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Abstract: For a symmetric matrix B, we determine the class of Q such that QtBQ is non-negative
definite and apply it to panel data estimation and forecasting: the Hausman test for testing
the endogeneity of the random effects in panel data models. We show that the test can be performed
if the estimated error variances in the fixed and random effects models satisfy a specific inequality.
If it fails, we discuss the restrictions under which the test can be performed. We show that estimators
satisfying the inequality exist. Furthermore, we discuss an application to a constrained quadratic
minimization problem with an indefinite objective function.
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1. Introduction

Optimization of quadratic structures and corrections to the construction of covariance matrices
has a long history in econometrics and financial economics. From the early stages of simultaneous
equations modeling, to testing panel data models, to recent advances in handling volatilities
and correlations of financial returns in large systems, to applications in portfolio management, all these
issues have contained a component of either quadratic structures and covariance estimation or some
form of optimization based on them. The importance of the above in forecasting cannot be overstated
as they all relate to decision-making at some future time period: a good panel data model can be used
in generating out-of-sample forecasts, a well-constructed covariance matrix can be used in optimizing
the weights of a portfolio or for building a model for volatility and correlation forecasting. Although
we rarely admit it, most models and mathematical operations are –in the end –geared for forecasting.

In this paper we present a novel mathematical approach for solving a particular class of quadratic
optimization problems with applications in econometrics, statistics and portfolio construction.
At the center of these mathematical derivations is a symmetric indefinite matrix, in applications
a covariance matrix. The indefinite nature of this matrix can come from many sources but the common
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ground to all is rank deficiency or rank indeterminacy based on redundant information in the variables
from which we compute that said matrix: a large number of variables involved or some deficiency in
the structure of the underlying problem. The problem of this indeterminacy leads to other problems in
different set-ups: in the context of a matrix-version of the well-known Hausman test in econometrics
a difference in covariance matrices required for the application of the test might not be positive definite;
in the context of a large portfolio optimization the covariance matrix of the financial returns might
not be positive definite. Admittedly, there are many solutions that have been proposed for these
problems; for example, the Hausman test can be computed with a regression approach so that no
matrix inversion is required (or a generalized inverse can be used, as has been done in many parts of
the relevant literature); in the context of a rank-deficient covariance there are a number of solutions that
have been proposed that correct this. So, what are the new insights that this paper has to offer? First,
in the context of the Hausman test the results offer a very clear rule as to when the test (in its matrix
form) can be applied. This is useful as a specification tool, and is very simple to compute and report
–so when the underlying conditions do not hold for the test to be performed in its matrix form some
caution is warranted, both in model specification and model performance. Second, in the context
of portfolio optimization the results suggest a particular procedure for optimizing a portfolio given
a set of particular constraints without reference to the potential problems of rank indeterminacy of
the covariance matrix. This therefore allows for a direct solution to the optimization problem even
with sample covariance matrices, computed with a limited number of observations. Finally, it should
be noted that the optimization problems discussed in this paper have potential for other applications
as well. For example, one might consider the case of a least generalized least squares-like problem for
which the covariance matrix has rank indeterminacy because of, say, less observations than variables.
In that case, given constraints, the solution proposed here can be utilized. Of course such a model can
then be used in forecasting.

2. Notations

In this paper, we obtain the class of all Q such that QtBQ is non-negative definite (nnd) where
B is a given symmetric indefinite matrix (the terms ’non-negative’ and ’nonnegative’ are used
interchangeably in the literature). Why is this important? Primarily because there is a very active
interest in the topic in the literature recently [1–3], but even more importantly due to the vast array of
applications in statistics, finance and economics, most notably in panel data econometrics and quadratic
optimization, as elaborated in the subsequent sections.

(a) Let θ be a parametric vector of interest and t be an unbiased estimator of θ, the dispersion
matrix of which depends on some parameters γ. The estimated dispersion matrix D̂(t) based on γ̂

may turn out to be an indefinite matrix. It is of interest to find out the class of all linear parametric
functions Qtθ for which the estimated dispersion matrix of the unbiased estimator Qtt is non-negative
definite. Take a specific instance where D̂(t) = σ2((1− ρ̂)I + ρ̂11t) and let ρ̂ < − 1

n−1 where t is of
order n× 1. In this case D̂(t) is indefinite.

(b) Again, let θ be a parametric vector of interest and let t1 and t2 be two unbiased estimators
of θ. We say that t1 is superior to t2 if D̂(t2)− D̂(t1) is non-negative definite or equivalently if D̂(t1)

is below D̂(t2) under the Löwner order [4]. Suppose neither of t1 and t2 is superior to the other. It is
of interest to find out sets of linear functions Qtθ of θ such that D̂(t2)− D̂(t1) is non-negative definite.
For a specific case, we consider the fixed effects and random effects panel data models [5] to examine
when the issue of endogeneity in the random effects model can be checked using the Hausman test.
We study the following:

(i) Suppose we choose and fix the functional form of the estimators of the variance components.
We obtain the class of all regressor matrices for which we can perform the Hausman test.

(ii) Suppose for given data on regressors the difference in the estimated dispersion matrices is
indefinite. We obtain the class of linear compounds of the regression coefficient vector for which
we can perform the Hausman test.
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(iii) We note that there always exists an estimator of the variance of the white noise part of the error in
the random effects model for which the difference in the estimated dispersion matrices of the fixed
effects and random effects estimators of the regression coefficient vector is indeed non-negative
definite. Reference [6]’s estimator is one such estimator of the variance component mentioned
above. There can be others.

(iv) We extend the above results to the cases where either the random error or the random effects
or both are heteroscadastic.

We are aware that there are alternatives to the traditional Hausman test such as in Reference [7]
that incorporates the time-invariant parts of the regressors in the random effects model. However,
the most popular test to date is the traditional Hausman test.

(c) Consider the problem of minimizing xtBx subject to Ax = 0. Clearly, this is equivalent to
the unconstrained minimization problem ut(I−A+A)B(I−A+A)u, which has a finite solution if and
only if (I−A+A)B(I−A+A) is non-negative definite. (A+ denotes the Moore-Penrose inverse of A.)
Thus, it is often of interest to explicitly obtain the class of all vectors x such that xtBx ≥ 0, where B is an
indefinite real symmetric matrix. Unfortunately, this class is not a subspace of Rn. It is also not a convex
set. In this paper, we characterize the class of all matrices Q such that QtBQ is non-negative definite
(nnd). We then study the problem of minimization of a quadratic form xtBx subject to Ax = b, where B
is an indefinite matrix and b is in the column space of A. Given a matrix A, we characterize the class
of all real symmetric matrices B and vectors b in the column space of A for which the aforementioned
problem has a finite solution. It turns out that one of the key conditions for the minimization problem
to have a finite solution is the non-negative definiteness of QtBQ for a suitable orthogonal projection
matrix Q.

