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A B S T R A C T   

Localization is an important issue for Internet of Underwater Things (IoUT) since the performance of a large 
number of underwater applications highly relies on the position information of underwater sensors. In this paper, 
we propose a hybrid localization approach based on angle-of-arrival (AoA) and received signal strength (RSS) for 
IoUT. We consider a smart fishing scenario in which using the proposed approach fishers can find fishes’ loca
tions effectively. The proposed method collects the RSS observation and estimates the AoA based on error 
variance. To have a more realistic deployment, we assume that the perfect noise information is not available. 
Thus, a minimax approach is provided in order to optimize the worst-case performance and enhance the esti
mation accuracy under the unknown parameters. Furthermore, we analyze the mismatch of the proposed esti
mator using mean-square error (MSE). We then develop semidefinite programming (SDP) based method which 
relaxes the non-convex constraints into the convex constraints to solve the localization problem in an efficient 
way. Finally, the Cramer–Rao lower bounds (CRLBs) are derived to bound the performance of the RSS-based 
estimator. In comparison with other localization schemes, the proposed method increases localization accu
racy by more than 13%. Our method can localize 96% of sensor nodes with less than 5% positioning error when 
there exist 25% anchors.   

1. Introduction 

Recently, the fourth industrial revolution known as the Industrial 
Internet of Things (IIoT) [1] has emerged to improve industrial pro
ductivity and manufacturing. An extension of IIoT is in the underwater 
environment, namely, the Internet of Underwater Things (IoUT) that 
connects smart underwater objects for ocean exploration. IoUT com
prises a large number of smart connected devices such as sensors and 
actuators that are distributed in a specific aquatic environment to 
execute collaborative monitoring and data collection tasks. IoUT is used 
in a wide range of applications [2–4], e.g., environmental monitoring, 
deep sea archaeology, smart fishing, etc. 

Fisheries throughout the world are in danger of collapsing. There’s 
not too much fish in our diet - there’s just too much wasteful and 
shortsighted fishing in the last few decades. Many species are in danger 
of extinction due to overfishing. In unselective fishing, fishermen catch 
millions of fish unwillingly and the dead or dying bycatch is usually 

thrown back into the ocean. Nevertheless, various fishermen and com
munities all over the world depend on fishing for food or income. IoUT 
has great potential to develop effective fishing approaches. Smart sen
sors of IoUT can be used to detect the type of fish and prevent catching 
endangered aquatic species. Furthermore, they can help to find the fish 
stocks in the ocean. IoUT connects the ocean’s bottom to the water 
surface through multi-hop paths. With the knowledge of fish locations, 
fishers can catch fish more effectively. However, due to the harsh en
vironments in oceans and the dynamic characteristics of underwater 
transmission channels, these networks face several technical challenges 
[5] including acoustic communication, energy efficiency, mobility, 
reliability, and etc. In addition, underwater applications such as smart 
fishing require the location information of sensor nodes for tracking fish. 
Therefore, localization is a critical issue in IoUT. 

In this paper, we aim to develop an autonomous system for smart 
fishing using smart IoUT objects. 

The main contributions of this work are summarized as follows: 
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• We propose an accurate hybrid AoA/RSS localization approach for 
the smart fishing use case. The proposed method aims to localize 
underwater sensors for monitoring underwater environment under 
noisy distance information. Since smart sensors can detect the type 
and the position of fish, our method avoids catching endangered fish 
and help fishermen to find fish stock.  

• The proposed method estimates the position of sensors when perfect 
information about the background noise is not available. To solve the 
localization problem in the polynomial time, we convert the non
convex constraints into the convex constraints and then transform 
the localization problem into an SDP problem. We derive MSE of the 
proposed estimator to measure the estimation error under fading 
acoustic communications.  

• Furthermore, to optimize the worst-case performance, a minimax 
method is developed that minimizes the maximum location estima
tion error. Finally, the CRLB as a benchmark is derived to determine 
a lower bound on the MSE of the proposed estimator to bound the 
performance of the proposed approach over the measuring error. 

• The computational complexities of the proposed method are inves
tigated and compared to two other related schemes. Simulation re
sults verify the correctness of our theoretical analysis and show that 
the proposed method effectively improves the location accuracy. 

The rest of the paper is structured as follows: Section 3 presents the 
system description and assumptions of the problem. In Section 4, we 
define the proposed AoA/RSS-based localization approach and then 
formulate the problem as a semidefinite programming. Section 5 pro
vides the performance evaluation of the proposed method. We present 
the computational complexity of our scheme and derive the Fisher in
formation matrix (FIM) and CRLB to evaluate the performance of the 
proposed estimator. Numerical results of the proposed model are dis
cussed in Section 6 for validation purposes. Finally, we draw conclusions 
in Section 7. 

2. Related works 

In recent years, numerous localization methods [6–8] have been 
proposed in the literature. Fig. 1 illustrates the classification of under
water localization schemes. Generally, the existing localization methods 
is divided into two main categories: distributed approaches and 
centralized methods. Although the distributed schemes are more scal
able, they often suffer from error propagation and converge slower to 
the optimal solution. 

In contrast, the centralized methods have lower scalability however 
they are more accurate in positioning since they have access to all lo
cation’s information in the network. Some distributed studies were 
investigated in [9,10] for large-scale IoUT. However, because of high 
transmission loss and underwater acoustic noise, these methods often 
cannot work well in harsh aquatic environments. The authors in [11] 
provided a review on game-theoretic localization methods in under
water sensor networks. They studied the sensors cooperation and co
ordination via game theory framework. Moreover, they compared 
several game-based localization schemes under different metrics. 

