h h′, are paths that have locked end‐

vertices and no superfree vertices. Let ∈j k, {1, …, Δ} be such that Gi
j k, and Gi

k j, are distinct
paths, and, moreover, Gi

j k, does not contain exactly two vertices. Then it is possible to
compact α in O n( ) time.

Proof. Since ∈v N u[ ]i j i, is locked by the lock‐property, vi j, has exactly one neighbour s
coloured k. This means that Gi

j k, has at least two vertices, and thus at least three vertices
by the assumption of the lemma. Hence s has another neighbour with colour j. This
means that s is free. Note that s is not superfree by the assumption of the claim.

As ≥Δ 3, there exists a colour ∉c j k{ , , Δ + 1} and, as s is not superfree, s has a
neighbour t coloured c. First suppose that t is locked. Then, by definition, t has a
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neighbour ∈u Lg α with colour Δ + 1. If u u=g i, then Gi
j k, and Gi

c k, intersect on the free
vertex s, contradicting Lemma 10. Hence, ≠u ug i. Then we recolour s with Δ + 1. This is
possible, as s is free and any vertices adjacent to vertices in Lα are locked by the lock‐
property. We then recolour vi j, with colour k. As t is locked by α, we find that α has
coloured exactly one neighbour of t with colour j and exactly one neighbour (namely s)
with colour k. If t is adjacent to vi j, then this is the neighbour of t that is coloured j by α;
in this case we recolour t with colour j. If t is nonadjacent to vi j, then we recolour t with
colour k. Thus we can recolour t either with colour j or with colour k. Now both ug and ui
are free and can be recoloured. In this way in O n( ) time we have reduced the total
number of vertices coloured Δ + 1 by 2 − 1 = 1, that is, we have compacted α.

Now suppose that t is free. As the end‐vertex of Gi
j k, other than vi j, is locked by

assumption, it has a neighbour ∈ℓu Lα. If ℓu u= i, thenG G=i
j k

i
k j, , , which is not possible

by assumption. Hence we have ≠ℓu ui. We now recolour t with colour Δ + 1. This is
possible, as t is free and thus has no neighbour in Lα by the lock‐property. As s is not
superfree, α colours exactly two neighbours of s with the same colour, which is j. Hence,
t is the only neighbour of s which α colours with colour c. Hence, after recolouring t with
colour Δ + 1, we can recolour s with c. Thus we can recolour vi j, with k. As all the
internal vertices inGi

j k, were free, by the lock‐property, they had no neighbours in Lα. We
now apply Lemma 8 (with the roles of j and k reversed) to the subpath of G s\ { }i

j k,

containing a neighbour of ℓu . Now both ui and ℓu can be recoloured as they have no
neighbour coloured j. In this way, inO n( ) time, we have reduced the number of vertices
coloured Δ + 1 by 2 − 1 = 1, that is, we have compacted α. □

Lemma 12. LetG be a connected graph on n vertices with maximum degree ≥Δ 3 that is
not isomorphic to KΔ+1. Let α be a (Δ + 1)‐colouring of G that is not an isolated vertex in
R G( )Δ+1 such that ≠ ∅Lα . Then it is possible to compact α in O n( ) time.

Proof. We note that G has O n( ) edges as Δ is a fixed constant. Let L u u= { , …, }α p1 for
some ≥p 1.

Our algorithm. If α does not have the lock‐property then we are done by Lemma 7.
We may therefore assume that α has the lock‐property. As α is not an isolated vertex in
R G G( ),Δ+1 has at least one free vertex x . Let P be a shortest path inG from x to a vertex
in Lα, say to u1. We may assume that x is chosen such that x is the free vertex on P closest
to u1. Then every internal vertex of P is locked and coloured with a colour in {1, …, Δ}.
Moreover, the only vertex of P with a neighbour in Lα is the neighbour of u1. By
definition, any locked vertex not in Lα has a neighbour with colour Δ + 1, so it is
adjacent to a vertex in Lα. Hence P has at most two edges. As x is free, but by the lock‐
property every vertex in N u[ ]G 1 is locked, it follows that u1 and x are not adjacent.
Therefore, P contains exactly two edges. Without loss of generality, we may assume that
the middle vertex is v1,1, which has colour 1 by definition, and that x is coloured 2. In
particular note that in this case ∈x V G( )1