In Section 3, we state the results on non-negative definite matrices and generalized inverses which
will be needed in the later sections. In Section 4, we obtain necessary and sufficient conditions for
QtBQ to be non-negative definite (when B is a symmetric indefinite matrix). Based on this, we develop
an algorithm to generate all such matrices Q. We then specialize to the cases where A has (i) just
one negative eigenvalue and (ii) just one positive eigenvalue. As a special case of (i), we consider
the intraclass correlation matrix which comes naturally as the dispersion matrix in random effects
models. In Section 6, we study, in detail, the issues related to performing Hausman test mentioned in
(b) above. In Section 7, we show that the problem of finding the class of all matrices Q such that QtBQ
is nnd is equivalent to the solution of the quadratic optimization problem: Minimize xtBx subject to
Ax = 0 varying over matrices A. As we shall show, the connection between Q and A comes through
the relationship, null space of A being equal to the column space of Q. Given A, we then determine
the class of all matrices Q such that N (A) = C(Q). Likewise, given Q, we also determine the class
of all matrices A such that N (A) = C(Q). In Section 8, we study, in some detail, the constrained
optimization problem of minimizing xtBx subject to Ax = b where b ∈ C(A) and B is a symmetric
indefinite matrix. We consider two cases: (i) the problem has a solution for some non-null vector
b ∈ C(A) and (ii) the problem has a solution for every non-null b ∈ C(A). Finally, Section 9 concludes.

We use real vectors and matrices in this paper and use the following notations. For a matrix A,
ρ(A), tr(A), C(A),N (A), At, A−, A+, PA denote respectively the rank, trace, column space, null space,
transpose, generalized inverse, Moore-Penrose inverse and orthogonal projector into the column space
of a matrix A. For a positive integer r, 1r denotes a column vector with r components where each
component is 1. Further, J̄r denotes the matrix of order r× r each element of which is 1

r . Clearly J̄r = P1r .
The orthogonal projector Ir − J̄r is denoted by Er. For matrices A and B, A⊗ B denotes the Kronecker
product defined as ((aijB)). A symmetric matrix A is said to be non-negative definite (nnd) if xtAx ≥ 0

for all vectors x. The symbol diag(A,B,C) denotes a block diagonal matrix

A 0 0
0 B 0
0 0 C

. For a random

vector ε, E(ε) and D(ε) denote the expectation vector and the dispersion matrix of ε . Also cov(α, ξ)

denotes the covariance matrix of α with ξ.



Stats 2020, 3 188

3. Preliminaries

In this section, we provide a few results which are well-known and which will be used in the
later sections of this paper.

Lemma 1. Let M =

(
P Q

Qt S

)
be a real symmetric matrix where P and S are real symmetric matrices.

Then M is nnd if and only if

(i) P is nnd,
(ii) C(Q) ⊆ C(P), and
(iii) S-QtP−Q is nnd.

(In view of (ii), QtP−Q is invariant under choices of generalized inverses of P.)

The following lemma is well known. For a proof, please see Reference [8].

Lemma 2. Let AandB be matrices of order m× n. Then AAt = BBt if and only if A = BT, where T is
an orthogonal matrix.

For the proofs of the following Lemmas 3–5, please see Rao and Mitra, 1971.

Lemma 3. Let A be a matrix of order m× n. Let b ∈ C(A). Let G be a generalized inverse of A. Then

(i) N (A) = C(I−GA).
(ii) The class of all solutions to Ax = b is given by Gb + (I−GA)ζ, where ζ is arbitrary.

Lemma 4. LetA be an m× n matrix of rank r (> 0). Let A = U

(
∆ 0
0 0

)
Vt be a singular value decomposition

of A where U and V are orthogonal matrices and ∆ is a positive definite (pd) diagonal matrix of order r× r.

Then the class of the generalized inverses of A is given by V

(
∆−1 L
M N

)
Ut where L, M, N are arbitrary.

In particular, the Moore-Penrose inverse A+ of A is given by V

(
∆−1 0

0 0

)
Ut.

Lemma 5. Let C and D be nnd matrices of the same order. Then there exists a nonsingular matrix T such
that TtCT and TtDT are diagonal matrices.

The following lemma on quadratic optimization is well-known.

Lemma 6. Let C be a real-symmetric matrix of order n × n, then the function f(x) = 1
2 xtCx − dtx has

a minimum value if and only if C is nnd and d ∈ C(C), in which case the minimum value is given by

− 1
2 dtC+d. Furthermore, if C = St

(
Λ 0
0 0

)
S is a spectral decomposition of C, where S is orthogonal and Λ

is diagonal positive definite matrix of order r× r, then the optimal value is achieved by all vectors x of the form,

x = C+d + St

(
0
z

)
for any z ∈ Rn−r.

The following result is well-known for researchers in parallel sums of matrices and shorted
operators. For a proof, see Reference [4].
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Lemma 7. Let A and B be nnd matrices of the same order. Then C(A) ∩ C(B) = C(A(A + B)−B),
where (A + B)− is any generalized inverse of A + B.

The following lemmas are well known. For a proof, please see Reference Rao and
Bhimasankaram [8].

Lemma 8. Let A and B be positive definite matrices of the same order. Then B−1 −A−1 is nnd if and only
if A− B is nnd.

Lemma 9. Let A be a nonsingular matrix of order n× n and let u and v be vectors of order n× 1. Then A+uvt

is nonsingular if and only if 1 + vtA−1u is not equal to 0. Also if 1 + vtA−1u is not equal to 0, then (A + uvt)−1

= A−1 - A−1uvtA−1 / (1 + vtA−1u) .

Lemma 10. Let A and D be nonsingular matrices of orders n × n and r × r respectively and let B and C
are matrices of orders n × r and r × n respectively. Then A + BDC is nonsingular if and only if W =

D−1 + CA−1B is nonsingular. Also if W is nonsingular, then (A + BDC)−1 = A−1 − A−1B(D−1 +

CA−1B)−1CA−1.

Lemma 11. Let A and B be matrices of orders m× n and n×m respectively Then the non-null eigenvalues of
AB and BA are identical.

Lemma 12. Let A1, ..., Ak be commuting real symmetric matrices of the same order. Then they have
a simultaneous spectral decomposition.

4. Non-Negative Definiteness of QtBQ

Let B be a real symmetric indefinite matrix of order n× n and let Q be a matrix with n rows.
In this section, we investigate the conditions under which QtBQ is non-negative definite. We shall
also give a method of constructing all such matrices Q.

Let B be a real symmetric indefinite matrix of order n× n. Let a spectral decomposition of B be
given by

B = (P1 : P2 : P3)diag (∆1,−∆2, 0) (P1 : P2 : P3)
t,

where ∆i is a positive definite diagonal matrix of order ri × ri, i=1,2, and P = (P1 : P2 : P3) is an
orthogonal matrix, Pi being a matrix of n× ri, i=1,2,3 such that r1 + r2 + r3 = n.

We prove

Theorem 1. Let B, P, ∆1, and ∆2 be as specified above. Let Q be a matrix of order n× s. Write Ri = QtPi, i =
1,2,3 and R = (R1 : R2 : R3). Let ρ(Ri) = wi, i = 1,2. Then QtBQ is nnd if and only if there exists a matrix
L with number of columns equal to w1 such that

LLt = R1∆1Rt
1

and
LΛLt = R2∆2Rt

2,

where Λ is a diagonal nnd matrix with exactly w2 diagonal elements in (0,1] and the rest are equal to 0.