On the other hand, the localization methods can be classified based 
on the factors [12–16] used for position estimation including received 
signal strength (RSS), time-difference-of-arrival-based (TDoA), 
time-of-arrival-based (ToA), round-trip-time-based (RTT-based), or 
angle-of-arrival-based (AoA). In [17–23], the authors proposed locali
zation schemes with ToA or AoA assistance for large-scale underwater 
sensor networks. Table 1 provides a classification of underwater local
ization schemes. The studies [24,25] presented frameworks for simul
taneously synchronizing and localizing to provide more localization 
accuracy. They modeled stratification effect of underwater medium 
using the ray-tracing method. An algorithm was presented in [26] that 
calculates the Doppler shift and Doppler differentials between all sensor 
pairs. 

Although, localization based on TDoA, ToA, or RTT measurements 
gives more accurate estimation results, these techniques need exact 
clock synchronization and timing. RSS-based localizations methods 
have less accuracy comparing to other localization schemes such as ToA- 
based methods due to the line-of-sight assumption which is impractical 
for multi-path underwater communication environments. However, 
they have less complexity for implementation and do not require any 
specialized hardware. On the other hand, AoA-based measurements 
successfully decrease the effect of measurement noises and remarkably 
improve the localization accuracy as it involves multi-path components 
in the localization process and relaxes the line-of-sight assumption. In 
this paper, we propose a hybrid localization method to take advantage 
from simplicity and accuracy of AoA and RSS methods at the same time. 

Many localization algorithms based on the RSS and AoA measure
ments [27–33] have been proposed for underwater wireless sensor 
networks. The authors in [27] proposed a three-dimensional AoA-based 
algorithm to localize multiple mobile sensors. They claimed that the 
proposed method has small operational latency. In [28], the authors 
developed an energy-efficient localization scheme based on RSS mea
surements in optical underwater sensor networks where range estima
tion is challenging due to seawater channel impairments and optical 
noise sources. The authors in [29–33] addressed the target localization 
problem using RSS measurements in acoustic communications where 
the target transmit powers are examined in different cases. In [34], the 
positioning problem considering transmission loss (TL) phenomena 
were investigated. The problem was modeled as the Lambert W function 
and compared to Newton-Raphson inversion. In [35,36], robust locali
zation methods were presented using range measurements that bounds 
estimation error. The authors translated the nonconvex optimization 
problem to a convex problem and solved the problem using SDP. A 
target localization method based on a hybrid AoA and RSS measure
ments for the acoustic network in the underwater environment was 
proposed in which the transmit power of the target node is considered an 
unknown parameter [37]. The authors in [38] designed a localization 
scheme for tracing a scuba diver without GPS equipment in the under
water environment. The divers send SOS messages using underwater 
acoustic communication. The algorithm has high computational 
complexity, which might restrict its application in large-scale under
water wireless sensor networks. In [39], the acoustic localization 
problem was studied using the decision tree method. the authors 
developed a signal selection algorithm considering the amplitude, ToA, 
bandwidth, and Doppler frequency of the detected pulses as the input 
features. A novel acoustic system that combined inaudible sensing and Fig. 1. Underwater localization techniques.  
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communication in an inaudible band (18–22 kHz) was designed in [40]. 
The work of [41] proposed a cooperative localization scheme for 
autonomous underwater vehicles. They used the adaptive neuro-fuzzy 
inference system to overcome the effect of abnormal acoustic ranging 
errors. The authors in [42] developed a Q-learning-based data collection 
and path planning method for autonomous underwater vehicle (AUV) 
that reduces energy consumption and latency. The study [43] proposed 
an energy-based localization algorithm based on RSS difference (RSSD) 
model. The authors defined a Cramér-Rao lower bound as a performance 
benchmark to measure MSE of location estimation. In [44], a location 
prediction algorithm based on Doppler shift estimation was presented 
for underwater acoustic sensor networks that enhances the estimation 
accuracy. Study [45] developed a hybrid DDS/TDOA method for un
derwater localization which is robust to imperfect node clocks. 

3. System description 

We consider an IoUT network consisting of different types of smart 
objects including a BS, N sensor nodes, M anchor nodes, wireless cam
eras, and smartphones. The BS which has more capabilities in storage 
and computational performs the data analysis. Smart sensors with 
different measurement capabilities collect data about the angle, tem
perature, ocean tension, distance, and depth from the ocean’s bottom 
and send their observations to the BS on the water surface. On the other 
hand, fishing nets are equipped with microcontrollers that control and 
automate them. The sensing measurements are remotely accessible from 
every internet connected IoT device. Thus, fishers are able to connect to 
the fishing environment and monitor the ongoing conditions from 
anywhere and anytime. Fig. 2 shows an example of smart fishing design 
and deployment. 

In the proposed scenario, anchor nodes with known locations ai =

[aixaiy] are randomly deployed and equipped with omnidirectional an
tennas. We consider a disk-based sensing model with a sensing radius r 
for each smart node. Wireless smart sensors are uniformly and inde
pendently distributed. We assume that the anchor nodes determine their 
positions using GPS modules and nodes, with unknown location infor
mation sj = [sjxsjy], obtain their location based on the AoA/RSS mea
surements from anchor nodes (Fig. 3). 

