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Rapid changes in Earth’s cryosphere caused by human activity can lead
to significant environmental impacts. Computer models provide a useful tool
for understanding the behavior and projecting the future of Arctic and Antarc-
tic ice sheets. However, these models are typically subject to large parametric
uncertainties, due to poorly constrained model input parameters that govern
the behavior of simulated ice sheets. Computer model calibration provides
a formal statistical framework to infer parameters, using observational data,
and to quantify the uncertainty in projections due to the uncertainty in these
parameters. Calibration of ice sheet models is often challenging because the
relevant model output and observational data take the form of semicontin-
uous spatial data with a point mass at zero and a right-skewed continuous
distribution for positive values. Current calibration approaches cannot han-
dle such data. Here, we introduce a hierarchical latent variable model that
handles binary spatial patterns and positive continuous spatial patterns as
separate components. To overcome challenges due to high dimensionality,
we use likelihood-based generalized principal component analysis to impose
low-dimensional structures on the latent variables for spatial dependence. We
apply our methodology to calibrate a physical model for the Antarctic ice
sheet and demonstrate that we can overcome the aforementioned modeling
and computational challenges. As a result of our calibration, we obtain im-
proved future ice-volume change projections.

1. Introduction. Human-induced climate change is projected to significantly affect the
Earth’s cryosphere. The West Antarctic ice sheet (WAIS) is particularly susceptible to warm-
ing climate because a large portion of its body is marine-based, meaning that the bottom of
the ice is below the sea level. Any significant changes in this part of Antarctica can lead
to a consequential sea-level change (Fretwell et al. (2013)). Computer models are used to
project the future of WAIS, but the projections from these computer models are highly uncer-
tain, due to uncertainty about the values of key model input parameters (Stone et al. (2010),
Gladstone et al. (2012), Chang et al. (2016a), Pollard et al. (2016)). Computer model calibra-
tion provides a statistical framework for using observational data to infer input parameters of
complex computer models.

Following the calibration framework described in the seminal paper by Kennedy and
O’Hagan (2001), several researchers have developed methods for inferring model parameters
for a variety of different types of computer model output. For instance, Bayarri et al. (2007)
provide a wavelet-based approach for calibration with functional model output. Sansó and
Forest (2009) calibrate a climate model with multivariate output while Higdon et al. (2008)
and Chang et al. (2014) provide approaches for calibrating models with high-dimensional
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spatial data output. More recently, Chang et al. (2016a) develops an approach for high-
dimensional binary spatial data output, and Sung et al. (2020) proposes a method for binary
time series output. Cao et al. (2018) provide a method for censored functional data. Ice sheet
thickness data, including the West Antarctic ice sheet data set we analyze here, are frequently
in the form of high-dimensional semicontinuous spatial data. No existing calibration meth-
ods are suited to this type of data; this motivates the new methodological development in this
manuscript.

Several computer model calibration approaches have been applied to infer the param-
eters and to systematically quantify parametric uncertainty in Antarctic ice sheet models
(Gladstone et al. (2012), Chang et al. (2016a, 2016b), Pollard et al. (2016), Edwards et al.
(2019)). One important caveat to existing approaches to ice sheet model calibration is that
the model outputs and observational data need to be transformed or aggregated in some de-
gree to avoid issues involving semicontinuous distributions. To be more specific, the main
variable of interest in ice model output and observational data is the spatial pattern of ice
thicknesses which takes positive values at locations with ice presence and zero values other-
wise. Handling such spatially dependent semicontinuous data with truncation at zero poses
nontrivial inferential and computational challenges, and existing calibration methods can-
not readily handle these issues. Chang et al. (2016a) used ice-no ice binary spatial patterns,
obtained by dichotomizing the thickness patterns into zeros and ones, and hence ignored
important information regarding the ice thickness. Pollard et al. (2016) also similarly used
highly-summarized data to avoid challenges related to semicontinuous data. Although their
results show that such approaches still lead to a meaningful reduction in input parameter
uncertainty, one can certainly expect that transforming or summarizing data can result in a
significant loss of information. This motivates our methodological development of a calibra-
tion method that can directly utilize semicontinuous spatial data.

Existing methods for handling semicontinuous data in the spatial statistics literature are
based on the truncated Gaussian process approach (Stein (1992), De Oliveira (2005)). In this
framework the semicontinuous data being analyzed are viewed as a realization from an un-
derlying Gaussian process (GP) which can be observed only when the values are positive.
This simple “clipped” Gaussian process approach provides a natural way to impose spatial
dependence among zero and nonzero values. However, using a truncated Gaussian process
can create serious computational issues when applied to a high-dimensional data set with a
large proportion of zeros. This is because inference, based on such a model, requires integrat-
ing out highly-dependent, high-dimensional, and bounded latent variables for locations with
zero values. Matrix computations for high-dimensional spatial random variables are expen-
sive. Furthermore, designing efficient (“fast mixing”) Markov chain Monte Carlo methods for
Bayesian inference for such models becomes very challenging. This is why a clipped Gaus-
sian process (such as the one used by Cao et al. (2018)) cannot provide a feasible solution for
our calibration problem.

In this paper we formulate an emulation and calibration framework that uses two separate
processes: one process for modeling the presence and absence of ice and the other for mod-
eling the value of ice thickness, given that ice is present. This approach removes the need
to integrate out the bounded latent variables for the locations with no ice and hence allows
us to circumvent the related computational challenges in the clipped Gaussian process ap-
proach. Our proposed method uses likelihood-based principal component analysis (Tipping
and Bishop (1999)) to reduce the dimension of model output and observational data (cf.
Higdon et al. (2008), Chang et al. (2014)) and avoids issues with large non-Gaussian spatial
data calibration (cf. Chang et al. (2016a)). In our simulated example and real data analysis,
we show that our method can efficiently utilize information from large semicontinuous spatial
data and lead to improved calibration results, compared to using only binary spatial patterns.
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While our focus is on calibrating a computer model for WAIS, the methodology we develop
here is readily applicable, with only minor modifications, to other calibration problems with
semicontinuous data.

The rest of this paper is organized as follows. In Section 2 we introduce the details of our
PSU-3D model runs and Bedmap2 observational data that have motivated our methodological
development. In Section 3 we describe our new framework for emulation and calibration,
using semicontinuous data, and discuss the computational challenges posed by the large size
of the spatial data. In Section 4 we propose a reduced-dimension approach that can mitigate
the computational challenges, and in Section 5 we describe the result of our analysis on the
model runs and observational data using the proposed approach. In Section 6 we summarize
our findings and discuss some possible future directions.

2. Model runs and observational data. In this study we use a state-of-the-art model,
the PSU-3D ice model (Pollard, DeConto and Alley (2015), Pollard et al. (2016)), for study-
ing the evolution of WAIS. This model strikes a good balance between model realism and
computational efficiency and hence can allow simulations of long-term behavior of WAIS
(on the scale of thousands of years) with a relatively high resolution of 20 km. Similar to
other complex computer model experiments, simulation runs from the PSU-3D ice model are
available only at a limited number of input parameter settings due to the high computational
cost. Therefore, in this study we take an emulation approach in which we first create a collec-
tion of model runs at prespecified design points in the input parameter space (often called a
perturbed physics ensemble) and then build a statistical surrogate based on these model runs.

We use a previously published ensemble of simulations (Chang et al. (2016a)) generated
from PSU-3D ice model with 499 model runs. The parameter settings for ensemble members
are determined by a Latin hypercube design for 10 varied input parameters. Note that a part
of the simulation results was analyzed by Chang et al. (2016a) in which the simulated modern
ice thickness patterns are dichotomized into binary spatial patterns and used for calibration.
In this study we aim to utilize the full ice thickness patterns for the modern WAIS as well
as to propose a statistical approach that can properly handle the inferential challenges arising
from the data type of the thickness patterns, semicontinuous spatial data with many zeros.

We refer to Table S1 in the Supplementary Material (Chang et al. (2022)) for a detailed
description of these 10 parameters calibrated in this paper. (For the rest of the paper, the
figure and table numbers starting with “S” refer to the ones in the Supplementary Material.)
The ranges of these parameters are determined based on the previous literature (Pollard and
DeConto (2012), Pollard, DeConto and Alley (2015)). While these parameters play important
roles in determining the long-term evolution of the Antarctic ice sheet, their values are highly
uncertain and hence need to be properly calibrated for realistic simulation.