Proof. Notice that Q = PRt and QtBQ = RPtP diag (∆1 : −∆2 : 0) PtPRt = R1∆1Rt
1 − R2∆2Rt

2.
‘If part’:
QtBQ = R1∆1Rt

1 − R2∆2Rt
2 = LLt − LΛLt = L(I−Λ)Lt is nnd since I−Λ is nnd.

‘Only if’ part:
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Notice that R1∆1Rt
1 and R2∆2Rt

2 are both nnd. Since QtBQ = R1∆1Rt
1 − R2∆2Rt

2 is nnd, we have
C(R2) ⊆ C(R1). By Lemma 5, there exists a nonsingular matrix T such that

R1∆1Rt
1 = T

(
Γ 0
0 0

)
Tt

and

R2∆2Rt
2 = T

(
Ω1 0
0 Ω2

)
Tt

where Γ is a positive definite diagonal matrix of order ω1 ×ω1 and diag (Ω1, Ω2) is a diagonal nnd
matrix of rank ω2 (Ω1 is of order ω1 ×ω1).

R1∆1Rt
1−R2∆2Rt

2 is nnd⇔ T

(
Γ 0
0 0

)
Tt−T

(
Ω1 0
0 Ω2

)
Tt is nnd⇔ Γ−Ω1 is nnd and Ω2 = 0.

Writing T = (T1 : T2) where T1 has w1 columns, we have,

R1∆1Rt
1 = T1ΓTt

1

and
R2∆2Rt

2 = T1Ω1Tt
1

Writing L = T1Γ
1
2 , we have

R1∆1Rt
1 = LLt

and
R2∆2Rt

2 = LΛLt,

where Λ = Γ−
1
2 Ω1(Γ

− 1
2 )t. Further, since Γ−Ω1 is nnd, so is I−Λ = Γ−

1
2 (Γ−Ω1)(Γ

− 1
2 )t. Clearly,

all diagonal elements of Λ are in [0, 1] . Since, æ(Λ) = æ(Ω1) = æ(R2) = ω2, exactly ω2 diagonal
elements of Λ lie in the interval (0, 1]. Q.E.D.

Given a real symmetric matrix B, we now give a method of generating all matrices Q such that
QtBQ is nnd. Let B be as specified just before Theorem 1. Clearly, ω2 ≤ ω1. Also, ω2 ≤ ρ(∆2). Thus,
ω2 ≤ l = min{ω1, ρ(∆2)}.

We now prove that Algorithm 1 yields the class of all Q such that QtBQ is nnd. First, notice that
for each Q obtained through Algorithm 1,

R1∆1Rt
1 = LLt

and

R2∆2Rt
2 = LVS1

(
D

1
2
1 0

0 0

)
U∆
− 1

2
2 ∆2∆

− 1
2

2 Ut

(
D

1
2
1 0

0 0

)
St

1VtLt

= LVS1

(
D1 0
0 0

)
St

1Vt
1Lt

= LΛLt,

where Λ is 0 or is orthogonally similar to a diagonal nnd matrix with at most l = min{w1, ρ(∆2)}
diagonal elements in (0,1]. Hence, by Theorem 1, QtBQ is nnd.

Next, let QtBQ be nnd. Then, there exists R1, R2 such that QtBQ = R1∆1Rt
1 − R2∆2Rt

2 and M
with rank ρ(R1) and Λ with rank ρ(R2) and Λ such that MMt = R1∆1Rt

1 and MΛMt = R2∆2Rt
2

where Λ and I−Λ are nnd.
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Therefore, by Lemma 2, R1∆
1
2
1 = MVt for some orthogonal matrix V. Without loss of generality,

define L = MVt.
LVΛVtLt = R2∆2Rt

2

or

LVB

(
D 0
0 0

)
StVtLt = R2∆2Rt

2

where S is a permutation matrix. So,

R2∆2Rt
2 = LVS1

(
D 0
0 0

)
St

1VtLt,

where S1 is a semi-permutation matrix with ρ(∆2) columns. By Lemma 2,

R2∆
1
2
2 = LVS1

(
D

1
2 0

0 0

)
U

where U is an orthogonal matrix. Q.E.D.
Algorithm 1 demonstrates how to construct the class of all Q such that QtBQ is nnd in

an organized manner. However, it is clear that even when R1 is fixed, the class of all Q such that QtBQ
is nnd is neither a subspace nor a convex set.

Algorithm 1: The Pochiraju algorithm.

Step 1: Choose R1 and R3 arbitrarily. (Once R1 and R3 are chosen and fixed,their ranks ω1

and ω3 automatically get fixed.)

Step 2: Construct L = R1∆
1
2
1 .

Step 3: Choose ω2 arbitrarily such that 0 ≤ ω2 ≤ l = min{ω1, ρ(∆2)}.
Step 4: Choose D = diag (d1, d2, . . . , dω2 , 0, . . . , 0) = diag (D1 : 0) where di is an arbitrary

number in (0,1].

Step 5: Construct R2 = R1∆
1
2
1 T∆

− 1
2

2 where T is an arbitrary matrix of rank ω2 with singular
values in [0,1]. (This is actually achieved as follows: Choose S1 to be an arbitrary
semi-permutation matrix of order ω1 × ρ(∆2), U be an arbitrary orthogonal matrix of

order ρ(∆2)× ρ(∆2) and construct R2 = LVS1

(
D

1
2
1 0

0 0

)
U∆
− 1

2
2 , where V is an

orthogonal matrix.)
Step 6: Construct Q = PRt where R = (R1 : R2 : R3).

We now consider two special cases where the construction of the class of all Q such that QtBQ is
nnd becomes simple: (i) B has just one negative eigenvalue and (ii) B has just one positive eigenvalue.

Case (i): B has just one negative eigenvalue.
Choose R1 and R3 arbitrarily. Let LLt = R1∆1Rt

1 where the number of columns in L is ρ(R1).
Since there is only one negative eigenvalue, let us denote it by −δ2 and the corresponding matrix
R2 by the vector r2. Now LΛLt = δ2r2rt

2 . Clearly, Λ has exactly one nonzero (positive) diagonal
element (say λ) which can appear in any of the diagonal elements. So LΛLt = λ li lt

i where 0 ≤ λ ≤ 1.

So r2 =
√

λ
δ2

li. The class of all r2 is obtained by choosing λ arbitrarily such that 0 ≤ λ ≤ 1 and an

arbitrary column (say ith column) li of L and constructing r2 =
√

λ
δ2

li. Then Q = P

Rt
1

rt
2

Rt
3

.
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As a special instance, we consider the estimated intraclass correlation matrix B where
the estimated intraclass correlation coefficient ρ̂ < −1

n−1 . We now obtain the class of all Q such
that QtBQ is nnd.