4. AoA/RSS-based localization 

According to the acoustic transmission loss model, the RSS mea
surement between the anchor node j and sensor node i can be defined as 
[28]: 

Pre
j = Ptr

i ρΓij
Rj cosθ2

2πd2
ij(1 − cosθ1)

(1)  

where Pre
j denotes the received power at the sensor node j, Ptr

i is the 

transmit power at the anchor node i, ρ indicates water’s electrical con
ductivity, Γij = exp− γdij represents the propagation loss in which γ de
notes the path loss coefficient, and dij = ‖sj − ai‖ identifies the distance 
between the sensor node j and the anchor node i, Rj states the coverage 
area of node j, θ2 determines AoA at the receiver node, and θ1 is the 
departure angle of the transmitted signal D states horizontal distance 
between the source node and the target node, ha denotes the depth of the 

Table 1 
Underwater localization classification.  

Method Range based/Range 
free 

Ranging 
method 

Sync Localization 
Coverage 

Computational 
Complexity 

Estimation 
accuracy 

Energy 
efficient 

Cluster-based localization [12] Range based TDoA Yes High High High Yes 
AoA/ToA localization [13] Range based AoA/ToA Yes Low High High Not specified 
Bayesian localization [14] Range free _ No Not specified Low High Yes 
Energy-efficient localization  

[18] 
Range free _ Yes Not specified High Low Yes 

AoA localization [19] Range based AoA Yes High High High Not specified 
Secure range-based localization  

[20] 
Range based ToA Yes Not specified High Not specified Not specified 

RSS-based localization [21] Range based ToF/RSS Yes Not specified High High Not specified 
Semi-blind localization [23] Range based LOS Yes Low Low High Yes 
Silent localization [24] Range based RSSI Yes Not specified Not specified High Not specified 
Energy Harvesting localization  

[28] 
Range based RSS Yes Low Not specified High Yes  

Fig. 2. Smart fishing scenario.  

Fig. 3. Positions of underwater nodes.  
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anchor node, and hs is the depth of the sensor node from the sea surface. 
In order to calculate the distance from RSS measurements (Fig. 3), we 
need a transfer function as follows: 

dij
Δ
=

f
(

Pre
j

)
=

2
γ
ℜ0

(
γ
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ptr

i ρRj cosθ2

Pre
j 2π(1 − cosθ1)

√ )

(2)  

where ℜ0(⋅) denotes the real part of Lambert-W function. 
Although the RSS measurement in (1) merely considers propagation 

loss and scattering, the distance measurement in (2) is erroneous and 
makes localization inaccurate because of propagation channel effects. 
Thus, we use AoA measurements to improve the accuracy of location 
estimation through evaluating more accurate channel characteristics. 
The workflow of the proposed method is described in Fig. 4. 

The probability density function (PDF) of AoA for a signal along sea 
surface and bottom in an acoustic channel can be evaluated as: 

fθ1 (θ1) =

∫R1

0

∫
− tan− 1

(
ha

D− r1 cosθ1

)

θ2=− π/2

∫R2

−

(
ha

sinθ2

)
f (r1, θ1, r2, θ2) dr2dθ2dr1 (3)  

Where R1 = [(cosθ1/D)l
+ (sinθ1/ha)

l
]
− 1/l and R2 = [(cosθ2/(D−

r1cosθ1))
l
+ (sinθ2/h)l]− 1/lidentify scattering regions for the signals from 

surface and bottom, respectively so that 0 ≤ ri ≤ Ri,∀i, l ≫ 2 is an even 
value to make sure that di is within the range specified and a rectangular 
region of θi is covered. In polar coordinates, the joint PDF f(r1,θ1,r2,θ2) 
corresponds to: 

f (r1, θ1, r2, θ2) =
∏nb

b=1

∏ns

s=2
r1r2br2s− 1 f

(
x1, y1,…, xnb , ynb , xns , yns

)
(4)  

where nb and ns denote the number of scattered signals, rb and rs 
represent scattering regions for the signals, θb and θs are AoA at the 

sensor node from the bottom and sea surface, respectively. Therefore, 
we can calculate the joint PDF of scattered location as below: 

f
(
x1, y1,…, xnb , ynb , xns , yns

)
=

Cλns
s λnb

b

D
e− λs(ha − y1)

∏nb

b=1

∏ns

s=2
e− λs(ha − y2s− 1)− λb((h− ha)+y2b)

× (1 − e− ω2s− 1x2s− 1 )(1 − e− ω2bx2b )

(5)  

in which C is the normalization multiplier for a scattered signal from the 
bottom or surface, λs and λb identify the normalization multipliers for the 
surface uniform depth exponential distribution, ωb and ωs state the rate 
of change along the bottom or surface, x2s− 1 =

∑2s− 1
k=1 rkcosθk , x2b =

∑2b
k=1rkcosθk , y1 = r1sinθ1, y2b = r2bsinθ2b + h, y2s − 1 = r2s − 1sinθ2s − 1 

− (h − ha). Moreover, the estimated distance is expressed as: 

d̂ ij = dij + eij (6)  

where eij states the estimation error. Moreover, each sensor can also use 
its previously known location information to estimate its current posi
tion as follows: 

ŝj(t) = sj(t − 1) −
(
DT D + δI

)− 1
D
(

d̂ ij − Δ
(

ŝj(t − 1)
))

(7)  

where δ denotes the step size, I stands for the identity matrix, Δ(ŝj)

identifies the error function and D states the distance matrix that is 
given by: 

D =

⎡

⎢
⎢
⎣

0 ⋯ d̂
2
1n

⋮ ⋱ ⋮

d̂
2
n1 ⋯ 0

⎤

⎥
⎥
⎦, ∀i ∕= j and d̂ij > 0 (8) 

Now, we define the error function between the real Euclidean dis
tance and the estimated distance as below: 

Δ
(

ŝj
)
=
∑N

i=1

(

d̂ ij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
sjx − aix

)2
+
(
sjy − aiy

)2
√ )2

(9) 

Theorem 1. The minimum value of the error function Δ(ŝj) which 
gives us the most accurate location estimation, is obtained at (s∗1j, s∗2j, … 
, s∗Nj) so that 

s∗jk =
∑M

j=1Akj d̂ ij
(
dij + d̂ ij

)

∑M
j=1 d̂ ij

(
dij + d̂ ij

) , r = 1,…,N (10)  

in which r denotes a reference node. 