Each ensemble member is spun up for 40,000 years to the present and then projected into
the future for 5000 years. For ocean forcing, the model runs use archived ocean temperatures
from a coupled AOGCM simulation by Liu et al. (2009). For atmospheric forcing, we use
a modern temperature map (ALBMAP, Le Brocq, Payne and Vieli (2010)) that is uniformly
perturbed based on a deep-sea core δ18O record (Pollard and DeConto (2009), Pollard and
DeConto (2012)). For future projection we assume that the oceanic temperature linearly in-
creases over the first 150 years to reach 2◦C of warming and then remains constant thereafter.
The atmospheric temperature also increases in the same way to reach 2◦C of warming. Cre-
ating more realistic future forcing scenarios for Antarctic simulation is currently an active
research area (see, e.g., Berdahl et al. (2020)), and we leave it as future work. Once the sim-
ulation over the entire WAIS is done, we extract the spatial pattern of modern grounded ice
sheet thickness in Amundsen Sea Embayment (ASE) region which is expected to be one of
the major contributors to sea level change in the future. The spatial pattern in our selected
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FIG. 1. Observational data (a) from Bedmap 2 data (Fretwell et al. (2013)) and example model runs (b)–(d)
from PSU-3D ice model. (e) The maps of region names (left) and bedrock elevations (right) that are adopted from
Pollard, DeConto and Alley (2015) with a rectangular box showing the study area. The ice sheet in the study area
is mostly marine-based, that is, its bottom is beneath the sea level.

region has 86 × 37 pixels with 20 km × 20 km resolution (Figure 1(b)–(d)). Figure 1(e)
(adapted from Pollard, DeConto and Alley (2015)) shows the location of the study region in
WAIS and the topography of the bedrock in the area.

To calibrate the 10 input parameters varied in the ensemble, we compare these model
outputs with the observed modern ice sheet thickness pattern in the same area derived from
the Bedmap2 dataset (Fretwell et al. (2013)) (Figure 1(a)). This recent data product combines
a wide range of sources, including seismic sounding, radar surveys, and satellite altimetry.
Since the observational grid has a higher spatial resolution (1 km × 1 km resolution), we
upscale the observational data to the model grid by averaging over 400 observational grid
cells for each model grid cell. Note that the model outputs and the observational data for ice
thickness are all in the form of high-dimensional semicontinuous spatial data which poses
nontrivial statistical challenges for our calibration framework.
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3. Computer model emulation and calibration using semicontinuous spatial data.
In this section we describe our statistical framework for inferring the input parameters in
the PSU-3D ice model. In particular, we focus on describing how the standard computer
model emulation and calibration framework (Kennedy and O’Hagan (2001)) can be modi-
fied to accommodate the ice thickness patterns, introduced above, which take the form of
semicontinuous data. A flowchart describing the overall modeling framework can be found
in Figure S1.

We use the following notation hereafter: Let the p-dimensional vector Y(θ) = [Y(θ, s1),

. . . , Y (θ, sp)]T denote the spatial pattern of ice thickness at the spatial locations of the model
grid s1, . . . , sp ∈ R2 which is generated from the computer model given input parameter
setting θ ∈ Rd . Here, d is the dimension of the input space which in our application is equal to
10. The observed data at the same spatial locations are denoted as a p-dimensional vector Z =
[Z(s1), . . . ,Z(sp)]T . Here, Y(θ , sj ) and Z(sj ) can have either positive values representing
the ice thickness or zero values denoting the absence of ice at location sj (see Figure 1).

We denote the design points for the input parameters in our ensemble as θ1, . . . , θn. As
a result, the collection of model output in our ensemble can be denoted as an n × p ma-
trix Y, with elements [Y]i,j = Y(θ i , sj ) for i = 1, . . . , n and j = 1, . . . , p, where the rows
correspond to different input parameter settings while the columns correspond to different
spatial locations. In our ice thickness application the number of spatial locations for the grid
is p = 86 × 37 = 3182, and the number of model runs in the ensemble is n = 499.

3.1. Procedure overview. Since our methodological development involves a lengthy dis-
cussion, we first give a preview of the overall steps of our approach. Given the n × p matrix
for model output Y and p-dimensional vector for observational data Z:

1. Create a n × p matrix for ice-no ice binary patterns, {Iy(θ i , sj )}(i = 1 . . . , n, j =
1, . . . , p), by dichotomizing the elements in the model output matrix Y into 0s and 1s. Apply
logistic principal component analysis (LPCA) to the dichotomized output matrix to find the
n × Jw matrix for LPC scores W.

2. Apply likelihood-based PCA only to the nonzero values in Y to find the n × Ju matrix
for PC scores U.

3. For each column in W and U, separately construct a one-dimensional GP emulator by
finding Bayesian estimates for the emulator parameters with the procedure proposed by Gu,
Palomo and Berger (2019). Let ψ(θ) and ξ(θ), respectively, denote Jw- and Ju-dimensional
emulated processes for the unobserved values of w(θ) and u(θ) which are collections of
independently constructed one-dimensional GP emulators.

4. Infer the best input parameter setting θ∗ along with other parameters based on the
posterior density, given the observational data Z (see equation (4.7) for its definition). The
Bayesian inference can be facilitated through Metropolis-within-Gibbs sampling.

A flowchart describing the overall modeling framework is included as Figure S1 (Chang
et al. (2022)).

3.2. Computer model emulation using semicontinuous spatial data. Since only a limited
number of computer runs can be carried out, we use an emulator to statistically link the
modeled ice thickness to the observational data. However, the semicontinuous nature of Y(θ)

prevents direct application of existing GP calibration approaches, such as those in Sacks et al.
(1989) and Kennedy and O’Hagan (2001). In order to make emulation of the semicontinuous
Y(θ , sj ) variable possible, we introduce an indicator variable Iy(θ i , sj ) whose value is one
if grounded ice is present at the given parameter setting and spatial location (θ i , sj ) or zero
otherwise for i = 1, . . . , n and j = 1, . . . , p. Given that grounded ice is present, we model
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the thickness as Y(θ i , sj ) = q(h(θ i , sj )), where q : R → R+ is a bijective transformation
function that allows h(θ i , sj ) to take any real value. (See Section 5.3 for our choice for q and
reasoning for it.) We can now formulate the ice thickness Y(θ i , sj ) as

(3.1) Y(θ i , sj ) =
{
q
(
h(θ i , sj )

)
if Iy(θ i , sj ) = 1,

0 if Iy(θ i , sj ) = 0,

for i = 1, . . . , n and j = 1, . . . , p. Using this representation, we can translate the prob-
lem of emulating Y(θ) into the problem of finding the predictive distributions of the
binary response Iy(θ , s1), . . . , Iy(θ , sp) and the transformed thickness values h(θ) =
[h(θ , s1), . . . , h(θ, sp)]T at any untried input parameter setting θ . Therefore, we can model
h(θ) directly using an existing method for continuous data, such as basis representation
(see, e.g., Chang et al. (2014), Higdon et al. (2008)), since its elements are unbounded and
continuous. We use a p-dimensional vector η(θ) = [η(θ, s1), . . . , η(θ, sp)]T to denote the
emulated process for h(θ). (The actual emulation will be done using a basis representation
method, as described in Section 4.1 below). We indirectly emulate the binary spatial pattern
Iy(θ , s1), . . . , Iy(θ , sp) through their corresponding logits γ (θ) = [γ (θ, s1), . . . , γ (θ, sp)]T ,
defined as

γ (θ , sj ) = log
P(Iy(θ , sj ) = 1)

1 − P(Iy(θ , sj ) = 1)

for j = 1, . . . , p, as in Chang et al. (2016a). Since γ (θ) = [γ (θ, s1) , . . . , γ (θ, sp)]T can be
again treated as continuous variables with unbounded support, an emulation approach for
continuous variables can be applicable. Since γ (θ, sj ) is an unobserved latent variable, even
if θ is one of the existing design points θ1, . . . , θn, we do not use a separate notation for
the logits at those design points. Our emulation problem now becomes a problem of finding
predictive processes η(θ) and γ (θ) at any untried settings θ (which are possibly dependent
on each other).

3.3. Computer model calibration using semicontinuous spatial data. In addition to the
new emulation framework described above, we formulate a new calibration framework for
semicontinuous data because the standard calibration approach (Kennedy and O’Hagan
(2001)) is not applicable. Here, we use a similar representation of the observed ice thick-
ness Z(sj ), as in (3.1). We define the variable Iz(sj ) to be an indicator with a value of one if
observed grounded ice presents at sj and zero otherwise. To transform the observational data,
we use the same transformation function q as in (3.1). At any spatial location sj , we assume
observation of ice thickness Z(sj ) can be represented as follows:

(3.2) Z(sj ) =
{
q
(
t (sj )

)
if Iz(sj ) = 1,

0 if Iz(sj ) = 0.

In a similar fashion to our emulation framework, we set up our model for the transformed
thickness t (sj ) and the logit of Iz(sj ), denoted as λ(sj ). Following Chang et al. (2016a),
we set up the following model to link it to the logit for the model output at the best setting
(γ (θ∗, sj )) while accounting for data-model discrepancy:

(3.3) λ(sj ) = γ
(
θ∗, sj

) + α(sj ),

where θ∗ is the input parameter setting that gives the “best” match between model output and
observational data and α(si ) is a spatially correlated discrepancy term, normally distributed,
representing the sum of spatially correlated parts of the model structural error (i.e., model
misrepresentation of the reality) and the observational error. The independent part of the
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errors are automatically taken care by the conditionally independent Bernoulli distribution
for each location sj given the logit λ(sj ), as in a usual generalized linear model setting.