1,2 .
We may assume, for any two distinct colours h h, ′ in {1, …, Δ}, that bothGh h

1
, ′ andGh h

1
′,

are paths whose end‐vertices are locked and that do not contain any superfree vertices,
otherwise we apply Lemma 9 and are done. As G1

1,2 is a path whose end‐vertices are
locked and ∈x V G( )1

1,2 is free, G1
1,2 has at least three vertices. Hence, we may assume

that G G=1
1,2

1
2,1, otherwise we may apply Lemma 11 and are done.
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Let H2,3 be the (2, 3)‐component of G containing x . As x is not superfree and has two
neighbours coloured x1, has only one neighbour coloured 3. Hence x has degree 1 in
H2,3. If H2,3 is not a path, then let w be the vertex with degree at least 3 in H2,3 that is
closest to x . As w has three neighbours coloured alike, w is superfree. This means we can
recolour w with a colour ≠c Δ + 1. Note that ∉c {2, 3}.

This recolouring of w may have altered the graph G1
1,2. Note that w is not part of G1

1,2

before it is recoloured since, unlike vertices onG1
1,2, it is superfree. It becomes part ofG1

1,2

after recolouring only if c = 1 (since we know ≠c 2). If this occurs, thenG1
1,2 is no longer

a path, and we apply Lemma 9 and are done in O n( ) time. Hence suppose that G1
1,2 is

(still) a path and note that the recolouring of w also changed H2,3 into a path (if H2,3 was
not already a path). For simplicity, we still call the current colouring α.

The internal vertices of the path H2,3 each have two neighbours coloured alike. Hence,
they are not locked and therefore all but at most one vertex of H2,3 is free. By the lock‐
property, every neighbour of a vertex in Lα is locked. Consequently, no internal vertex of
H2,3 has a neighbour in Lα. Let x′ be the end‐vertex of H2,3 other than x . Then α x( ′) is
either 2 or 3. If α x( ′) = 2, then we apply Lemma 8 with j = 3 and k = 2. If α x( ′) = 3,
then we apply Lemma 8 with j = 2 and k = 3 (as x is free and thus has no neighbour in
Lα either). Let β be the resulting colouring.

We now proceed by applying a similar procedure to β to the one we applied to α. If β
does not have the lock‐property, then we are done by Lemma 7, so we may assume that β
does have the lock‐property. Recall that v1,2 and v1,3 are locked by α. Since at most one
vertex in H2,3 is locked by α, it follows that at most one vertex in v v{ , }1,2 1,3 is in H2,3. If
v1,2 is in H2,3, but v1,3 is not then β v β v( ) = ( ) = 31,2 1,3 , so u1 is not locked by β,
contradicting the lock‐property. Therefore v1,2 is not in H2,3, and similarly v1,3 is not in
H2,3, so β v( ) = 21,2 and β v( ) = 31,3 . We may assume that β G[ ] 1

1,2 and β G[ ] 1
2,1 are paths

whose end‐vertices are locked and that do not contain any superfree vertices, otherwise
we apply Lemma 9 and are done. Note that α G α G[ ] = [ ]1

1,2
1
2,1 consists of a path which

contains the vertices v x,1,1 , and v1,2 in that order and α colours these vertices 1, 2 and 2,
respectively. Therefore v1,2 must have a neighbour v′ in α G[ ] 1

2,1 that α colours with colour
1, and this must be an internal vertex of α G[ ] 1

2,1, so by the lock‐property, it cannot be
adjacent to a vertex in Lα. Since L L=α β it follows that v′ has no neighbours in Lβ, and so
it must be free in β. As β G[ ] 1

2,1 is a path whose end‐vertices are locked and
∈ ( )v V β G[ ]1,2 1

2,1 is free, β G[ ] 1
2,1 has at least three vertices. Thus we may assume that

β G β G[ ] = [ ]1
1,2

1
2,1, otherwise we apply Lemma 11 and are done.

