
RESEARCH Open Access

Cotton pan-genome retrieves the lost
sequences and genes during domestication
and selection
Jianying Li1 , Daojun Yuan2, Pengcheng Wang1, Qiongqiong Wang1, Mengling Sun1, Zhenping Liu1, Huan Si1,
Zhongping Xu1, Yizan Ma1, Boyang Zhang1, Liuling Pei1, Lili Tu1, Longfu Zhu1, Ling-Ling Chen3, Keith Lindsey4,
Xianlong Zhang1, Shuangxia Jin1* and Maojun Wang1*

* Correspondence: jsx@mail.hzau.
edu.cn; mjwang@mail.hzau.edu.cn
1National Key Laboratory of Crop
Genetic Improvement, Huazhong
Agricultural University, Wuhan,
China
Full list of author information is
available at the end of the article

Abstract

Background: Millennia of directional human selection has reshaped the genomic
architecture of cultivated cotton relative to wild counterparts, but we have limited
understanding of the selective retention and fractionation of genomic components.

Results: We construct a comprehensive genomic variome based on 1961 cottons
and identify 456 Mb and 357 Mb of sequence with domestication and improvement
selection signals and 162 loci, 84 of which are novel, including 47 loci associated
with 16 agronomic traits. Using pan-genome analyses, we identify 32,569 and 8851
non-reference genes lost from Gossypium hirsutum and Gossypium barbadense
reference genomes respectively, of which 38.2% (39,278) and 14.2% (11,359) of genes
exhibit presence/absence variation (PAV). We document the landscape of PAV
selection accompanied by asymmetric gene gain and loss and identify 124 PAVs
linked to favorable fiber quality and yield loci.

Conclusions: This variation repertoire points to genomic divergence during cotton
domestication and improvement, which informs the characterization of favorable
gene alleles for improved breeding practice using a pan-genome-based approach.

Keywords: Cotton, Domestication, Improvement, Pan-genome, Copy number
variation (CNV), Presence/absence variation (PAV), Gene loss

Background
Cotton is cultivated worldwide for its fiber and seed oil. Allotetraploid cultivated cot-

ton (Gossypium hirsutum and Gossypium barbadense) originated from interspecies

hybridization between putative diploid A genome (Gossypium herbaceum or Gossy-

pium arboretum) and D genome (Gossypium raimondii) ancestors approximately 1–

1.5 million years ago (MYA) [1, 2]. G. hirsutum was initially domesticated from wild

cotton in the Yucatan peninsula and subsequently developed seven semi-wild forms,

which were subject to directional domestication selection to form the American culti-

vated cotton with high yield and spinnable fine white fibers [3–6]. DNA-based
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molecular markers have revealed admixture population structure and high genetic di-

versity of G. hirsutum wild, landrace, and American cultivated cotton [7–10]. Founder

cultivars of G. hirsutum in America have been introduced widely to other countries

and improved modern cultivars in China show wide phenotypic variation and adapta-

tion [3–6]. G. barbadense is native to the coastal areas of Peru and is cultivated in a

limited number of areas with superior fibers [11]. The history of allotetraploid cotton

domestication and selection has been revealed at small-scale variation level in specific

population, but the understanding of entire genomic variome remains fragmentary.

Genome assemblies of G. hirsutum and G. barbadense cultivars have identified exten-

sive variation between the species [12, 13]. Hundreds of diverse cotton accessions have

been sequenced, providing an opportunity to construct a multi-dimensional variation

genome (variome) to reveal genome divergence during domestication and identify loci

underlying improvement traits [4–6, 14–16]. However, these genomic variations were

identified by sequence reads mapped to a reference genome, giving an incomplete pic-

ture, especially for the lack of presence/absence variation (PAV) and copy number vari-

ation (CNV). To comprehensively capture the genetic variation missed by using one

reference, the construction of a “pan-genome,” a collection of all the DNA sequences

from all individuals in a species, has a great value [17]. Pan-genomic studies can iden-

tify PAVs between wild and cultivated accessions for a better understanding of crop do-

mestication [18–31]. In tomato, 351Mb non-reference sequences with 4873 novel

genes, including 74% for core genes (present in all accessions) and 26% for dispensable

genes (present in at least one accession), were assembled using 725 representative wild

and improved accessions [26]. In soybean, based on long reads of 27 wild and cultivated

soybean accessions, pan-genome assembly revealed that 36% and 64% of genes were

core and dispensable respectively, some of which were associated with domestication

traits [30]. These studies suggest that PAVs are widespread and play an important role

in genetic determination of phenotypic variation [32], to reveal favorable genotypes for

crop improvement.

Here we analyze genomic variation among 1961 cottons, revealing extensive genomic

diversity, including 63 million single-nucleotide polymorphisms (SNPs), 4.9 million

small insertion/deletions (InDels), and over 290,000 structural variations (SVs). We

constructed pan-genomes of G. hirsutum and G. barbadense, which include 1041Mb

(32,569 genes) and 309Mb (8851 genes) non-reference sequences, respectively. The do-

mestication and improvement process has led to asymmetric gene gain and loss, which

shaped the genomic architecture of cultivated cotton. The pan-genome data inform us

to understand how domestication and improvement has driven genomic picture under-

lying the desirable agronomic traits for further cotton breeding.

Results
Genetic diversity and population properties

We collected DNA re-sequencing data for 1961 cottons for a genomic variation ana-

lysis with an average depth of ~ 14.8× for each [3–6, 16, 33, 34]. After discarding dupli-

cated accessions, a total of 1913 cotton accessions were used for SNP and InDel

analysis, which included 256 G. hirsutum landraces (Ghlandraces), 438 improved G.

hirsutum cultivars from the USA and other countries (GhImpUSO), 929 improved G.
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hirsutum cultivars from China (GhImpCHN), 261 G. barbadense accessions, and 29

other Gossypium species that were used as outgroup (Additional file 1: Table S1). We

aligned these data against the reference genome of G. hirsutum acc. “TM-1” [12] and

identified 63,084,975 SNPs and 12,354,432 small insertions or deletions (InDels

length ≤ 20 bp), in which the core variation dataset includes 19,246,497 SNPs and 4,815,

125 InDels with a minor allele frequency (MAF) ≥ 0.01 and more than five accessions

having homozygous variations (Table 1; Additional file 1: Tables S2-S6; Add-

itional file 3). Based on core SNP data, we investigated the population structure of G.

hirsutum and G. barbadense. Neighbor-joining tree analysis showed the 1913 acces-

sions classify into 12 clades. G. hirsutum accessions form 8 clades, G. barbadense acces-

sions form 3 clades, and other species form 1 clade (Fig. 1a; Additional file 2: Figure

S1). Population analysis showed that G. barbadense accessions were separated from the

G. hirsutum landraces, GhImpUSO and GhImpCHN (Fig. 1b, c; Additional file 2: Fig-

ure S2). G. hirsutum nucleotide diversity (π) is estimated at 1.07 × 10− 3 in landraces,

3.74 × 10− 4 in GhImpUSO, 3.34 × 10− 4 in GhImpCHN, and 1.01 × 10− 3 in G.

