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Abstract
We introduce neural networks (NNs) to compute numerical Ricci-flat Calabi–Yau (CY) metrics for
complete intersection and Kreuzer–Skarke (KS) CY manifolds at any point in Kähler and complex
structure moduli space, and introduce the package cymetric which provides computation
realizations of these techniques. In particular, we develop and computationally realize methods for
point-sampling on these manifolds. The training for the NNs is carried out subject to a custom
loss function. The Kähler class is fixed by adding to the loss a component which enforces the slopes
of certain line bundles to match with topological computations. Our methods are applied to
various manifolds, including the quintic manifold, the bi-cubic manifold and a KS manifold with
Picard number two. We show that volumes and line bundle slopes can be reliably computed from
the resulting Ricci-flat metrics. We also apply our results to compute an approximate
Hermitian–Yang–Mills connection on a specific line bundle on the bi-cubic.

1. Introduction

Calabi–Yau (CY) manifolds arise naturally in the context of string theory [1]. Since the 80s mathematicians
and physicists alike have invested a considerable amount of effort in constructing and studying these spaces.
By now there are different popular constructions, such as complete intersection hypersurfaces in products of
complex projective spaces [2, 3] (CICYs) or more generally in toric varieties [4]. CY three-folds constructed
as hypersurfaces in toric four-folds are described by about half a billion reflexive polytopes (giving rise to
many more topologically inequivalent manifolds) which we refer to as the Kreuzer–Skarke (KS) list. Much is
known about their topological properties [5], such as their Chern classes, intersection numbers or Hodge
numbers. However, objects related to their differential geometry are much less accessible. Crucially, the
unique Ricci-flat metric on CY manifolds, established by theorems of Calabi [6] and Yau [7], is not known in
analytic form on any compact CY three-folds, although there is recent progress for K3 [8, 9].

The Ricci-flat CY metric is of great importance to string theorists, as it plays a role in many computations
connecting string theory with observable physics. For example, the CY metric is required to compute the
physical Yukawa couplings from string theory [10] or it can be used to study the physics which arises along
geodesics in moduli space, in order to probe the swampland distance conjecture [11]. There are also
mathematical problems which benefit from knowledge of the CY metric, including the SYZ-conjecture [12],
which aims to formalize mirror symmetry [13]. Given the importance of the Ricci-flat CY metric and the lack
of analytic expressions it is only natural that several numerical approximation schemes have been advanced.

The first work in this direction relies on an algorithm set up by Donaldson [14]. This algorithm starts
with an approximation for the Kähler potential underlying the Ricci-flat metric which is of the form
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K= ln(sihij̄sj), where si is a basis of sections for the kth power, Lk, of a line bundle L→ X on the CY manifold
X and hij is a hermitian matrix. For each power k an optimal K for a balanced metric can be found by a fix
point method which computes the matrix hij. In the limit k→∞ these balanced metrics converge to the
Ricci-flat CY metric with Kähler class proportional to c1(L), the first Chern class of the line bundle. However,
the scaling of this method with kmakes it unsuitable for cases without a high degree of symmetry or with
many Kähler parameters. In particular the algorithm requires a factorial increase in training data for a
sub-linear increase in accuracy [15]. Another practical problem is the link between the Kähler class of the
Ricci-flat metric and the lattice-valued quantity c1(L) which makes it difficult to determine the metric as a
function of the Kähler parameters. Nevertheless this method has been used to construct metrics on the
Fermat Quintic and other selected examples [15–19] and it has been generalized to compute the solution to
the Hermitian Yang–Mills (HYM) equation for vector bundles [20, 21].

Scaling of the computation can be improved by a method which relies on energy functionals [22]. This
method also uses a polynomial Ansatz for the (Kähler potential of the) metric and optimizes polynomial
coefficients by minimizing the deviation from the Monge–Ampère equation. In this way solutions with
exponential accuracy are found. The code6 published alongside [22] for CY hypersurfaces of Fermat type has
been used in more recent studies [23] to investigate the curvature near conifold points and to accurately
predict the Kähler potential [24].

The rise of neural networks (NNs) as universal function approximators has renewed the interest in
finding numerical approximations of the Ricci-flat CY metric. They have been introduced into the string
community in 2017 [25–28] (see [29] for a review) and by now several directions to use techniques from
machine learning for CY metrics have emerged. Decision trees and curve fitting have been used to bootstrap
from low order Donaldson algorithms to more accurate solutions [30]. Holomorphic NNs are shown to learn
much better and more efficient approximations of the Kähler potential [31]. Finally, the metric has been
learned directly with NNs in [32–34]. These new numerical methods allowed for direct application to test the
swampland distance conjecture [11] and construct solutions to the HYM equation of line bundles [35].

While there has been progress on methods to compute the Ricci-flat CY metric, there are also still
considerable gaps, particularly in view of providing systematic tools, for example in the context of string
model building. Computations have been carried out for select manifolds but a tool which covers large
classes of CY manifolds is still missing. This requires an understanding of some theoretical problems,
including methods for point sampling on more general CY manifolds. A critical issue for applications is the
ability to compute the CY metric at a given point in moduli space. This tends to be straightforward for the
complex structure moduli which are usually fixed by the equations defining the CY manifold. For a single
Kähler modulus, h1,1(X) = 1, such as for the quintic, things are simple as every Kähler class can be obtained
by a simple re-scaling of the metric. For h1,1(X)> 1 this is no longer the case and care has to be taken in
order to fix the desired Kähler class. While this is possible in principle by Donaldson’s algorithm,
computations are limited by inefficiency and the limitation to integral Kähler classes. On the other hand, NN
approaches which solely rely on minimizing the Ricci curvature or deviations form the Monge–Ampère
equation produce a metric with an unspecified Kähler class.

The point of the present paper is to address and resolve these issues and provide both the theoretical
background and practical methods for machine-learning Ricci-flat CY metrics at a prescribed point in
moduli space, for any manifold from both the CICY and KS lists. This is extending and detailing recent work
by the authors in [34]. In particular, we explain how the problem of point sampling on CY manifolds can be
solved for both CICY and KS manifolds. We fix the Kähler class by matching line bundles slopes, which can
be computed using topological data only, to their numeric evaluation using the approximate CY metric. For a
given Kähler class J, we consider a basis Li of line bundles and determine the slopes µJ(Li) using a topological
formula. During training, a numerical version of these slopes, µnum

J (Li), is computed by numerical
integration and a loss proportional to

∑
i ‖µJ(Li)−µnum

J (Li)‖n is added to the loss function. As we will
demonstrate, this does indeed lead to an approximately Ricci-flat metric with the prescribed Kähler class J.

These methods are realized in the cymetric package [36]which provides machine learning tools to find
the Ricci-flat CY metric for both CICY and KS manifolds. The package is written in Python and
Mathematica [37]. The point generation relies on routines from NumPy [38] and SciPy [39]. For KS
manifolds we employ routines implemented in SageMath [40] and Mathematica [37]. The NNs are
implemented and optimized with TensorFlow [41], which has efficient tracing for several nested gradient
operations using automatic differentiation. The code is available at: https://github.com/pythoncymetric/
cymetric.

6 https://people.brandeis.edu/∼headrick/Mathematica/index.html.
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Open source software has led to rapid progress in machine learning. Our goal is to achieve similarly
remarkable results by open sourcing our code and we welcome contributions. There are several other open
source packages developed by the string theory community. For example the toric geometry routines of
SageMath [42] are an integral part of the workflow for many geometers. They rely on the PALP package [43]
and are a necessary component in our toric point generator. The functionality of these routines have recently
been expanded by the CYTools package [44]. Other open source packages include Stringvacua [45] for
studying potentials from string theory and cohomcalc [46] and pyCICY [47] for studying line bundle
cohomologies over CY manifolds.

The outline of this paper is as follows. In section 2 we will introduce the necessary mathematical
background for the computation of the Ricci-flat metric, including the construction of the required Kähler
forms and a discussion of the point sampling method. Section 3 reviews some basic mathematics related to
HYM connections on line bundles and the numerical method for computing such connections. A brief
review of NNs and an overview of our network architecture follows in section 4. Results for the quintic and
bi-cubic CY manifolds as well as a Picard number two manifold from the KS list are presented in section 5
and we conclude in section 6. Some useful details on toric geometry are collected in appendix.

2. Mathematical background

In this section we introduce the mathematical background necessary for sampling points and calculating the
CY metric. For our procedure we require three pieces of data for the CY manifold: its holomorphic top form
Ω, a Kähler form J, and the affine patches plus their transition functions. We collect here only the important
formulas and provide an introduction to the necessary concepts in toric geometry in appendix. We adopt a
convention where we add subscripts FS and CY to quantities related to the ambient Fubini–Study metric
(such as the metric itself or its associated Kähler potential) and the Ricci-flat CY metric, respectively. We do
not distinguish between ambient space quantities and their restriction to not clutter the notation further and
it should be clear from the context which one we are referring to. Our formulae will be written for CY
three-folds, but they generalize straight-forwardly to CY n-folds7. We denote real CY coordinates on a patch
by ym, wherem= 1, . . . ,6 and their complex counterparts by

za =
1√
2
(y a + iya+3), z̄ā =

1√
2
(yā − iyā+3), (1)

where a= 1,2,3 and ā= 1,2,3.

2.1. Kähler forms and volumes
To start, let us recall that the CY theorem [6, 7] states that any Kähler n-fold X with c1(TX) = 0 and given
Kähler form J

′
admits a unique Ricci-flat metric gCY (simple called CY metric, in the following) whose

associated Kähler form JCY (where JCY,ab̄ = igCY,ab̄ for a, b̄= 1,2,3) is in the same cohomology class as J
′
. For

three-folds, the Kähler form JCY can be determined from the Monge–Ampère equation

JCY ∧ JCY ∧ JCY = κ Ω∧ Ω̄ with JCY = J ′ + ∂∂̄ϕ (2)

where ϕ is a real function on X and κ is a complex constant (which may depend on moduli). The Kähler
form J

′
can be any reference Kähler form in the given Kähler class but for our purposes we will take this to be

the obvious Kähler form induced from the toric ambient space, that is the (generalized) Fubini–Study Kähler
form denoted by J ′ = JFS. It is usually written as a linear combination

JFS = tαJα (3)

relative to a basis Jα of (1,1) forms (where α= 1, . . . ,h1,1(X)), also obtained by restriction from the ambient
space. Here tα are the Kähler parameters. Associated to these Kähler forms are volume forms

dVolCY =
1

3!
J3CY, dVolFS =

1

3!
J3FS (4)

and a typical problem is to compute integrals of the type

ˆ
X
dVolCY f=

ˆ
X
d 6y

√
gCY f,

ˆ
X
dVolFS f=

ˆ
X
d 6y

√
gFS f, (5)

7 The code supports CY manifolds up to complex dimension 6.
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for some function f on X. We will see later how numerical results for JCY (and, indeed, JFS) can be used the
evaluate such integrals numerically. For the constant function f = 1 this computes the CY volume

VolCY =

ˆ
X
dVolCY =

ˆ
X
dVolFS =

1

3!
dαβγ t

αtβtγ (6)

which coincides for the CY and FS measure (provided, as we assume, JCY and JFS are in the same cohomology
class) and which can be computed from the topological formula on the RHS of equation (6). Here

dαβγ =

ˆ
X
Jα ∧ Jβ ∧ Jγ (7)

are the intersection numbers which are known or can be computed for CICY and KS manifolds (our package
does this automatically in the background).

