
Evolutionary Game Model of Group Choice Dilemmas on Hypergraphs

Andrea Civilini,1 Nejat Anbarci ,2 and Vito Latora 1,3,4

1School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
2Department of Economics and Finance, Durham University, Durham DH1 3LB, United Kingdom
3Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, Catania I-95123, Italy

4Complexity Science Hub Vienna, A-1080 Vienna, Austria

(Received 29 April 2021; revised 20 September 2021; accepted 22 November 2021; published 20 December 2021)

We introduce an evolutionary game on hypergraphs in which decisions between a risky alternative and a
safe one are taken in social groups of different sizes. The model naturally reproduces choice shifts, namely
the differences between the preference of individual decision makers and the consensual choice of a group,
that have been empirically observed in choice dilemmas. In particular, a deviation from the Nash
equilibrium toward the risky strategy occurs when the dynamics takes place on heterogeneous hypergraphs.
These results can explain the emergence of irrational herding and radical behaviors in social groups.
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Choice dilemmas describe the most general situations in
which decision makers are faced with an alternative between
two possibilities: a riskier strategy, that either brings a high
reward, with a probability wp, or a low one, with probability
1 − wp, and a safer strategy with an intermediate reward
[1–3]. Expected utility theory and its strategic version game
theory assume that rational decision makers always act to
maximize their private utilities and payoffs [4].However, over
the years a series of empirical evidences in contrast with the
theoretical predictions have clearly pointed out thedescriptive
limitations of these theories and have undermined their very
fundamental assumptions. Alternative explanations of these
discrepancies are based on ad hoc behavioral mechanisms in
the decision making process [1,3,5–13] such as loss aversion
[6], risk diffusion [14,15], rational conformity [16], social
facilitation [17], and group polarization [2,7,18], i.e., indi-
vidual opinion polarization through social interaction
processes [19–22] such as persuasive argumentation and
social comparison [23]. In particular, two anomalies of great
practical relevance arise when decision makers interact in
social groups, influencing each other. The first anomaly is the
herd behavior leading to irrational outcomes, observed, for
example, during financial bubbles, where decision makers
can follow the opinion of others, apparently disregarding their
own interests [10–13]. The second anomaly has been empiri-
cally observedwhen decisionmakers are organized in groups
and decide collectively their strategy [2,3,7,24] (a precious
source of insights and experimental data is offered by the
studies on trial juries conducted in the 1970s [25–29], see
Supplemental Material, SM [30]). In this context a choice
shift effect emerges, in which the average opinion of
individual decision makers is exacerbated when they act in
group [1,7,18]. All the existing theories for herd behavior and
choice shift have some major drawbacks. First of all, no
existing theory is able to reproduce both anomalies at the

same time. Second, existing models consider isolated social
groups of fixed size, neglecting the presence of groups
of heterogeneous sizes and the nested hierarchical structure
of real social systems, which are known to play a key role in
the emergence of critical phenomena [35–37]. Finally, the
existing models focus on either one or the other of the two
main aspects of group decision: information spreading
[16,17,38] and the aggregation of preferences [3,7,39].
In this Letter, we propose to use evolutionary game theory

on hypergraphs to model group choice dilemmas. Higher-
order interactions have recently been shown to influence
dynamical processes [40], including social contagion [41]
and evolutionary games [42,43]. Our model can be seen as a
generalization to higher-order interactions of anticoordina-
tion pairwise games, such as the game of chicken [44], in
which the decision makers are organized in groups of
different sizes and each decision maker can participate to
a variable number of groups. Differently from all previous
models, our game dynamics describes, at same time, how
opinions spread according to an imitation process and how
they are aggregated by the members of a group to determine
the group strategy. We show that, due to this, group choice
shifts emerge naturally in our model, and we explain how
they depend on the mechanisms of preference aggregation
and on the structure of the hypergraph. In particular, when
implemented on heterogeneously structured populations, our
model predicts the spontaneous emergence of irrational herd
behaviors toward the riskier strategy.
Model.—Apopulation ofM interacting decisionmakers is

modeled as the nodes of a hypergraph, whose N hyperedges
describe the interactions in groups of two or more agents
[40,45]. The hypergraph can be represented by a M × N