Here ∆1 = (1− ρ̂) I, ∆2 = −(1 + (n− 1)ρ̂), P1Pt
1 = I− 11t

n and P2Pt
2 = 11t

n and P3 does not exist
since there is no zero eigenvalue.

Choose R1 arbitrarily and let L be a matrix of maximum column rank such that LLt = (1− ρ̂)R1Rt
1.

Choose a column (arbitrarily), say, li and a number λ in the interval (0,1] (arbitrarily). Construct

r2 =
√

λ
−(1+(n−1)ρ̂) li. Construct Q = (P1 : P2)

(
Rt

1
rt

2

)
. These are all the matrices Q such that QtBQ

is nnd.
Case (ii): B has just one positive eigenvalue.
Let δ1 be the positive eigenvalue. Since R1 has just one column, we denote it by r1. Choose r1 and

R3 arbitrarily. Denote L by l since L has only one column. Then llt = δ1r1rt
1. So, l =

√
δ1r1.

Since Λ is a 1× 1 matrix, we denote it by λ. As per Theorem 1, 0 ≤ λ ≤ 1. Choose and fix λ such
that 0 ≤ λ ≤ 1. Then by Theorem 1

λllt = R2∆2Rt
2.

Notice that
ρ(R2) = ρ(R2∆2Rt

2) = ρ(λllt) = ρ(l) = 1.

Write R2 = uvt, where u and v are column vectors.

λllt = vt∆2vuut.

Clearly, u is a scalar multiple of l. Choose v arbitrarily, and then u =
√

λ
vt∆2v l. Construct R2 = uvt

and Q = P

 rt
1

Rt
2

Rt
3

.

It may be noted that even in these two simple cases, the class of all Q such that QtBQ is nnd is a
complex structure. (Neither of them is an affine space).

5. Remarks

In Theorem 1, We have obtained a solution to the following problem in matrix partial orders:
Suppose two real symmetric matrices C and D are not related by Lowner order. What is the class of all
matrices Q such that QtCQ is below QtDQ under the Lowner order?

Comparison of the estimators of vector valued parameters is quite common in sample surveys
where no estimator is uniformly superior to the others as the difference in the estimated dispersion
matrices of the estimators, say, ∆ is indefinite (for details, see Section 6.1 of Reference [9]). The results
this Section help in identifying the subsets of linear functions of such parameters for which one
estimator is superior to the other by finding the class of all Q for which Qt∆Q is nnd.

6. Hausman Test

The usual Hausman Test—in order to test for endogeneity in the random effects model [5], cannot
be performed if the difference between the estimated dispersion matrices of the regression coefficient
estimators in the fixed effects and random effects models (with homoscedastic structures for the error
in the fixed effects model and for the random error and also for the random effects in the random
effects model) denoted by Π is not non-negative definite. In this section, we study the difference
matrix Π in detail. Since we do not know the regressor matrix at the design stage, we first study
when Π is nnd for every choice of the regressor matrix. It turns out that Π is nnd for all regressor
matrices X if and only if the estimated variance of the error in the fixed effects model is at least as
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big as the estimator of the variance component of the random noise part in the error in the random
effects model. When the difference in the estimated dispersion matrices of the errors in the fixed effects
and the random effects models is not nnd, using Algorithm 1, we obtain explicitly the class of all
regressor matrices X for which Π is nnd. Owing to this structure, we show that when the number
of regressors is larger than the number of individuals, Π cannot be non-negative definite. Finally,
for a given regressor matrix X, if Π is not nnd, we find an explicit expression for the class of all linear
functions of regression coefficients for which the Hausman Test can be performed. We note that
Reference [6]’s estimator of the variance component of the random noise part satisfies the property
that the estimated variance of the error in the fixed effects model is at least as big as the estimator
of the variance component of the random noise part in the error in the random effects model. Thus,
with this choice of the estimators of the variance components, Hausman test can be performed for
all regressor matrices X. We observe that we can always get estimators of variance components such
that the difference in the dispersion matrices of the error structures in the fixed and random effects
models is non-negative definite. Finally, we show that for a suitable choice of the variance component
estimators, the difference between the estimated dispersion matrices of the regression coefficient
estimators in the fixed effects and random effects models is non-negative definite even when there
is heteroscedasticity in the random effects or the random error or both.

We introduce briefly the homoscedastic fixed and random effects panel data models. For details
please see References [5,7]. Consider a balanced panel data (yit, xt

it), t = 1, ..., T; i = i, ..., N where
yit is the response and xt

it is a 1× k vector of regressor values on k regressors for the ith individual
at time point t. Denote Yi = (yi1, ..., yiT)

t, Xi = (xi1, ..., xiT)
t, and X = (Xt

1, ..., Xt
N)

t. Let 1 denote
a column vector of appropriate order where each component is 1. Denote F = diag(1, ..., 1) where 1 is
of order T × 1.

The fixed effects specification is given by Y = Fα + Xβ + ε where α = (α1, ..., αN)
t is the vector of

fixed effects (treated as non-stochastic), β = (β1, ..., βk)
t is the vector of regression coefficients (also

treated as nonstochastic), and ε is a random error vector of order NT× 1 with E(ε) = 0 and D(ε) = σ2
FI.

(In the fixed effects model, it is assumed that the observational errors are all uncorrelated and have
the same variance, denoted by σ2

F.)
The random effects specification is given by Y = 1NTµ+ Fα+Xβ+ ξ where α, β, ξ are as specified

in the fixed effects model except that α is treated as random with E(α) = 0 and D(α) = σ2
αI,

cov(α, ξ) = 0 and D(ξ) = σ2
ξ I. We shall denote σ2

1 = σ2
ξ + Tσ2

α .
If we denote η = Fα+ ξ in the random effects model, we get D(η) = Ω= σ2

α(IN ⊗ TJ̄T)+ σ2
ξ (IN ⊗

IT) =σ2
1 (IN ⊗ J̄T) + σ2

ξ (IN ⊗ ET).

The usual fixed and random effects estimators of β, denoted by β̂F and β̂R are given by

β̂F = (Xt(IN ⊗ ET)X)−1Xt(IN ⊗ ET)Y

and

β̂R = (XtE1NT (E1NT ΩE1NT )
−E1NT X)−1XtE1NT (E1NT ΩE1NT )

−E1NT Y.

Also,

D(β̂F) = (Xt(IN ⊗ ET)X)−1σ2
F

and

D(β̂R) = (XtE1NT (E1NT ΩE1NT )
−E1NT X)−1.

Let s2
F, s2

α, s2
ξ , s2

1(= s2
ξ + Ts2

α) denote the estimators of σ2
F, σ2

α , σ2
ξ , σ2

1 respectively and let D̂(β̂F)

and D̂(β̂R) denote the estimators of D(β̂F) and D(β̂R) where σ2
F, σ2

α , σ2
ξ , σ2

1 are replaced by their
estimators s2

F, s2
α, s2

ξ , s2
1 respectively. (Ω is replaced by Ω̂ obtained by plugging in the estimators of the

variance components).