2.2. Line bundle slopes
Another interesting set of quantities which can be used for the same purpose (and we will, in fact, use it to
enforce the correct Kähler class during training) is the slope of line bundles. The line bundle L→ X with first
Chern class c1(L) = [kαJα] is denoted byOX(k) and its slope µt(OX(k)) is defined by

µt(OX(k)) =

ˆ
X
J2CY ∧ c1(OX(k)) =

ˆ
X
J2FS ∧ c1(OX(k)) = dαβγ t

αtβkγ . (8)

Note, since the intersection numbers are known, this can be computed from the Kähler parameters tα and
the line bundle integers kα. On the other hand, introducing the curvature FFS and corresponding sources ρFS
and ρCY onOX(k) by

FFS = 2πikαJα, ρFS =
1

2
gab̄FSFFS,ab̄, ρCY =

1

2
gab̄CYFFS,ab̄ (9)

the slope can also be computed from

µt(OX(k)) =
2

π

ˆ
X
dVolCY ρCY =

2

π

ˆ
X
dVolFS ρFS. (10)

The numerical version of this equation will be used to compute line bundle slopes during training and
compute the slope loss, in order to enforce the correct Kähler class.

2.3. Constructing the holomorphic top form
For our purposes we need to construct the holomorphic top form Ω explicitly and we follow a method
described, for example, in [48]. For a KS manifold, defined as a hypersurface in a toric four-foldA there are
always four affine ambient space coordinates zµ, where µ= 1, . . . ,4, on a given patch, explicitly given in
equation (A.5). Then we can write the holomorphic (3,0) form as

Ω=
dz1 ∧ dz2 ∧ dz3

∂p/∂z4
, (11)

where the coordinate z4 in the denominator should be replaced by a solution z4 = z4(za), where a= 1,2,3, of
the defining equation p(zµ) = 0. More details on the underlying toric geometry can be found in appendix.

For the case of CICYs, defined in an ambient spaceA= Pn1 × ·· ·×Pnh with total dimension
d=

∑h
α=1 nα, we have affine coordinates z

µ, where µ= 1, . . . ,d on each patch. From these we can choose
three coordinates, za, where a= 1,2,3, to parameterize the CY patch while the remaining K= d− 3
coordinates zq can be written as functions zq = zq(za) by using the K defining polynomials pr of the CICY.
The holomorphic (3,0)-form can then be written in terms of the determinant of the K ×K matrix ∂pr/∂zq,
and is explicitly given by

Ω=
dz1 ∧ dz2 ∧ dz3
det(∂pr/∂zq)

, (12)

where the coordinates zq in the denominator have to be replaced by the solutions zq = zq(za).
Given Ω, it is useful to introduce the associated volume form

dVolΩ =Ω∧ Ω̄ ⇒ dVolCY =
κ

3!
dVolΩ (13)

which, by virtue of the Monge–Ampère equation (2) and (4), is proportional to the CY volume form. This
means, while the Ricci-flat CY metric is not known in analytic form, its associated volume form can be
constructed explicitly (up to a constant) from the expression for Ω.

4
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2.4. Transition functions
The affine coordinates on each patch of the (toric) ambient space patch can be written as functions of the
homogeneous coordinates xi (see appendix ‘Affine patches’). More explicitly, for two ambient space patches
U and V with affine coordinates uµ and vν ,8 respectively, we can write uµ = uµ(x) and vν = vν(x), where the
functional dependence on xi is determined by equation (A.5). The transition function vν = vν(u) can then
be determined by matching the functional dependence on the homogeneous coordinates xi. The transition
matrix is then simply the Jacobian of this coordinate change,

(TUV)
ν
µ =

∂vν

∂uµ
. (14)

2.5. Constructing Kähler forms
A further ingredient which we require explicitly is a basis Jα, where α= 1,2, . . . ,h1,1(X), of the second
cohomology. This basis is used to expand the Kähler form JFS, as in equation (3), and the Kähler parameters
tα are defined relative to it. For simplicity, we focus on simplicial Kähler cones so that the Jα can be chosen as
generators of the Kähler cone. Since these forms can be written in terms of Kähler potentials

Jα =
i

2π
∂∂̄ ln(Kα) (15)

our task is to construct the Kα.
Recall that for our purpose of machine learning Ricci-flat metrics on CY manifold, we need to generate a

random sample of points on the CY. We will discuss the method we employ for this task in section 2.7. A
crucial point of this method is that it relies on properties of Fubini–Study Kähler metrics on projective
spaces. Our objective in this section will therefore be to construct Kähler potentials Kα that are ‘inherited’
from ambient space FS potentials on Prα , both for CICY and KS CY manifolds. For CICYs, this is a standard
procedure. For KS CYs, the construction is less well known, so we will explain it in some detail.

As already mentioned above (and as explained in detail in appendix), toric ambient spaces have
homogeneous coordinates xi. The vanishing locus of each xi defines a toric divisor, Di = {xi = 0}, and the
Kähler cone generators Jα may be expanded in terms of these divisors: Jα =

∑
i c

α
i Di. Denoting the space of

sections of the (nef) line bundle dual to the Kähler cone divisors by H0(Jα), we can find a monomial basis

{s(α)j }, j= 0,1, . . . ,h0(Jα)− 1 := rα, of this space following the methods outlined in appendix ‘Line bundles
and sections’. In particular, we have

s(α)j =
n∏

i=1

x
⟨vi,wj⟩+cαi
i (16)

which expresses the monomial basis in terms of the toric coordinates. Here vi are the vectors (1d cones) in
the fan associated to the toric variety, and subsets of these span the top-dimensional cones of the lattice. The
wj are vectors in the dual top-dimensional cones of the dual lattice (see appendix for the precise definition).
In general, the dimension of the space of sections will be larger than the number of homogeneous
coordinates xi, implying that (16) is a non-invertible relation.

By the theorem quoted in appendix ‘Line bundles and sections’ below (A.8), nef divisors are basepoint
free, which means that the sections of the nef line bundles cannot all vanish at any given point in the CY. This

means that the section monomials s(α)j can serve as homogeneous coordinates of a projective space Prα . The
relations given in equation (16) thus correspond to maps Φα mapping the toric coordinates onto the
coordinates of these projective spaces

Φα : [x0 : x1 : . . .] → [s(α)0 : s(α)1 : . . . : s(α)rα ]. (17)

Note that in the case where the ambient space is just a projective space Pn with homogeneous coordinates
[x0 : x1 : . . . : xn], the sections of the Kähler cone generator are simply the monomials si = xi, and the
morphism Φ would be the identity map Φ : Pn → Pn. In the toric case, the map is non-trivial, and there are
typically more sections than toric coordinates, leading to relations among the sections.

We can express the Kähler potentials Kα via inner products of sections,

Kα = s(α)† ·1 · s(α), (18)

8 We caution the reader not to confuse these affine coordinates uµ and vν with e.g. the toric vertices discussed in other sections of this
paper.
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where s(α) is a vector containing the section monomials s(α)i and 1 is the identity matrix (or, as a
straightforward generalization, any hermitian, non-degenerate matrix). Further, the inner product
(indicated by ·) induces a notion of orthogonality (with respect to the Hermitian matrix), which will become
important later when sampling points. Since not all sα can vanish simultaneously, K is positive and is, hence,
a sensible argument of the logarithm in equation (15). In the case of a projective ambient space Pn, this
Kähler potential is the standard FS Kähler potential

KFS =
n∑

i=0

|si|2 =
n∑

i=0

|xi|2. (19)

More generally, inserting the monomial basis (16) in (18), one obtains a Kähler potential for each Kähler
cone generator of a toric variety

Kα =
∑
j

|s(α)j |2 =
∑
wj∈M

⟨vi,wj⟩+cαi ⩾0∀i

∣∣∣∣∣∏
i

x
⟨vi,wj⟩+cαi
i

∣∣∣∣∣
2

, (20)

expressed in terms of homogeneous coordinates. Clearly, this is the standard Fubini–Study metric on the
projectivized section space PH0(Jα)∼= Prα , pulled back to the toric variety using the map (17).

The above results for Kα are written in terms of the toric coordinates xi. However, for subsequent
applications we would like to re-write these in terms of affine coordinates on a patch. This can be
accomplished by dividing Kα in (20) by a monomial that is nowhere-vanishing in a chosen patch and that

has the same toric scaling as Kα. It turns out, there is a unique choice s
(α)
∗ for this non-vanishing monomial,

specified by a vector w∗ in the dual lattice. Let us denote the affine patches by Ur, with associated dual cones
σ∗
r and affine coordinates zµ. Then, as discussed in appendix ‘Affine patches’, the toric and affine coordinates

are related by

zµ =
n∏

i=1

x
⟨vi,wµ⟩
i . (21)

We introduce the index set Ir of indices whose associated coordinates generate the corresponding cone σr .
Then, the affine version of Kα in (20) in a patch Ur can be written as

Kα, r = 1+
∑
wj∈σ∗

r

⟨vi,wj+w∗⟩+cαi ⩾0∀i̸∈Ir

∣∣∣∣∣∣
∏
µ∈Ir

z
⟨vµ,wj⟩
µ

∣∣∣∣∣∣
2

, (22)

where the dependence on the patch r has been made explicit. For the case where the ambient space is simply
a projective space, this reduces to the standard (affine version of the) Fubini–Study Kähler potential,
KFS = 1+

∑
µ |zµ|2.