adjacencymatrixA, whose entryaðgÞi is equal to 1 if the agent i
is in group g, or is zero otherwise. The hyperdegree of agent i,
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ki ¼
P

g∈N aðgÞi , and the size of group g, qðgÞ ¼ P
i∈M aðgÞi ,

represent, respectively, the number of groups in which agent i
takes part, and the number of members of group g. LetQðqÞ
and KðkÞ be the probability distributions of group sizes and
agent hyperdegrees, respectively [46]. In particular, we focus
on power-law distributions QðqÞ ∼ q−λ and KðkÞ ∼ k−ν. In
fact, many real-world group sizes are power-law distributed:
scientific teams [47,48], firms [49], human settlements and
cities [50] and also groups of animals [51,52]. Moreover, it
has been shown that also the number of social activities and/or
groups in which a person is involved (i.e., the hyperdegree)
follows long-tailed distributions [47,53,54]. Given the prob-
ability of success of a risky activity 0 ≤ wp ≤ 1, each agent
can be in one of two states: s (safe) or t (tempted). If in state s,
the agent prefers not to participate to the risky activity.
Instead, if in state t, the agent is willing to share with the
other group members the costC to attempt this risky strategy.
The strategy of a group, namely the decision to participate to
the risky activity (group strategy T) or not (strategy S),
depends on the states of the groupmembers and on theway in
which these states and personal opinions are aggregated. We
have considered different group decision schemes, i.e., rules
of opinion aggregation, ranging from simple majority (where
the group adopts the strategy preferred by at least half of the
group members þ1), to two-third majority, and proportion-
ality [55]. If we indicatewithC the cost for the group to adopt
a risky strategy, andwith T and S the rewards, respectively, in
the case of success or failure of the risky activity, then we
assume the following group payoffs πðgÞ:

πðgÞðSÞ ¼ S;

πðgÞðTÞ ¼
�
W ≔ T − C;with probabilitywp;

L ≔ S − C;with probability 1 − wp;
ð1Þ

associatedwith thegroup strategies.Given0 < C ≤ S < T, it
follows thatL < S < W and then we are in a classical choice
dilemma scenario, where the risky choice T brings a high
payoff W (with probability wp) or a low payoff L (with
1 − wp), while the safe action S guarantees an intermediate
payoff S. Let us define as z ¼ NT=N the fraction of groups
with strategyT. In our model at each time step the zN groups
with strategy T are in competition for a fixed shareW of the
total reward θNW, with 0 < θ < 1. As a consequence, the
probability of success wp of a risky activity is modeled as a
nondecreasing function of the total number of shares θN per
groupwith strategyT:wp ¼ fðθ=zÞ. Moreover, in ourmodel
the successful groups are selected uniformly at random
among the zN groups with strategy T. Hence, the higher is
z, the fractionofplayerwith strategyT, the lower is the chance
of high reward (i.e., actions T are strategic substitutes [56]).
We show in the SM [30] that, when played by two groups of
equal size, our game is equivalent to the pairwise game of
chicken [57]. To keep the model as general as possible, we

allow the cost C to be a nonincreasing function CðrðgÞÞ ¼
ðrðgÞÞ−1 of a group resource rðgÞ ∈ Rþ. The idea is that the
more resource a group has, the lower the cost for attempting
the risky activity and the risk perception are [14,15]. To define
the resource of a group, we assume that each agent i is given
an individual resource ri ¼ rminki that the agent splits equally
among the ki groups towhich it participates. This is a realistic
assumption, as the greater is the resource of an agent the larger
will be on average the number of activities it is involved [58].
Moreover, this means that agent i invests in each of its ki
activities an amount of resource rðgÞi ¼ rmin. Consequently,
the total resource rðgÞ of a group g is a function of its size qðgÞ:

rðgÞ ¼
�X

i∈gr
ðgÞ
i

�
β

¼ ðrminqðgÞÞβ; ð2Þ

where the exponent β ≥ 0 takes into account possible non-
linear synergistic effects raising from the interaction among
group members [59]. In particular, for β > 1 the interaction
among agents leads to a superlinear scaling of the group
resource with the group size. To determine the payoff of the
individual agents, we simply assume that the payoff of a group
in Eq. (1) is equally shared among its group members. Then,
thepayoff of agent i is definedas the sumof the returns fromall
the groups in which it is involved: πi ¼

P
gji∈g πðgÞ=ðqðgÞÞζ.