Stats 2020, 3 194

As a step towards checking when D̂(β̂F) − D̂(β̂R) is nnd for all X, we obtain the spectral
decomposition of E1NT (E1NT ΩE1NT )

−E1NT in the following Lemma.

Lemma 13. The spectral decomposition of E1NT (E1NT Ω̂E1NT )
−E1NT is given by 1

s2
1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET).

Proof. Let us start with simplifying (E1NT Ω̂E1NT ).
First,
E1NT Ω̂ = {(IN ⊗ IT)− (J̄N ⊗ J̄T)}

{
s2

1(IN ⊗ J̄T) + s2
ξ(IN ⊗ ET)

}
=s2

1(IN ⊗ J̄T) + s2
ξ(IN ⊗ ET)− s2

1(J̄N ⊗ J̄T),
(since, (J̄N ⊗ J̄T)(IN ⊗ ET) = J̄N ⊗ J̄TET = 0)
= s2

1(EN ⊗ J̄T) + s2
ξ(IN ⊗ ET). Now,

E1NT Ω̂E1NT =
{

s2
1(EN ⊗ J̄T) + s2

ξ(IN ⊗ ET)
}
{(IN ⊗ IT)− (J̄N ⊗ J̄T)}

= s2
1(EN ⊗ J̄T) + s2

ξ(IN ⊗ ET).
(1)

Notice that, EN ⊗ J̄T and IN ⊗ ET are both orthogonal projectors and their product is 0. Hence,
(1) is the spectral decomposition of E1NT Ω̂E1NT . One generalized inverse (in fact,the Moore-Penrose
inverse) of E1NT Ω̂E1NT is 1

s2
1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET).

Further, since Ω̂ is positive definite with probability 1, CE1NT ⊆ CE1NT Ω̂E1NT ) with probability
1. Therefore, E1NT

{
E1NT Ω̂E1NT

}− E1NT is invariant under the choices of generalized inverses of
E1NT Ω̂E1NT .

Now,
E1NT

{
E1NT Ω̂E1NT

}− E1NT =

{(IN ⊗ IT)− (J̄N ⊗ J̄T)}
{

1
s2

1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET)

}
{(IN ⊗ IT)− (J̄N ⊗ J̄T)} ={

1
s2

1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET)

}
{(IN ⊗ IT)− (J̄N ⊗ J̄T)} =

1
s2

1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET). Q.E.D.

We are now ready to prove

Theorem 2. The difference in the estimated dispersion matrices, Π = D̂(β̂F)− D̂(β̂R) is nnd for all X if and
only if s2

F ≥ s2
ξ .

Proof. D̂(β̂F)− D̂(β̂R) is nnd, if and only if [Xt(IN ⊗ ET)X]−1s2
F − [XtE1NT [E1NT Ω̂E1NT ]

−1E1NT X]−1 is
nnd⇔ XtE1NT [E1NT Ω̂E1NT ]

−1E1NT X− Xt(IN ⊗ ET)X 1
s2

F
is nnd.

But, E1NT [E1NT Ω̂E1NT ]
−1E1NT − (IN ⊗ ET)

1
s2

F
= 1

s2
1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET) − 1
s2

F
(IN ⊗ ET) =

1
s2

1
(EN ⊗ J̄T) +

(
1
s2

ξ

− 1
s2

F

)
(IN ⊗ ET) (In fact, this is the spectral decomposition.) which is nnd if and

only if 1
s2

ξ

− 1
s2

F
≥ 0 or s2

F ≥ s2
ξ . Q.E.D.

If a computed estimator s2
ξ is larger than s2

F, it is clear from Theorem 2 that Π = D̂(β̂F)− D̂(β̂R)

is not nnd at least for some X. We now determine the class of all X for which Π is nnd, so that the
Hausman test can be performed for the entire β vector. Towards this end, as we already noted in
the proof of Theorem 2, the spectral decomposition of S = E1NT [E1NT Ω̂E1NT ]

−1E1NT − (IN ⊗ ET)
1
s2

F
is

given by
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1
s2

1
(EN ⊗ J̄T) +

(
1
s2

ξ

− 1
s2

F

)
(IN ⊗ ET). From the spectral decomposition of S it is clear that the distinct

eigen-values of S are 1
s2

1
, 1

s2
ξ

− 1
s2

F
and 0 with algebraic multiplicities N − 1, NT − N and 1 respectively.

Now we can use Algorithm 1 to obtain the class of all X for which Π is nnd.

We prove

Theorem 3. Let (Cl , Ct
l) be a rank factorization of El where l is a positive integer. Let s2

ξ > s2
F. Then the class

of all X for which Π is nnd is given by
X= 1√

T
(CN ⊗ 1T)Rt

1 + (IN ⊗ CT)Rt
2 +

1√
NT

(1N ⊗ 1T)Rt
3 where

(i) R1 and R3 are arbitrary,
(ii) R2 = R1W where W is an arbitrary matrix, of rank not greater than that of R1, having singular values in

the interval [0.θ],with θ = s2
1(

1
s2

F
− 1

s2
ξ

).

Proof. Notice that 1√
T
(CN ⊗ 1T), IN ⊗ CT and 1√

NT
(1N ⊗ 1T) are orthonormal bases of the

eigen spaces of (I− P1NT )[(I− P1NT )Ω(I− P1NT )]
−1(I− P1NT )− (IN ⊗ ET)

1
s2

F
corresponding to the

eigen-values 1
s2

1
, 1

s2
ξ

− 1
s2

F
and 0 respectively.

Since S has NT − N negative eigen-values, R2 in the expression for X in Theorem 3 is heavily
restricted. Thus, for a large class of matrices X, we cannot perform the Hausman test for all linear
parametric functions. We shall now concentrate on this situation (namely, the difference matrix Π

is not nnd) and obtain the class of all linear parametric functions for which we can still perform the
Hausman test.

Notice that the Hausman Test can be performed on estimable linear functions, Aβ, if and only if
AΠAt is non-negative definite. Also, Aβ are estimable if and only if A is of the form A = Z(IN ⊗ ET)X
for some Z.

First observe that
D̂(β̂F)− D̂(β̂R) = [Xt(IN ⊗ ET)X]−1s2

F − [Xt( 1
s2

1
(EN ⊗ J̄T) +

1
s2

ξ

(IN ⊗ ET))X]−1

= [Xt(IN ⊗ ET)X]−1(s2
F − s2

ξ) + (Xt(IN ⊗ ET)X)−1Xt(IN ⊗ J̄T)

[
s2

1
s2

ξ

INT + (IN ⊗ J̄T)X(Xt(IN ⊗ ET)X)−1Xt(IN ⊗ J̄T)]
−1(IN ⊗ J̄T)X(Xt(IN ⊗ ET)X)−1 (applying

Lemma 10).
Consider Aβ. The class of all A such that the Hausman test can be performed for Aβ is completely
determined by the class of all Z such that A = Z(IN ⊗ ET)X . Write C = (IN ⊗ ET)X and D =

(IN ⊗ J̄T)X. In these expressions, C and D are the time-varying and time-invariant parts of X.