2.6. Numeric integration
Numeric integration can be performed using Monte-Carlo methods (for a method developed recently based
on rejection sampling from tropical densities see [49]). The basic goal is to be able to numerically evaluate
integrals of the form

ˆ
X
dVolCY f, (23)

for a function f on a CY manifold X (of CICY or KS type). To do this, we require a sample of points pi ∈ X,
where i= 1, . . . ,N, which are distributed according to a known measure, denoted by dA, which we discuss in
detail below. In terms of the so-called weights (or masses), customarily defined as

wi =
dVolΩ
dA

∣∣∣∣
pi

, (24)

and the function values f(pi), the integral (23) can be approximated by

ˆ
X
dVolCY f=

ˆ
X
dA

dVolCY
dA

f' κ

6N

N∑
i=1

wif(pi), (25)

6
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where (13) has been used. On the other hand, since the Ricci-flat CY metric is calculated numerically, there is
no real need to rely on the measure dVolΩ and the integral (23) can alternatively be approximated by

ˆ
X
dVolCY f'

1

N

N∑
i=1

w̃i det(gCY(pi)) f(pi), w̃i =
d6y

dA

∣∣∣∣
pi

. (26)

In the following we refer to the quantities w̃i as the auxiliary weights. The approximation (26) has a certain
advantage in that it does not contain any unknown coefficient, such as κ in equation (25), which needs to be
fixed by a reference calculation.

2.7. Sampling points on toric varieties
We now discuss a method for generating the sample points pi with a known distribution dA on the CY X. In
principle, this could be done by a Markov chain Monte-Carlo method using, for example, the Fubini–Study
measure for dA, so dA= dVolFS. Here, we pursue a different approach based on a theorem by Shiffman and
Zelditch [50], further generalized and explained in [16, 17]. This provides us with a viable method for
ambient spaces which are products of projective spaces, and hence applies straightforwardly to CICYs.
Importantly, using the techniques introduced in section 2.5, which allow us to write the toric Kähler
potential in terms of a FS potential in the projectivized section space PH0(Jα)∼= Prα of the Kähler cone
generators Jα, we can apply the same method to the toric case, as we will now explain.

To construct dA, we first compute the sections (16) and construct the associated FS Kähler potentials Kα

as in equation (18). Shiffman and Zelditch now state that the zeros of random sections are distributed w.r.t. to
the (known) FS measure constructed from log(KFS) = log

∑n
i=0 |si|2. Hence, we need to find zeros of random

sections that are also lying on the CY and express these in terms of the homogeneous toric coordinates xi.
First, we need to clarify what random section actually means in this context. As mentioned in section 2.5,

the scalar product induces a notion of orthogonality (and hence independence) of sections. Since we chose
the standard scalar product, the monomial sections are mutually orthogonal, and a random section Sα of the
Kähler cone generator Jα is constructed from this orthogonal basis sαj with independent and identically

distributed Gaussian coefficients a(α)j ∼N (0,1)

Sα =

rα∑
j=0

a(α)j sαj . (27)

Since we want points on a CY n-fold, we need to construct n random sections Sα,p, p= 1, . . . ,n, and intersect
their zero locus with the CY hypersurface, specified by its defining equation. We are relatively free in
choosing the Kähler cone generators (that is, the indices α for each p= 1, . . . ,n) for which we construct the
random sections, as long as we are imposing not more than rα equations for any given α.

We can use this to construct a point sample with known distribution and measure dA. Since we want to
work with the toric coordinates xi instead of the sections sαj , we need to express the sections in terms of the
xi. As mentioned around (17), the problem is that the maps Φα from xi to sαj are not invertible. Indeed, there
are non-linear relations (higher syzygies) among the sαj . Mathematically, this means that we have to construct
a polynomial ring in xi and sαj and add the ideals that describe the maps Φα, the hypersurface equations for
the CY, and n random sections Sα,p. Then, one finds the elimination ideal in the quotient ring modulo the
relations among the sections to express the sαj in terms of the xi. We carry this out in a two-step procedure.
We solve the n equations Sα,p = 0 subject to the relations among the sections (we will discuss how to find
these relations in the next paragraph). We then express the remaining sαj in terms of the xi as in (16) and
impose the hypersurface equations (which are equations in the xi). Solving this system of equations then
gives a collection of homogeneous coordinates of points on the CY for each choice of n random sections.
Moreover, these points are distributed with respect to the auxiliary measure dA. For a CY three-fold,

dA=Φ∗
α(Jα)∧Φ∗

β(Jβ)∧Φ∗
γ(Jγ), (28)

where the indices α, β, γ correspond to the indices of the random sections Sα,p, p= 1,2,3, that have been
chosen above. Repeating this process for many random sections gives us the point sample we are after. While
we appreciate that this is somewhat involved, it is absolutely crucial for our purposes. Any meaningful
numerical integration relies on being able to generate points efficiently and distributed according to a known
measure, dA. This is precisely what the above method allows us to do.

Finally, we need to explain how to derive the relations among the sections. One way to do this is to
perform a primary decomposition of the defining ideal of the aforementioned quotient ring and use the
elimination ideal to express the ideal generators, as obtained from the primary decomposition, in terms of

7
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the sections. This method is general, and we implemented it in Sage (via Singular). However, it requires
computing Groebner bases, which can be computationally costly.

Alternatively, we can do the following: We are interested in relations of the form9∏
I

sfII =
∏
J

sgJJ ⇔
∏
I

shII = 1, (29)

where we have introduced the multi-index I= (i,α), and likewise for J, and fI,gJ are non-negative integers.
At a generic point in section space, we can divide by the right-hand side and write the equation as done in the
final step, where the hI are integers (positive or negative) which encode the relations between the sections.
Now recall from (A.8) or (16) that the sections are given in terms of the toric coordinates as

sJ =
∏
a

x
⟨va,w(α)

j ⟩+c(α)
i

a =:
∏
a

x
Ma,J
a , (30)

where the last step defines the matrix of exponentsMa,J. Inserting this into (29), we get∑
I

Ma,IhI = 0. (31)

This means the vectors hI can be found as the (primitive integer) basis of the kernel ofMa,I. This approach
based on lattice methods avoids potentially time-consuming Groebner basis calculations and is the default
method used by the code.

Finally, we want to point out the following: At first, one might think that the system of equations
comprising the CY hypersurface equation plus the equations that determine the sections in terms of the toric

coordinates is simply a CICY in a product of projective ambient spaces⊗h1,1(X)
α=1 Prα . However, if we naively

count the dimensions of the resulting variety, we would find that it is in general smaller than n. Moreover, the
degrees of the equations do not add up to the toric scalings plus one, so the hypersurface also seems to not be
the anti-canonical one. However, the point is that the CY is not a complete intersection, precisely because of
the relations of the sections (30). So another way of summarizing the procedure is that we have found an
expression for the original CY n-fold X as a non-complete intersection CY in a product of projective ambient

spaces⊗h1,1(X)
α=1 Prα , which allows us to generate point samples with known distribution on X.

3. HYM equations

Line bundles L→ X over CY manifolds X and their HYM connections provide an interesting application of
numerical CY metrics. A vanishing slope is a necessary (and sufficient) condition for the existence of a HYM
connection on a line bundle. Hence, meaningful numerical calculation of the HYM connection relies on
being able to determine the Ricci-flat metric at prescribed points in Kähler moduli space—precisely one of
the capabilities we are developing in the present work. In this section, we briefly review the underlying
mathematics and set up the relevant formalism for our purposes. Numerical results for HYM connections
will be presented in section 5.

3.1. Mathematical background
Line bundlesOX(k) over CY three-folds X and their slope have already been introduced in section 2.2. If H is
a hermitian bundle metric onOX(k) we have an associated (Chern) connection with gauge field and
curvature given by

A= ∂ ln(H), F= ∂̄A= ∂̄∂ ln(H). (32)

The above connection is said to be a HYM connection if its field strength satisfies the HYM equation

gab̄CYFab̄ = 0 ⇔ JCY ∧ JCY ∧ F= 0, (33)

where gCY is the (Ricci-flat) CY metric and JCY the associated Kähler form. A necessary and sufficient
condition for the existence for a HYM connection onOX(k) is that its slope, as defined in equation (10),
vanishes, that is, µt(OX(k)) = 0. Checking this condition numerically is, therefore, the first step in a
numerical calculation of the HYM connection.

9 In principle, we are free to use any coefficients, but a different choice would modify the parameterization of the complex structure as
coefficients of the section monomials of the anti-canonical bundle that appear in the hypersurface that defines the CY.

8
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3.2. Computing HYM connections
Provided the slope µt(OX(k)) vanishes so that a HYM connection exists, how can this connection be
computed explicitly? The first step is to start with a ‘Fubini–Study’ reference bundle metric onOX(k) defined
by

HFS =
∏
α

K−kα
α , FFS = ∂̄∂ ln(HFS), (34)

with the quantities Kα constructed in section 2.5. This reference metric can be modified to

H= eβHFS, F= ∂̄∂ ln(H) = FFS + ∂̄∂β (35)

where β is a function on X to be determined. Noting that the scalar Laplacian∆CY associated to the Ricci-flat
metric gCY on X can be written as∆CY = 2gab̄CY∂a∂̄b̄, the HYM equation (33) for the field strength F from
equation (35) turns into

∆CYβ = ρCY (36)

where the source ρCY has been defined in equation (9). We note that the integrability condition for this
equation amounts to ρCY integrating to zero over the CY manifold which, from equation (10), is equivalent
to the slope vanishing. Provided this is the case, equation (36) has a solution β (unique up to an additive
constant) which, inserted into equation (35), leads to the Hermitian bundle metric underlying the HYM
connection.

In order to solve equation (36) numerically we introduce the usual scalar product

〈 f |h〉 :=
ˆ
X
f̄∧ ⋆gh=

ˆ
X
d6y

√
g f̄h (37)

on the space L2(X) and consider a (not necessarily ortho-normal) basis of functions denoted by f I or simply
by |I〉. If we define the scalar products

GIJ = 〈I|J〉, ∆IJ = 〈I|∆CY|J〉, β̃I = 〈I|β〉, ρI = 〈I|ρ〉, (38)

it follows that

|β〉=
∑
I

βI|I〉 where βI =
∑
J

(G−1)IJ β̃J (39)

and the Laplace equation (36) can be re-written as

∆β = ρ. (40)

Here,∆ is the matrix with entries∆IJ and we have introduced the vectors β = (βI) and ρ= (ρI). The kernel
of∆ is non-trivial and consists of the vectors β which correspond to constant functions on X. This means∆
is not surjective and for a solution to exist it is necessary that ρ ∈ Im(∆). This condition is of course nothing
else but the integrability condition for the Laplace equation (36) which amounts to the vanishing of the
slope. So as long as the slope vanishes, equation (40) has a solution.