The model for t (sj ) needs to be defined only for the locations with Iz(sj ) = 1. Let m =∑p
j=1 Iz(sj ) be the number of spatial locations with a positive observed thickness. Without

loss of generality, we assume that the observed thicknesses at the first m locations, Z+ =
[Z(s1), . . . ,Z(sm)], are positive while the rest, Z(sm+1), . . . ,Z(sp), are 0. For s1, . . . , sm,
we use the following model for the transformed thickness:

(3.4) t (sj ) = η
(
θ∗, sj

) + δ(sj ) + ε(sj ),

where the random variables δ = [δ(s1), . . . , δ(sm)]T ∼ N(0,�δ) and ε = [ε(s1), . . . ,

ε(sm)]T ∼ N(0, σ 2
ε Im), respectively, represent the spatially correlated part and the i.i.d. part

of the data-model discrepancy which together represent the sum of the model structural errors
and the observational errors. The discrepancy covariance �δ reflects the spatial dependence
among δ(s1), . . . , δ(sm).

It is worth mentioning that we do not follow the assumption in Kennedy and O’Hagan
(2001) that the model structural errors and the observational errors can be separated into a
dependent error component and an i.i.d. error component. This is because there is no reason
to believe that the observational errors are i.i.d., and hence the two sources of errors are not
distinguishable in most geoscientific applications. Rather we interpret the data-model dis-
crepancy as “all effects that make the model output and observational data different.” More-
over, we use a common link function q(x) in (3.1) and (3.2) so that the latent processes for
the emulator t (s) and for the calibration model λ(s) have the same interpretation; this allows
the emulator for h(θ , s) to be directly used in modeling λ(s).

The model in (3.3) assigns the following Bernoulli distribution for Iz(sj ) (conditionally
on the value of θ∗ and discrepancy α(sj )):

P
(
Iz(sj ) = x|γ (

θ∗, sj

)
, α(sj )

)
=

(
exp(γ (θ∗, sj ) + α(sj ))

1 + exp(γ (θ∗, sj ) + α(sj ))

)x(
1

1 + exp(γ (θ∗, sj ) + α(sj ))

)1−x

.

Given this distribution for Iz(sj ), we can view the specification in (3.2) as a mixture model
with density

(3.5)

f
(
Z(sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε , γ

(
θ∗, sj

)
, α(sj )

)
=

∣∣∣∣ ∂t (sj )

∂Z(sj )

∣∣∣∣f (
t (sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε

)
P

(
Iz(sj ) = 1|γ (

θ∗, sj

)
, α(sj )

)
+D0

(
Z(sj )

)
P

(
Iz(sj ) = 0|γ (

θ∗, sj

)
, α(sj )

)
for all locations s1, . . . , sp , where the density function f (t (sj )|η(θ∗, sj ), δ(sj ), σ

2
ε ) is given

by (3.4) and D0 is the Dirac delta function. Since the density in (3.5) can be rewritten as

f
(
t (sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε

)

=
{
f

(
t (sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε

)
P

(
Iz(sj ) = 1|γ (

θ∗, sj

)
, α(sj )

)
if Iz(sj ) = 1,

P
(
Iz(sj ) = 0|γ (

θ∗, sj

)
, α(sj )

)
if Iz(sj ) = 0,
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and Z(s1), . . . ,Z(sp) are conditionally independent, given the relevant parameters, the like-
lihood for Z can be factorized as follows:

(3.6)

L
(
Z|η+(

θ∗)
, δ, σ 2

ε ,γ
(
θ∗)

,α
)

∝
m∏

j=1

f
(
t (sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε

)
P

(
Iz(sj ) = 1|γ (

θ∗, sj

)
, α(sj )

)

×
p∏

j=m+1

P
(
Iz(sj ) = 0|γ (

θ∗, sj

)
, α(sj )

)

= L1
(
Z+|η+(

θ∗)
, δ, σ 2

ε

)
L2

(
Iz(s1), . . . , Iz(sp)|γ (

θ∗)
,α

)
,

where

L1
(
Z+|η+(

θ∗)
, δ, σ 2

ε

) =
m∏

j=1

f
(
t (sj )|η(

θ∗, sj

)
, δ(sj ), σ

2
ε

)
,

L2
(
Iz(s1), . . . , Iz(sp)|γ (

θ∗)
,α

) =
m∏

j=1

P
(
Iz(sj ) = 1|γ (

θ∗, sj

)
, α(sj )

)

×
p∏

j=m+1

P
(
Iz(sj ) = 0|γ (

θ∗, sj

)
, α(sj )

)
.

Here, η+(θ∗) is the vector of emulated process for all positive Z(sj )’s (i.e., η+(θ∗) =
[η(θ∗, s1), . . . , η(θ∗, sm)]T ), and α = [α(s1), . . . , α(sp)]T . The Jacobian factors | ∂t (sj )

∂Z(sj )
| are

omitted, as they do not depend on any model parameters.
Interestingly the likelihood function that started from the mixture distribution-like speci-

fication in (3.5) leads to a factored likelihood in (3.6), which shows that the likelihood for
Z can be factored into two parts, one for the positive observations Z+ and the other for the
indicator variables at all locations, Iz(s1), . . . , Iz(sp). This has an important implication for
inference on θ∗: utilizing the ice thickness pattern for calibration is essentially using the ad-
ditional information from the positive ice thickness values Z+ on top of the binary spatial
pattern of ice presence (Iz(s1), . . . , Iz(sp)) in calibration. We will show how this added infor-
mation improves our inference on the input parameter θ∗ in both the simulated and the real
data examples in Section 5 below.

Note that this formulation does not necessarily require independence between Z+ and
Iz(s1), . . . , Iz(sp), because dependence can easily be specified through dependence between
η(θ∗, sj ) and γ (θ∗, sj ) or δ(sj ) and α(sj ). This is how we impose dependence between Z+
and Iz(s1), . . . , Iz(sp) in our formulation (see Section 4.2 below).

3.4. Computational and inferential challenges. The basic framework, described in Sec-
tion 3.3, may face some computational and inferential challenges when the model output and
the observational data are in the form of high-dimensional spatial data (i.e., p is large), as
in our PSU-3D Ice model calibration problem: First, inference based on the formulations,
described in Sections 3.2 and 3.3, requires to handle a large number of latent variables for
the logits. To be more specific, the number of latent variables in the emulation step is n × p,
and this translates to 499 × 3182 ≈ 1.6 million variables to infer for our problem. In the cal-
ibration step, while the number of latent variables is much smaller than that in the emulation
step (2p = 6364), the number of available data points (p) is much smaller than the number
of latent variables (2p), and hence the problem is in fact ill-posed. Second, the size of data
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for height patterns from the model output is still large, even when we consider only those at
θ i and sj with Iy(θ i , sj ) = 1. In our calibration problem the number of (θ i , sj ) combinations
with Iy(θ i , sj ) = 1 is about 690,000, and this makes the standard Gaussian process emulation
approach computationally infeasible because of the well-known computational issue with a
large covariance matrix (see, e.g., Heaton et al. (2019)).

4. Dimension reduction-based approach. We mitigate the aforementioned challenges,
due to high-dimensional spatial data, using the likelihood-based principal component analysis
(PCA) methods (Tipping and Bishop (1999)). Unlike the singular value decomposition-based
PCA, the likelihood-based PCA can easily handle non-Gaussian data or partially observed
data and hence is highly suitable for our problem.

Salter et al. (2019) recently has cautioned about possible issues regarding use of principal
components in calibration; If the overall range for model output does not cover the range for
observational data, calibration based on principal components can yield nonsensical results.
Salter et al. (2019) has also proposed an optimal basis approach that can provide a solution
in such situation. Chang et al. (2014) and Chang et al. (2016b) also discuss possible issues
in a similar vein from the viewpoint of constructing discrepancy terms. Since the model runs
and observational data discussed in Section 2 does not have such issues, we choose not to
implement the optimal basis approach by Salter et al. (2019); see Section 5.5 below for our
detailed discussion on this point.