We want to determine the class of all Z such that AΠAt is nnd.
Now,
AΠAt = ZΦZt where
Φ = PC(s2

F − s2
ξ) + C(CtC)−1Dt(

s2
1

s2
ξ

I + D(CtC)−1Dt)−1D(CtC)−1Ct.

As before, we need to get the spectral decomposition of Φ in order to determine the class of all Z
such that ZΦZt is nnd. We first prove

Lemma 14. (a) Let s = ρ(D(CtC)−1Dt). Then s ≤ ρ(C).

(b) The non-null eigenvalues of Φ are (s2
F − s2

ξ) + (
s2

1
s2

ξ

+ λi)
−1λi, i = 1, ..., s and s2

F − s2
ξ , i = s + 1, ..., k.

Proof. (a) is trivial.
(b) follows from the following facts: (i) Non-null eigenvalues of BF and FB are the same including
multiplicities; (ii) B and I + B commute. (iii) Eigen-values of ffI + B are obtained by adding α to
the eigen-values of B. (iv) If two real symmetric matrices commute they have simultaneous spectral



Stats 2020, 3 196

decomposition. If B and F are two real symmetric matrices of the same order such that C(B) ⊆ C(F),
the null space of F is contained in that of B. Q.E.D.

As a consequence we have the following

Theorem 4. The spectral decomposition of Φ is given by Φ = G∆Gt where the columns of G form an
orthonormal basis of C and ∆ is a diagonal matrix whose diagonal entries are the non-null eigen-values of Φ as
detailed in Lemma 14.

Using the spectral decomposition of Φ we can determine the class of all Z such that ZΦZt is nnd
using Algorithm 1. From there we can get the class of all A = Z(IN ⊗ ET)X such that we can perform
the Hausman test for Aβ.

We now show that there is at least one good estimator of σξ
2 which satisfies Theorem 2.

Notice that s2
F = Ro

2

NT−N−k where Ro
2 is the sum of squared residuals in the fixed effects model.

Amemiya’s estimator of σξ
2, namely, s2

ξ is Ro
2

NT−k−1 (see page 16 of Reference [7]). Clearly s2
F ≥ s2

ξ for
this choice. Amemiya (1971) obtains some optimal properties of this estimator. Thus we proved

Theorem 5. For the choice of the estimators s2
F = Ro

2

NT−N−k and s2
ξ = Ro

2

NT−k−1 of the error variance in the fixed
effects model and the variance of the random component of the random effects model respectively, where Ro

2 is
the sum of squared residuals in the fixed effects model, the difference in the estimated dispersion matrices of the
regression coefficient estimators in the fixed effects and random effects models is non-negative definite.

So far, we considered the case where both the random effects and the random error are
homoscedastic. We now examine the case where one or both of them are heteroscedastic. Specifically,
we explore whether we can find estimators of the variance components whereby the difference in
the dispersion matrices of the design parameter estimators corresponding to the fixed effects and
random effects specifications respectively is non-negative definite for all X .

Let us first write down the fixed effects and random effects specifications with heteroscedasticity.
The fixed effects specification is given by Y = Fα + Xβ + ε where α = (α1, ..., αN)

t is the vector
of fixed effects (treated as non-stochastic), β = (β1, ..., βk)

t is the vector of regression coefficients
(also treated as nonstochastic), and ε is a random error vector of order NT × 1 with E(ε) = 0
and D(ε) = diag(σ2

1 , σ2
2 , ..., σ2

N)⊗ IT .
The random effects specification is given by Y = 1NTµ + Fα + Xβ + ξ where α, β, ξ are as

specified in the fixed effects model except that α is treated as random with E(α) = 0 and D(α) =

diag(w1
2, ..., wN

2)⊗ IT, cov(α, ξ) = 0 and D(ξ) = diag(r1
2, ..., rN

2)⊗ IT.
If we denote η = Fα + ξ in the random effects model, we get

D(η) = Ω = (TD(α)⊗ J̄T) + (D(ξ)⊗ IT).
Consider the random effects model. Let the estimated dispersion matrices of the random effects

and the random error be denoted by Dα = diag(ŵ2
1, ..., ŵ2

N) and Dξ ⊗ IT) where Dξ = diag(r̂2
1, ..., r̂2

N).
Hence the estimated error dispersion matrix is Ω̂ = (TDα ⊗ J̄T) + (Dξ ⊗ IT).
Further, the estimated dispersion matrix of the error in the fixed effects specification is D̂(ε) =

DF ⊗ IT where DF = diag(σ̂2
1 , σ̂2

2 , ..., σ̂2
N).

The fixed and random effects estimators of β, denoted by β̂F and β̂R are given by

β̂F = (Xt(D−1
F ⊗ ET)X)−1Xt(D−1

F ⊗ ET)Y

and

β̂R = (XtE1NT (E1NT Ω̂E1NT )
−E1NT X)−1XtE1NT (E1NT Ω̂E1NT )

−E1NT Y.
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Also,

D̂(β̂F) = (Xt(D−1
F ⊗ ET)X)−1

and

D̂(β̂R) = (XtE1NT (E1NT Ω̂E1NT )
−E1NT X)−1.

We now proceed to evaluate the difference in the estimated dispersion matrices of fixed effects and
random effects. As before, the difference in the dispersion matrices of the design parameter estimators
corresponding to the fixed effects and random effects specifications respectively is non-negative definite
for all X if and only if (E1NT (E1NT Ω̂E1NT )

−E1NT )− (D−1
F ⊗ ET) is nnd. We start with computing

E1NT Ω̂ E1NT = (IN ⊗ IT − J̄N ⊗ J̄T)(TDα ⊗ J̄T + Dξ ⊗ ET + Dξ ⊗ J̄T)(IN ⊗ It − J̄N ⊗ J̄T)

= (TDα ⊗ J̄T + Dξ ⊗ ET + Dξ ⊗ J̄T − TJ̄NDα ⊗ J̄T − J̄NDξ ⊗ J̄T)(IN ⊗ IT − J̄N ⊗ J̄T)

= TDα ⊗ J̄T + Dξ ⊗ ET + Dξ ⊗ J̄T − TJ̄NDα ⊗ J̄T − J̄NDξ ⊗ J̄T − TDα J̄N ⊗ J̄T − Dξ J̄T ⊗ J̄T +

TJ̄NDα J̄N ⊗ J̄T + J̄NDξ J̄N ⊗ J̄T
= Dξ ⊗ ET + (TDα + Dξ − TJ̄NDα − J̄NDξ − TDJ̄N −Dξ J̄N + TJ̄N DJ̄N + J̄N DR J̄N)⊗ J̄T
= Dξ ⊗ ET + (T(ENDαEN) + ENDξEN)⊗ J̄T = Dξ ⊗ ET + EN(TDα + Dξ)EN ⊗ J̄T
Now,
E1NT (E1NT Ω̂E1NT )

−E1NT = {(IN ⊗ IT) − (J̄N ⊗ J̄T)}D−1
ξ ⊗ ET + (EN(TDα + Dξ)EN)

− ⊗ J̄T}{IN ⊗
IT − J̄N ⊗ J̄T}
= D−1

ξ ⊗ ET + (EN(TDα + Dξ)EN)
− ⊗ J̄T − J̄N(EN(TDα + Dξ)EN)

− ⊗ J̄T ⊗ J̄T − (EN(TDα +

Dξ)EN)
− J̄N ⊗ J̄T + J̄N(EN(TDα + Dξ)EN)

− J̄N ⊗ J̄T = D−1
ξ ⊗ ET + (EN(TDα + Dξ)EN)

−EN ⊗ J̄T .
Thus, we proved

Theorem 6. D̂(β̂F)− D̂(β̂R) under heteroscedistic specification is nnd if and only if (D−1
ξ −D−1

F )⊗ ET +

(EN(TDα + Dξ)EN)
−EN ⊗ J̄T is nnd.