In practice, we have to work with a suitably chosen finite set of functions f I and things are not quite so
straightforward. For a finite function set we should expect errors and we cannot expect that ρ ∈ Im(∆). This
means the finite-dimensional version of equation (40) typically does not have a solution and a naive attempt
of solving the equation with standard methods of linear algebra fails. To remedy this problem we decompose
ρ as ρ= ρ∥ +ρ⊥ into the projection ρ∥ onto Im(∆) and the orthogonal complement ρ⊥. Another way of
stating the problem is that ρ⊥ is typically non-zero in the finite-dimensional approximation. However,
provided the slope vanishes and the finite-dimensional approximation is sufficiently accurate, we expect that
|ρ⊥|/|ρ∥| � 1. Assuming this is indeed satisfied we can safely replace equation (40) by

∆β = ρ∥, (41)

which does have a solution.
In summary, our procedure involves computing the quantities∆IJ and ρI in equation (38) by numerical

integration over X for a finite set of functions f I and then solving the linear algebra problem (41). Given a
solution β = (βI), the function β is then approximated by β =

∑
IβIfI.

9
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A suitable set of functions f I can be constructed by starting with a positive line bundleOX(l). If we
denote by sp, where p= 1, . . . ,h0(OX(l)), a basis of its sections we can define the functions

fpq =
sp s̄q∏
αS

lα
α

, (42)

where Sα is the homogeneous version of Kα. Of course, the higher the degree l, the larger the space spanned
by the f pq and the more accurate we expect the approximation to be. As a measure of the accuracy with which
the HYM equation (36) is solved we define

σH =

ˆ
X
d6y

√
gCY |∆CYβ− ρCY|ˆ

X
d6y

√
gCY |ρCY|

, (43)

which we will refer to as the ‘HYMmeasure’ in the future.

4. Computational background

The open source library cymetric consists of point generators for CICY and KS CY manifolds and five
metric models that learn the Ricci-flat CY metrics using the generated points as input. In this section, we
describe these networks and their training in more detail. After a brief general introduction to NNs, we
describe how the networks of cymetric are constructed and how their learning is controlled by custom loss
functions that encode the mathematical constraints CY metrics must satisfy.

4.1. Introduction to NNs
This section provides a quick review of the building blocks of NNs. The literature on machine learning and
NNs is vast, and includes many good introductory texts. For the reader with a background in (theoretical)
high-energy physics, [51] provides a very good introduction to the topic, and [29] gives a topical discussion
on the applications of modern data science techniques to string theory.

A NN is a collection of nodes, which are organized in several layers. Two of these layers, the input and
output layers, are visible to the user, the others are hidden. NNs with many nodes in each layer are referred to
as wide, and NNs with many (more than one) hidden layers are called deep. Given an input vector v0 ∈ Rn0 ,
the NN processes the data by transmitting it from one layer to the next, in a sequence of mappings
v0 7→ v1 7→ v2 7→ · · · 7→ vN, where vk ∈ Rnk . In more detail, for a fully-connected NN, the output vk of layer k
is related to its input vk−1 by

vk = σk(Wkvk−1 + bk), (44)

where the nk × nk−1 matrixWk contains the weights and the vector bk ∈ Rnk the biases of the kth layer. The
functions σk act on each component of their vectorial arguments and are called the activation functions.
Altogether, the NN represents a family fθ : Rn0 → RnN of functions which is given by iterating equation (44).
Here, θ collectively denotes the weights and biases in all layers.

Training of the NN is based on a set of input vectors {v0}. The first step of any machine learning
experiment is to randomly split this data into a training and a validation set (where the
training-to-validation ratio depends on the size of the dataset). The training set is used to train the NN by
adjusting the weights and biases θ, a process that is guided either by certain loss functions or a reward system
provided by the user (see below for the loss functions relevant to our setting). The training data may also be
further subdivided into (mini-) batches to improve training. The division of data into batches reduces the
risk of the NN getting trapped in local minima of the loss function, thus increasing the chance of finding
solutions that generalize well. This is also sometimes necessary, especially for networks that perform
memory-intensive operations (such as differentiation with respect to the input data in our case) in order to
compute loss functions. Networks operate in epochs, where each epoch constitutes one run over all batches.

In machine learning, one typically distinguishes different setups such as supervised, unsupervised, or
reinforcement learning. We are dealing with a version of supervised machine learning. However, in classical
supervised ML, the input and output is known for the training set. Lacking an analytical expression for the
CY metric, while we have inputs (the points on the CY at which to compute the metric), we only have partial
output information (the CY volume form and the line bundle slopes) together with a set of constraints that
the NN output (that is, the metric) has to satisfy. Hence, the task is more akin to physics informed
self-supervised learning or optimization than classical ‘supervision’ with given input-output pairs. We check
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Table 1. Different Ansätze for the NN prediction of the Ricci-flat metric.

Name Ansatz

Free gpr = gNN
Additive gpr = gFS + gNN
Multiplicative, element-wise gpr = gFS + gFS ⊙ gNN
Multiplicative, matrix gpr = gFS + gFS · gNN
ϕ-model gpr = gFS + ∂∂̄ϕ

how well the output meets these constraints by constructing error measures that encode them. Importantly,
given the split of the initial data, the quality of the output can be assessed on both the training and validation
sets. For the validation set, this check is performed by applying the trained network to the validation data.

From this brief summary, it is clear that designing a NN to perform a certain task involves choosing a
number of hyperparameters, that specify the network’s properties. For fully connected NNs, this amounts to
specifying the width and depth of the network, which activation functions to use, and the number of batches
and epochs. More advanced network components, such as convolutional or dropout layers (see, for example,
[29] for a recent discussion), require additional hyperparameters. For our task, previous studies [32–34] have
shown that a simple fully connected NN exhibits good performance. Consequently, we focus on this setting,
leaving studies involving more advanced NN architectures for the future. We build the networks using
TensorFlow [41], an ML library with functionalities that suit our needs. In particular, TensorFlow allows to
construct the NNs in a sequential manner, and has differentiation functions that allow us to compute
derivatives with respect to the input data.

4.2. Network architectures
The basic idea underlying machine learning of CY metrics is to use a NN whose associated functions f θ
represent metrics on the manifold. In other words, the NN input consists of a point p ∈ X on the CY
manifold and its output represents a metric g(p) at this point. There are a number of concrete realizations of
this idea. Since CY three-folds X are complex manifolds, their metrics g(p) at each point p ∈ X can be
written, relative to a local choice of complex coordinates, as a Hermitian 3× 3 matrix. The first, and most
obvious, approach is then to let the NN predict the nine independent entries (three real entries on the
diagonal, and three complex entries on the off-diagonal) of this matrix. While this is possible, it does not take
advantage of the mathematical knowledge we have about CY manifolds. For example, equation (2) shows
that the CY metric is given by an exact correction to some reference Kähler metric gFS. Moreover, by
constructing CY manifolds as a hypersurfaces or complete intersection in an ambient space, one can
construct the metric gFS explicitly by pullback from the ambient spaceA.

The cymetric package realizes five choices for how the metric gpr predicted by the NN is related to the
function gNN that the NN actually represents. These possibilities are summarized in table 1. The first and
most obvious choice, gpr = gNN, has been included for reference but is by no means the optimal one. A
metric is required to be non-singular and this condition can easily be violated for a randomly initialized or
stochastically trained NN. A NN which ‘accidentally’ represents a singular or near-singular metric can lead to
numerical problems. Also, for this choice, the NN has to cope with the entire numerical variation of the
metric gpr. Both problems can be solved, or at least alleviated, by writing gpr = gFS + correction, and the four
other possibilities in table 1 are of this form. Indeed, using the non-singular metric gFS as a background
makes accidentally generating singular metrics less likely (and, if there is an actual singularity in the space,
the reference FS metric will already have this feature). Furthermore, under the plausible assumption that the
entries of gCY − gFS are typically smaller than the ones in gCY, a NN dealing with a metric correction involves
smaller numbers, likely leading to enhanced numerical stability. As table 1 shows, gpr may be defined
additively, gpr = gFS + gNN, via element-wise multiplication, gpr = gFS + gFS � gNN, or via matrix
multiplication, gpr = gFS + gFS · gNN. Finally, using the full information contained in equation (2), we may set
gpr = gFS + ∂∂̄ϕ, where the NN represents the real function ϕ.

While we have already argued that the free NN is likely inefficient, there is no telling which of the other
four Ansätze in table 1 will be most efficient in learning the Ricci-flat metric on a given CY manifold. For
example, while the ϕ-model automatically gives a Kähler metric, it requires two additional derivatives on the
input, which come at a computational cost. For this reason, the cymetric package makes all these options
available for the user to explore. In the ensuing section, we will compare the performance of the different
NNs on the quintic.

In each experiment the NN is trained on input data which consists of a set {pi} of points on the CY
manifold. These points are generated using the method described in section 2.7. They are, by the theorem of
Shiffman and Zelditch, distributed with respect to a measure dA, which is inherited from the ambient space.
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This allows to compute any integrals used in the training and validation processes as weighted sums,
following equations (25) and (26).

As discussed above, the learning of NNs is governed by the minimization of loss functions. A CY metric
must satisfy a number of mathematical constraints, listed in section 2. We encode these restrictions in a
custom loss function

L= α1LMA +α2LdJ +α3Ltransition +α4LRicci +α5LKclass (45)

where αi are hyperparameters of the NN with default value αi = 1.0, and the individual loss contributions
are defined as follows:

• Monge–Ampère loss LMA

The Monge–Ampère loss is defined as

LMA =

∥∥∥∥1− 1

κ

detgpr
Ω∧ Ω̄

∥∥∥∥
n

, (46)

and it ensures that the metric satisfies the Monge–Ampère equation (2), as required by the CY theorem.
This loss may be computed with any Ln norm, as indicated by the subscript n (default is n= 1)10.

• Ricci loss LRicci

The Ricci loss is defined by

LRicci = ‖R‖n =
∥∥∂∂̄ lndetgpr∥∥n , (47)

and it ensures that the metric has vanishing Ricci scalar11. This is a necessary condition for the metric to
satisfy the stronger CY requirement of having vanishing Ricci tensor. Again, this loss function may be com-
puted with different Ln norms, with default n= 1.