Proof. See Appendix A. ▪ 

Proposition 1. The localization problem can be formulated as: 

min
sj ,dij ,zj

zj  

s.t. − zj < αjd2
ij + βjdij − 1 < zj 

d2
ij = ‖ sj − ai ‖

2
2 (11)  

and the optimization problem converges to the global solution when 
eij = αjd2

ij + βjdij − 1. 
Proof. See Appendix B. ▪ 
The main objective is to find ŝ that minimizes the size of the esti

mation error for all sensor nodes. To measure the location estimation 
quality, we use MSE criterion as follows: 

MSE =
∑N

j=1
MSEj

Δ
=

E
{
‖ ŝj − sjAptCommand2016;2

}

=
{(

ŝj − sj
)(

ŝj − sj
)T
}

(12) 
Fig. 4. Workflow of the proposed approach.  
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To have accurate position estimation, we develop a minimax esti
mation approach that minimizes the maximum estimation error as 
below: 

min
y1 ,y2 ,…,yM ,ei

max
ŝj ,dij

∑N

j=1
MSEj (13) 

To simplify the notation, we substitute s instead of sj in the rest of the 
paper. 

Theorem 2. The minimum MSE of the proposed estimator is given by: 

MSEmin = E(sŝ) − E
(
s2) = E

(
ŝ2)

− E
(
s2) = σ2

ŝ − σ2
s (14)  

Proof. See Appendix C. ▪ 

Without loss of generality, the estimation problem can be expressed 
as: 

ŝ =
(

YT
j Σ− 1

w Yj

)− 1
YT

j Σ− 1
w D + wi (15)  

where wi is the Gaussian observation noise vector with covariance ma
trix Σw, wi ∼ N (0, Σw). 

Theorem 3. Assume that T is a positive definite matrix, 
‖sAptCommand2016;T ≤ SM∀SM > 0, and ‖ s ‖2

T = s∗Ts, If S2
M =

K ∗Σ− 1
w Y(Y∗Σ− 1

w Y)− 2Y∗Σ− 1
w K , the original minimax optimization 

problem in (9) can be written as a standard SDP as follows: 

min
λ,D,c

c  

s.t. 

[
c − S2

Mλ K ∗

K I

]

≥ 0 

⎡

⎣
λI T − 1

2(I − DY)∗

(I − DY)T − 1
2 I

⎤

⎦ ≥ 0 (16)  

where K = vec(DΣ1/2
w ). 

Proof. See Appendix D. ▪ 
In the following section, we will analyze the performance of the 

proposed estimation method using the Fisher information (FI). 

Assumption 1. We assume s1,s2,… as uniform independent distrib
uted random points on the network grid G in the Euclidean space E. Let 
N be a positive integer such that {s1,…, sN} is known as the uniform N- 
point process on G which is defined as χN(G) such that: 

s = (s1,…, sN) ∼ fX(sj) =
1
N
, j = 1, 2,…,N (17)  

We also assume that anchors are located according to a homoge
neous Poisson point process (PPP) with intensity λM which is indepen
dent of {s1,…, sN}. Let {a1,…, aM} be the Poisson point process and Y(λM) 
be a Poisson random variable such that: 

a = (a1,…, aM) ∼ fY(ai) =
exp− (λM t)(λMt)ai

(ai)!
, i = 1, 2,…,M (18) 

The problem is to estimate sensors’ location in order to accuracy 
improvement and bias in the estimation. We can approximate the sen
sors’ location using anchors’ location as follows: 

P
(
sj
⃒
⃒Y = ai

)
=

P
(
S = sj

⋂
Y = ai

)

P(Y = ai)

=
P
(
S = sj

⋂
Y = ai

)

P(Y = yi
⋂

S = s1) + … + P(Y = ai
⋂

S = sN)
(19) 

According to Bayes’ rule, the conditional probability can be 
expressed as: 

P
(
sj
⃒
⃒Y = ai

)
=

P
(
Y = a

⃒
⃒S = sj

)
.P
(
S = sj

)

P(Y = a|S = s1).P(S = s1) + … + P(Y = a|S = sN).P(S = sN)

(20) 

Definition 1. Assume Φ(y) is a regression function ony, the loca
tion of each sensor node can be approximately calculated as ̂s = Φ(y) in 
order to MSE = E{‖ŝ − sAptCommand2016;2} is also minimized. 

Theorem 4. The location of each sensor can be estimated as below: 

ŝj = E
(
sj
⃒
⃒ai
)

(21)  

Proof. See Appendix E. ▪ 

However, some limitations of the proposed approach are that the 
propagation speed in underwater channel is highly variable, depending 
on the depth, temperature, and salinity of the water. Therefore, we 
require to measure propagation speed through exchanging packets be
tween floating buoys on the seabed and the water surface to obtain more 
accurate localization estimation. Moreover, we cannot assume time 
synchronization between anchor nodes since they are usually sub
merged. Thus, we need a solution for time synchronization since a long 
propagation delay in the underwater environment makes it impossible 
to ignore clock skew. 