As v1,1 is locked by β, we find that v1,1 has a neighbour z with β z( ) = 2. Hence, z
belongs to β G[ ] 1

1,2. Recall that α x( ) = 2. As v1,1 is locked by α, we find that v1,1 has no
other neighbour that got colour 2 in the colouring α, by the lock‐property. Note that
β x( ) = 3. Hence, in order for v1,1 to have a neighbour coloured 2 by β, it must be the case
that z belongs to H2,3 and thus α z( ) = 3. As v1,2 is not in H2,3, we find that ≠z v1,2. Then
z is an internal vertex of β G β G[ ] = [ ]1

1,2
1
2,1. Thus z has two neighbours coloured 1. If z is

an internal vertex of H2,3, then β colours two other neighbours of z with colour 3. This
implies that z is superfree, contradicting the fact that β G[ ] 1

1,2 has no superfree vertices.
Thus z is the end‐vertex of H2,3 other than x , that is, z x= ′.

We now let y be the first vertex of β G[ ] 1
1,2 that is not in α G[ ] 1

1,2 when traversing β G[ ] 1
1,2

from v1,2. Note that such a vertex y exists, as z belongs to β G[ ] 1
1,2 but not to α G[ ] 1

1,2 (as
α z( ) = 3). Thus ≠α y β y( ) ( ), so y belongs to H2,3. The end‐vertices of β G[ ] 1

1,2 are v1,1 and
v1,2, neither of which belong to H2,3. Hence, y is an inner vertex of β G[ ] 1

1,2. If y is an
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internal vertex of both H2,3 and β G[ ] 1
1,2, then y would be superfree, contradicting the fact

that β G[ ] 1
1,2 has no superfree vertices. This means that y is an end‐vertex of H2,3. As

β x( ) = 3 while β y( ) = 1 or β y( ) = 2, we find that ≠y x . It follows that y z x= = ′, and
so β y( ) = 2.

Consider the vertex z′ on β G[ ] 1
1,2 reached immediately before y z x= = ′ when

traversing β G[ ] 1
1,2 from v1,2. Then α z β z( ′) = ( ′) = 1. As α v α y( ) = ( ) = 21,2 , we find that

z′ is an inner vertex of α G[ ] 1
1,2. It follows that z′ is a free vertex. Note that z is adjacent to

v1,1 and z′ and that α z( ) = 3 and α v α z( ) = ( ′) = 11,1 . Therefore z′ is a vertex of α G[ ] 1
1,3

and so α G[ ] 1
1,3 and α G[ ] 1

1,2 intersect on the free vertex z′. By Lemma 10, it follows that
α G[ ] 1

1,3 is not a path whose end‐vertices are locked and that does not contain any
superfree vertices, and so we are done by applying Lemma 9. This completes the
description of the algorithm.

The correctness of our algorithm follows directly from its description. Hence it remains
to discuss its runtime.

Runtime analysis. We first compute the set Lα in O n( ) time, as Δ is a constant. We
then apply Lemma 7 on each ui. As this takes O (1) time per vertex, obtaining the lock‐
property takesO n( ) in total. As Δ is a constant, for a given pair i j( , ), the vertex vi j, can be
found in O (1) time. Moreover, for a given triple i j k( , , ), we can compute Gi

j k, in O n( )

time. As Δ is a constant, we can find a free vertex x in O n( ) time.
We can find the path P to a vertex in Lα, which we assumed was u1, by using a

breadth‐first search starting from x . As Δ is a constant, this takesO n( ) time. We may also
assume that x is the free vertex on P closest to u1 on this path, as otherwise we can
replace x by some other free vertex of P in O n( ) time.

We check in O n( ) time whether G1
1,2 is a path whose end‐vertices are locked and that

does not contain any superfree vertices. We check the same in O n( ) time for G1
2,1. If we

find that for at least one of these graphs this is not the case, then our algorithm applies
Lemma 9 (either with i j k= = 1, = 2 or with i k j= = 1, = 2), and we are done inO n( )

time. So suppose this is the case for both G1
1,2 and G1

2,1. Then we check in O n( ) time
whetherG G=1

1,2
1
2,1. If not, then our algorithm applies Lemma 11 (with i j k= = 1, = 2),

and we are done in O n( ) time. So suppose that G G=1
1,2

1
2,1.