Table 1 Genome-wide genomic variations in a large cotton population

Variation type Total
(1913)

Gh cultivar
(1623)

Ghlandrace
(256)

GhImpUSO
(438)

GhImpCHN
(929)

Gb cultivar
(261)

AD3-AD7

(26)

Bi-allele SNPa 19,246,
497

9,546,748 9,265,438 4766,399 3,761,448 19,473,033 32,878,
758

Splicing 2172 1213 1149 652 554 2041 11,366

Exonic 315,404 179,665 172,718 103,126 89,208 316,146 776,644

Intronic 607,301 335,212 322,141 189,798 152,656 575,524 1,010,509

UTR 220,664 120,198 116,269 65,226 52,342 197,420 390,008

Upstream 869,678 448,709 432,640 238,937 169,788 789,898 984,811

Downstream 797,469 413,937 399,140 222,266 161,602 729,445 959,584

Nonsynonymous 195,883 111,686 107,143 63,008 52,853 177,474 420,190

InDel (≤ 20 bp) a 4,815,
125

3,971,277 3,744,299 1,672,195 1,726,445 3,366,481 7,625,077

Splicing 1202 1128 941 570 735 1104 2465

Exonic 31,661 27,238 28,815 12,807 14,826 26,455 65,677

Intronic 262,657 231,561 215,663 95,674 94,830 183,387 539,379

UTR 113,824 100,811 96,003 36,418 37,175 76,684 261,351

Upstream 578,086 497,660 413,192 201,122 226,848 400,965 927,134

Downstream 429,514 369,517 311,164 148,050 166,059 309,829 717,980

Frameshift 23,330 20,367 22,040 9798 11,029 19,603 42,328

SV (> 50 bp) 214,310 104,523 97,933 64,064 61,616 132,499 281,476

Deletionb 32,099 22,340 9933 7029 23,559 13,982 15,484

Duplicationb 7576 5146 4766 1721 NA 3252 3718

Inversionb 1112 724 615 310 NA 877 613

Translocationb 357 240 188 167 NA 504 412

CNVc 173,166 76,073 82,431 54,837 38,057 99,274 261,249
aThe 261 G. barbadense accessions were aligned to the “TM-1” reference genome. The G. barbadense population SNP and
InDel calling results against the “3–79” reference genome are shown in Additional file 1: Table S5. bGenotyping structural
variations (SVs) in 742 cottons. The G. hirsutum TM-1 reference genome was used for detecting variations. The number of
genotypes in each group is in parentheses. “NA” represents the missing combined SVs. DUP, INV, and TRA were not
included for the GhImpCHN population. cCNVs were identified in 742 cottons. Only variation in each chromosome was
counted and further analyzed
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barbadense (Additional file 2: Figure S3), similar to the recent studies in cotton [3–6,

34] (Fig. 1d).

We used 742 cotton accessions with a high sequencing depth (> 10×) against the G.

hirsutum “TM-1” reference genome (Additional file 1: Table S1; Additional file 3) and

identified 32,099 deletions, 7576 duplications, 1112 inversions, and 357 translocations

(Additional file 1: Table S7). There are more SVs in Ghlandrace than that GhImpUSO

and GhImpCHN groups (Fig. 1e). In addition, 173,166 (MAF ≥ 0.01) copy number vari-

ations (CNVs) were identified in the 742 accessions, including 82,431 in the landraces,

Fig. 1 Population structure and genetic diversity in G. hirsutum and G. barbadense accessions. a The
unweighted neighbor-joining phylogenetic tree of 1913 cotton accessions was constructed based on
20,000 random SNPs from core SNPs. The G. tomentosum (AD3), G. mustelinum (AD4), G. darwinii (AD5), G.
ekmanianum (AD6), G. stephensii (AD7) of tetraploid species, G. arboreum (A2) and G. davidsonii (D3-d) of
diploid species serve as outgroup. b Principal component analysis (PCA) plot of the first two components
for all accessions. c STRUCTURE analysis of all cotton accessions with different numbers of clusters K = 6 and
K = 12 (K = 12 is optimal value). The x-axis lists the outgroup species (gray), G. barbadense (blue), G. hirsutum
landrace accessions (orange), and G. hirsutum improved accessions (green) respectively, and the y-axis
quantifies genetic diversity in each accession. The other structure results are shown in the Additional file 2:
Figure S2. d Nucleotide diversity (π) and fixation index divergence (Fst) across the five groups. e The
number of deletions, duplications, inversions, and translocations in five populations (two-sided Wilcoxon
rank-sum test for adjacent groups, P < 0.001). Each node represents one accession. In this analysis, the
number of SVs was shown with the TM-1 reference genome
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59,309 in the GhImpUSO, and 38,057 in the GhImpCHN group (Additional file 1:

Table S8). Population genetic properties of CNVs in 742 accessions showed that G. hir-

sutum landraces were clearly separated from the improved accessions, similar to SNP-

based result, but were clustered together with the GhImpUSO and GhImpCHN acces-

sions (Additional file 2: Figure S4). These results suggested that high-confidence CNVs

have strong divergence between G. hirsutum landrace and improved population and

can be used to discover complex quantitative trait loci (QTLs). This comprehensive

variome dataset provides a genomic resource for cotton population genetics, domesti-

cation analysis, and agronomic allele identification (Additional file 2: Figure S5).

Evidence for genomic divergence during domestication and improvement

Domestication-related traits arise from selected genetic variation in wild species, affect-

ing seed size, flowering time, yield, quality, and crop adaptation [35–37]. To identify

potential selection signals during cotton domestication, we scanned genetic variations

with allele frequency differentiation in nucleotide diversity by comparing each culti-

vated group with its corresponding wild group. We identified 76 domestication sweep

regions (DSRs) using πLandrace/πImproved (ratio ≥ 15) and a likelihood method (XP-CLR,

Top 5%) (Additional file 2: Figure S6a), occupying 66.8Mb in the A subgenome and

51.4Mb in the D subgenome associated with 837 and 1272 genes, including 274 hom-

ologous gene pairs (Fig. 2a). Compared with previous studies with small numbers of ac-

cessions [3–5], this domestication selection analysis identified 31 novel DSRs occupying

43.6Mb (Additional file 1: Table S9). Some fiber-related and known domesticated

genes were differentially expressed between wild/landraces and improved cultivars

(Additional file 2: Figure S6b, c). The domestication selected genes were involved in

stress response, cell wall regulation, jasmonic acid, ethylene, and circadian rhythm

process (Additional file 2: Figure S7). Further manipulation of these genes in plant hor-

mone pathway and stress response pathway may help illustrate their putative regulatory

role in fiber quality improvement and environmental adaptation during cotton domesti-

cation [3, 38, 39]. We also identified 120Mb (πGhImpUSO/πGhImpCHN ≥ 2) with improve-

ment signals, including 1006 selected genes in the A subgenome and 2369 in the D

subgenome with 353 homologous gene pairs (Fig. 2a; Additional file 2: Figure S6d), and

79.5% (95.4 Mb) of the improvement selection regions were not identified previously

[5] (Additional file 1: Table S10). Of note is the observation that 19Mb of sequence

was screened with both domestication and improvement selection signals, in which the

D subgenome (441 genes) has more genes than the A subgenome (50 genes) (Add-

itional file 1: Table S11). These data suggest that D subgenome has stronger SNP-based

selection signals in both domestication and improvement processes.

Domestication is a driver for CNV allele frequency difference between wild/landrace

and domesticated groups [37]. In total, 286 non-redundant CNV-based regions were

identified with selection signals during cotton domestication, comprising 297Mb in the

A subgenome (Fig. 2b) and 105Mb in the D subgenome (Fig. 2f). About 55% (65Mb of

118Mb) of SNP-based domestication signals overlapped CNV-based domestication

sweeps (Additional file 1: Table S12). In total, 217 CNV regions were identified with

improvement selection signals, comprising 156Mb in the A subgenome and 133Mb in

the D subgenome. About 44% (52Mb of 120Mb) of SNP-based improvement signals

Li et al. Genome Biology          (2021) 22:119 Page 5 of 26



overlapped the CNV-based improvement signals (Additional file 1: Table S13). In total,

we identified 329Mb (covering 6339 genes) of sequences in the A subgenome and 127

Mb (4955 genes) in the D subgenome with both SNP- and CNV-based domestication

signals. A total of 173Mb (5526 genes) and 184Mb (8405 genes) of sequences have im-

provement signals in the A and D subgenomes. The identification of selection signals

during domestication and improvement can facilitate to further identify genetic loci of

important agronomic traits.