Now, we develop a distributed algorithm for AoA/RSS-based local
ization in UW-IIoT. In this algorithm, each sensor node collects the 
location information of its neighbor anchors. A sensor then calculates 
approximately its location using AoA observations and RSS measure
ments. The sensor evaluates the estimation quality by the MSE criterion. 
To take mobility into account, the sensor updates its location using the 
priori location estimate and the current measurement. The algorithm 
determines CRLB as a lower bound on the estimation error under the 
noisy distance measurements to achieve localization accuracy. There
fore, the algorithm is repeated to converges the CRLB and all sensor 
nodes are localized. Algorithm 1 presents the pseudo-code of the 
distributed localization method. 

5. Performance evaluation 

In this section, we employ CRLB to derive an error bound of the 
proposed localization method. CRLB defines a lower bound on the 
variance of the proposed estimator using the Fisher Information Matrix. 
According to CRLB, an estimator would be considered efficient if the 
variance of the estimator is as high as the inverse of FIM. The efficiency 
[43] of the unbiased estimator ŝ is given by: 

eff (ŝ) =
I − 1(ŝ)
var(ŝ)

, eff (ŝ) ≤ 1 (22)  

where I(s) denotes the FI and it is expressed as follows: 

I(s) = n E

[(
∂logf (Y; ŝ)

∂ŝ

)2
]

(23)  

where logf(Y; ŝ) denotes the log-likelihood function, Y = [y1y2…yM]T is 
the vector of observable anchor nodes’ locations and f(Y; ŝ) states the 
probability density function. When logf(Y; ŝ) is twice differentiable, we 
can rewrite (23) as below: 

I(s) = − n E
[

∂2logf (Y; ŝ)
∂ŝ2

]

(24) 

Thus, each estimator which achieves this lower bound is considered 
efficient. The CRLB lower bound is derived as: 

CRLBs = − [I(s)]− 1
ij (25)  

in which the elements of the Fisher information matrix for each sensor i 
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can be calculated as follows 

[I(s)]ij =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑M

i=1

10 γ2
ij

(
sjx − aix

)2

ln10d4
ijη2

i

∑M

i=1

γ2
ij

(
sjx − aix

)(
sjy − aiy

)

d4
ijη2

i

∑M

i=1

γ2
ij

(
sjx − aix

)(
sjy − aiy

)

d4
ijη2

i

∑M

i=1

γ2
ij

(
sjy − aiy

)2

d4
ijη2

i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(26) 

On the other hand, the minimum MSE can be expressed as: 

MSEmin,s = trace {CRBs} (27) 

Since MSE matrix can be measured by FIM inequality, we can eval
uate the error bound on our approach. Therefore, it can be concluded 
that if the proposed localization method achieves the CRLB’s lower 
bound, it achieves the lowest possible mean squared error. 

5.1. Complexity analysis 

In this section, we investigate the computational complexity of the 
proposed approach. The main computational complexity of our algo
rithm is bounded by the SDP solution [43]. Thus, the number of arith
metic operations to compute interior points in solving a localization 
problem with n = M + N nodes is derived as: 

O(1)

(

1 +
∑K

k=1
msd

k

)1/2

n

(

n2 + n
∑K

k=1
msd2

k +
∑K

k=1
msd3

k

)

(28)  

Where K identifies the number of SDC constraints, msd
k denotes the size of 

diagonal blocks of SDP diagonal matrices. it is worth mentioning that all 
sub-problems of the proposed approach can be easily transformed into 
the SDP form. Therefore, the worst-case complexity of the proposed 
localization algorithm is bounded by O(n3). We also investigated the 
complexity of two other related algorithms in comparison with the 
proposed approach in Table 2. 

In addition, from the space complexity point of view, the presence of 
(D + 1) direct localizable neighbors are necessary for a sensor to be 
localizable in (t + 1) iterations for D dimensional space. It follows that 
the (D + 1) neighbors must be localized in (t − 1) communication rounds 
to the sensor can be localized within t rounds. If any h hop neighbor may 
contribute to the node’s localization, they should be localized within (t 
− h) iterations. Thus, if the node needs to be localized over t iteration, 
then the (D + 1) direct neighbors should be found in those rounds. 

5.2. Hardware equipment for real-time experiment 

To validate the feasibility of the proposed approach, real-time 
experiment can be conducted at sea. The underwater hardware equip
ment can be included the sonar camera system as a sensor device to 
gather depth information for fish metric measurements, such as fish 
length and fish number. The device uses multiple sound waves to send 
information about fish to the scene via its beam. In this way, it is able to 
capture depth information from an actual environment. While sonar 
devices offer wide coverage, they lack color and texture information. 
More precisely, sonar provides images of objects that are very different 
from optical images by using depth information. In contrast to sonar 
cameras, stereo cameras address this limitation. A combination of these 
two devices can provide a better view of underwater fish. Furthermore, 
LoRa or BLE can be used for water surface and underwater 

communication. However, LoRa is more stable than BLE [46] since LoRa 
[47] and [48] provides low-power long-range connectivity, however, 
BLE offer low-power short-range connectivity. 