4.1. Emulation based on likelihood-based principal component analysis. We first intro-
duce our dimension-reduced emulation method for binary spatial patterns which is previously
proposed by Chang et al. (2016a). Let 
 = [γ (θ1), . . . ,γ (θn)]T be a matrix of logits for the
binary patterns {Iy(θ i , sj )} (i = 1, . . . , n and j = 1, . . . , p) for the existing model runs. The
rows of 
 correspond to the design points in input parameter settings θ1, . . . , θn while the
columns are for different spatial locations s1, . . . , sp . We apply logistic principal component
analysis (LPCA) (Lee, Huang and Hu (2010)) to decompose the logit matrix 
 in the follow-
ing way:

(4.1) 
 = 1nμ
T + WKT

w,

where μ is the p × 1 mean vector for the spatial locations s1, . . . , sp (i.e., the column means
of 
), W is the n × Jw logistic principal component (LPC) score matrix, and Kw is the
p × Jw LPC matrix with a prespecified number of principal components Jw ≥ 1. The rows
of W = [w(θ1), . . . ,w(θn)]T correspond to the logits for different input parameter settings
where w(θ) = [w1(θ), . . .wJw(θ)]T denotes a vector of the LPC scores at θ . The parame-
ters in (4.1) (μ, W, and Kw) can be estimated by maximizing the corresponding likelihood
function for these parameters, given the binary patterns {Iy(θ i , sj )} for existing model runs
using the minorization and maximization (MM) algorithm. We predict the logits γ (θ) at any
untried setting θ by predicting the corresponding LPC scores w(θ). Each score wk(θ) (for
k = 1, . . . Jw) can be predicted separately using a GP emulator; see Section S3 in the Supple-
mentary Material for details.) We denote the resulting emulated process of LPC scores at θ

as ψ(θ) = [ψ1(θ), . . . ,ψJw(θ)]T .
We also apply a likelihood-based PCA method for data with missing values to build an

emulator for the ice-thickness patterns. For θ i and sj with Iy(θ i , sj ) = 1, we assume the
following model for dimension reduction:

(4.2) h(θ i , sj ) =
Ju∑
l=1

ku,j lul(θ i ) + eij



1946 W. CHANG ET AL.

with eij ∼ i.i.d. N(0, σ 2
e ) (σ 2

e > 0), the principal component (PC) loading ku,j l (j = 1, . . . , p

and l = 1, . . . , Ju) and the PC score ul(θ i ) (i = 1, . . . , n and l = 1, . . . , Ju). Again, Ju ≥ 1 is
the predetermined number of principal components being used for our dimension reduction.
This is essentially PCA with missing values, and, therefore, the PC loadings and scores can
be estimated via EM algorithm (Stacklies et al. (2007)). We denote the resulting p × Ju

loading matrix by Ku, with (i, j)th element, given by ku,ij . In a similar manner to the problem
of emulating logits, we predict the latent variables for the thickness h(θ , sj ) at any untried
setting θ and location sj with a positive thickness value by predicting the corresponding
principal component scores u(θ) = [u1(θ), . . . , uJu(θ)]T .

Again, we build an emulator for each principal component separately using a GP emulator
with the following exponential covariance function:

(4.3) Cov
(
ul(θ), ul

(
θ ′)) = ζu,lI

(
θ = θ ′) + κu,l exp

(
−

d∑
b=1

|θb − θ ′
b|

φu,lb

)

for any two input parameter settings θ and θ ′ where ζu,l > 0 is the nugget, κu,l > 0 is the
partial sill, and φu,l1, . . . , φu,ld > 0 are the range parameters. To incorporate information
from the binary pattern, we use the following mean function for the lth principal component:

(4.4) E
(
ul(θ i )|w1(θ i ), . . . ,wJw(θ i )

) =
Jw∑
k=1

glk

(
wk(θ i )

)
,

where the function glk is given by a natural spline regression model whose degrees of free-
dom is determined through cross-validation (Hastie (1992)). We let β lk be the vector of co-
efficients for glk(·) whose dimensionality is the same as the degrees of freedom of glk . To
construct the GP emulator, we find the posterior modes of the covariance parameters (de-
noted as ζ̂u,l , κ̂u,l and φ̂u,l1, . . . , φ̂u,ld ) and the parameters for the spline functions (denoted
as β̂ l1, . . . , β̂ lJw

) for each lth principal component separately using the robust Bayesian pro-
cedure (Gu, Wang and Berger (2018), Gu, Palomo and Berger (2019)) as we do for the LPC
scores above. When we predict ul(θ) for any untried setting θ /∈ {θ1, . . . , θn}, we replace
wk(θ) with E(ψk(θ)|wk(θ1), . . . ,wk(θn)), given by the Gaussian process emulator described
above, since wk(θ) is not available if θ /∈ {θ1, . . . , θn}. We let ξ(θ) = [ξ1(θ), . . . , ξJu(θ)]T de-
note the resulting emulated process for u(θ).

For any untried input parameter setting θ , we can predict the ice thickness pattern from our
computer model in the following two steps: (i) We first predict the logits of ice-no ice patterns
γ (θ) as Kwψ(θ) and (ii) for each location sj with γ (θ , sj ) > 0. The predicted thickness is
given as q(

∑Ju

l=1 ku,j lul(θ)). Note, however, that the thresholding of the logits at 0 is needed
only for evaluating emulation performance (such as generating predicted patterns for visual
evaluation) and is not used in our actual calibration procedure.

In the calibration step discussed below, we fix the emulator parameters at their poste-
rior modes, except for the partial sill parameters for ξ , κu = [κu,1, . . . , κu,Ju]. The partial
sill parameters for ξ will be reestimated along other parameters in the calibration model to
account for any possible discrepancies in scale (see, e.g., Bhat et al. (2012), Chang et al.
(2014, 2015, 2016b), for similar approaches). However, the partial sills for ψ will be fixed at
their MLEs without being reestimated in the calibration stage because the binary patterns usu-
ally do not have enough information for the scale parameters of the latent variables and hence
reestimation for the partial sill parameters often cause identifiability issues, as discussed in
Chang et al. (2016a).
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4.2. Calibration using basis representation. Using the emulators for principal compo-
nents (ψ and ξ ) described in the previous section, we modify the basic calibration framework
introduced in Section 3.3 to set up a computationally efficient calibration method. We now
rewrite the model for t (sj ) in (3.4) as

(4.5) t (sj ) =
Ju∑
l=1

ku,j lξl

(
θ∗) +

Jr∑
k=1

kr,jkrk + εj

for j = 1, . . . ,m, where kr,jk is the (j, k)th element of an m × Jr discrepancy basis ma-
trix Kr , r1, . . . , rJr ∼ i.i.d. N(0, σ 2

r ) are the random coefficients with σ 2
r > 0 for Kr , and

εj ∼ N(0, σ 2
ε ) is the i.i.d. observational error with σ 2

ε > 0. The terms
∑Ju

l=1 ku,j lξl(θ
∗) and∑Jr

k=1 kr,jkrk are, respectively, the basis representations of η(θ∗, sj ) and δ(sj ) in (3.4) given
by our formulation.

We also rewrite the model for the logits λ for Z in (3.3) using a similar basis representation
as follows:

(4.6) λ = μ + Kwψ
(
θ∗) + Kvv,

with the logistic principal component basis matrix Kw , a p × Jv discrepancy basis matrix
Kv , and its corresponding coefficients v = [v1, . . . , vJv ]T ∼ N(0, σ 2

v IJv ) with σ 2
v > 0. This

calibration model formulation has been previously proposed in Chang et al. (2016a). We
model the dependence between the coefficients of the discrepancy terms v = [v1, . . . , vJv ]T
and r = [r1, . . . , rJr ]T through a Jv × Jr cross correlation matrix R whose (i, j)th element
ρij is the correlation between vi and rj .

The discrepancy basis matrices Kr and Kv need to be carefully specified to avoid pos-
sible identifiability issues between the effects of input parameters and the discrepancy. For
our analysis described in Section 5, the discrepancy basis Kv and Kr are both defined using
exponential kernels with knot locations marked as red dots in Figure S5, and their range is
defined as 80 km. They are defined based on our prior knowledge that: (i) the used PSU-3D
ice model runs with 20 km resolution has more model errors in the areas with small-scale
observed features and ice-flow gradients, and (ii) there could be more observational errors
as well in the marked regions. In the left area covered with knots, there is a narrow channel
between Thurston island and the mainland. Moreover, as Figures 11 and 12 in Fretwell et al.
(2013) suggest, the thickness observations around the Thurston Island area have large ob-
servational errors, due to the large uncertainty in the bedrock elevation. Located in the right
area with knots is the outlet of Pine Island Glacier, a narrow but fast-moving glacier stream.
We expect that magnitudes of the combined observational and model structural errors for the
ice thickness are around 500–1000 m, and this prior knowledge is reflected in our simulated
example in Section 5.4.

The formulation in (4.5) implies that the role of thickness emulator
∑Ju

l=1 ku,j lξl(θ i ) is
restricted to capturing the ice thickness when the observed thickness is greater than 0. The
information from zero thickness patterns are separately handled by the process λ(s). This
makes consideration of “missing mechanism” in PCA with missing values in (4.2) unimpor-
tant because the “missed thickness values” at zero locations do not play any role in inference
based on the calibration models in (4.5) and (4.6).

Note that our formulation does not strictly require that the model output and the obser-
vational data have the same dimensions. In some applications, some pixels contained in the
model output Y(θ) might be missing in the observational data Z because obtaining observa-
tional data can be harder at certain locations. In such a case one can simply re-adjust the basis
matrices for the emulators (Ku and Kw) accordingly by deleting the rows corresponding to
the missing locations.
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4.3. Bayesian inference. Given the above formulation, we conduct Bayesian inference
on θ∗ and other parameters in the model. While using non-Bayesian inference might be pos-
sible as well, we choose to use a Bayesian method, as it provides a quite straightforward
way to quantify the uncertainty in θ∗, while accounting for other sources of uncertainties
despite the complexity of our model specification. All the emulator parameters for ψ(θ∗)
and ξ(θ∗), except for the sill parameters for ψ(θ∗) (κu), are fixed at their MLE computed
in the emulation stage. This two-stage approach with fixed emulator parameters is helpful to
reduce identifiability issues in calibration (Bayarri et al. (2007), Bhat et al. (2012), Chang
et al. (2014)).