To identify QTLs for selection signals associated with agronomic traits, we conducted

a genome-wide association study (GWAS) meta-analysis of 890 G. hirsutum accessions

from three independent experimental cases with multiple environments (Additional file

3) [3, 5, 6]. Using the genotypic data of 2,291,437 high-quality SNPs with MAF ≥ 0.05

in 890 accessions, we identified 2952 significant SNPs (0.05/2,291,437; P < 2.18 × 10− 8)

associated with fiber quality-related traits. After strict filtering, 91 major fiber-related

QTLs were located, including 11 for fiber length (FL), 17 for fiber elongation (FE), 15

for fiber strength (FS), 19 for fiber length uniformity (FU), 10 for fiber micronaire

Fig. 2 Multiple-scale variation for subgenomic divergence and GWAS on agronomic traits during cotton
domestication. a Circos plot showing the SNP- and SV-based selection signals and QTLs during cotton
domestication and improvement. The selection region was calculated in a 1-Mb sliding window with a step
size of 200 kb. I–VIII, Circos plot from outer to inter tracks showing gene density (I), snpQTLs (II), cnvQTLs
(III), the ratio of nucleotide diversity (π) based on SNPs between 256 landraces and 1364 improved
accessions for domestication (IV), the ratio of nucleotide diversity (π) based on SNPs between 438
GhImpUSO accessions and 929 GhImpCHN accessions for improvement (V), the relative SV allele difference
in the comparisons between landrace and improved accessions (VI), and between GhImpUSO and
GhImpCHN (VII). The track (VIII) represents the domesticated homologous. Upper and lower panels (VI)
represent deletion and duplication variation allele difference, respectively. The snpQTLs were identified
using the meta-GWAS analysis of 890 cotton accessions. The outermost circle of the circos plot purple and
yellow font shows pleiotropic snpQTLs (psnpQTLs) and pleiotropic cnvQTLs (pcnvQTLs), respectively. b–i
Selective signals of copy number variations (CNVs) between the A (b) and D (f) subgenome during
domestication. The horizontal gray dashed lines show the domestication signal threshold with the ratio of
nucleotide diversity between wild/landrace and improved cotton accessions (πlandrace/πImproved > 200). c–e
and g–i Six CNV-based GWAS hits that overlapped with domestication selection signals are shown for seed
index (SI) (c), fiber length (FL) (d), boll weight (BW) (e), fiber uniformity (FU) (g), fiber elongation (FE) (h),
and flowering date (FD) (i). The threshold of cnvQTL line was -log10 P = 4.4. The violin plot showed
phenotypic variation with the lead CNV genotype. The numbers in the violin plot show the number of
accessions for each copy. The significance difference was calculated with two-sided Wilcoxon rank-sum test
(**P < 0.01, *P < 0.05)
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(FM), 7 for fiber maturity (MAT), and 12 for spinning consistency index (SCI) (Add-

itional file 1: Table S14 and Additional file 2: Figure S8). We also identified 31 yield-

related and 3 flowering date (FD)-related QTLs. In total, 125 major QTLs with 4751

candidate genes for 15 agronomic traits were identified, in which 78 were consistent

with previous studies [3, 5, 6, 15, 40, 41] and the other 47 were newly detected in

meta-analysis (Additional file 1: Table S14). In the 125 QTLs, 14 have selection signals

during domestication and improvement (Additional file 1: Table S15). In addition,

twenty-one QTL loci showed pleiotropic effects on fiber quality, yield, and flowering

date (Fig. 2a; Additional file 1: Table S16). For example, lint percentage (LP), fiber

weight per boll (FWPB), and lint index (LI) are components of yield trait, with major

QTLs co-localized on chromosome D02 (Additional file 2: Figure S9a). The LP, FD,

and whole growth period (WGP) for flowering time traits have co-located QTLs on

chromosome D03 (Additional file 2: Figure S9b).

We focused on novel QTLs related to fiber elongation that were identified in meta-

GWAS. A novel QTL (mqFE253) was located on the D05 chromosome (at 11.3–12.5

Mb of genomic region). The 64 candidate genes were predicted by integrating haplo-

type analysis, gene expression, and functional annotation (Additional file 2: Figure S10).

One candidate gene (Ghir_D05G013680, GhIDD7), encoding an indeterminate-domain

7 transcription factor, was differentially expressed in four fiber developmental stages

(Additional file 2: Figure S10f). Accessions representing two main haplotypes of the 5′

UTR region showed a significant difference in fiber elongation and fiber length (Add-

itional file 2: Figure S11a-b). After knock-out of GhIDD7, the mature fiber was signifi-

cantly shorter than that in wild type plants (25.8 ± 0.3 vs. 27.1 ± 0.1) (Additional file 2:

Figure S11c, d, e). These results indicated that GhIDD7 was a previously uncharacter-

ized gene contributing to fiber quality-related trait.

GWAS analysis of 26,831 high-confidence CNVs (MAF ≥ 0.05) in 419 G. hirsutum ac-

cessions revealed 370 significant CNVs for 50 QTLs (cnvQTLs) (Additional file 1:

Table S17), of which 5 showed pleiotropic effects on both fiber quality and lint yield

(Fig. 2a). Thirteen cnvQTLs overlapped with SNP-based QTLs (snpQTLs), and the

other 37 cnvQTLs are only identified by CNVs. Of these cnvQTLs, 15 overlapped with

domestication sweeps and 10 overlapped with improvement selection signals (Add-

itional file 1: Table S18). The phenotypic data exhibit a significant difference in cotton

accessions with different copy numbers of lead CNV (Fig. 2c–e, g–i; Additional file 2:

Figure S12). For example, a seed index (SI) association with domestication signal was

identified on the A06 chromosome (Fig. 2c). A fiber length (FL) association with do-

mestication signal was located on the A10 chromosome, and FL with 2 duplication

copies was significantly longer than that with 0 copy (reference) allele (P < 0.01)

(Fig. 2d). The lead CNV-involved LD region has 78 candidate coding genes, in which

some are involved in cotton fiber development, such as UDP-glucose pyrophos-

phorylase 3 (Ghir_A10G024310, UGP3) and AP2/B3-like transcriptional factor (Ghir_

A10G023950). Another example shows a fiber maturity (MAT) association with im-

provement selection signal was located on the A12 chromosome (Additional file 2: Fig-

ure S13a, b, c). This association has one candidate gene encoding xyloglucan

endotransglucosylase/hydrolase 5 (Ghir_A12G008500, XTH5). In the D subgenome,

three cnvQTLs with strong selection signals were found to be associated with FD,

FWPB, and FS on the D03, D06, and D07 chromosomes (Additional file 2: Figure S13d,
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e, f, g). These results provide a number of cnvQTL candidates that may be applied to

cultivate desirable traits in future breeding.

Pan-genomes of G. hirsutum and G. barbadense species

We used a reference-guided assembly approach [21] to construct pan-genomes of G.

hirsutum and G. barbadense. The sequencing data of 1581 G. hirsutum (251 landraces,

424 GhImpUSO and 906 GhImpCHN) and 226 G. barbadense improved accessions

were aligned to the “TM-1” and “3–79” reference genomes, respectively [12]. About

5800 million unmapped reads from G. hirsutum and 1127 million unmapped reads

from G. barbadense were subject to de novo assembly (Additional file 2: Figure S14,

S15), producing 5,047,083,790 bp and 1,517,253,311 bp of contig sequence respectively,

with a minimum length of 500 bp (Additional file 1: Table S19). After removing redun-

dancies, 3704Mb and 1422Mb non-reference sequences with a contig N50 of 1530 bp

(G. hirsutum) and 1108 bp (G. barbadense) passed all filtering steps for the final non-

reference genomes (Additional file 1: Table S20). The final 1041Mb and 309Mb non-

reference sequences in G. hirsutum and G. barbadense with a contig length of more

than 1000 bp were used for predicting protein-coding genes (Additional file 2: Figure

S16). We obtained 32,569 G. hirsutum genes (65,679 transcripts) and 8851 G. barba-

dense genes (12,076 transcripts) (Additional file 1: Tables S21-S22). The final G. hirsu-

tum pan-genome (Ghpan-genome) is 3388Mb with 102,768 genes (2347Mb with 70,

199 genes in the “TM-1” reference genome) and G. barbadense (Gbpan-genome) is

2575Mb with 80,148 genes (2266Mb with 71,297 genes in the “3–79” reference gen-

ome) (Additional file 2: Figure S17).