• Kähler loss LdJ

The Kähler loss, defined by

LdJ =
∑
ijk

∥∥Re cijk∥∥n +∥∥Im cijk
∥∥
n
, (48)

where cijk = gīj,k − gk̄j,i and gīj,k = ∂kgīj ensures that dJ= 0, so that the metric is Kähler. The default for the
Ln norm is n= 2.

• Transition loss Ltransition

The transition loss function ensures that gīj transforms as a complex tensor under coordinate transformations.
For the additive and multiplicative networks, this is implemented as

Ltransition =
1

d

∑
U,V

∥∥∥gVpr −TUV · gUpr · (TUV)
†
∥∥∥
n
, (49)

where (TUV)
ν
µ = ∂vν/∂uµ are the transition matrices between patches U and V , with local coordinates u

and v, respectively. Moreover, d is the number of patch transitions, and the default for the norm is n= 1.
• Kähler class loss LKclass

Finally, since we would like to compute the Ricci-flat metric for given Kähler parameters tα, we require
a loss contribution which enforces the correct Kähler class12. It may appear this is not necessary for the
ϕ-model—provided gFS is set up with the correct Kähler class, the addition ∂∂̄ϕ is exact and, hence, does not
change the class. While this is true mathematically, it depends on ϕ being a function (rather than a section),
a condition which is difficult to enforce on a NN. For the other models in table 1 there is no mathematical
reason for the Kähler class to remain unchanged. In order to fix the Kähler class we define the Kähler class
loss function as

LKclass =
1

h1,1(X)

h1,1(X)∑
α=1

∥∥∥∥µt(OX(eα))−
ˆ
X
J2pr ∧ FFS,α

∥∥∥∥
n

. (50)

10 The choice of Ln norm will affect the training of the network. A high n pushes the network to reduce outliers, that is, large loss function
contributions that are localized at a few points. With a low n, the NN will instead strive to reduce the loss function of all points with equal
weight. From our experiments, the default values chosen in cymetric lead to good performance on the manifolds we have studied.
11 Recall that for Kähler metrics, the Ricci scalar simplifies to R= gīj∂i ∂̄̄j logdet(g).
12 This is not essential formanifolds with h1,1(X) = 1 (such as the quintic), since all Kähler classes are obtained by simplemetric rescaling.
However, it is critical in order to generate metrics with a well-defined Kähler class for h1,1(X)> 1.
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Here,OX(eα) are the line bundles specified by integers (eα)β = δβα, FFS,α =−iJα/(2π) are their associated
field strengths and µt(OX(eα)) their slopes for the given Kähler parameters tα, as computed from the topo-
logical formula, equation (8). For the norm, the default is n= 1. Conversely, these slope values on the ‘line
bundle basis’OX(eα),α= 1, . . . ,h1,1(X), fix the Kähler parameters uniquely and this is the basic idea behind
equation (50): by enforcing the correct slopes we enforce the correct Kähler class.

The slope integral in equation (50) is evaluated numerically using MC integration, that is, integrals of
the form (10) are computed using equation (26). Note that this integral requires a large batch size to provide
a good approximation to the slope, while the other losses benefit from gradient descent with small mini-
batches. Hence, we break each training epoch of theNN into two optimization steps with two different batch
sizes. A small batch size (default is 64 points) is used for all above contributions to the loss function while a
large one (defaults to 10000 points or the entire data set, whichever is smaller) is used for theKähler class loss.
The learning rate is kept constant between the two batches, and during training. We use the same optimizer
in order to share some of the information, like momentum, between the two batches, and gradients are
accumulated over the two optimization steps. We have observed that also keeping the Monge–Ampère loss
in the updates with the large batch size further improves stability of the code.

For all these loss functions, the derivatives with respect to the input coordinates are computed with
TensorFlow’s automatic differentiation, which works reliably for all NNs.

A few comments are in order. By virtue of the CY theorem, the Monge–Ampère loss LMA is sufficient to
enforce Ricci-flatness of the metric. The Ricci-loss LRicci has been included as a potential additional check
but, since its computation is costly (as it involves taking two further derivatives), it is disabled by default.
Moreover, for the ϕ-model which is Kähler by construction, the Kähler loss LdJ is disabled. Similarly, the
transition loss is disabled for this network (this is guaranteed as long as ϕ is a function). Disabling these
losses for the ϕ-model shortens training time and has had no ill effects on performance.

After the NN is trained, we require an error measure that tells us how well the NN approximates the
quantity we are learning, and how well it compares with other approximation schemes. For our purposes, we
consider error measures derived from the Monge–Ampère equation and the requirement of Ricci-flatness.
There are two established benchmark measures in the literature [15, 20], the sigma and Ricci measures,
(σ,R). The σ measure is obtained by integrating, using the MC approximation as a weighted sum, the
Monge–Ampère equation

σ =
1

VolΩ

ˆ
X

∣∣∣∣1−κ
Ω∧Ω

(Jpr)n

∣∣∣∣ , (51)

where VolΩ =
´
dVolΩ. The Ricci measure results from integrating the Ricci scalar

R=
Vol1/3CY

VolΩ

ˆ
X
|Rpr|. (52)

It should be noted that a small Ricci measure is necessary, but not sufficient, to guarantee that the entire Ricci
tensor is small. One could explore other (integrated) curvature measures, formed from other contractions of
the Ricci tensor, which, however, we have not done in this work. We also provide measures to monitor the
quality of the Kähler, transition, and volume approximations.

5. Results

In this section, we report the results from experiments where CY metrics are learned on CICY and KS
manifolds. These runs illustrate that the ML routines that we have developed perform well on CY manifolds
from these lists. As we will see, there is some variance in the performance of the different NNs. The ϕ
network emerges as the most efficient learner, and the small values reported on the σ and R error measures
corroborate the accuracy of the obtained metrics. We furthermore find that the point-generating routines are
efficient with run-times ranging from seconds (for the quintic) to an hour (for the KS CY example) on a
CPU of a standard laptop. We expect this efficiency will persist on CYs of similar complexity. For ease of
notation, we will henceforth refer to the approximate CY metric obtained at the end of training as gCY.

5.1. Quintic
The Quintic three-fold is specified as the vanishing locus of a quintic polynomial in the projective ambient
spaceA= P4, and appears in both the CICY and KS lists. It has one Kähler modulus, which measures the
overall volume of the manifold, and 101 complex structure moduli. A particular, simple instance of this
family of manifolds is the Fermat quintic, given by the vanishing locus of Q=

∑4
i=0 z

5
i . The Fermat quintic is
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Figure 1. Fermat Quintic experiments: (a) Monge–Ampère loss on training data; (b)–(d) Monge–Ampère, transition and Kähler
loss on validation data; (e) σ-measure (f) volume and (g)R-measure on test data; (h) the linear relationship between
improvement in σ-measure andR-measure. The plots show the averaged performance of five separate experiments for each
model, including 95% confidence intervals as light-hue bands around each curve.

arguably the simplest CY three-fold, and is a benchmark model for numerical computations of CY metrics,
whose metric has been approximated using a variety of approaches [14–19, 22, 32, 33]. Given its simplicity,
the Fermat quintic provides an excellent setting for comparing the performance of the different metric
Ansätze in table 1, and this is the main purpose of this subsection.

5.1.1. Comparison of Ansätze for CY metric predictions
For these experiments, we have generated a random point sample of 198000 points on the quintic using the
CICY point generator of cymetric. For each metric Ansatz in table 1, we have constructed a fully connected
feed-forward network with three hidden layers, each containing 64 nodes, and GELU activation functions13.
These have been trained using an Adam optimizer on the point sample, with a 0.1 validation split of the data.
The NNs were initialized with weights sampled from a Gaussian distribution. For the networks that learn a
correction to the reference metric gFS, we select a Gaussian distributionN (0, 0.01) with small variance,
whereas the free NN is initialized withN (0, 1).

For each metric Ansatz, five experiments over 100 epochs were performed. The results of these
experiments are shown in figure 1 (and were first published in the 2021 NeurIPS conference, [34]). Note that
for these quintic runs, the volume of the manifold has been normalized to 1. As shown in subplot (f), all
networks preserve this value of the volume.

It is evident from figure 1 that learning takes place for all network Ansätze. It is also clear that the
performance of the NNs differ: the multiplication and ϕmodels outperform the additive and free networks.
In fact, the plots show that the training does not complete for the latter models: even after 100 epochs, most
losses and error measures have not reached a stable value. In contrast, the two multiplication models, and the
ϕ network, reduce the relevant losses and errors by approximately two orders of magnitude, and obtain
stable values after the 100 epoch experiments are completed.

In more detail, we see that the Monge–Ampère loss, shown in subplots (a) and (b) for training and
validation data, respectively, decreases by two orders of magnitude during training of the best performing
networks. The similarity in performance between training and validation set implies that overfitting is not a
problem. The transition loss on validation data is presented in subplot (c). Again, learning is evident for all
networks but for the additive NN the loss function only starts decreasing after 80 epochs. The final plot on
the first row of figure 1 shows the Kähler loss on validation data. The ϕmodel does not appear in this plot,
since it provides a Kähler metric by default (as long as ϕ is a function, which is guaranteed by the
preservation of the Kähler class, which is automatic up to a scale factor for the Quintic). Interestingly, the
multiplicative models perform worse than the additive model on this loss. This is to be expected: multiplying
the metric with a non-constant matrix will generically result in an associated 2-form which fails to close. On

13 Before these experiments, we have performed hyperparameter tuning via box searches for some of the hyperparameters, including for
the number of hidden layers and the type of activation function.
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the other hand, for the additive network, while the addition to the metric will generically break the Kähler
constraint, the smallness of the addition implies that this breaking will be small. One should expect the result
to reflect this, and it is reassuring that it does.

On the second row of figure 1 it is checked that the volume of the manifold is not changed during
learning. We also compute the σ andR error measures. These checks are performed on a separate test set of
22000 points. The σ andRmeasures are benchmarks for the quality of CY metric approximations, and their
low values testify to the performance of the NNs. The ϕ-models with lowest validation loss reach, within an
hour on a single CPU of a standard laptop, a mean accuracy of σ= 0.0086 andR= 0.076 and thus matches
k= 20 in Donaldson algorithm [20] with a training time of 35 years on 4.6× 108 points [30]. On the other
hand, the energy functional methods obtain a similar accuracy already at k= 4 [22] and other machine
learning methods report similar runtimes as ours14.