6. Experimental results 

In this section, we present the performance evaluation of the pro
posed approach with the scheme in [28] labeled as EHL and an efficient 
RSS localization algorithm in [32] known as E-RSS. All of the perfor
mance evaluations were carried out by the MATLAB package CVX and 
the SeDuMi solver. The numerical results were obtained from Mc =

1800independently Monte Carlo run. The RSS measurements were 
calculated based on Eq. (1) in which ρ = 0.39S/m. We set θ1 and θ2 based 
on uniform distributed in [0,] in our simulation experiments. We also 
adjusted the path loss (Γij) in the range of − 100 dB to 0 dB and varied the 
noise variance σ2 from 0.1 to 0.6 in experiments [49]. For simplicity, the 
noise variance for all sensors is considered the same σ2

i = σ2. The key 
simulation parameters are listed in Table 3. 

We consider a 2-D localization scenario with N = 40 sensor nodes 
and M = 10 anchor nodes in which the anchor and sensor nodes are 
randomly distributed in an area of 100 m × 100 m. A tradeoff analysis 
was conducted among localization coverage, the node density, 
communication cost and the estimation error. We set the number of 
underwater sensor nodes to N = 40 in order to examine localization 
coverage and localization accuracy in a large-scale underwater scenario. 
We also adjusted the number of anchor nodes to M = 10 because it is the 
critical value of M for our setting. More precisely, when the value of M 
increases up to 10, the estimation error will be reduced and the locali
zation coverage will be grown. However, the estimation error and the 
localization coverage are relatively stable for larger value of M>10 
while the average communication cost will grow speedily. Increasing M 
beyond the critical value (i.e., M>10) will only rise communication costs 
without bringing any profits. As such, a careful choice of M must be 
made in practice based on the network environment. These parameters 
may differ for different networks. Fig. 5 displays the smart node’s 
deployment. 

We use the root mean square error (RMSE) metric to evaluate the 
performance of the existing approaches. The RMSE is expressed as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Mc

i=1

‖ si − ŝiAptCommand2016;2

Mc

√
√
√
√ (29) 

Fig. 6 demonstrates the RMSE of the proposed algorithm and the 
considered schemes versus different values of the noise variance σ2. 

We varied the range of σ2 from 0.1 to 0.6. The results show that the 
positioning error is less than 3 m for existing approaches under the 
different values of σ2. Furthermore, there is a performance gap between 
our method and the other approaches of approximately 1.2 m. 
Furthermore, the analytical CRLB of our approach is also depicted. 
Although all three methods achieve good performance in terms of esti
mation accuracy, the proposed approach outperforms the considered 
schemes. As it can be seen, the CRLB is a realistic bound for an unbiased 
estimator and validates the theoretical results very well. 

We analyze the performance of the proposed approach in terms of 
estimation accuracy under different numbers of anchor nodes in Fig. 7. 

Table 2 
Complexity analysis.  

Approach Complexity 

[28] O(n2) 
[33] O(n3.5) 
The proposed algorithm O(n3)  

Table 3 
Simulation parameter.  

Description Parameter Value 

Water depth h 40m 
Communication radius of anchor nodes Rj 20m 
Communication radius of sensor nodes Ri 10m 
Transmission power Ptr

i 32 dBm 
Path-loss exponent γ 2 
Reference distance d0 1m  
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The experiments were run for various number of anchors from 1 to 
10. As expected, the estimation accuracy is dramatically enhanced by 
involving more anchor nodes in the localization process. For example, 
our approach yields the average RMSE= 6.729 m and RMSE= 1.953 m 
for the number of anchors M = 1 and M = 10. Whereas, the EHL method 
achieves the average RMSE= 8.715 m and RMSE= 4.173 m and the E- 
RSS scheme obtains the RMSE= 9.829 m and RMSE= 5.713 m on 
average in the same condition. The results verify superiority of the 
proposed method in terms of RMSE performance. However, it is worth 
mentioning that increasing the number of anchor nodes increases the 
implementation cost in network. We also plot the impact of the path-loss 
exponent on the MSE of estimation for N = 40 and M = 7 in Fig. 8. We 

decrease the number of anchors to examine its impact under different 
path loss on the localization error. We consider different path-loss 
exponent values ranging from 0.1 to 0.9 for σ2 = 0.4and different dis
tances from 2 m to 11 m. The Figure shows that as the number of actively 
participating anchors declines, sensors are localized in a shorter path 
because the received signal strength accuracy depends on factors such as 
the number of anchors, and distribution of anchors. Fewer anchor nodes 
means receiving noisy RSS from distant neighbor anchors with large 
path loss. The higher the path losses, the lower the received signal 
power. For example, when γ = 0.3 with the variance 0.4 and the distance 
ranges up to 8 m, the MSE value of our estimator is less than 10− 4 m 
while the MSE value is less than 10− 2 m for γ = 0.7 in the same condi
tion. According to the results, when the value of γ is too small (e.g., γ =
0.2) all approaches achieve good results in terms of position estimation, 
in contrast, the path-loss exponent effect is very considerable in γ = 0.6 
on estimation error for the all considered methods. According to Figs. 6 
and 7, the RMSE decreases with the larger number of anchor nodes. The 
reason is when the number of neighboring anchors increases the local
ization accuracy is enhanced and RMSE is reduced. On the other hand, 
when the noise variance grows, the localization error is increased and 
RMSE falls. Nevertheless, there is a threshold for the number of the 
anchors. As the number of anchors increase the communication cost 
rises results in energy depletion of sensor nodes. According to simulation 
results, the localization accuracy falls for M<7 and communication cost 
grow for M>10. As a matter of fact, the algorithm reaches the best 
performance in terms of localization accuracy and communication cost 
when the number of anchors is set to 10. 