The coverage of the Ghpan-genome was investigated using PacBio reads of 10 repre-

sentative accessions, including G. hirsutum yucatanense, G. hirsutum richmondi, G. hir-

sutum morrilli from the wild/landraces, the Acala, Paymaster 54, Stoneville 2B from

the GhImpUSO group, and Simian 3, CRI 7, Xinluzao 42, and Xuzhou 142 from the

GhImpCHN group (Additional file 1: S23-S25; Additional file 2: Figure S18). After de

novo assembly (Additional file 3), more than 93% of assembled contigs were mapped to

the TM-1 reference genome. Approximately 18.9 Mb of unmapped contigs (a total of

641Mb contigs from 10 accessions that were not mapped on the TM-1 reference gen-

ome) were aligned to the non-reference sequences of 1581 G. hirsutum accessions (the

average non-reference sequence length is ~ 655 kb; 1041Mb/1581Mb). The PacBio-

based assemblies provide evidence for non-reference genome sequences in G. hirsutum,

indicating that our pipeline of pan-genome construction can retrieve PAVs in a large

germplasm population. Some high-frequency PAVs were also verified by PCR in 23

representative accessions (Additional file 2: Figure S19).

For the G. hirsutum population, we mapped re-sequencing reads against 102,768 pan

genes, which resulted in 17,100 genes (16.64%, singleton) in 561 accessions (sequencing

depth < 5) and 85,667 genes in 1020 accessions (depth > 5). The 1020 G. hirsutum ac-

cessions include 63,489 core genes shared by all G. hirsutum accessions, 5941 (5.78%)

softcore genes in 990–1019 accessions (97–100%), 3803 (3.7%) shell genes in 11–989

accessions (1–97%), and 12,434 (12.1%) clouds in less than 10 accessions (0–1%)

(Fig. 3a, b). For the G. barbadense pan-genome, the 1536 singleton genes only occurred

in 49 low-depth accessions. We used 78,612 pan genes that occurred in 177 accessions
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for further PAV analysis. The 177 G. barbadense accessions include 68,789 (85.8%) core

genes, 1796 (2.24%) softcore genes in 172–176 accessions (97–100%), 5867 (7.32%)

shell genes in 4–171 accessions (2–97%), and 2160 (2.75%) clouds in less than 3 acces-

sions (0–2%) (Fig. 3c, d). Modeling of pan-genome size with iteratively random sam-

pling suggests that the Ghpan-genome has an average of 81,688 pan genes and an

average of 65,595 core genes in 398 accessions (Fig. 3e). The Gbpan-genome has an

average of 78,607 pan genes and 69,563 core genes in 59 accessions for modeling satur-

ation (Fig. 3f). Therefore, the size of core-genome decreased and pan-genome increased

with the increase of population size. GO analysis showed that core genes were involved

in cellular metabolic process and development, whereas the variable genes were in-

volved in “defense response,” “response to stress,” and “signaling transduction in envir-

onment fitness” (Additional file 2: Figure S20).

We next investigated the genomic characteristics of core and variable genes between

A and D subgenome. Core genes have higher expression levels than variable genes in

both G. hirsutum and G. barbadense (Additional file 2: Figure S21). Interestingly, A

subgenomic variable genes have higher expression levels than D subgenomic genes

(Fig. 4a). Variable genes have a higher adjacent (2 kb) TE insertion probability than

core genes, especially for the Gypsy class (Additional file 2: Figure S22). The variable

genes in the D subgenome have a higher ratio than those in the A subgenome (Fig. 4b).

Evolutionary selection analysis showed that more variable genes have undergone posi-

tive selection than core genes in both G. hirsutum and G. barbadense, especially in the

D subgenome (Fig. 4c). Furthermore, variable genes have a larger nucleotide diversity

than core genes, and more variable genes in the D subgenome have a higher diversity

(P < 0.001) (Fig. 4d; Additional file 2: Figure S23). These data indicated that D subge-

nomic variable genes had a faster evolutionary rate than A subgenomic genes.

PAV selection during domestication and improvement

To establish landscape of selective PAVs between landrace and improved cotton, we

compared PAV frequency between the landrace, GhImpUSO, and GhImpCHN groups.

The landrace group has more variable genes than improved cultivars, suggesting a gen-

eral trend of gene loss during cotton domestication (Fig. 5a). PCA and phylogenetic

analysis of PAVs suggest that the landrace group was separated from the improved cul-

tivar group (Fig. 5b, c). The landraces originating from native America had a population

mixture with American cultivated cotton in genetic composition, consistent with the

clustering analysis of high-confidence SNPs (Additional file 2: Figure S24). To control

the false-positive rate, eight landraces and thirty-four GhImpUSO accessions in a mixed

population structure with uncertain origin were excluded from further analysis.

To identify PAV-related genes with selection signals during domestication and im-

provement, we performed two comparisons between 182 landraces and 206 GhIm-

pUSO accessions using the presence frequency of variable genes, for “domestication”

(Fig. 5d; Additional file 2: Figure S25), and between 206 GhImpUSO and 592

GhImpCHN accessions for “improvement” (Fig. 5e). The genes with a significant

change of presence frequency (FDR < 0.001 and frequency fold change > 2 for “unfavor-

able gene” or < 0.5 for “favorable gene”) were regarded as selected genes. Genes with

higher presence frequency in landrace than in GhImpUSO, and higher presence
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frequency in GhImpUSO than in GhImpCHN were potentially “unfavorable gene,”

while genes with reverse patterns of presence frequency were “favorable gene.” We

identified 2785 and 7867 favorable genes with allele gain, and 6753 and 3866 unfavor-

able genes with allele loss during domestication and improvement, respectively (Add-

itional file 1: Tables S26, S27). GO enrichment analysis showed that favorable genes

were enriched in oxidation-reduction-related process, whereas unfavorable genes were

enriched in fatty acid biosynthesis and gene regulation. The favorable and unfavorable

genes were divided into four comparisons according to the presence frequency in three

groups during domestication and improvement (Fig. 5f). The continuous selection of

337 favorable genes with both domestication and improvement signals may be elite

candidates for breeding, whereas 308 unfavorable genes exhibiting lower presence

Fig. 3 Pan-genomes of G. hirsutum and G. barbadense species. a Gene number and presence frequency in
G. hirsutum pan genes. The pie chart corresponds to the core (present in all accessions), softcore, shell, and
cloud genes. The singleton genes in low-depth (< 5) accessions were excluded for further PAV analysis. The
variable genes are divided into reference and non-reference genes in Additional file 2: Figure S17. b 1020 G.
hirsutum accessions heatmap showed presence and absence of variable PAVs. c Gene number and
presence frequency in G. barbadense pan genes. d 177 G. barbadense accessions heatmap showed presence
and absence of variable PAVs. e, f Saturation curve modeling the increase of pan-genome size and
decrease of core-genome size in 1020 G. hirsutum (e) and 177 G. barbadense (f). The error bar was
calculated based on 1000 random combinations with five replicates of cotton genomes. The top and
bottom edges in purple and red represent the maximum and minimum gene number. The solid lines
represent the number of pan genes and core genes
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frequencies in the GhImpCHN group represent loss alleles (Fig. 5g; Additional file 1:

Table S28). More unfavorable genes than favorable were eliminated during cotton

breeding (Fig. 5h). Favorable gain genes participated in transmembrane transport and

oxidation-reduction process, whereas favorable loss genes involved in electron trans-

port chain and secondary metabolic process (Fig. 5i, j). Unfavorable gain genes had no

significantly enriched process during improvement (Fig. 5j). These analyses showed that

many unfavorable gene were lost during domestication and considerable favorable

genes were retained during improvement process.