To the best of our knowledge, we are the first to systematically studyR, and to demonstrate, in subplot
(h), a linear relation, σ ≈ 0.06R for the ϕ-model, between optimization of the surrogate Monge–Ampère
equation (2) and decrease in Ricci measureR. This plot shows the linear fits as obtained using Seaborn’s
linear regression model function regplot, together with 95% confidence intervals as light-hue bands15. While
this is to be expected from the CY theorem, a numerical routine could in principle deviate from this result. It
is reassuring that our implementation does not and that there is no tension between these two constraints.

Another conclusion from these experiments is that the ϕ-model performs better than the other models,
at least for simple CY three-folds16. While this is a result that should be treated with some caution, we have
reached similar conclusions on other manifolds, and will thus focus on this model in the following sections.

5.2. Bi-cubic
In this sub-section we describe our numerical results for the bi-cubic CY, a manifold with Picard number
two. Specifically, we calculate the numerical Ricci-flat CY metrics at various specific points in the bi-cubic
Kähler moduli space. For these metrics we perform two basic checks to confirm that the correct point in
Kähler moduli space has indeed been reached: a numerical calculation of the CY volume and a numerical
calculation of various line bundle slopes, each of which can be compared with the exact result obtained from
a topological formula. As an example application, we also compute the HYM connection for a specific line
bundle on the bi-cubic numerically.

5.2.1. Basic set-up
The bi-cubic CY is defined as a hypersurface in the ambient spaceA= P2 ×P2 and it is contained in both
the CICY and the KS lists. Specifically, it is given as the zero locus inA of a bi-degree (3,3) polynomial. Its
Hodge numbers are (h1,1(X),h2,1(X)) = (2,83) and its non-zero intersection numbers are d112 = d122 = 3.
Throughout our calculations, we fix a specific point in complex structure moduli space by focusing on the
defining polynomial
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where (x0,x1,x2) and (y0,y1,y2) are homogeneous coordinates on the two P2 factors. We will calculate the
Ricci-flat metric for seven points in Kähler moduli space, that are listed in table 2. These point were chosen
so that seven simple line bundles (i.e. with the lowest integer charges) have zero slope relative to those points
in Kähler moduli space. Thus, for each of these choices of t there is a corresponding slope-zero line bundle
OX(k) which is given in the last row of table 2. Further, while this relatively small sample of moduli space
points does not cover the full Kähler cone, the points selected yield both symmetric and asymmetric
members of the family of bicubic CYs. Moreover, as we will see below, this set-up provides 7 plus 49

14 We recall that reducing runtime for ML experiments is not the primary goal of the cymetric package; rather the benefit of the new
package is that it can be applied to a wider range of CY manifolds than previously possible and that it computes the Ricci-flat metric for
a given Kähler class.
15 The R2 coefficients (rounded to 2 digits) are, for the respective models, additive: 0.64 (0.64); matrix mult: 0.99 (0.51); element mult:
0.99 (0.66); ϕ: 0.98 (0.98); the values without (with) brackets exclude (include) outliers that come from initial fluctuations.
16 This conclusion is also corroborated by experiments reported on in [52].
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Table 2. Choices t(i), where i= 1, . . . ,7, of the Kähler parameters for the bi-cubic and corresponding slope zero line bundles with line
bundle integers k(i).

Case 1 2 3 4 5 6 7

t(i)

(
1.414
1.414

) (
0.687
1.878

) (
0.421
1.955

) (
0.299
1.977

) (
0.962
1.753

) (
1.092
1.676

) (
0.853
1.809

)
OX(k(i)) OX(1,−1) OX(1,−2) OX(1,−3) OX(1,−4) OX(2,−3) OX(3,−4) OX(3,−5)

Figure 2. Bi-cubic training curves for the seven choices of Kähler parameters in table 2. The last plot represents the final loss,
obtained by averaging over the last 10 epochs, as a function of t2/t1 (orange: LKclass, blue: 4×LMA, both on training data,
light-blue: 4×σ measure on validation data).

independent checks of our numerical routines through the computation of CY volumes and line bundle
slopes, respectively.

5.2.2. Point sampling and training with ϕ-model
For each of the seven choices of Kähler parameters in table 2, we have generated 100000 points (with 0.1
validation split) on the bi-cubic, using the Mathematica point generator of the cymetric package. For the
ϕ-model and a NN with width 64, depth 3, GELU activation functions and initialization withN (0, 0.01),
training has been carried out for 100 epochs, using the Adam optimizer with a batch size of 64 and a learning
rate of 1/1000. Training has been completed on a CPU of a standard laptop in about three hours, for each of
the seven choices of Kähler parameters.

The only two relevant contributions to the loss are the Monge–Ampère loss and the Kähler class loss
which are shown, together with the σ error measure in figure 2 (where, in order to clearly display all
functions in the same plot, the Monge–Ampère loss and σ error measure are rescaled by a factor 4).
Evidently, training is efficient and successful for all seven cases. The last plot in figure 2 shows the final MA
and Kclass loss, obtained by averaging over the last 10 epochs, as a function of the modulus ratio t2/t1, which
can be seen as a measure of the asymmetry of the manifold. There is a clear tendency for the final loss to
increase with increasing asymmetry, a behavior which is intuitively expected.
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Table 3. Exact volume from intersection form (row 2), and volume from numerical integration with gFS (row 3) and gCY (row 4), for the
seven choices of Kähler parameters in table 2.

Case 1 2 3 4 5 6 7

Volint 8.49 4.97 2.93 2.02 6.87 7.59 6.16
VolFS 8.49 4.50 2.94 2.03 6.91 7.58 6.26
Error <1% <1% <1% <1% <1% <1% ∼2%
VolCY 8.56 5.03 2.96 2.03 6.86 7.58 6.28
Error <1% ∼1% <1% < 1% <1% <1% ∼2%

5.2.3. Volume computations
From the runs described above we have obtained numerical results for the Ricci-flat CY metric gCY(pi) at
100000 points pi on the bi-cubic and for seven choices of Kähler parameters. In addition, the cymetric
package provides the weights wi, the auxiliary weights w̃i and the Fubini–Study metric gFS(pi) at those points.

As a first check, we would like to compute the CY volume for all seven cases, based on equation (6). The
exact results are obtained from the intersection formula on the RHS of equation (6). Alternatively, these
volumes can be computed by integrating over the CY or the FS measure, as in the middle of equation (6),
and we will evaluate these integrals numerically, as explained in section 2.7. Explicitly, we compute for all
seven cases

Volint =
1

6
dαβγ t

αtβtγ , VolFS =
1

N

N∑
i=1

w̃i det(gFS(pi)), VolCY =
1

N

N∑
i=1

w̃i det(gCY(pi)), (54)

where we recall that gCY refers to the network’s prediction for the CY metric after the training is completed.
The results are given in table 3.

The volumes computed with the Fubini–Study metric are in good agreement with the exact results, with
most errors at the level of 1% or below. In this case, the only uncertainty comes from point sampling (as the
Fubini–Study metric is known exactly) so these results confirm that our method for sampling points works
and that 100000 points are sufficient.

The more important results in table 3 are the volumes computed with the Ricci-flat CY metric, given in
the last row. Again, the accuracy is impressive at 1% or less for most cases. Overall, these results confirm that
the Ricci-flat CY metrics obtained are indeed in the prescribed Kähler class—only then can the volume be
expected to come out correctly. We emphasize that obtaining the correct volume has not been built into the
loss function. Rather, the correct Kähler class has been enforced during training by imposing the Kähler class
loss (50). Table 3 provides strong evidence that this method does indeed work.

5.2.4. Slope computations
While the correct slope has been imposed during training it is still worth checking that our numerical
metrics can be used for accurate slope computations. For the seven values of Kähler parameters t(i) and the
seven line bundlesOX(k( j)) in table 2 we can compute a 7× 7 slope matrix with entries µt(i)(OX(k( j))). The
accurate entries of this matrix are obtained from the topological formula (8) and are given by



0.00 −18.00 −36.00 −54.00 −18.00 −18.00 −36.00
9.16 0.00 −9.16 −18.33 9.16 18.33 9.16
10.94 5.47 0.00 −5.47 16.41 27.34 21.87
11.46 7.64 3.82 0.00 19.1 30.57 26.75
6.45 −6.45 −19.34 −32.24 0.00 6.45 −6.45
4.85 −9.7 −24.25 −38.8 −4.85 0.00 −14.55
7.63 −3.82 −15.26 −26.71 3.82 11.45 0.00


(55)

where the rows are labeled by the values of the Kähler parameters and the columns by the line bundles. The
zeros along the diagonal indicate the existence of HYM connections for these cases, that is, for the line
bundlesOX(k(i)) and their associated Kähler parameters t(i).
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Alternatively, we can work out the slope by carrying out the integrals in equation (10) numerically. Doing
this first for the FS metrics, that is, evaluating 2

Nπ

∑N
i=1 w̃i det(gFS(pi))ρFS(pi) gives



0.11 −17.84 −35.78 −53.73 −17.73 −17.62 −35.57
9.12 −0.13 −9.37 −18.62 8.99 18.11 8.86
10.95 5.46 −0.03 −5.52 16.41 27.35 21.86
11.47 7.65 3.82 −0.01 19.12 30.6 26.77
6.27 −6.79 −19.84 −32.9 −0.52 5.75 −7.31
4.95 −9.53 −24.01 −38.49 −4.58 0.37 −14.11
7.34 −4.43 −16.19 −27.95 2.91 10.25 −1.51


. (56)

Agreement with the exact results in (55) is impressive, with an average error of the non-zero slope of∼3%,
suggesting that the point sample size is sufficient, at least for the purpose of computing slopes. Using the
Ricci-flat CY metrics and evaluating 2

Nπ

∑N
i=1 w̃i det(gCY(pi))ρCY(pi), we find



0.03 −17.97 −35.98 −53.98 −17.95 −17.92 −35.92
8.86 −0.42 −9.70 −18.98 8.43 17.29 8.01
10.11 4.52 −1.07 −6.65 14.63 24.74 19.15
9.96 5.96 1.97 −2.02 15.92 25.87 21.88
6.38 −6.45 −19.29 −32.12 −0.07 6.31 −6.53
4.96 −9.41 −23.77 −38.13 −4.45 0.51 −13.86
7.53 −4.12 −15.76 −27.4 3.41 10.93 −0.71


. (57)

Again, this is in good agreement with the exact results in (55), with an average error of the non-zero slopes of
∼7%, and it confirms that we have obtained Ricci-flat CY metrics with the correct, intended Kähler class. We
also note that, in most cases, the results are accurate enough to distinguish zero slope cases (along the
diagonal) which allow for a HYM connection from cases with non-zero slope. For highly asymmetric
manifolds, this distinction is less clear, which is related to the fact that training takes longer in these cases.