We can always get a positive definite estimator of the dispersion matrix of random error, that is
Dξ . For the difference in the estimated dispersion matrices, D̂(β̂F)− D̂(β̂R) to be nnd, we need both
(D−1

ξ −D−1
F ) and (EN(TDα +Dξ)EN) to be nnd. We can use Amemiya type estimator to make the first

expression to be nnd. It is easy to see that for the second expression to be nnd, it is sufficient that
(TDα + Dξ) is nnd. This is indeed nnd. (Adapt equation 2.21 of Reference [7] for each individual.)
Hence, we can always find error component estimators such that D̂(β̂F)− D̂(β̂R) under heteroscedistic
specification is nnd.

The cases where the random error alone or the random effects alone are heteroscedastic are simple
special cases of the case we have discussed above. However, if there is heteroscedasticity in the random
error, performing the Hausman test requires that T is large, for otherwise the large sample chi-square
test will not be valid.

In the next section, we shall show that the problem of finding the class of all Z such that ZΦZt

is nnd is equivalent to solving a quadratic optimization problem.

7. A Quadratic Optimization Problem

In a previous section we obtained the class of all matrices Q such that QtBQ is nnd where B is
a symmetric indefinite matrix. In this section, for a given symmetric indefinite matrix B, we establish
the connection between the following two problems:

(a) When is QtBQ nnd?
(b) When does xtBx have a minimum subject to Ax = 0.

We prove
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Theorem 7. Let B be a real symmetric indefinite matrix. Then QtBQ is nnd if and only if xtBx has a minimum
subject to Ax = 0 where N (A) = C(Q).

Proof. We note that the orthogonal projectors into N (A) and C(Q) are (I−A+A) and QQ+

respectively. Hence N (A) = C(Q) if and only if (I−A+A) = QQ+

‘If part’:
xtBx has a minimum subject to Ax = 0
=⇒ (I−A+A)B(I−A+A) is nnd
=⇒ QQ+BQQ+ is nnd
=⇒ QtBQ = QtQQ+BQQ+Q is nnd.

‘Only if part’:
QtBQ is nnd
=⇒ Q(QtQ)+QtBQ(QtQ)+Qt is nnd
=⇒ QQ+BQQ+ is nnd
=⇒ xtBx has a minimum subject to Ax = 0.

Given A, the class AA of all Q such that N (A) = C(Q) can be obtained as follows. Let (C, Ct) be
a rank factorization of (I−A+A).
Let AA = {Q : Q = CT where T is an arbitrary full row-rank matrix}. Now, Q ∈ AA =⇒ C(Q) =

C(C) (since T is of full row-rank) = C(I−A+A)) = N (A).
Conversely, let N (A) = C(Q). Then Q = CT for some matrix T. Also ρ(Q) = dimension of N (A)

= dimension of C(I−A+A)) = ρ(C). Since C has a left inverse, ρ(Q) = ρ(T). So, (C, T) is a rank
factorization of Q. Hence Q ∈ AA. Q.E.D.

Let Q be a given matrix. We now obtain the class of all matrices A such that N (A) = C(Q).
Let (D, Dt) be a rank factorization of (I−QQ+). Then the class DQ of all matrices A such that N (A)

= C(Q) is given by
DQ = {A : A = WDt where W is an arbitrary full column-rank matrix}.
Proof follows along similar lines to the earlier case.

8. A Quadratic Optimization Problem with Non-Homogeneous Linear Constraints

In this section, we consider the problem of minimization of a quadratic form xtBx subject to
linear constraints Ax = b, where B is an n× n symmetric matrix, A an m× n matrix, and b an m× 1
vector. The case where B is a pd matrix is well-known [8]. The case where B is nnd is described in
Reference [10]. In this section, for given matrices A and B where B is symmetric (not necessarily nnd),
we study when the minimum exists in the following cases:

(i) For some non-null vector b ∈ Rm.
(ii) For all non-null vectors b ∈ Rm.

We shall notice that for a suitable matrix Q, QtBQ being nnd forms an important condition for
the existence of a finite solution to the minimization problem. We shall then proceed to characterize the
class of all matrices B and vectors b (given a matrix A), such that xtBx has a finite minimum subject to
Ax = b.

We prove

Theorem 8. Let B be a real symmetric matrix of order n× n. Let A be an m× n matrix and let b ∈ C(A).
Consider the minimization problem:

Minimize xtBx subject to Ax = b.
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Write H1 = (I−A+A)B(I−A+A) and H2 = (I−A+A)BA+A.
(a) The problem has a finite solution for some non-null vector b if and only if

H1 is nnd and (2)

H1(H1 + H2Ht
2)H2 6= 0. (3)

(b) The problem has a finite solution for every b ∈ C(A) if and only if (2) holds and

C(H2) ⊆ C(H1). (4)

Let b = Au. The minimum value in either case is given by

utA+ABA+Au− utHt
2H+

1 H2u, (5)

and the minimum value is achieved at all vectors x of the form

H+
1 H2u + St

(
0
ı

)
(6)

where H1 = St

(
Γ 0
0 0

)
S is a spectral decomposition of H1, S being orthogonal , Γ a diagonal positive definite

matrix, ζ an arbitrary vector in Rn−r, r being the rank of H1.

Proof. By Lemma 3, the class of all x satisfying Ax = b is given by,

x = A+b + (I−A+A)ζ (7)

where ζ is arbitrary. Invoking (7) into xtBx, we get

xtBx = bt(A+)tBA+b + 2bt(A+)tB(I−A+A)ζ + ζt(I − A+A)B(I − A+A)ζ. (8)

Thus, constrained minimization of xtBx subject to Ax = b is equivalent to unconstrained
minimization of the right hand side of (8) over ζ. Since b ∈ C(A), we can write b = Au for some u.
Now, the theorem follows from Lemmas 6 and 7. Q.E.D.

Let us identify (2)–(6) in terms of a singular value decomposition of A. Let us write b = Au.

Let A = U

(
∆ 0
0 0

)
Vt be a singular value decomposition of A.

Write VtBV =

(
R11 R12

R21 R22

)
, where R11 is of the same order as ∆ and R22 is a square matrix.