Genes for related traits using pan-genome dataset

Based on the above data, we propose a summary chart for cotton natural selection, do-

mestication, and improvement (Fig. 6a). We identified nearly 456Mb (19.4% of the as-

sembled reference genome) and 357Mb (15.2%) of sequences with domestication and

improvement signals, through the integrated SNP, CNV, and PAV maps (Additional file

1: Table S29). There are 21,169 genes located in domestication regions, some of which

have been demonstrated to be involved in the regulation of flowering date, morphology,

and fiber development. For the flowering date, a significant GWAS peak on chromo-

some D03 has two candidate genes encoding a COP1-interactive protein [6] (CIPI,

Ghir_D03G008950) and a CONSTANS-like protein [42] (COL2, Ghir_D03G011010),

which are required for adaptation change in landrace cotton to cultivated varieties in

different geographical areas with different photoperiods. Further investigation of causal

SNP alleles shows that the ancestral alleles are mainly distributed in landraces, with

Fig. 4 Comparison of core and variable genes in A and D subgenomes. a Expression levels of core and
variable genes in G. hirsutum and G. barbadense. The softcore genes are represented by “Soft.” b Ratio of
transposable element (TE) insertion frequency in upstream 2 kb of core and variable genes in the A and D
subgenomes. c Ratio of nonsynonymous/synonymous (Ka/Ks) mutations of core and variable genes. d SNP
diversity of core and variable genes. The comparison of gene expression, TE, and SNP diversity between
core and variable genes were carried out using a two-sided Kolmogorov-Smirnov test (*P < 0.05,
**P < 0.01, ***P < 0.001)
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lower allele frequencies in improved cultivars (Fig. 6b). Similarly, we found that land-

race and improved groups exhibited allele differentiation in LATE MERISTEM IDENTI

TY1 [43] (LMI1, Ghir_D01G021810) that regulates leaf shapes, and in the basic helix-

loop-helix protein gene GRF (Ghir_A12G025340) that is a candidate gene for cotton

glandular QTL [44] (Fig. 6b). Some genes responsible for fiber development that expe-

rienced domestication and improvement selection were also detected by the geograph-

ical differentiation analysis. KCS2 (Ghir_D10G015750) and CesA6 (Ghir_D03G004880),

responsible for fiber elongation [45–48], were subject to domestication and improve-

ment selection (Fig. 6b). The domestication gene PRF3 (Ghir_D13G021640) has a

strongly mutated allele in improved cultivars [49].

Pan-genome analysis uncovered favorable and unfavorable gene alleles during domes-

tication and improvement, providing novel candidate genes for functional investigation

(Fig. 5). For genes favorable to cotton improvement selection, SCD (short chain de-

hydrogenase, GhirPan.00056999), ST (sugar transporter, GhirPan.00054328), and RbfA

(ribosome-binding factor A, GhirPan.00033905) have the lowest frequency in wild

Fig. 5 PAV selection signals during cotton domestication and improvement. a Gene number among the G.
hirsutum landrace and improved accessions. The Wilcoxon rank-sum test (P < 0.001) was used for the
significant statistics. b PCA analysis of 1020 accessions based on shell PAVs. c Maximum-likelihood
phylogenetic tree and population structure with different number of clusters (K = 2, 3, and 4) in 1020 G.
hirsutum accessions using 3803 shell PAVs. The population structure is sorted according to the phylogenetic
tree. d, e Comparison of significant gene presence frequency between the landrace versus GhImpUSO
group (domestication) and GhImpUSO versus GhImpCHN group (improvement) (FDR < 0.001, two-sided
Fisher’s exact test). f Numbers of favorable and unfavorable genes during domestication and improvement.
g, h PAV presence frequency of favorable and unfavorable genes during domestication and improvement.
i, j GO enrichment analysis of favorable gene (i) and unfavorable gene (j) gain and loss during
domestication and improvement
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population and highest in domesticated cultivars (Fig. 6c; Additional file 2: Figure S26).

Some favorable genes exhibiting a decrease of frequency in the improvement process

could be eliminated (308 genes), having almost the same allele frequency between wild

and cultivated accessions, such as DXS (deoxyxylulose-5-phosphate synthase, Ghir_

Scaffold1882G000030) and COX3 (cytochrome oxidase subunit 3, Ghir_Scaf-

fold1273G00008). Genes unfavorable during domestication showed increased (182

genes) or decreased (5405 genes) frequency in the GhImpCHN group, such as RLP9

(receptor like protein 9, Ghir_D13G022380) and ZBD (Zinc-binding dehydrogenase,

GhirPan.00044196) (Fig. 6c).

To determine the contribution of PAV to agronomic traits, we identified PAV-

associated SNPs for 1196 PAVs (MAF ≥ 0.02) in 415 accessions (4 accessions were dis-

carded from 419) using 1,904,926 SNPs and obtained 56,486 significant SNPs (P <

2.62 × 10− 8) associated with 864 (72.2%) PAVs. Of these PAVs, 124 were overlapped

with 89 trait-QTLs (Additional file 1: Table S30; Additional file 2: Figure S27). One

representative PAV (Ghir_A08G006710, 543 bp, an uncharacterized gene in G. hirsu-

tum) is located on chromosome A08 (Fig. 6d, Additional file 2: Figure S28). This hot-

spot region contained two yield-related (LP, FWPB) QTLs and two fiber quality-related

(FM, FS) QTLs (Fig. 6e). These accessions with the presence haplotype of this gene

showed significantly increased appearance of LP and FWPB traits than those with the

absence haplotype, but no difference for FS and FM traits (Fig. 6f). Further presence

frequency analysis showed that Ghir_A08G006710 was present in nearly all landrace

and GhImpUSO accessions, but was absent in only a few GhImpCHN accessions

(Fig. 6g). Interestingly, in the population RNA-Seq data of 15 DPA fiber [15], absence

of this gene in 18 accessions was accompanied by significant low expression of an adja-

cent gene Ghir_A08G006730 (locating at upstream ~ 61 kb, encoding an AUX/IAA

transcriptional regulator family protein) compared with that representing presence of

this gene in 233 accessions, supported by the change of IAA content in fibers of repre-

sentative accessions (Additional file 2: Figure S29, S30). These results implied that this

gene represented a recent loss event with a potential regulatory role in other gene ex-

pression during cotton improvement. These PAV localization and QTL analyses may

improve the efficiency of identifying favorable genes associated with desirable agro-

nomic traits.