5.2.5. HYM connection
As a final application of our results we would like to compute an approximation to the HYM connection on a
line bundle over the bi-cubic, following the procedure described in section 3. To do this we focus on the line
bundleOX(1,−1) and Kähler parameters t1 = t2 ' 1.414, corresponding to case 1 in table 2. As the result in
(55) (specifically, the (11) entry of this matrix) shows, the slope ofOX(1,−1) vanishes for this choice of
Kähler parameters, so that a HYM connection does indeed exist.

Our method requires choosing a set of functions (42) in which to expand the various quantities. We do
this using the sections Γ(OX(1,1)), a nine-dimensional space with basis (xayb), where a,b= 0,1,2. This
leads to 81 functions of the form (42), explicitly given by

f(ab)(cd) =
xaybx̄cȳd

(|x0|2 + |x1|2 + |x2|2)(|y0|2 + |y1|2 + |y2|2)
. (58)

Note, these expressions are indeed of homogeneity degree zero in each set of P2 coordinates and, therefore,
constitute functions on the ambient space and, by restriction, on the bi-cubic CY.

With these functions we first compute the 81× 81 matrix∆, which represents the Laplacian. Second, the
81-dimensional vector ρ, representing the inhomogeneity in Laplace’s equations, is obtained by evaluating
the matrix elements in equation (38) by numerical integration, using the point sample and numerical
Ricci-flat metric for case 1. We can check that the matrix∆ obtained in this way has a one-dimensional
kernel which corresponds to constant functions on the bi-cubic, as can be verified by taking the linear
combination of the functions (58) with a vector in the kernel. As expected, the source vector ρ is not
contained in the image Im(∆), but we can verify that |ρ⊥|/|ρ∥| ∼ 0.03, so the component of ρ orthogonal
to Im(∆) is small. Then we solve equation (41) to find an 81-dimensional solution vector β and the linear
combination of the functions (58) formed with this vector provides our approximation of the function β.
Via equation (35), this function β then determines the approximation to the HYM bundle metric. For this
result we compute the quantity (43) as a measure of the accuracy of the approximation. This comes out at
∼3%, indicating a reasonably accurate HYM connection.
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5.3. Toric hypersurface CY with Picard rank 2
To test the cymetric package’s ability to predict CY metrics on KS CY manifolds, we select a CY manifold
with Picard rank two from the KS list17. After specifying the Kähler moduli as (t1, t2) = (1,1) and the
complex structure moduli by a random assignment of the coefficient of the defining polynomial, we generate
points on the manifold as specified in section 2.7. These points are then used in training the ϕ-model to
predict the CY metric.

5.3.1. Geometric set-up and point sampling
The selected manifold has a toric ambient space with two Kähler moduli. The vertices18
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0
0

 , (59)

span a fan in the lattice N which defines a P1-fibered toric ambient space over P3,A= P1 → P3, of Picard
rank two. Each vertex corresponds to a homogeneous coordinate xi ∼ vi, and a divisor Di = {xi = 0}; indeed,
the vertices v0,v2,v3,v5 can be seen to correspond to P3 by projection onto the first three entries, and vertices
v1,v4 give rise to a P1 by projection onto the last entry. There is a unique fine regular star triangulation of the
corresponding polytope, giving eight top-dimensional cones spanned by four out of the six vi. Thus,A can
be covered by eight patches, and in each such patch there are four affine coordinates.

We can use the methods detailed in appendix to compute the sections of the anti-canonical bundle,
whose linear combinations give a homogeneous polynomial that specifies a CY hypersurface X inA. For this
example, there are 80 sections, and we select random coefficients, corresponding to a generic choice for the
complex structure moduli of the CY. Rather than writing out this lengthy expression, we note that a different
random choice leads to comparable performance for the metric model.

Following the method described in section 2.7, we sample points on X using the toric point generator of
cymetric. For this we note that the GLSM charges are(

1 0 1 1 0 1
0 1 0 0 1 −2

)
. (60)

The Stanley–Reisner ideal is given by

SRI= 〈x1x4,x0x2x3x5〉, (61)

from which we can of course also infer the fibration structure of P1 over P3.
Using the GLSM charges we may read off the homogeneous scalings of the toric coordinates, and deduce

the relations between the divisors:

D0 ∼ D2 ∼ D3, D1 ∼ D4, D5 ∼ D0 − 2D1. (62)

We may thus choose J1 = D1 and J2 = D3 as generators for the Kähler cone, with non-vanishing triple
intersection numbers given by

d122 = d212 = d221 = 4, d222 = 8. (63)

Finally, the sections of the Kähler cone generators are, for this example,

H0(J1) = (x1,x4), H0(J2) = (x0,x2,x3,x
2
1x5,x

2
4x5,x1x4x5), (64)

(which by (60) all have the appropriate scaling). This defines the morphisms Φ1,2 into P1 and P5,
respectively, and allow us to construct points on the CY as discussed in section 2.7.

17 Picard rank 2 suffices to provide a non-trivial example of a KS CY manifold, while retaining a minimal computational complexity. We
defer a study of higher Picard ranks to future work.
18 The reader unfamiliar with toric geometry may wish to consult appendix.
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Figure 3. KS CY experiments: (a) Monge–Ampère and Kähler class loss on training data; (b) volume, (c) σ measure and (d)R
measure on validation data. The plots show the averaged performance of five separate experiments for the ϕmodel, including
95% confidence intervals as light-hue bands around each curve.

5.3.2. Training with ϕ-model
We have performed five experiments using the ϕ-model and a NN with width 256, three hidden layers, GELU
activation functions and initialization withN (0, 0.01). The network is trained for 100 epochs with a training
set of 200000 points, and error measures are computed on a validation set of 20000 points. We chose default
values for α using a SGD optimizer with learning rate 5/10000 and momentum 0.95, and the batch sizes for
the optimization steps were (128, 10000). It was observed in the design phase that the two updates with
different batch sizes required to minimize the Monge–Amère loss while staying in the reference Kähler class,
sometimes lead to the determinant of the predicted metric turning negative in isolated points during
training. To ameliorate the long term effects of this behavior, training was conducted with lower learning rate
and a larger momentum compared to the bicubic runs. The training took a couple of hours on a single GPU.

The results of the five experiments are shown in figure 3. We observe that the Monge–Ampère loss, LMA,
decreases steadily over training, totaling to a factor 4 decrease over 100 epochs. While this is certainly less
impressive than the improvement on the quintic, learning clearly takes place. For the ϕmodel, the transition
and Kähler losses are automatically zero, and hence are disabled. The decrease in the Kähler class loss, LKclass,
is also a factor 4, and the volume stays approximately constant around 20, which is the true value. The σ
measure, which is calculated on validation data, also decreases steadily over training, showing that the NN
provides a better and better solution to the Monge–Ampère equation. The most interesting part of this
experiment is the evolution of the Ricci measure. During the initial 20 epochs, this goes through sharp
spikes, corresponding to occurrences of points where the determinant of the predicted metric
gpr = gFS + ∂∂̄ϕ becomes negative. This unphysical behavior is not lasting, and the training converges to a
Ricci measure of around 5. While this is clearly non-zero, training decreasesR by roughly 37%.

As for the bicubic, we can now compute the volume of the CY using the intersection numbers, FS and CY
metric. We find, for t1 = t2 = 1,

Volint = 20, VolFS = 19.98, VolCY = 19.89, (65)

using equation (54) and the intersection numbers given in (63), and VolCY refers to the network’s prediction
for the CY volume after the training is completed, and is here computed as the mean of the five runs19. We
find that the volumes agree within 1%, a result that testifies to the accuracy of the point generating routine
and metric prediction.

6. Conclusions

In this paper, we have presented methods and results for numerical CY metrics in the context of machine
learning algorithms. Broadly, we have made progress in four directions. (1) The library cymetric presented
here contains functions which can be applied to the numerical computation of CY metrics on a wide range of
manifolds, namely to complete intersection CYs in products of projective spaces (CICYs) and to CY
manifolds obtained from the KS list. (2) In particular, we have realized point sampling for CY hypersurfaces
in general toric ambient spaces. (3) We have shown how line bundle slopes can be used to obtain the
numerical CY metric for given points in Kähler moduli space. (4) We have used the cymetric library to

19 For the five experiments, we find VolCY = {19.92,19.73,20.34,19.49,19.96}, respectively.
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obtain new results on the bi-cubic CY, including the computation of volumes, slopes and HYM connections
on line bundles, and on a Picard number two CY from the KS list.

The cymetric library consists of two main parts: the point generator and NNs which are used to predict
the CY metric. For CICYs it is known for some time how to generate point samples with a defined
distribution, following an algorithm explained in [16, 17] which is based on a theorem by Shiffman and
Zelditch [50]. For CY hypersurfaces in toric varieties we have generalized this algorithm, making use of
projective embeddings and the Shiffman-Zelditch theorem. Both versions of this algorithm, covering CICYs
and KS manifolds, have been realized in the cymetric library.

The CY metric can be represented by a NN in a number of ways and the cymetric library contains five
possible realizations, as summarized in table 1. To ensure that all NNs converge to the Ricci-flat CY metric
for the specified values of the moduli, we use a custom loss function with five contributions. They encode the
Monge–Ampère equation, the Ricci scalar, the Kähler property of the metric, the correct transition functions
between coordinate patches, and the correct Kähler class. For the CY manifolds considered in this papers, the
so called ϕ-network (the last entry in table 1), built from an exact correction to a reference Kähler metric,
performs the best. This is largely explained by the fact that this Ansatz guarantees the Kähler and transition
loss conditions are automatically satisfied. However, other network Ansätze might well turn out to be useful
for different CY manifolds. They can also be adapted to non-Kähler situations, for example in the context of
special structure manifolds with torsion [32].