Likelihood. In a similar fashion to the specification in (3.5), the representations in (4.5) and
(4.6) lead to a density function based on a mixture model. The likelihood function for the
mixture model conditional on the emulated process ξ and ψ now becomes

f
(
Z(sj )|ξ (

θ∗)
, r, σ 2

ε ,ψ
(
θ∗)

,v
) =

∣∣∣∣ ∂t (sj )

∂Z(sj )

∣∣∣∣f (
Z(sj )|ξ (

θ∗)
, r, σ 2

ε

)
P

(
Iz(sj ) = 1|ψ(

θ∗)
,v

)
+D0

(
Z(sj )

)
P

(
Iz(sj ) = 0|ψ(

θ∗)
,v

)
for all locations s1, . . . , sp , where the density function f (·|ξ(θ∗), r, σ 2

ε ) is for the case with
Iz(sj ) = 1 in (4.5). As a result, we have the following likelihood function for Z:

L
(
Z|ξ (

θ∗)
, r, σ 2

ε ,ψ
(
θ∗)

,v
) ∝

m∏
j=1

f
(
Z(sj )|ξ (

θ∗)
, r, σ 2

ε

)
P

(
Iz(sj ) = 1|ψ(

θ∗)
,v

)

×
p∏

j=m+1

P
(
Iz(sj ) = 0|ψ(

θ∗)
,v

)

= L1
(
Z+|ξ (

θ∗)
, r, σ 2

ε

)
L2

(
Iz(s1), . . . , Iz(sp)|ψ(

θ∗)
,v

)
,

where

L1
(
Z+|ξ (

θ∗)
, r, σ 2

ε

) =
m∏

j=1

f
(
Z(sj )|ξ (

θ∗)
, r, σ 2

ε

)
,

L2
(
Iz(s1), . . . , Iz(sp)|ψ(

θ∗)
,v

)

=
m∏

j=1

P
(
Iz(sj ) = 1|ψ(

θ∗)
,v

) p∏
j=m+1

P
(
Iz(sj ) = 0|ψ(

θ∗)
,v

)
.

We have a similar factorization, as in (3.6), with one factor for the positive observations Z+
and the other for the binary variables at all locations Iz(s1), . . . , Iz(sp).

Prior. To complete the Bayesian model specification, we assign the following priors for the
model parameters (θ∗, v, σ 2

r , σ 2
ε , σ 2

v , κu, and R) in our calibration step:

vj |σ 2
v ∼ N

(
0, σ 2

v

)
, j = 1, . . . , Jv; σ 2

v ∼ IG(2,1);
σ 2

r ∼ IG(ar, br); σ 2
ε ∼ IG(aε, bε);

κu,j ∼ IG(5,6κ̂u,j ), j = 1, . . . , Ju; R ∼ f (R);
θ∗ ∼ dπ

(
θ∗)

,

where f (R) is a uniform distribution within the range such that IJr − RRT is positive
definite, that is, f (R) ∝ I (IJr − RRT is positive definite). The shape (ar ) and the scale



ICE MODEL CALIBRATION USING SEMICONTINUOUS SPATIAL DATA 1949

(br ) parameters for the variance of thickness discrepancy σ 2
r is set to be ar = 50 and

br = 500ar/max(diag(σ 2
r KrKT

r )), where diag(σ 2
r KrKT

r ) means the diagonal elements of
σ 2

r KrKT
r . This encourages the variance of the resulting discrepancy term Krr (i.e., the di-

agonal elements of the covariance matrix σ 2
r KrKT

r ) to be around 5002, or slightly less, to
reflect our knowledge on observational errors on the thickness measurements (Fretwell et al.
(2013)) and the model structural errors in the area covered by the discrepancy term (expected
to be around 500–1000 m). The mode of the resulting inverse-Gamma distribution is around
3002. Similarly, the prior for σ 2

ε is designed to have a mode around 1002 with aε = 50 and
bε = 1002(aε + 1), to reflect our belief that the magnitudes of differences between the model
output and the observational data are 50–200 m in the region other than the high-discrepancy
area shown in Figure S5, covered by the discrepancy term Krr.

As per the prior for θ , we use prior densities inspired by previous calibration results for
OCFAC, CALV, CRH, and TAU based on modern and paleodata (“Simple Method” in Fig-
ure 2 by Pollard et al. (2016)). The informative priors used here are

OCFAC ∼ TN
(
0.75,0.12,0,1

); CALV ∼ TN
(
0.3,0.152,0,1

);
CRH ∼ TN

(
0.8,0.12,0,1

); TAU ∼ TN
(
0.4,0.152,0,1

)
,

where TN(μ,σ 2, low,upper) denotes a truncated normal distribution with the mean parame-
ter, μ, variance, σ 2, and the lower and upper bounds, lower and upper. Note that these priors
are specified with respect to the transformed [0,1] scale, not to the original scale. The mean
and the standard deviation for OCFAC and CRH are chosen to reflect our prior belief that the
values of these parameters are distributed in the higher part of the parameter space, and we
are a little more uncertain about these two parameters than CALV and TAU. The prior dis-
tributions for CALV and TAU are chosen to reflect our belief that their values are distributed
in the lower or middle part of the parameter space. For the other six parameters we assign
independent uniform priors within the ranges specified in Table S1 which are determined by
the domain knowledge in the previous literature (Pollard and DeConto (2012)). Please note
that these prior densities for the input parameters are used for both the calibration based on
the full ice thickness patterns and the calibration based only on the binary patterns explained
below.

We have specified a vague prior on σ 2
v with a shape parameter of 2 to avoid possible

issues with improper posterior and computational instability (Berger, De Oliveira and Sansó
(2001)). We have noticed that the posterior analysis is largely insensitive to the choice of the
prior hyperparameters (see Section 5.5 for further discussion on this). For the reestimated
partial sill parameters κu,1, . . . , κu,Ju , we assigned a slightly informative prior to encourage
them to have values around their MLEs estimated in the emulation stage.

Posterior. The above specification of likelihood and prior lead to a posterior whose density
can be factorized as follows:

(4.7)
π

(
θ∗,v, σ 2

r , σ 2
ε , σ 2

v ,κu,R|Z) ∝ π1
(
σ 2

r , σ 2
ε ,κu,R|θ∗,v,Z+)

× π2
(
θ∗,v, σ 2

v |Iz(s1), . . . , Iz(sp)
)
.

The first part on the right-hand side is based on the likelihood for Z+ (L1) and the relevant
priors and obtained by

π1
(
σ 2

r , σ 2
ε ,κu,R|θ∗,v,Z+) ∝

∫ ∫
L1

(
Z+|ξ (

θ∗)
, r, σ 2

ε

)
f

(
ξ
(
θ∗)|θ∗,κu

)
f

(
r|σ 2

r ,v
)
drdξ

× f
(
σ 2

r

)
f (κu)f

(
σ 2

ε

)
f (R)

= L∗
1
(
Z+|θ∗, σ 2

r , σ 2
ε ,κu,v,R

)
f

(
σ 2

r

)
f (κu)f

(
σ 2

ε

)
f (R),
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where f (σ 2
r ), f (θ∗), f (κu), f (σ 2

ε ), and f (R) are the prior densities (defined above) and the
marginal likelihood L∗

1 can be written as

L∗
1
(
Z+|θ∗, σ 2

r , σ 2
ε ,κu,v,R

)
∝ |�+|−1/2 exp

[
−1

2

(
q−1(

Z+) − μ+
)T

�−1+
(
θ∗)(

q−1(
Z+) − μ+

)]
,

with q−1(Z+) = [q−1(Z(s1)), . . . , q
−1(Z(sm))]T . The mean and covariance of q−1(Z+) are

given by

(4.8)
μ+ = K+,uμξ

(
θ∗) − Krμr|v,

�+ = [K+,uKr ]�ξ,r [K+,uKr ]T + σ 2
ε Im.

Here, μξ (θ
∗) is the mean of the emulated process ξ(θ∗), and K+,u is an m × Jy matrix

created by collecting the first m rows of Ku; �ξ,r is a block diagonal matrix, defined as

�ξ,r =
(
�ξ 0
0 �r|v

)
,

where �ξ is a Ju × Ju diagonal matrix whose diagonal elements are the conditional vari-
ances of ξ1(θ

∗), . . . , ξJu(θ
∗) from the GP emulators defining ξ(θ∗); μr|v and �r|v are the

conditional mean and variance of r, given v, defined as

μr|v = σr

σv

Rv,

�r|v = σ 2
r

(
IJr − RRT )

.

The computational cost for finding the inverse and the determinant of this covariance matrix
can be significantly reduced using the Sherman–Woodbury–Morrison formula (Woodbury
(1950)) and the determinant formula (Harville (2008)); see the Appendix for further details.