Recolouring the vertex w in H2,3 (if it exists) and applying Lemma 8 (either with
j k= 3, = 2 or with j k= 2, = 3) takes O n( ) time. So far we have used O n( ) time.
Hence, it takes O n( ) time to do the similar procedure for the colouring β obtained after
applying Lemma 8. We find the vertices z and z′ in O (1) time. Afterwards we apply
Lemma 9, which takesO n( ) time. So we usedO n( ) time in total. This completes the proof
of the lemma. □

We are now ready to prove Proposition 1 for graphs G with maximum degree ≥Δ 3

by following the arguments from [24] without the requirement thatG is (Δ − 1)‐degenerate
(i.e. we allow G to be Δ‐regular). So the proof is similar to the proof in [24] for (Δ − 1)‐
degenerate graphs except that we use Theorem 7 instead of its algorithmic counterpart for
(Δ − 1)‐degenerate graphs. To show this we give a self‐contained proof.

Proposition 1 (Restated). Let G be a connected graph on n vertices with maximum degree
≥Δ 3. Then it is possible to find a path in R G( )Δ+1 (if one exists) between any two given

(Δ + 1)‐colourings in O n( )2 time.
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Proof. We use induction on Δ, and, to begin, use the fact that the result is known for
Δ = 2 (3‐colourings of paths and cycles, see [31] and note that, as discussed above in the
proof of Theorem 9, their result was more general than this). For ≥Δ 3, assume that we
have an O n( )2 time algorithm for connected graphs on n vertices with maximum degree
Δ − 1. Let α and β be two (Δ + 1)‐colourings ofG. We can check inO n( ) time whether α
or β is an isolated vertex in R G( )Δ+1 and, clearly, if one or other is, then no path between
them exists. Otherwise we apply Lemma 12 O n( ) times, and in O n( )2 time we can find a
path from α to some Δ‐colouring γ1 and a path from β to some Δ‐colouring γ2. By
Theorem 7 we can find in O n( )2 time a partition S S{ , }1 2 of V G( ) such that S1 is an
independent set and S2 induces a (Δ − 2)‐degenerate graph, which we denote by H . We
modify the pair S S( , )1 2 in O n( )2 time by moving vertices from S2 to S1 until a superset of
S1 that is a maximal independent set is obtained. We denote the modified pair S S( , )1

′
2
′

Let γH1 and γH2 be the Δ‐colourings of H that are the restrictions of γ1 and γ2,
respectively, to S2

′. Let γ1
′ and γ2

′ be the (Δ + 1)‐colourings obtained from γ1 and γ2,
respectively, by recolouring every vertex in S1

′ with the colour Δ + 1. As S1
′ is maximal, H

has maximum degree at most Δ − 1. We apply the induction hypothesis to find in O n( )2

time a path between the two Δ‐colourings γH1 and γH2 in R H( )Δ (note that neither is an
isolated vertex of R H( )Δ since H is (Δ − 2)‐degenerate). Note that this immediately
translates into a path between γ1

′ and γ2
′ in R G( )Δ+1 . Hence we obtain a path between α

and β in R G( )Δ+1 . This completes the proof. □

6 | FUTURE WORK

In this section we pose two open problems. We have proven that for every integer ≥k 3, the
problem of finding a k‐degenerate decomposition is polynomial‐time solvable on graphs of
maximum degree k and NP‐hard for graphs of maximum degree k2 − 2 (by generalizing the
hardness proof of [49] for k = 3). This brings us to our first open problem.

Open Problem 1. Determine, for every integer ≥k 4, the complexity of finding a
k‐degenerate decomposition for graphs of maximum degree k + 1.

Our second open problem is related to Theorem 3. Recall that this theorem states that for
every three integers ≥k 3 and ≥p q, 0 with p q k+ = − 2, the vertex set of every connected
graph of maximum degree k that is not isomorphic to Kk+1 can be partitioned into two sets A
and B, where A induces a p‐degenerate subgraph of maximum size and B induces a
q‐degenerate subgraph. Our algorithms in Sections 2 and 3 form an algorithmic version of
Theorem 5, which is a special case of Theorem 3 in which p = 0 and q k= − 2.

Open Problem 2. Does there exist an algorithmic version of Theorem 3 similar to our
algorithmic version of Theorem 5?
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