Discussion
Crop domestication and improvement can alter the extent of genomic variation associ-

ated with agronomic traits [35–37]. Previous GWAS analyses identified a number of

SNP-based genetic loci (snpQTLs) associated with fiber quality, fiber yield, and flower-

ing date in cotton [3, 5, 6, 14, 15]. Following recently published reference-grade ge-

nomes for G. hirsutum with “TM-1” and G. barbadense with “3–79” [12], in this study,

we constructed an integrated genomic strategy to construct variome. Using the variome

data, we identified 47 novel SNP-based QTLs and 37 CNV-based QTLs, suggesting the

power of QTL identification using a larger collection of genomic data. We found that

~ 19.4% (456Mb) and ~ 15.2% (357Mb) of reference genomic regions in G. hirsutum

have selection signals during domestication and improvement, providing a genetic re-

source for exploring variations controlling the change of agronomic traits. Using a lim-

ited collection of wild and landrace accessions, previous studies have not been able to
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Fig. 6 An available pan-genome dataset for cotton breeding. a A four-step model of variation during
cotton domestication and breeding. b The spectrum of gene allele frequencies at the causal SNP
polymorphisms of COL2, CIP1, PRF3, LMI1, GRF, KCS2, and CesA6 in landrace and two geographic groups. c
The spectrum of domesticated PAV allele frequ encies of seven genes in landrace and two geographic
groups. d An example of functional PAV located on the A08 chromosome. The dashed line in Manhattan
plot indicates the threshold for GWAS signals (P < 2.62 × 10− 8; −log P > 7.6). This locus includes four QTLs
(lint percentage (LP), fiber weight per boll (FWPB), fiber micronaire (FM), fiber strength (FS)). e Four QTLs
were displayed in a panel of multiple accessions. The two dashed lines represent GWAS thresholds for CNV
(−log P > 6.45) and SNP (−log P > 4.42), respectively. f the phenotypic difference between presence and
absence groups. The numbers below the violin plots show the accession numbers. The significance
difference was calculated with a two-sided Wilcoxon rank-sum test (***P < 0.001, **P < 0.01). g Presence
frequencies of Ghir_A08G006710 in 182 landrace, 206 GhImpUSO, and 592 GhImpCHN accessions
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identify as many selection signals as possible, especially from landrace to the American

cotton domestication process [3–6]. This comprehensive variome map provides a new

perspective on variation landscape, QTL locations, domestication map, and potential

molecular targets for cotton improvement.

Given the notion that variation identification based on mapping data against a single gen-

ome cannot fully resolve the entire variation repertoire of germplasm resources, pan-

genome analysis provides an ideal alternative for allele mining associated with desirable phe-

notypes during crop improvement. In this study, we made an attempt of pan-genome as-

sembly using the accessible genomic data. We constructed pan-genomes for G. hirsutum

and G. barbadense species using a conservative reference-guide strategy [21], which include

1041Mb and 309Mb extra sequences not captured by the reference genomes. G. hirsutum

species has a higher percentage of variable genes (38% of 39,278 genes) than G. barbadense

(14% of 11,359 genes). For Gbpan-genome, the small number of variable genes is due to the

fewer number of sequenced accessions. A deep re-sequencing of a larger set of G. barba-

dense germplasm resources is needed to improve the resolution of pan-genome analysis. G.

hirsutum has a considerable proportion (38%) of variable genes as comparable to other

plants, such as wild soybean [18] (51%), Brassica oleracea [21] (19%), bread wheat [22]

(64%), Brachypodium distachyon [23] (45%), rice [24] (52%), tomato [26] (26%), sunflower

[27] (25%), sesame [28] (42%), and Brassica napus [29] (38%). This proportion of variable

genes may be increased with deep re-sequencing data and long-read-based pan-genome as-

sembly. Pan-genome analysis provides an opportunity for understanding of genetic diversity

using gene pools to discover gene loss during domestication and improvement, and benefi-

cial alleles and genes in wild counterparts could be used for crop improvement. In this

study, PAV presence frequency analyses reveal the loss of 6753 and 3866 genes during cot-

ton domestication and improvement, consistent with the trend found in tomato domestica-

tion [26]. We analyzed some PAVs associated with cotton agronomic traits, which allows

the identification of potential causal genes (Fig. 6d). Inevitably speaking, the current pan-

genome assembly based on short reads leads to many iteratively assembled fragments, so

more accessions need deep sequencing to allow de novo genome assembly. The annotation

of non-reference genes may be combined with population transcriptome data, which can

contribute to more precise annotation of coding genes and non-coding RNAs. In the future,

long-read sequencing technologies will be required to integrate new genomics approaches

to accurately identify structural variations and construct graphical pan-genomes [50–52].

Conclusions
In summary, our variome analyses reveal genomic landscape diversity and domestication

process in allotetraploid cotton and identify some novel QTLs that may contribute to pheno-

typic diversity. Pan-genome analyses discover genes that have been lost during domestication

and explore the possible impact of some PAVs on fiber traits. Further genetic manipulation

of these QTLs and genes will advance precision breeding of this important crop.

Methods
Collection of sequencing data of 1961 cotton accessions

Genome re-sequencing data of 1874 cottons were downloaded from National Center

for Biotechnology Information (NCBI) database. In this study, we sequenced 87G.
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hirsutum and G. barbadense cultivated accessions (Additional file 1: Table S1). In total,

1961 cotton accessions were obtained, including 1655G. hirsutum (AD)1, 270G. barba-

dense (AD)2, 26 wild Gossypium species (AD)3-(AD)7, and 10 diploid (two Gossypium

arboreum (A2), two Gossypium anomalum (B1), one Gossypium davidsonii (D3), two

Gossypium gossypioides (D6), three Gossypium exiguum (K1) accessions) species [3–6,

16, 33, 34] (Additional file 1: Table S1).

Identification of SNPs and InDels from 1913 accessions

After discarding duplicated accessions, a total of 1913 cottons were used for SNPs/

InDels variation calling (Additional file 1: Table S1), including 1623 allotetraploid G.

hirsutum (AD)1, 261G. barbadense (AD)2, and 26 wild Gossypium species (AD)3-

(AD)7, two Gossypium arboreum (A2)-genome and one Gossypium davidsonii (D3) spe-

cies [3–6, 16, 33, 34]. Two allotetraploid reference genomes (Gossypium hirsutum acc.

TM-1 and Gossypium barbadense acc. 3–79) [12] and their annotations were down-

loaded from CottonGen https://www.cottongen.org/. Raw pair-end reads were filtered

with Trimmomatic (v0.32, MINLEN: 75) [53]. Clean reads were aligned against refer-

ence genomes using BWA-MEM (v0.7.10-r789). Duplicated mapping reads were fil-

tered using picard-tools, and uniquely mapped reads were retained for further analysis.

The reads around InDels from BWA [54] alignment were realigned by GATK (v4.0.1)

[55] with RealignerTargetCreator and InDelRealigner programs with parameter setting

-stand_call_conf 30. To obtain high-confidence variants, we retained the shared vari-

ants by GATK and SAMtools [56] with sequencing depth of at least 6. The scaffolds

were excluded from further analysis. Finally, GVCF files were merged with “Combi-

neGVCFs” and the missing rate was filtered by VCFtools. The missing genotypes were im-

puted using Beagle (v5.0) with hidden Markov model [57]. A total of 119,678,187 SNPs

and 12,354,432 InDels were identified from 1913 cotton accessions. The detailed filtering

processes were as follows: (1) high-quality SNPs set with 1% ≤minor allele frequency

(MAF) ≤ 99% and InDels with a maximum length of 20 bp were retained. Missing rates of

more than 80% were discarded in specified populations; (2) a filtered set of ~ 25 million

SNPs from ~ 63 million bi-allelic SNPs was retained with MAF ≥ 0.01; (3) core SNP set of

~ 19 million was obtained from ~ 25 million SNPs with criteria of at least five accessions

having homozygote for each SNP. The core variation set has 19,246,497 SNPs and 4,815,

125 InDels which were used for further analysis (Additional file 1: Tables S2 and S3). The

different sub-population SNPs were filtered with the same criteria. The core SNPs and

InDels were annotated using ANNOVAR program [58].