Table 4 provides the localization results and the estimation error of a 
randomly selected sensor node under various anchor nodes in different 
iterations. At each iteration, the algorithm selects different anchors and 
estimates the position of unlocalized nodes and refines the estimated 
location of localized sensors using messages from their neighbor an
chors. The algorithm converged in 25 where the position of all nodes is 
determined and the estimation error was minimized. 

The impact of sensors’ communication range on the localization 
error is depicted in Fig. 9. We change the sensing radius of sensors from 
2 to 11 m while the deployment area is kept the same. The anchor nodes 
proportion is considered 15% at node density 40 with d0 = 1m, γ = 0.3, 
σ2 = 0.2. Apparently, as the communication range of sensors increases, 
the positioning error is reduced. When the sensing range of nodes is 
short, the number of hops is increased which results in the increase in 
position measuring and high positioning error subsequently. It can be 
seen that all methods obtain remarkable improvements in terms of the 
estimation accuracy, however, the proposed method produces much 
better results in error reduction. Furthermore, the ratio of the localizable 
sensors increases significantly with increasing the sensing radius of 
sensors (Fig. 10). 

Fig. 5. The network deployment scenario.  

Fig. 6. The RMSE performance comparison between theoretical CRLB of the 
proposed algorithm and simulation results for all methods under different σ2. 

Fig. 7. Average RMSE for existing methods under different number of anchors.  

Fig. 8. Performance comparison between theoretical MSE of proposed 
approach and simulation results of the existing algorithms for N = 40, M = 7, 
andσ2 = 0.4. 
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The large the communication radius, the more sensors would be 
captured. For example, when the communication radius reaches 10 m, 
the ratio of the localizable nodes is 91% whereas the localization 
coverage is 58% when the sensing range is 5 m. 

Fig. 11 displays the cumulative density function (CDF) of estimation 
error for the existing approaches. 

The empirical CDF of estimation error can be defined as [43]: 

CDF(ε) = Pr(estimation error ≤ ε) =
∑K

k=1
∑N

i=1F
(
‖ expk

i ‖ − ε
)

NK  

where 

Table 4 
Localization results of a typical sensor.  

Iteration Anchor nodes Estimated location Actual location Estimation error 

1 1,3,6,9,13,17,23,26,34,39 (25.61,14.99) (48.04,77.05) 75.07 
5 2,7,8,12,17,21,26,33,38,40 (57.05,28.01) (48.04,77.05) 59.83 
10 1,3,7,13,15,19,22,25,29,37 (52.35,26.37) (48.04,77.05) 56.50 
15 3,5,9,13,17,21,26,34,39,40 (7.17,73.12) (48.04,77.05) 33.82 
18 2,4,7,9,12,17,23,25,29,35 (41.48,66.18) (48.04,77.05) 13.43 
25 1,3,9,13,17,21,26,29,33,39 (45.42,78.97) (48.04,77.05) 3.32  

Fig. 9. Effect of communication range on the localization error at γ = 0.3, σ2 

= 0.2. 

Fig. 10. Localization coverage ratio under different communication ranges.  

Fig. 11. Cumulative density function (CDF) of estimation error for the existing 
algorithms under N = 40, M = 8, γ = 0.3, andσ2 = 0.6. 

Fig. 12. Localization accuracy under different communication radius 
of sensors. 

Fig. 13. Communication cost under different node density and various an
chor percentage. 
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F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x ≤ x1

k
N

xk ≤ x ≤ xk+1

1 x ≥ xN

(30)  

in which k denotes the kth estimate, N is the number of nodes, and ‖ ek
i ‖

identifies the Euclidean norm of the kth estimate error of node i. The 
experiments are repeated 60 times and measure the sum of prediction 
errors made under the same conditions. As we can see, the estimation 
error created by the proposed approach does not surpass 35 cm, whereas 
the position error is about 45 cm for two other algorithms. This fact 
verifies the superiority of the proposed algorithm by approximately 11% 
estimation error reduction compared to the other related methods. 

Fig. 12 plots the impact of communication range of sensor nodes on 
the localization accuracy. 

When the communication range increases, the localization accuracy 
grows due to node connectivity enhancement. Simulation results verifies 
that even if the signal strength is compensated, localization accuracy 
will be decreased if node connectivity reduced. The communication 
radius can improve the network connectivity by up to 85%, results in 
impressive enrichment in localization accuracy. 

We investigate the impact of number of anchors (node density) on 
the communication cost of the existing methods in Fig. 13. Clearly, EHL 
and E-RSS schemes introduce larger communication cost than the pro
posed approach even though when the node density is small. This is 

because, they exchange beacon messages even when the network is 
sparse to localize themselves. However, the average communication cost 
of the proposed scheme is very small since in our method, only nodes 
with known locations broadcast messages and other nodes keep silent. 
Compared with two other methods, our scheme can always achieve 
much lower communication cost. It can be also seen that the average 
communication cost of our scheme decreases with the increase of anchor 
percentage. This is due to that fact that our scheme can achieve more 
network connectivity that helps to find more reference nodes much 
faster without exchanging too many beacon messages. 

We finally, summarize the overall improvements of the proposed 
method compared to previous work in the Table 5. 