The exponent 0 ≤ ζ ≤ 1 allows us to tune the way in which
groupmembers benefit from thegrouppayoff. For example, in
contexts where the payoff represents a material or countable
quantity (e.g., a cash prize), ζ ¼ 1 implies that the group
payoff is equally split among the group members and the total
group payoff is conserved. In the limit ζ ¼ 0 instead each
group member earns the full payoff coming from the group
[60]. In the evolutionary dynamics of our model, we assume
perfect rationality of the agents, meaning that the agent states
are updated in time according to a stochastic dynamics where
each agent tries to imitate the fittest neighbor [61]. Namely, at
each time step, a focal individual i is selected at random in the
population. A second individual j, that we call reference, is
randomly selected among the comembers of the focal indi-
vidual. Then, the probability pij for the decision maker i to
adopt the state of the decision maker j is defined as a growing
function of the payoffs difference between the two individuals:
pij ¼ gðπj − πiÞ. The comembership network we consider is
obtained as the projectionof thehypergraphon the set of nodes
representing group members (two nodes are linked if they are
comembers in at least one group). We denote as hi the degree
of node i on the comembership network, i.e., the number of
comembers of agent i, and as HðhÞ its distribution (see SM
[30]). In particular, we verified that for realistic hetero-
geneously distributed group sizes and hyperdegrees, the
resulting comembership distribution shows power-law tail
HðhÞ ∼ h−γ, as the one observed in many relevant real-world
systems [47,48,54].
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Results.—We have investigated how the presence of
groups affects decision making through a series of numerical
simulations of the model dynamics performed using the
quasistationary (QS) approach [62,63] (see SM [30]). The
numerical simulations on structured population have been
compared to an analytically treatable mean-field version of
our model dynamics. We describe the mean-field dynamics
of the group strategies directly at the group level, by a coarse-
grained approach neglecting the microscopic dynamics
of decision making that involves the group members. Let
us start defining the fraction zq of groups of size q having
adopted strategy T: zq ≔ NTðqÞ=NðqÞ, such that
0 ≤ zq ≤ 1. In the limit N → ∞, the time evolution for zq
is described by the following equation [64,65] (see SM [30]):

dzq
dt

¼ ð1 − zqÞ
X

q0
Qðq0Þzq0pqq0

ST

− zq
X

q0
Qðq0Þð1 − zq0 Þpqq0

TS ; ð3Þ

where pqq0
ST and pqq0

TS are, respectively, the transition
probabilities from strategy S to T and vice versa, given
a focal group of size q and a reference group of size q0.
Such transition probabilities can be expressed as functions
of the transition probabilities given the group payoffs

S=qζ, L=qζ, and W=qζ [60]: pqq0
ST ≔ ð1 − wpÞpqq0

SL þ
wpp

qq0
SW and pqq0

TS ≔ ð1 − wpÞpqq0
LS þ wpp

qq0
WS. Under the

assumption of statistical independence PðqjTÞ ¼ QðqÞ,
we get an equation for the time evolution of z ≔
P

q QðqÞzq the fraction of groups with strategy T in
the whole population:

dz
dt

¼ zð1 − zÞE½pq0q
ST − pqq0

TS �; ð4Þ

where the expectation value of function gðq; q0Þ is defined as
E½gðq; q0Þ� ≔ P

q;q0 gðq; q0ÞQðqÞQðq0Þ. We recognize in
Eq. (4) the celebrated replicator equation for a pairwise
zero-sum symmetric game [66], with a payoff matrix defined

by πðT; SÞ ¼ E½pq0q
ST − pqq0

TS �, which depends in this case on z
through wpðzÞ. Hence, besides the two absorbing states z� ¼
0 and z� ¼ 1, the dynamics described by Eq. (4) has a third
nontrivial stationary solution, which is obtained equating to
zero the expectation value in Eq. (4). In particular, in the limit
of large population N ≫ 1, we can consider q continuously
distributed according to QðqÞ ∼ q−λ and replace the sums
defining the expectation value with integrals. Under the weak
selection hypothesis we can write the transition probability
from a generic state i to j as a linear function of the payoffs
difference (see SM [30]): pij ¼ 1