In addition to testing our library on the quintic CY we have also performed runs on the bi-cubic CY, a
manifold with Picard number two. On this manifold, we have computed the numerical metric at seven
specific points in Kähler moduli space. The results have been used to compute, via numerical integration
with the CY metric, the CY volumes and some line bundle slopes at those seven points in moduli space.
These quantities can also be computed exactly by intersection formulae and the good agreement of our
numerical results, typically at the level of∼1% or smaller for the volume and a few percent for the slope,
confirms that the numerical metrics have indeed been computed at the correct points in moduli space. We
have also considered a Picard number two CY from the KS list and have carried out a computation of the CY
metric at a specific point in its Kähler moduli. Again, we were able to reproduce the CY volume from
numerical integration, indicating that the toric point generator works correctly and that the metric is indeed
computed at the desired point in Kähler moduli space.

In a final step we have used the numerical CY metric to find numerical solutions of the HYM equation
for line bundles on the bicubic. A necessary and sufficient condition for the existence of such solutions is that
the line bundle has vanishing slope, a condition which can, depending on the choice of the bundle, be
satisfied at some particular locus in Kähler moduli space. Using the cymetric package, we have computed
the numerical CY metric at such a point in moduli space. At this point we have then numerically solved the
HYM equation for the line bundle metric, which can be cast in the form of an inhomogeneous Laplace
equation. In this way, we find a numerical HYM line bundle metric at percent-level accuracy.

The goal is for cymetric to become an active open source community project similar to popular projects
in the machine learning community. To this end we encourage researchers to include their own models and
extensions. In the future, we plan to expand its capabilities by adding new models and NN architectures
based on more systematic hyperparameter searches. It is important to emphasize that algebraic metrics such
as in [22] can be implemented as special cases, by creating a custom network that just learns the coefficients
in the polynomial approximating the Kähler potential. The same holds true for learning metrics, akin to the
h-balanced metric from Donaldson’s algorithm, on holomorphic sections of line bundles. The package then
allows the full power of the TensorFlow optimizer to be applied in this context. We hope that the generality
and flexibility of the package will help to solve important physics problems, such as, for example, the
calculation of the physical Yukawa couplings from string theory.

There are a number of interesting additions, modifications and new directions which should be
mentioned. It may be interesting to try out different methods for point sampling, for example a Markov
Chain Monte Carlo sampling based on the measure dVΩ, in order to complement (and check) the methods
based on the Shiffman and Zelditch theorem. The cymetric library allows computing the CY metric at
given, specified points in moduli space. It would be interesting to use this feature and study the dependence
of the CY metric on the moduli in more detail. We should also point out that, while the present paper has
focused on CY three-folds, the cymetric library can be applied to CY n-folds more generally. For example,
it would be interesting to compute CY metrics on K3 and compare with recent analytic solutions found in
[8, 9], or compute a CY metric on a four-fold. Another direction is to investigate whether the present
methods generalize to related settings, such as to manifolds with SU(3)-structure [53] or manifolds with G2

holonomy. Work in this direction is in progress.
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Appendix. Some toric geometry

We collect some results from toric geometry that are used in the main part of the text. Toric varieties serve as
ambient spaces for the CY manifolds we want to study. We will restrict the discussion to the case where the
CY manifold is given as a hypersurface in a toric ambient space or as a complete intersection in a direct
product of projective ambient spaces. We will focus on the parts relevant to this setup only, and use succinct
and simple exposition, somewhat at the expense of precise terminology (for example, we will be referring to
finitely generated strongly convex rational polyhedral cones simply as cones). For an introduction to toric
geometry see the excellent textbooks [48, 54]. For the benefit of the ML-interested reader, we note that
topological properties of toric varieties and CY hypersurfaces therein have been studied using ML tools
in [55–59].

Throughout the discussion, we focus on the more general toric case, and point out how this simplifies for
(products of) projective spaces along the way.

Fan and cones
A d-dimensional toric variety is described in terms of a fan, which is a collection of k-dimensional cones,
where k= 0,1, . . . ,d. The one-dimensional cones vi are called rays, and they generate a lattice N⊆ Zd. Each
vertex vi ∈ N, i= 1, . . . ,n corresponds to one homogeneous coordinate xi of the toric ambient space. Their
toric scalings qα are given by the kernel of the vertex matrix:

qiαvi = 0 ⇒ (x1,x2, . . . ,xn) →
(
λ
q1α
α x1,λ

q2α
α x2, . . . ,λ

qnα
α xn

)
. (A.1)

The matrix qiα is called the GLSM charge matrix or the Mori cone matrix. Note that for a given set of charge
vectors q⃗α, we can form a new set q⃗β = Rα

β q⃗α by rotating the charges. One typically chooses the basis such
that the GLSM D-terms ∑

i

qiα|xi|2 = tα (A.2)

have a solution for Kähler parameters tα ⩾ 0.
For a projective ambient space Pnα , the GLSM charge matrix is simply qiα = (1,1, . . . ,1) with

i= 1, . . . ,nα + 1. Hence, for products of projective ambient spaces, we obtain a block-diagonal charge
matrix. In contrast to the toric case, this does not encode any information beyond what is specified by just
giving the dimensions nα of the projective ambient space factors.

The top-dimensional, that is, d-dimensional, cones are called facets. All other cones are typically just
referred to as faces. A k-dimensional cone σi1,i2,...,ik in NR = N×R is generated by vertices vi1 ,vi2 , . . . ,vik ,

σi1,i2,...,ik =

{
k∑

i=1

λivi ∈ NR

∣∣∣∣∣ λi ⩾ 0 ∀k

}
. (A.3)

Associated to this, we can define a dual cone σ∗ in the dual latticeMR ⊆ Zd,

σ∗
i1,i2,...,ik = {w ∈M | 〈v,w〉⩾ 0 ∀v ∈ σi1,i2,...,ik} . (A.4)

Note that the dual of a top-dimensional cone σi1,i2,...,id is again d-dimensional.
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Affine patches
Each top-dimensional cone σ of a fan corresponds to an affine patch Cd. The coordinates that are allowed to
vanish in this patch are the ones given by the generators of σ, while all others are non-vanishing. We can
construct the affine coordinates zµ from the dual cone σ∗ by taking the product of all coordinates xi with
exponents given by the inner product of the corresponding vertex vi with the generators wµ of the dual cone
σ∗, so that

zµ =
n∏

i=1

x
⟨vi,wµ⟩
i . (A.5)

Note that in particular σ∗ is d-dimensional. Hence a toric variety of complex dimension d always has d affine
coordinates in any given patch. For a projective ambient space Pnα , this construction reduces to the standard
patches Ua = {za 6= 0} with affine coordinates zµ = xi/xa for i 6= a.

Divisors and Stanley–Reisner ideal
Each vertex vi ∈ N corresponds to one homogeneous coordinate xi of the toric ambient space. Hence, we can
introduce a set of (in general linearly dependent) divisors Di := {xi = 0}. Two ambient space divisors
D=

∑
i ciDi and D ′ =

∑
i c

′
iDi for some ci, c ′i ∈ Z are linearly equivalent if all their GLSM charges agree,

D∼ D ′ ⇔
∑
i

ciq
i
α =

∑
j

c ′j q
j
α ∀α. (A.6)

In particular, this means that favorable CYs (that is, CYs which inherit the entire second cohomology from
the ambient space) lead to the index range α= 1,2, . . . ,h1,1(X).

If certain divisors are not contained in a common cone of the fan, they cannot vanish simultaneously. We
associate a monomial s=

∏
xi to each such combination. The collection of these monomials generates an

ideal,

SRI= 〈si〉, (A.7)

called the Stanley–Reisner ideal. A toric variety is specified by the GLSM charges and the SRI, or,
equivalently, by its vertices plus a chosen triangulation.

For a projective space Pnα , the Stanley–Reisner ideal is generated by a single monomial,
SRI= 〈x0x1 . . .xnα〉, which corresponds to the familiar statement that not all coordinates of Pnα can vanish
simultaneously.

Line bundles and sections
The sections Γ(D) of a line bundle L associated to a divisor D can be readily computed from the vertices vi of
N and their dual vertices w in the dual latticeM:

D=
n∑

i=1

ciDi → Γ(D)∼

{
n∏

i=1

x⟨vi,w⟩+ci
i

∣∣∣∣∣ 〈vi,w〉+ ci ⩾ 0, w ∈M

}
. (A.8)

Note that for non-negative ci, only finitely many w ∈M satisfy the condition 〈vi,w〉+ ci ⩾ 0. For a divisor D
inside a product of n projective ambient spaces, this reduces to the statement that a section basis for D is
given by the monomials of multi-degree (c1, c2, . . . , cn).

One can prove a theorem which will be important for constructing Kähler forms later. It states that for
any nef divisor (or rather the sections of the associated nef line bundle), precisely one of the monomials that
form a basis of the sections vanishes nowhere in a given patch. This means that the base-point free divisors
are given by sections of nef line bundles.

Since the anti-canonical divisor of a toric variety is given by the sum over all divisors,−K=
∑n

i=1Di

where n is the number of vertices, this motivates defining a lattice polytope P ∈ N given by the convex hull of
all vertices vi, and its dual lattice polytope P∗ ∈M in the dualM-lattice via

P∗ := {wi ∈ N | 〈vi,wj〉⩾−1 ∀vi ∈ P
}
. (A.9)

For the purpose of CYs given as hypersurfaces in toric varieties, we only need to look at reflexive polytopes,
which are lattice polytopes whose dual are again lattice polytopes. All reflexive polytopes have the origin as
their unique interior point. Their dual is also a reflexive polytope and satisfies (P∗)∗ = P. With this, it is easy
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to find a basis of sections of the anti-canonical bundle and which then allows writing down the most general
CY defining equation

p=
∑
w∈P∗

cw

n∏
i=1

x⟨vi,w⟩i . (A.10)

Here, the coefficients cw ∈ C parameterize the complex structure of the CY.
In the case of ambient spacesA that are a product of projective spaces,A=⊗N

α=1Pnα , we are considering
complete intersections of k hypersurfaces Hi, i= 1, . . . ,k rather than just a single hypersurface. This requires
specifying the multi-degrees, cαi , of the normal bundle sections whose complete intersection defines the CY
manifold. The CY condition amounts to the constraints

∑
i c

α
i = nα + 1, where α= 1, . . . ,k, on these

multi-degrees. (In the toric case, this gives rise to nef partitions of the reflexive polytope, but we will not
consider such cases here, even though our methods still apply.) Moreover, for a CY d-fold, we require that∑

α nα − k= d. This means that we can specify a complete intersection CY manifold inside an ambient space
that is given as a product of projective spaces purely by specifying the degrees cαi , which form a matrix
referred to as the ‘configuration matrix’ of the CICY.
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