The second part of the posterior density is given as

π2
(
θ∗,v, σ 2

v |Iz(s1), . . . , Iz(sp)
)

∝ L2
(
Iz(s1), . . . , Iz(sp)|ψ(

θ∗)
,v

)
f

(
ψ

(
θ∗)|θ∗)

f
(
θ∗)

f
(
v|σ 2

v

)
f

(
σ 2

v

)
with the prior densities f (ψ(θ∗)|θ∗), f (θ∗), f (v|σ 2

v ), and f (σ 2
v ). The formulation for the

logits in (4.6) leads to the following likelihood function for Iz(s1), . . . , Iz(sp):

L2
(
Iz(s1), . . . , Iz(sp)|ψ(

θ∗)
,v

) ∝
p∏

j=1

[(
exp(λ(sj ))

1 + exp(λ(sj ))

)Iz(sj )( 1

1 + exp(λ(sj ))

)1−Iz(sj )]
,

where the logits λ(s1), . . . , λ(sp) are determined by ψ(θ∗) and v through the basis represen-
tation in (4.6). The prior for ψ(θ∗) is given by the Gaussian process emulator with the mean
and covariance, respectively, given in (4.3) and (4.4), and hence has the following multivari-
ate normal density:

f
(
ψ

(
θ∗)|θ∗) ∝ ∣∣�ψ

(
θ∗)∣∣− 1

2 exp
(
−1

2

[
ψ

(
θ∗) − μψ

(
θ∗)]T

�−1
ψ

(
θ∗)[

ψ
(
θ∗) − μψ

(
θ∗)])

,

where μψ(θ∗) is a vector of conditional means, given by the Gaussian process emulators for
u(θ∗), and �ψ(θ∗) is a diagonal matrix whose diagonal elements are given by the conditional
variance from the same Gaussian process emulators.

The target input parameters and the other parameters can be inferred based on the posterior
density in (4.7). To facilitate the Bayesian inference, we can resort to MCMC methods which,
in our case, require sampling from the posterior distribution by using Metropolis within Gibbs
sampling (Gilks, Richardson and Spiegelhalter (1995), Gelfand and Smith (1990)).
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5. Application. We now discuss the results of applying our method to the problem of
PSU-3D ice model calibration based on Bedmap2 data described in Section 2. As the first
step, we have built a dimension-reduced emulator described in Section 4 which takes about
three hours on a single high-performance core if implemented in an R code. While further
speed-up is possible by switching to a faster programming language or utilizing parallel com-
puting, we have decided not to pursue such an effort as the current implementation is fast
enough for our purpose.

5.1. Selection of the number of PCs. To choose the number of principal components for
the likelihood-based PCA, we use reduction in deviance as the metric. The principal com-
ponents used here are likelihood-based ones, and hence we cannot rely on the eigenvalues,
as in the standard principal component analysis with singular value decomposition. For the
logistic principal components the explained deviance is defined as

(5.1)

explained deviance

= 1 −
∑n

i=1
∑p

j=1[Iy(θ i , sj ) log(p̂ij ) + (1 − Iy(θ i , sj )) log(1 − p̂ij )]∑n
i=1

∑p
j=1[Iy(θ i , sj ) log(p̂0j ) + (1 − Iy(θ i , sj )) log(1 − p̂0j )] ,

where p̂ij = exp(γ̂ij )

1+exp(γ̂ij )
is an estimator for P(I (θ i , sj ) = 1) based on the fitted model with

LPCA; γ̂ij is an estimator for γij , which is the (i, j)th element of 
 in (4.1); p̂0j =∑n
i=1 I (θ i , sj )/n is the estimator for P(I (θ i , sj ) = 1), based on the “null model,” which

assumes a constant probability P(I (θ i , sj ) = 1) = p0j for all i = 1, . . . , n and j = 1, . . . , p.
For the principal components for thickness, the explained deviance is equivalent to the fol-
lowing explained variance, defined as:

(5.2) explained variance = 1 −
∑n

i=1
∑p

j=1[Y(θ i , sj ) − Ŷij ]2∑n
i=1

∑p
j=1[Y(θ i , sj ) − Ȳj ]2

,

where Ŷij is the fitted value for Y(θ i , sj ) from the model in (4.2) and Ȳj is the estimator based
on the null model which assumes a constant mean for all θ1, . . . , θn at any sj (j = 1, . . . , p).

We have calculated the explained deviance and variance for Jw = 1, . . . ,25 and Ju =
1, . . . ,25 (Figure S2). In addition to the metrics computed for the entire area, we have also
computed the metrics for the area marked with a rectangular box in Figure S3 in which the
input parameters are expected to have complicated effects, due to the complex terrain and in-
teraction with the ocean (“focus area” henceforth). For the logistic principal components we
set Jw = 13 to have more than 95% of explained deviance for the whole domain and 90% of
reduction in deviation for the focus area. We use a lower threshold for the explained deviance
in the focus area, as achieving 95% would require too many logistic principal components
(24 LPCs), which leads to poor prediction performance by the GP emulators due to the noisy
behaviors of some of the nonleading components. For the principal components for the thick-
ness, we set Jw = 19 to have a percentage of explained variation higher than 95% for both
the whole domain and for the focus area.

Here, we are using far more principal components (Jw = 13 and Ju = 19) than typically
recommended (around five) according to the existing literature on principal component em-
ulators (e.g., Higdon et al. (2008)). To check if each principal component score is well pre-
dicted by the GP emulators, we have conducted 10-fold cross-validation on each principal
component, and the results are summarized in Tables S2 and S3. The tables show the ex-
plained deviance or the explained variance for each LPC or PC and the correlation coefficients
between the original and predicted values for each score. Higher the correlation coefficient,
better the PC score is predicted. The results show that the predicted and the original scores
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have overall reasonably high correlation, even for the nonleading principal components. This
suggests that, for this application, even the nonleading PCs and LPCs selected in our analysis
contain some signals that can be predicted based on input parameter values.

5.2. Diagnostics of emulation performance. To verify the performance of our emulator,
we conduct 10-fold cross-validation for the emulator. To be more specific, we have randomly
left out 10% of the model runs and used the constructed emulator to predict the left out
model outputs. This procedure is repeated 10 times (while choosing the model runs that
are not selected previously) to compute the prediction accuracy for all model runs. Some
example cases are shown in Figure 2. The cross-validation results show that our emulator can
predict the left-out model outputs with high accuracy, both in terms of the ice-no ice binary
patterns and the thickness patterns. The overall mean absolute error (MAE) for ice thickness
prediction at the locations with positive thickness is about 231.05 m (while the overall mean
ice thickness at those locations is 2117 m). The sensitivity (the percentage of left out runs
where ice presence was correctly predicted) is 96.6% and the specificity (the percentage of
left out runs where ice absence was correctly predicted) is 90.9%. When computing these
scores, the pixels with the same ice or no ice outcome for all the ensemble members are
excluded from the calculation.

FIG. 2. Examples of 10-fold cross-validation results, showing selected original spatial patterns from PSU-3D
ice model (left column) and the corresponding emulated patterns (right column). The comparison shows that our
emulator can predict the original model output with high accuracy.
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TABLE 1
10-fold cross-validation results for two alternatives and our proposed emulator

Method # of LPCs # of PCs MAE

Partial Parallel – – 410.063
PCA only for Thickness – 10 358.512
PCA only for Thickness – 19 342.118
Proposed Emulator 13 19 231.050

We also examine how the prediction accuracy of the LPC and PC emulators changes as
we vary the used number of model runs with n = 200, 300, 400, and 499, to see if Loeppky’s
rule of thumb Loeppky, Sacks and Welch (2009) applies to our emulation model. The 10-fold
cross-validation results summarized in Figure S4 show that, first, the prediction accuracy of
the PC emulator notably improves as we add more model runs, indicating that Loeppky’s rule
may not apply under the use of latent variables and the presence of missingness here. Second,
the overall accuracy of the LPC emulator slightly increases as we add more runs, but the true
positive and true negative rates behave differently. The true positive rate stays almost the
same while the true negative rate increases by about 10%, indicating that adding more runs
does improve correct classification for the no-ice area. This result and the comparison with
thickness-only emulators above show that correctly predicting the zero areas in our problem
requires more model runs and careful model choice than usual emulation efforts.

In addition, we compare the prediction performance of our approach with two alternatives:
the original PCA-based emulator (Higdon et al. (2008), Chang et al. (2014)) and the partial
parallel emulator (Gu and Berger (2016)). Both are directly applied to the full thickness pat-
tern without adjusting to account for zero output values, hoping that the emulator can capture
the zero thickness by predicting them as near-zero values. To make these two emulators as
flexible as possible, we use exponential covariance functions to capture the trends in the pa-
rameter space; see Section S6 for further details on these emulators. The comparison results
are summarized in Table 1 and example comparison results are shown in Figure S6. The over-
all MAEs listed in Table 1 show that our method outperforms the other two alternatives. This
is because, as shown in Figure S6, the two alternative methods often fail to predict a large
zero thickness large area. If some changes in the parameter values lead to a reduction in ice
thickness below a certain threshold, an abrupt disintegration of the ice sheet in a certain part
of the study area can occur, and this behavior cannot be captured by a stationary covariance
structure even with the exponential covariance function.