2
½1þ ðwF=2Þðπj − πiÞ�,

where −1 ≤ ðwF=2Þðπj − πiÞ ≤ 1. Substituting this expres-

sion in E½pq0q
ST − pqq0

TS � ¼ 0 and using the definitions of the

group payoffs and wp ¼ fðθ=zÞ, we find the nontrivial
steady state:

z�th ¼
θ

f−1ð ζþλ−1
ðζþλþβ−1ÞðT−SÞrβmin

Þ : ð5Þ

We notice that the nonlinearity introduced with the expo-
nents β, ζ, and λ brings just a scale factor m ≔ ðζ þ λþ
β − 1Þ=ðζ þ λ − 1Þ in the solution, without changing its
functional form. Since 0 ≤ z�th ≤ 1 by definition, we can
define a normalized quantity 0 ≤ ðT − SÞ0 ≤ 1, where
ðT − SÞ0 ≔ ðT − SÞ½mrβminfðθÞ�, and rewrite Eq. (5) simply
as z�th ¼ θ=f−1(fðθÞ=ðT − SÞ0). It can be shown (see SM
[30]) that this steady state is an evolutionary stable state
[67], and therefore a mixed strategy Nash equilibrium
(NE), of the pairwise zero-sum game defined by Eq. (4).
For a probability of success inversely proportional to z,
wp ¼ θ=z, we can solve the Cauchy problem associated
with Eq. (4) to get an analytical expression for zðtÞ which
converges to z�th for all the initial conditions 0 < z0 < 1 (see
SM [30]). By comparing z�th, the analytical expression for
the null-model’s nontrivial steady state, to the long term
behavior of the numerical simulations on structured pop-
ulations, we can evaluate how the social hypergraph’s
topology influences the dynamics. Figure 1(a) shows that
for hypergraphs characterized by a comembership degree
distributionHðhÞwith a finite secondmoment [e.g., power-
law HðhÞ ∼ h−γ, with γ ¼ 3.5] [68], the numerical simu-
lations are in good agreement with the mean-field solution
in Eq. (5), the QS state coinciding with the NE. Instead,
when the strategy adoption dynamics takes place on

(a) (b)

(d)(c)

FIG. 1. Long term behavior of the simulated dynamics on
hypergraphs with HðhÞ ∼ h−γ , for wp ¼ θ=z. (a) For γ ¼ 2.5
we observe a phase transition, while for γ ¼ 3.5 the QS distribu-
tion coincides with the NE (dotted line). Points (circles and
squares) refer to the median values of z. (b) Peak of the
susceptibility χ at the phase transition for γ ¼ 2.5. (c) Peak’s
height of the susceptibility as a function of the exponent γ.
(d) Average income reduction relative to the NE payoff. Shaded
areas show the median absolute deviations. (Parameters: β ¼ 0,
ζ ¼ 0, θ ¼ 0.01.)
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heterogeneous hypergraphs with HðhÞ ∼ h−γ , γ < 3
(results shown are for γ ¼ 2.5), we found that a phase
transition occurs from the absorbing state z ¼ 0 to a
nontrivial stationary state 0 < z < 1 that rapidly converges
to z ¼ 1. To better characterize the phase transitionwe have
computed a susceptibility function that is commonly used
in SIS epidemic models [69]: χ ¼ Nðhz�2i − hz�i2Þ=hz�i.
Susceptibility functions are specifically designed to peak
(diverge in the thermodynamic limit) at the critical value
ðT − SÞ0c of the order parameter at which the phase
transition occurs. The peak of χ for γ ¼ 2.5 in Fig. 1(b)
confirms the occurrence of a phase transition. The plot of
the maximum value of the susceptibility as a function of γ
in Fig. 1(c) indicates that for γ > 3 the susceptibility is a flat
function of ðT − SÞ0, while for γ < 3 a peak appears, whose
height increases as γ decreases, pointing out γ ¼ 3 as the
threshold value for observing the phase transition. By
comparing the average group payoff in the QS state hπγi to
the expected average payoff at the NE hπNEi (see SM [30]),
we see, Fig. 1(d), that the QS state for γ < 3 is suboptimal.
In fact the relative average income hπγ¼2.5i=hπNEi
decreases sharply starting from ðT − SÞ0c and reaches a
minimum when the distance between the QS solution and
the NE equilibrium is maximal [for ðT − SÞ0 ¼ 0.5].
Instead for γ > 3 the average payoff coincides with the
NE one. Since the average payof and utility decreases,
the collective adoption of strategy T observed at the phase
transition can be regarded as irrational from expected
utility theory. Such irrational behavior is due to the
presence of nodes with high degree (hubs) which, for
γ < 3, implies a divergent second moment of the comemb-
ership degree distribution [70,71]. Such hubs can trigger a
strategy change in their many comembers, driving the
system out of the NE. Simulations for different values of
parameters 0 ≤ β; ζ ≤ 1 show no appreciable difference
with respect to the results in Fig. 1. However, as shown in
the SM [30], the synergistic parameter β plays a role in the
distribution of the average payoff as a function of the group
size. In particular, when γ < 3, the groups of all sizes share
the same loss of income for β ¼ 0, while for β > 0 only
small groups are affected by a loss of income. Not only the
average payoff, but also the strategy adoption probability
z�q shows a nontrivial dependence on the group sizes.
Figure 2 displays z�q obtained through numerical simula-
tions under simple majority [panels (a),(b)] and two-third
majority [panels (c),(d)] decision schemes. In particular, in
the two left panelswe report z�q as a function of group size q.
The curves are level curves obtained for different values of
zi∈q, the fraction of decision makers in state t among the
members of all groups of size q, that is the average
individual risk propensity of group members. From the
definition of zi∈q it follows that, for a given level curve, if
z�q > zi∈q ≡ z�q¼1 (or vice versa z