Population structure analysis of 1913 accessions

We chose randomly 5 SNP sets (200,000 SNPs for each) from the core SNP set (19,246,

497) for population structure analysis. First, STRUCTURE [59] was run on 5 × 200,000

SNPs with K ranging from 3 to 15, and K = 12 was determined as the optimal value by

the Structure Harvest subprogram with the “evanno” method. The Q-matrices were

merged using CLUMPP [60] based on the sorting of K = 12. One random SNP set was

used to construct a neighbor-joining tree with PHYLIP (v3.696) [61] with 1000 boot-

strap replicates and was visualized using online tool iTOL (https://itol.embl.de/). Princi-

pal component analysis (PCA) was performed using gcta64 [62] program with MAF ≥
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0.05. The weighted Fixation statistics (Fst) and nucleotide diversity (π) were calculated

by VCFtools (v1.1.14) [63] in a 100-kb sliding window with a step size of 20 kb.

Linkage disequilibrium (LD) analysis

Linkage disequilibrium (LD) was calculated using PLINK (v1.90b6.10) [64] with param-

eter settings (--ld-window-r2 0 --ld-window 99999 --ld-window-kb 1000). The pairwise

r2 values were calculated by two SNPs across whole genome. The LD decay plot was

shown in average 1 kb bins using a Perl script.

Genome-wide selective sweep analysis

We identified genomic selection and improvement signals using two strategies. For the

domestication regions, we combined two major cultivated cotton groups (438 acces-

sions from USO and other geographical regions, 929 accessions from China) into an

improved group to exclude genetic drift. In total, 256 landraces and 1364 improved G.

hirsutum accessions were used for domestication sweeps. Nucleotide diversity (π) was

calculated from landrace, improved GhImpUSO and GhImpCHN groups. The ratio of

nucleotide diversity (πLandrace/πImproved) for landrace versus improved cultivars was

used to define candidate domestication selection regions. XP-CLR [65] (v1.0, -w1 0.005

200 2000 1 -p0 0.9) method was used to filter candidate domestication regions. To per-

form XP-CLR analysis, SNPs were assigned at genetic positions according to a released

genetic map [12]. The top 5% XP-CLR values were selected. The overlapping regions in

π ratio and XP-CLR analyses were identified to be high-confidence domestication

sweep regions. The adjacent DSR signals were merged. The GhImpUSO/GhImpCHN

ratio was used to identify improved regions during breeding. The domesticated homeo-

logous gene pairs were detected by the reciprocal best BLAST hit between At- and Dt-

subgenomes. Syntenic blocks were detected using MCScanX [66]. The expression levels

of domestication-related genes were calculated between wild/landraces and improved

cultivars using data in previous studies [3, 47].

Identification of structural variations

The DELLY (v0.7.2) [67] program was used to identify structural variation (SV), inte-

grating the strategies of read depth, read pair, and split read for SV identification.

DELLY was used to identify deletions (DEL), insertions (INS), duplications (DUP), in-

versions (INV), and translocations (TRA) for each accession. Breakdancer (v1.3.6) [68]

was also used to identify insertions, deletions, inversions, and inter- and intra-

chromosomal translocations for each accession according to the mapped pair-end reads

with unexpected separation distance or orientation. Breakdancer-max (-q 20 -y 30) was

used for SV identification of each accession. The shared breakpoints of SVs were sub-

ject to a filtering process with mapping read depth of more than 10×. The SVs in all

cotton accessions were merged into a population-scale VCF file using BCFtools. For

the analysis of SV genotypes, the high-quality SVs filtered as “LowQual” and “IMPRE-

CISE” were further retained only with split-read (SR) consensus alignment of more

than 3 and the length of more than 50 bp and less than 1Mb. Two adjacent SVs were

combined as a single SV if the distance between start coordinate of one SV and end
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coordinate of the other SV was less than 500 bp, and the overlapping region occupied

more than 50% of the total size.

Identification of CNVs

The copy number variations (CNVs) were detected using CNVcaller [69]. Briefly, the

reference genome was split into 800 bp overlapping sliding windows. Second, we gener-

ated the reference genome index and processed the BAM file of each accession. The

boundaries of CNV regions (CNVR) were detected using normalized mean read depth

(RD). The CNV minimum frequency of gain/loss individuals (-f 0.05), homozygotes (-h

3), and RD of adjacent windows are significantly correlated (-r 0.5). At last, the CNV

genotype were clustered with the input sample using a Gaussian Mixture Model. The

minor allele frequency of 0.01 was used in each specific population.

Meta-genome-wide association study for fiber and agronomic traits

We performed a genome-wide association study on three independent experiments for

fiber length (FL), fiber strength (FS), fiber micronaire (FM), fiber elongation (FE),

length uniformity (FU), boll weight (BW), lint percentage (LP), seed index (SI), lint

index (LI), fiber weight per boll (FWPB), and flowering date (FD), using re-sequencing

data of 267 accessions from Huazhong Agricultural University (HZAU) [3, 14], 263 ac-

cessions from Nanjing Agricultural University (NJAU) [5], and 419 accessions from

Hebei Agricultural University (HBAU) [6]. After discarding accessions with missing

phenotypes, a total of 264, 207, and 419 accessions from the HZAU, NJAU, and HZAU

were retained, respectively. We merged best linear unbiased prediction (BLUP) [70]

values of 890 non-redundant accessions in three independent experiments to conduct

Meta-GWAS. The 2,787,330, 677,013, 2,371,414 and 2,291,437 high-quality SNPs

(MAF ≥ 0.05 and homozygote more than five accessions) were used for GWAS analysis

in 264,207,419,890 accessions using the TASSEL5.0 [71] with a mixed linear model

(P + G +Q + K) and FastLMM [72], respectively. The significant threshold was set as 1/

N (independent case), and 0.05/N (Meta-GWAS) as filtering parameter (“N” represents

the total number of SNPs). For the CNV-based GWAS, we used 26,831 CNVs identi-

fied from 419G. hirsutum accessions released by the HBAU (MAF ≥ 0.05) to identify

CNV-based QTLs.

Pan-genome construction based on short reads

The unaligned reads were extracted using SAMtools with “-b -f 4” and “-f 68 -F 8 and

-f 132 -F 8.” We assembled all unmapped paired reads and unpaired single reads for

each accession with MaSuRCA (v3.2.1) [73] assembler (cgwErrorRate = 0.15, PE = “PE

300 50,” LIMIT_JUMP_COVERAGE = 300, KMER_COUNT_THRESHOLD = 1). The

initial contigs with a length of longer than 500 bp were retained. The long contigs were

aligned against reference genome using nucmer (-c 90 -l 40) program in MUMmer

(v4.0.0) package [74]. The redundant sequences were filtered using CD-HIT (v4.8.1)

[75] with command “-c 0.9 -G 0 -aL 0.90 -AL 500 -aS 0.9 -T 0 -M 1500000.” The con-

tig filtering steps are as follows: (1) remaining sequences from cotton chloroplast gen-

ome (GenBank: DQ345959) and mitochondrial genome (GenBank: JX944505.1) were

identified using BLASTN and MUMmer package with nucmer “-l 90.” To ensure that
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contigs of each accession were absent from the reference genome, we aligned these

contigs against the reference genome; (2) unaligned contigs from the archaea, bacteria,

and viral genomes (Jun 18, 2019) were discarded using the Kraken (v2) [76]; (3) non-

redundant contigs were used to search the NCBI nt database (20171030) using BLAST

(-e 1e-05; -best_hit_overhang 0.25 -perc_identity 0.8; -max_target_seqs 10) to identify

other contaminants; (4) remaining contigs were subject to an all-versus-all alignment

with nucmer and BLASTN (-e 1e-05, -b 200 -v 200) to ensure the non-redundancy.

Contig sequences with a similarity of 90% and a length of 90% were filtered out among

the cultivars. The non-reference sequences that were not aligned to sequences of higher

plants in NCBI nt database were considered as contaminant sequences, according to

previous rice pan-genome [24]. The Ghpan-genome sequences were generated by com-

bining the 2347Mb of “TM-1” reference sequences and 1041Mb of final non-reference

sequences. The Gbpan-genome sequences consisted of 2266Mb of “3–79” reference se-

quence and 309Mb of final non-reference sequences.