For the “PCA only for Thickness” emulator in Table 1, the number of PCs is selected based
on the explained variance, defined in (5.2), for both the overall region and the focal area in
Figure S3, as described in Section S6. We also include the results based on 19 PCs for the
“PCA only for Thickness” emulator to show that the difference between this emulator and the
proposed method is not merely due to the number of PCs used here. The prediction accuracy
is notably worse with both choices (10 PCs and 19 PCs).

Using the constructed emulators and the observational data, we infer the best input param-
eter setting θ∗. We first verify our method using a synthetic data example in Section 5.4 and
proceed to calibration using the real observations from Bedmap2 data in Section 5.5. In both
cases we compare our current method (full approach henceforth) to the calibration results ob-
tained using only the ice/no ice binary patterns (binary-only approach henceforth, originally
presented in Chang et al. (2016a)) to show the added value by fully utilizing the ice thickness
patterns in calibration.



1954 W. CHANG ET AL.

5.3. Choice of transformation function and emulation performance. The success of this
latent variable-based approach partially depends on the choice of the transformation function
q to guarantee nonnegativity without introducing a serious artifact due to transformation.
While in the literature an exponential transformation is commonly used to enforce nonneg-
ativity, we found that the use of an exponential transformation imposes too much distortion
in distribution and results in a poor emulation performance in our problem (MAE of about
453.795 m, about twice higher than that of our result). Therefore, in this study we use the
following link function that can ensure nonnegativity with only minimal distortion of data
distribution:

q(x) =
{
x if x > 1,

exp(x − 1) if x ≤ 1.

This function preserves the original pattern of ice thickness by setting h(θ i , sj ) = Y(θ i , sj )

for Y(θ i , sj ) > 1 m, while allowing the transformed variable to have negative values by set-
ting h(θ i , sj ) = log(Y (θ i , sj )) + 1 for 0 < Y(θ i , sj ) ≤ 1 m. This function also ensures a
smooth transition at x = 1 because ∂q(x)

∂x
exists and has a value of one when x = 1.

One drawback of the above transformation is that the calibration of the ice thickness
q(η(θ∗, s) + δ(s) + ε) is different for ice thickness smaller than one meter and for ice thick-
ness greater than one meter. More precisely, the calibration formulation is multiplicative for
ice thickness of magnitude less than one meter and additive for ice thickness of greater or
equal to one meter. However, for the observational data used in our application, the per-
centage of pixels with ice thickness lower than one meter is 0.01% for both simulated and
observed data sets. This implies that our calibration process is, in practice, an additive cal-
ibration model. The modeled and observed thicknesses are compared directly without any
transformation in most cases.

5.4. Calibration using synthetic data. We now verify the performance of our calibration
method using a synthetic data example. To generate a synthetic data set, we choose the true
input parameter setting and its corresponding output for ice thickness pattern as the assumed
truth. We then superimpose generated errors to represent a possible data-model discrepancy
in reality. We chose a model output whose input parameter values are not at the center of
the cloud of design points to make the test more challenging. Based on the selected assumed
truth, the synthetic data is generated as follows:

(a) We first generate the assumed logit λ, based on equation (4.6), by computing the
predicted mean of ξ(θ∗) at the assumed truth θ∗ using the emulator constructed without
the model run at θ∗. We then sample the coefficients for the discrepancy term Kv , v from
N(0,0.42I ). The variance 0.42 is chosen by trying on different values and selecting the one
that yields a reasonably challenging discrepancy pattern. Then, for each location sj we deter-
mine the ice presence and absence by sampling I (sj ) from a Bernoulli random variable with

a success probability of λj

1+λj
where λj is the j th element of λ.

(b) Second, we superimpose Krr + ε on Y(θ∗) at the assumed truth for θ∗, where r ∼
N(0,3002I ) and ε ∼ N(0,502). The variance 3002 and 502 are chosen based on the modes
of our prior distributions for σ 2

r and σ 2
ε , defined in Section 4.2 prior part. After superimposing

the synthetic errors, the locations with negative thickness values or I (sj ) = 0 are set to zero
thicknesses.

Out of the different possible random realizations from the assumed discrepancy model, we
choose to use the one shown in Figure 3, which induces decreased ice thickness and less ice
coverage in the high discrepancy area compared to the original model output at the assumed
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FIG. 3. The map of the original model output for the assumed truth (left), the synthetic observation (middle), and
the synthetic errors generated as described in Section 5.4 (right). The generated discrepancy terms remove some
of the ice-covered regions and reduce the ice thickness in the high-discrepancy area, covered by the discrepancy
matrices Kr and Kv described in Figure S5.

truth, to create a challenging example problem (note that there is one inland location with
removed ice due to a random realization from the Bernoulli distribution in step (a)).

For both the full and the binary-only approaches, we, respectively, have obtained an
MCMC chain with a length of 1,000,000 iterations and verified that it has reached equilib-
rium by comparing the first half and the whole MCMC chain (results not shown). The overall
computing time took 73 hours on a high-performance single-core with an R code imple-
mentation. Switching to a faster program language and applying parallelization will certainly
make the computation much faster, but we did not seek to improve the computational time
here because the application problem at hand does not require a faster solution. To verify the
performance of our method in terms of recovering the assumed true input parameter setting,
we compare the estimated posterior densities with the assumed true input parameter settings.

CRHASE, GEO, LITH, and LAPSE are expected to affect the ice thickness over areas
already covered with ice rather than the horizontal extent of the grounded ice sheet. LAPSE
controls the lapse rate, and hence the vertical atmospheric temperature profile; the higher the
value of LAPSE, the colder the surface air temperature becomes for a thicker ice sheet, thus
affecting ice thickness through precipitation and surface melt. The other three, CRHASE,
GEO, and LITH, affect interactions between the base of the ice sheet and the bedrock.
CRHASE is a multiplicative factor for the basal sliding factor (CRH) applied only to the
inshore area of the Amundsen Sea Embayment, controlling the slipperiness of the bedrock
in that region. GEO sets the geothermal heat flux that flows from the bedrock into the base
of the ice sheet and hence the amount of basal melting of grounded ice. Lastly, LITH is the
flexural rigidity of the lithosphere in the bedrock model, influencing the vertical deformation
of the bedrock in response to the ice load on it, and hence the elevation of the ice surface.

The resulting posterior densities, based on the binary patterns only and the full thickness
patterns, are shown in Figures S7 and S8, respectively. For the parameters listed above, uti-
lizing the full thickness pattern improves the parameter estimation results. The posterior den-
sities for GEO and LAPSE are notably improved, moving the area with the highest posterior
density closer to their true values. We see a similar effect for LITH as well, but the peak of
the posterior density is still away from the true value after the improvement. The posterior for
CRHASE is improved as well, as the originally severely biased posterior based on the binary
pattern has become less biased, assigning more probability mass toward the true value with
the full thickness pattern. Since glaciologically LAPSE, CRHASE, LITH, are expected to be
improved when the thickness information is utilized and there are also notable changes in the
posterior densities, based on the real observation (see Figures S9 and S10), we conclude that
the inference results on these parameters are improved in this simulated example.

By combining information from the MCMC sample for the input parameters and the future
projection part of the existing ensemble runs, we can generate predictive distributions of ice
volume change. To be more specific, the procedure for generating the predictive distributions
for the future projections consists of the following three steps: (i) building an emulator using
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FIG. 4. Ice volume change projections in sea level change equivalence (sle) based on the estimated posterior
densities shown in Figures S7 (dashed and dotted line), S8 (solid line), and the original ensemble with 499 runs
(i.e., no calibration applied, shown as dashed grey line). The vertical line shows the projected change for the
assumed truth. The curves show the predictive densities and the bars above them show the 95% highest density
intervals. The projection based on the full thickness patterns (solid line) has a sharper density with a lower bias
than that based on the binary patterns only (dashed and dotted line).

the existing 499 model runs (which are projected into futures based on future climate scenar-
ios as described in Section 2) while treating input parameters as input variables and the future
ice volume changes as the output variable for the emulator, (ii) generating a sample for the
predictive distribution of future ice volume changes by supplying the MCMC sample for in-
put parameters to the emulator built in (i), and (iii) finally, finding the predictive distribution
using kernel density estimation based on the predictive sample obtained in (ii).

We apply the above procedure to our MCMC samples used in Figures S9 and S10 to find
the predictive distributions of the future ice change volumes caused by WAIS ice volume
loss calculated at 500 years from the present. One may consider an emulator for the full
ice volume change trajectories over time as well, but this may require an emulator that can
account for the changing input-output relationship over time, that is, possible nonstationarity
in the covariance structure for the GP emulator. We consider this direction as possible future
work. The resulting projections are shown in Figure 4.