�
q < zi∈q ≡ z�q¼1) the aver-

age risk propensity of the groups is higher (lower) than the

average individual risk propensity of their members, see
SM [30]. Thus, the data marked as triangles in panels (a)
and (c) show choice shift effects toward strategy T (risky
shift), while squares display a shift toward the safer
strategy. The transition between the risky and safe group
shift phase occurs at values of z�q equal to the fraction of
group members needed to agree the group strategy,
respectively z�q ¼ 1=2 and z�q ¼ 2=3. However, independ-
ently from the decision scheme adopted, our model shows
that the choice shift effect increases with the group size.
This is somewhat counterintuitive, since one would expect
that the larger is the group the less probable are extreme
collective decisions. We compared the predictions of our
model to data from empirical studies about group choice
shifts observed in trial juries [25–29] (see SM [30]). To do
this, in panels (b) and (d) we plot z�q as a function of zi∈q,
where the curves are level curves for different sizes q. The
empirical data (dots), obtainedwith trial juries of size 6, are
better reproduced by the model with a two-third majority
decision scheme. This is in agreement with the observation
that a two-third majority scheme is spontaneously adopted
by real-world trial juries [26,39].
In conclusion, our evolutionary game model reproduces,

without any ad hoc behavioral assumption, the shifts
observed both at a local and a global scale in choice
dilemmas, and links them to the structure of the underlying
higher-order networks [40]. Our results can also explain
how and why radical behaviors can emerge when decisions
are taken in groups. Given that comembership, group size,

(a) (b)

(c) (d)

FIG. 2. Choice shift under simple majority (a),(b) and two-third
majority (c),(d) decision schemes. In (a),(c), the simulated QS
distribution z�q as a function of group size. The gray dotted lines
separate risky and safe group shifts. In (b),(d), z�q for groups of
size 6, 12, and 24 as a function of zi∈q, risk propensity of the
members of groups of size q. The colored dots in (d) represents
empirical data on trial juries from Refs. [25–29]. Shaded areas are
the standard deviations. (Parameters: β ¼ 0, ζ ¼ 0, θ ¼ 0.01,
λ ¼ 2.5, ν ¼ 2.5.)

PHYSICAL REVIEW LETTERS 127, 268301 (2021)

268301-4



and hyperdegree distributions are easily measurable quan-
tities, our model can provide useful indications on upcom-
ing radical and potentially dangerous group behaviors in
online social platforms and other real-world systems, such
as financial markets. Our work opens new paths for future
research, such as the analytical characterization of the
observed phase transition and the systematic exploration of
the range of possible applications.

We warmly thank Lucas Lacasa and the three anonymous
reviewers for their helpful comments and suggestions.
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