It is easy to see that H1 = V

(
0 0
0 R22

)
Vt and H2 = V

(
0 0

R21 0

)
Vt.

Hence, (2) is equivalent to saying that R22 is nnd, (3) is equivalent to saying that
C(R21) ∩ C(R22) 6= {0}, (4) is equivalent to the statement that C(R21) ⊆ C(R22), and (5)

translates to the expression utV

(
R11 − R12R+

22R21 0
0 0

)
Vtu.

Let ρ(R22) = s, and let R22 = M

(
Γ 0
0 0

)
Mt be a spectral decomposition of R22, where M is

orthogonal and Γ is a diagonal positive definite matrix of order s× s. Then a spectral decomposition
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of H1 is given by V

(
I 0
0 M

)
P

(
Γ 0
0 0

)
Pt

(
I 0
0 Mt

)
Vt, where P is a suitable permutation matrix.

In view of this, (6) translates to the expression V

(
0 0

R+
22R21 0

)
Vtu + V

(
I 0
0 M

)
P

(
0
ζ

)
, where ζ is

an arbitrary vector in Rn−s.
We note that (2), namely H1 should be nnd, is a key factor for the existence of a finite solution to

the constrained optimization problem under consideration, which falls into the line of investigation in
Section 3.

Let A be a given m × n matrix of rank r. The above identification helps us in characterizing
the class of all real symmetric matrices B and the class of all vectors b ∈ C(A) such that the constrained
optimization problem

Minimize xtBx subject to Ax = b
has a finite solution.

As before, let A = U

(
∆ 0
0 0

)
Vt be singular value decomposition of A, where U and V are

orthogonal matrices and ∆ is a positive definite diagonal matrix of order r × r. Write VtBV =(
R11 R12

R21 R22

)
, where R11 is of order r× r and R22 is of order (n− r)× (n− r). Since, b ∈ C(A), write

b = Au. Characterizing B and b is equivalent to characterizing R11, R21, R22, and u.
If the minimization problem should have a finite solution for every b ∈ C(A), then the class of all

B is given by B = V

(
R11 Rt

21
R21 R22

)
Vt.

where (a) R11 is an arbitrary real symmetric matrix of order r× r
(b) R22 is an arbitrary nnd matrix of order (n− r)× (n− r)
(c) R21 = R22D, where D is an arbitrary matrix of order (n− r)× r.

If the minimization problem should have a solution for some non-null vector b ∈ C(A), then the

class of all B is given by B = V

(
R11 Rt

21
R21 R22

)
Vt, satisfying (a) and (b) as above and

(d) ((Fy : G),W) is a rank-factorization of R2, where

(i) (F, Ft) is a rank factorization of R22,
(ii) y is arbitrary non-null vector,
(iii) G is arbitrary such that (Fy : G) is of full column rank, and
(iv) W is an arbitrary full row rank matrix.

The class of all b is obtained as follows:
Using B as obtained above, compute J = H1(H1 + H2Ht

2)
−H2Ht

2. Let w be an arbitrary non-zero
vector in C(J). Let u be an arbitrary solution of H2u = w. Compute b = Au. Notice that b 6= 0, for,
if b = 0, Au = 0, and hence H2u = 0, which is a contradiction, since H2u = w 6= 0.

We prove

Theorem 9. Let B be a symmetric indefinite matrix of order n× n, and A be an n× n matrix, and b be an
m× 1 vector in the column space of A. If xtBx has a finite minimum subject to Ax = b for every b ∈ C(A),
then there exists a generalized inverse G of A such that

(I−GA)B(I−GA) is nnd (9)

and BGA = (GA)tB. (10)

Proof. Since xtBx has a finite minimum subject to Ax = b for every b, by Lemma 13, we have,
(I− A+A)B(I− A+A) is nnd. Whenever, G is a generalized inverse of A, (I− A+A)(I−GA) =
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I−GA. Now, it follows that, (I−GA)t(I− A+A)B(I− A+A)(I−GA) = (I−GA)tB(I−GA) is
nnd. Further, from the discussion after Theorem 7, it follows that R22 is nnd and C(R21) ⊆ C(R22).

Since R22 is nnd, (I−GA)tB(I−GA) = V

(
−∆Mt

−I

)
R22

(
M∆ −I

)
Vt is nnd, whatever M

be. Further, since C(R21) ⊂ C(R22), there exists a matrix T such that R21 = R22T. Write M = T∆−1.

Now it is easy to verify that, for this choice of M, G = V

(
∆−1 L
M N

)
Ut is a generalized inverse of A

(where L and N are arbitrary) such that BGA = (GA)tB. Q.E.D.

Remark 1. A+ does not in general have the properties (9) and (10).

Is there anything special about a generalized inverse G of A satisfying (9) and (10)?
It turns out that every generalized inverse G of A satisfying (9) and (10) is in fact a minimum

semi-norm generalized inverse of A under a suitable semi-inner product. To see this construct

S = V

(
k∆−2 − R11 0

0 0

)
Vt

where k > tr(Rt
12R−22R21). Then,

B + AtSA = V

(
kI Rt

21
R21 R22

)
Vt

is nnd, since R22 is nnd, C(R21) ⊂ C(R22) and kI− Rt
21R−22R21 is nnd (by virtue of choice of k and

Lemma 1). Also, AGA = A and

(B + AtSA)GA = BGA + AtSA = (GA)tB + AtSA,

and is thus symmetric. Hence, G is a minimum semi-norm generalized inverse of A under the
semi-inner product (x, y) = yt(B + AtSA)x (see Theorem 1.4 of Reference [11]).

9. Conclusions, Limitations and Future Research

In this article we discussed extensively and provided new results for the optimization of quadratic
structures and respective corrections to the construction of covariance matrices. This is an area has
a long history in econometrics and financial economics with various applications in testing panel data
models, handling volatility, to applications in portfolio management. Furthermore, the implications
in forecasting are numerous as all relate to decision-making at some future time period: panel data
models can be used to generate out-of-sample forecasts; a covariance matrix can be used in optimizing
a portfolio or in a model for volatility and correlation forecasting. The economic implications of
all the aforementioned are profound. We have presented a novel statistical approach for solving
a particular class of quadratic optimization problems. At the center of the mathematical derivations is
a symmetric indefinite matrix, the indefinite nature of which can come from many sources usually
rank deficiency or rank indeterminacy driven from redundant information in the variables from which
we compute that said matrix. The problem of this indeterminacy leads to subsequent problems in
the context of: a matrix-version of the well-known Hausman test in econometrics; a large portfolio
optimization the covariance matrix of the financial returns might not be positive definite. This is the
body of literature and application we contribute to.

As any other statistical derivation, this paper comes with the usual limitations and caveats of
any statistical analysis—we do provide solutions to well known problems, but for which there are
alternative solutions [6], and as such no solution is universally better, and given collected samples the
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researcher may have to try an extensive array of available tools, to which we contribute emphatically
one more here.

For future research, we leave the investigation of further application areas for our propositions,
as well as simulations for a wide range of panel data, and optimization problems.
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