PacBio sequencing and de novo assembly of 10 representative cotton accessions

According to phylogenetic tree, three wild/landrace accessions, three GhImpUSO, and

four GhImpCHN cultivars of G. hirsutum for different sub-population were used for

evaluating Ghpan-genome coverage. Genomic DNA was extracted from young leaves

using CTAB method. The PacBio library was constructed and sequenced on PacBio Se-

quel platform. Long reads were assembled using MECAT (ErrorRate = 0.02) assembler

[77]. The 70× depth Illumina pair-end reads were used to polish the PacBio assembly

using pilon (v1.23) program [78]. After two rounds of polishing, 2,550,224 SNPs, 13,

154,090 insertions, and 2,151,774 deletions were corrected on average for each cotton

accession. The assemblies of wild accessions, landraces, and modern cultivated cotton

were subject to assessment of assembly completeness using BUSCO (v3.1.0) [79] with

embryophyta_odb9 database as a reference. This showed that 1369 (95.1%), 1380

(95.8%), and 1374 (95.4%) integrity BUSCO hits were found for landrace, GhImpUSO,

and GhImpCHN groups, respectively (Additional file 2: Figure S18b).

Annotation of pan-genome genes

We used de novo and homology-based prediction of non-reference genes (only contigs

with a length of more than 1000 bp were used for gene prediction). First, RepeatMode-

ler (v1.0.11) (http://www.repeatmasker.org/RepeatModeler/) was used for de novo con-

struction of repeat library in the non-reference genome, and the repeat sequences were

masked by RepeatMask (v4.0.7) [80]. The protein-coding genes were predicted in non-

reference genomes with MAKER2 pipeline [81]. Gene prediction included ab initio pre-

diction and protein homology-based prediction. For ab initio gene prediction, AU-

GUSTUS (v3.3.1) [82] and SNAP (v2006-07-28) [83] were trained for two rounds by

MAKER. Cotton expressed sequence tags (ESTs, MAY 2019) were downloaded from

NCBI and aligned against the non-reference sequences using BLASTN. Cotton protein

sequences were downloaded from NCBI and UniProtKB databases and were aligned

against the non-reference sequences with BLASTX. We excluded non-reference genes

with less than 500 bp on both sides of contigs. These transcripts were aligned to refer-

ence transcripts to remove potential redundant transcripts. These non-reference
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transcripts were also subjected to all-by-all alignment. The final protein sequences

translated from transcripts were aligned using InterProScan (v5) [84]. Transcripts with

at least one evidence (Interpro, Pfam, GO, KEGG) supporting annotation were

retained.

For the functional annotation of non-reference genes, protein sequences were aligned

against the NCBI non-redundant (nr) and InterProScan (v5). GO enrichment analysis

of core and variable genes were performed for Ghpan-genome and Gbpan-genome

using Fisher’s exact test method.

Gene presence/absence variation (PAV) analysis

First, the raw reads from each accession were aligned to the pan-genome sequences

using BWA-MEM with default parameters. The PAVs were detected by SGSGeneLoss

[85] (v1.0) with at least two covered reads (minCov = 2, lostCutoff = 0.2). If more than

80% of exon regions were covered, this gene was called present with the “1/1” genotype.

We defined variable genes and divided them into three categories: softcore, shell, and

cloud genes. For the G. hirsutum pan-genome, the softcore, shell, and cloud genes were

present in 97–100%, 1–97%, and less than 1% of the accessions in specified population,

respectively. For G. barbadense pan-genome, the softcore, shell, and cloud genes were

present in 98–100%, 3–97%, and less than 2% of the accessions in specified population,

respectively. The Ka and Ks values were calculated to estimate evolutionary rate by

KaKs_Calculator (v2.0) [86] with multiple alignments of core, softcore, shell, and cloud

genes using MAFFT (v7.453) [87]. The shell and cloud genes were combined as flexible

genes. For the PAV population analysis, we selected PAV genes present in specified

population and discarded un-mapping non-reference genes. The phylogenetic tree was

constructed using IQ-TREE [88] program based on the binary flexible PAV genes with

1000 bootstraps according to a maximum-likelihood method. The pan-genome satur-

ation curve analysis was repeated for 1000 random combinations with five replicates of

cotton genome orders starting with two and ending with 1020 of G. hirsutum acces-

sions, and 177 of G. barbadense accessions.

Selection of PAVs during cotton domestication and improvement

To identify PAVs undergoing selection during cotton domestication and improvement,

the PAV presence frequencies were calculated in two groups (landrace versus Improved

USO and Improved CHN for domestication; GhImpUSO versus GhImpCHN for im-

provement). The significantly different PAV frequency for each gene between domesti-

cation and improvement groups was calculated using Fisher’s exact test. The P value

was determined in all PAVs and was then corrected via false discovery rate (FDR).

PAVs with significantly different frequencies (FDR < 0.001 and Ghlandrace/GhIm-

proved fold change > 2 defined as “unfavorable” or fold change < 0.5 “favorable”) were

identified as those with domestication/improvement selection signals. The continuously

selected genes in landrace, GhImpUSO, and GhImpCHN sub-population were defined

as “favorable gain” (gene presence frequency: GhImpCHN > GhImpUSO > landrace),

“favorable loss” (GhImpUSO > landrace and GhImpCHN < GhImpUSO), “unfavorable

gain” (landrace > GhImpUSO and GhImpCHN > GhImpUSO), and “unfavorable loss”

(GhImpCHN < GhImpUSO < landrace).
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Identification of PAV-associated SNPs

To associate SNPs with PAV genes, we analyzed linkage disequilibrium between PAVs

and SNPs using FastLMM [72]. According to the G. hirsutum PAV analysis, 1196 PAVs

(MAF ≥ 0.02) were used for genome-wide association analysis in 415 accessions (ex-

clude abnormal samples) [6]. The PAV presence and absence served as the “phenotype,

” and 1,904,926 SNPs served as “genotype” according to a previous study [27]. To con-

trol the false-positive rate of significant hits, we used a threshold of 0.05/N to filter as-

sociation peaks. The significant PAV loci that overlapped with trait-QTLs were

considered to be associated with agronomic traits, and the location of QTLs repre-

sented the positions of non-reference PAVs. Reference PAV-associated trait-SNPs were

selected manually.

CRISPR/Cas9 mutagenesis experiment

Computational sgRNA design for Ghir_D05G013680 gene and vector construction

were described in a previous study [89]. Gossypium hirsutum cultivar accession Jin668

was used for Agrobacterium-mediated transformation as described in our previous

study [90]. The transgenic cotton plants were confirmed by genotyping polymerase

chain reaction (PCR), and then positive individual was used for Hi-TOM target sequen-

cing [91]. The T0 transgenic positive plants were transplanted in the greenhouse, in

order to harvest T0 seeds. The T1 generation plants were cultivated in the experimen-

tal field of Huazhong Agricultural university. The edited T1 transgenic line was vali-

dated by Sanger sequencing. The fiber quality-related traits were measured with 10

cotton bolls from T1 and wild type plants by a High-Volume Instrument (HVI)

(HFT9000, Premier, India).

Phytohormone measurement

About 150-mg fiber samples were extracted twice with cold methanol (80% [v/v]) by

sharking overnight at 4 °C with three biological replicates. Indole-3-acetic-2,2-d2 acid

(IAA; Sigma-Aldrich), 2H6-abscisic acid (ABA; Olchemim), and (±) 9,10-dihydro-jasmo-

nic acid (JA; Olchemim) were added to each sample as an internal standard. The quan-

tification of IAA, ABA, JA, and jasmonoyl-isoleucine (JA-Ile) was performed on an ABI

4000 Q-Trap system (Applied Biosystems) according to a method described previously

[92].
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