As another benchmark, we also generate future projections, based on the future ice volume
change values for the original 499 ensemble members, by converting the existing input pa-
rameter settings θ1, . . . , θn into future ice volume change values using the emulator from step
(ii) above and applying kernel density estimation to them. The ice volume change projection
based on this “no calibration,” shown in Figure 4, is highly uncertain. Under this predictive
distribution, both substantial decreases and substantial increases in WAIS volume are possi-
ble (see Section 5.5 for more detailed discussion). While both the binary only and the full
thickness-based calibration results lead to significant improvement from the no calibration
result, utilizing the full thickness patterns leads to a sharper predictive distribution with less
uncertainty. The peak of the predictive density, however, has not changed. This is, perhaps,
because the negative bias in GEO (which will bias the prediction toward lower values) was
compensated by the positive bias in LAPSE (which will bias the prediction toward higher
values) in the binary-only result, and hence improving on the modes of these parameters has
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not led to a reduction in bias in the future projection. We see a similar change of the fu-
ture projection (reduced uncertainty with the same peak location) in the real data result in
Section 5.5 as well. The improvement with the full thickness pattern has an important scien-
tific meaning because the lower tail in the predictive distribution, based only on the binary
patterns, is removed, ruling out the possibility of a large ice volume growth of WAIS.

5.5. Calibration using real observational data. We now apply our calibration approach
to the Bedmap2 dataset introduced in Section 2. To see if the combined basis K+ =
[K+,u,Kr ] used here is adequate to represent the observed thickness pattern Z+ (i.e., we are
not in a “terminal case,” defined in (Salter et al. (2019)), where K+ cannot accurately capture
the spatial pattern in Z+), we computed the root mean squared errors between Z+ and its pro-
jected pattern onto the basis K+(KT+K+)−1KT+Z+. The computed MAE is 29.549 m, which
is much smaller than the MAE between Z+ and the most similar model output (62.119 m).

Unlike the Arctic ice sheet in Greenland, the ice volume change in the West Antarctic
region has been considered to be largely uncertain due to the competing effects of increased
temperature. On one hand, a warmer climate in the region leads to more precipitation (in the
form of snow) which can increase the ice volume of WAIS. On the other hand, a warmer
climate will increase the ocean temperature surrounding WAIS and hence can lead to ice
volume loss as most of the ice body in the area are marine-based, that is, its bottom is below
the sea level (see Figure 1(e)). Therefore, our main question of scientific interest is whether
utilization of the full ice thickness in calibration, in combination with the glaciologically-
motivated data-model discrepancy term, can reduce this uncertainty in parameter estimation
and as a result the uncertainty in the future projections.

The parameter estimation results, based on the real observational data, are shown in Fig-
ures S9 (only with binary patterns) and S10 (with the full thickness patterns). The density
for CRHASE has been shifted toward higher values, and hence the information from full
thickness pattern supports more slippery bedrock in the ASE region compared to the binary
patterns. The peak and the lower tail of the density of GEO have been shifted toward higher
values as well, indicating that the full thickness pattern supports higher values of geothermal
heat flux than the binary pattern. We also see a similar effect on LAPSE, but toward smaller
values, meaning that the information from the full thickness pattern makes a lower lapse rate
more plausible. All of these results make increases in WAIS ice volume (i.e., decreases in sea
level equivalent (sle)) much less plausible which is reflected as a much thinner lower tail in
the predictive distribution for the future volume change in Figure 5 (projections for 500 years
from present).

The peak of the posterior density of LITH, on the other hand, has notably shifted toward
higher values which supports a more rigid lithospheric bedrock component (reducing hor-
izontal contrasts in the bedrock response to the ice load and hence generally less vertical
movement). Both LITH and TAU affect bedrock deformation in different ways, and their rel-
ative effects depend on whether the ice sheet is in retreat or expansion. Here, we can isolate
the effect of LITH, due to the other constraints, because the estimated posterior for TAU is
largely unchanged between the binary only and the full thickness results, due to the prior on
it, and the predictive distribution of ice volume change puts most of its mass on the retreating
ice sheet.

The smaller value of LITH limits the impact of the lower LAPSE estimate based on the
full thickness pattern. It also limits the impact of the strong oceanic melting effect, due to the
ocean temperature increase, which is set to be high by the prior on OFAC in both the binary
only calibration and the full thickness calibration. These limiting effects occur because higher
values of LITH reduce small-scale responses of the bedrock near the edge of the grounded ice
sheet, generally increasing ice surface elevations near the grounding line; this, in turn, limits
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FIG. 5. The same as Figure 4 except that the results are based on the densities in Figures S9 and S10, the
posterior densities for observational data. Utilizing the full thickness pattern in calibration leads to reduced
uncertainty in future projections compared to the result based only on the binary pattern. In particular, it rules out
the possibility of large ice volume increase, which is corresponding to the lower tail of the binary only projection.

the effect of the lower lapse rate as ice-sheet surfaces will be higher and also limits the effect
of ocean melting, as a larger portion of the ice sheet will be grounded and not susceptible
to oceanic melting. This is reflected in the predictive distribution in Figure 5, as the slightly
lower upper limit for projection based on the full thickness. It seems that the compensation
between LAPSE and LITH also keeps the peak of the predictive distributions unchanged.

Using the covariance matrix computed based on the posterior samples of the relevant pa-
rameters, we compute the test statistics and the corresponding p-values, proposed by Salter
et al. (2019), to confirm that we are not in the terminal case with the calibration based on
Z+. To reduce the computational cost, we compute the test statistic for every 1000th MCMC
iteration (and after 20,000th iteration to allow for some burn-in). The result is summarized
in Figure S11. Most of the computed test statistic values are well below the critical value of
1650.941, based on the Chi-square distribution with the degrees of freedom m = 1558 (the
number of elements in Z+). Therefore, the basis used in our calibration model can represent
the observational data well, and we are not in the terminal case here.

6. Summary and future directions. In this paper we have proposed an efficient em-
ulation and calibration method for the PSU-3D ice model for the West Atlantic Ice Sheet.
Our approach can handle semicontinuous spatial model output and observational data which
often arise in scientific fields, such as glaciology and meteorology. The methodology we
have described here can also be applied to a wide range of calibration problems that involve
semicontinuous spatial or image data. In the field of climate science and meteorology, for
example, many important processes, such as precipitation, pollution, and storm surge level,
are in the form of semicontinuous spatial data.

We use a mixture model for the semicontinuous output which results in a multiplicative
representation of the likelihood between the binary and continuous part of the dataset. Us-
ing dimension reduction and basis representation techniques, our approach can overcome the
inferential and computational challenges posed by high-dimensional and dependent semicon-
tinuous data and provide a statistically sound way to quantify input parameter uncertainties.
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In a simulation setting we have shown that our approach can recover the true input param-
eter values and lead to smaller parametric and prediction uncertainties, when compared to
methods that simplify the observations and model output, by converting the semicontinuous
data into binary data. In our real data application with the Bedmap2 dataset, we observe a
reduction in parametric and prediction uncertainties that are similar to the simulated data ex-
ample. Through these we have demonstrated the value of our approach in the context of a
well-known model for the Antarctic ice sheet.

Possible extensions of the proposed approach are as follows: First, our approach can be
easily modified and applied to an application problem that involves model output and obser-
vational data in the form of zero-inflated count spatial data. Such data often arise in ecology
applications, where the subjects of study such as animal or plant species show zero preva-
lence in a large portion of the study area. Second, our approach models the binary patterns
indirectly through the logit. This forces us to define a specific type of “nugget” effect de-
fined by the marginal Bernoulli distribution at each location. Relaxing this assumption will
lead to a more flexible model specification. Finally, another future direction is to formulate a
method that can handle tens or more number of input parameters which may be useful for ice
models with a larger number of uncertain parameters. One possibility is to use the sufficient
dimension reduction (e.g., Cook and Ni (2005)) or deep neural network (e.g., Goodfellow,
Bengio and Courville (2016)) that can extract low-dimensional features from a large number
of predictors that are most relevant to the response variable.

APPENDIX: MATRIX COMPUTATION IN SECTION 4.3

Let K+ = [K+,u Kr ]; then the covariance matrix in (4.8) can be rewritten as

�+ = [K+,u Kr ]�ξ,r [K+,u Kr ]T + σ 2
ε Im

= K+�ξ,rKT+ + σ 2
ε Im.

By applying the Sherman–Morrison–Woodbury formula (Woodbury (1950)), the inverse of
this matrix can be expressed as(

K+�ξ,rKT+ + σ 2
ε Im

)−1 = σ−2
ε Im − σ−2

ε K+
(
�−1

ξ,r + σ−2
ε KT+K+

)−1KT+σ−2
ε .

This reduces the order of the computational cost of matrix inversion from O(n3) to O(n2). In
a similar fashion and by applying the determinant formula (Harville (2008)), the determinant
of the matrix can be rewritten as∣∣K+�ξ,rKT+ + σ 2

ε Im

∣∣ = σ 2m
ε

∣∣�−1
ξ,r + σ−2

ε KT+K+
∣∣|�ξ,r |.

This gives a similar computational gain as the Sherman–Morrison–Woodbury formula.
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