7. Conclusion 

In this paper, we proposed an accurate RSS-based localization algo
rithm for smart fishing in UW-IIoT. First, we modeled the localization 
problem under noisy observations. We then developed a minimax 
approach to minimize the maximum estimation error. Furthermore, the 
problem was converted to SDP in order to be solved globally in poly
nomial time. The CRLB as a benchmark was derived in order to deter
mine a lower bound on the MSE of the proposed estimator. The proposed 
approach estimates the location of fish in order to help fishermen catch 
fish faster and easier. Moreover, such smart fishing optimizes energy 
consumption and saves fuel costs. The experimental results verified the 
superior performance of the proposed method in terms of both estima
tion accuracy and localization coverage. As a future research direction, 
we will study underwater localization problem with imperfect clock 
synchronization between anchor and sensor nodes. Due to the unknown 
propagation delay, we need to measure clock synchronization errors in 
the received signal analysis. Designing a jointly propagation delay and 
node location estimation approach can reduce the localization estima
tion error. Moreover, we will evaluate and validate the performance of 
the proposed localization algorithm using real testbed (Algorithm 1). 
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Appendix A 

Proof of Theorem 1 
Proof. According to the definition of dij, we have 

dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑M

i=1

(
srj − ari

)2

√
√
√
√ (A.1) 

Therefore, we express the error function as below: 

Δŝj =
∑M

i=1

(
d̂ ijdij

)2 (A.2) 

Table 5 
Comparison of the proposed scheme and previous work.  

Approach Localization accuracy Localization coverage Communication cost Positioning error Sync Energy efficient 

[28] 93% 89% 13% 7% Yes Yes 
[33] 84% 97% 7% 16% No No 
The proposed algorithm 97% 94% 11% 3% No No  

Algorithm 1 
RSS-based localization algorithm.  

Initialize ρ, D 
Set N = 40, M = 10 
For all sensor nodes 
Repeat 
Choose randomly an anchor node ai 

Set Pi, Ri, αi, βj, Lij 

Calculate dij 

Find ŝ j = arg min
x∈X

αjd2
ij + βjdij − 1 

Evaluate MSE = {(ŝj − sj)( ŝj − sj)
T
}

Calculate CRLB according to (25) and (26) 
Until MSEmin,s = trace{CRBs} 
Update the current location of the sensor based on the previously known location 

information and current measurement 
ŝj(t) = sj(t − 1) − (DTD + δI)− 1

D(d̂ij − Δ(ŝj(t − 1)))
Update the distance matrix D 

End for user loop 
Return D  
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Due to ∂Δ̂s i
∂srj

= 0, r = 1,…,N, we have 

∑M

i=1
2d̂ ijdij

(
srj − ari

dij
dij +

srj − ari

dij
d̂ ij

)

= 0 (A.3) 

In other words, we can rewrite the above equation as: 

srj

∑M

i=1

(
d̂ ijdij + d̂

2
ij

)
−
∑M

i=1
ari

(
d̂ ijdij + d̂

2
ij

)
= 0 (A.4) 

So, the following results is driven 

s∗rj =

∑M
i=1Ar d̂ij

(
dij + d̂ ij

)

∑M
i=1 d̂ ij

(
dij + d̂ ij

) , r = 1,…,N (A.5) 

Taking second-order derivation of the error function shows the coordinates of the vector Δŝj take the minimum values at the point (s∗1j, s∗2j, …, s∗Nj)

as follows: 

∂
∂srj

(
∂Δŝj

∂srj

)

=
∑M

i=1

(
d̂ ijdij + d̂

2
ij

)〉
0 (A.6) 

And this completes the proof. ■ 

Appendix B 

Proof of Proposition 1 
We set d0 = 1 and substitute ‖sj − ai‖ = dij. Dividing both sides of the Eq. (1) by 10γ gives: 

Pi − P0

10γ
+ log10dij =

ηi

10γ
(B.1) 

We raise both sides of the above equation using the power of 10 to eliminate the log therefore we have: 

10
Pi − P0

10γ × dij = 10
ηi

10γ (B.2) 

Since the shadowing effect can be neglected in a deep ocean environment, the value of ηi≪ 10γ/ln10 is small enough. Thus, using first-order Taylor 
expansion, we can obtain 

10
ηi

10γ ≃ 1 +
ln10
10γ

ηi (B.3) 

Substituting (B.3) into (B.2) leads to 

βj × dij = 1 +
ln10
10γ

ηi (B.4) 

In which βj = 10
Pi − P0

10γ . More precisely, we have 

αjd2
ij + βjdij − 1 = eij (B.5)  

Where αj =
βj ln10
10γ and eij = ln10

10γ ηi. 
Without loss of generality, we can formulate the localization problem as below: 

ŝj = arg min
sj

αjd2
ij + βjdij − 1 (B.6) 

In the other world, the above equation can be rewritten as: 

min
sj

∑N

j=1

⃒
⃒
⃒ αjd2

ij + βjdij − 1
⃒
⃒
⃒ (B.7) 

Using a slack variable zij ≥ 0, we transform the above optimization problem as follows: 

min
sj ,dij ,zij

zij  

s.t. − zij < αjd2
ij + βjdij − 1 < zij 

d2
ij = ‖ sj − ai ‖

2
2  

D =
[

sT
j 1

]
[

IT − ai

− aT
i aT

i ai

][
sj
1

]

= Trace [SA] (B.8)  
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where 

[
IT − ai

− aT
i aT

i ai

]

= Aj identifies the known locations from the anchor node ai. Due to S and D are positive semidefinite, rk(S) = rk(D) = 1 where rk 

( ⋅ ) denotes the rank of a matrix. Thus, we can reformulate the problem (B.8) as below: 

min
S,D,zij

∑N

j=1
zij  

s.t. − zij < αjD + βjD − 1 < zij 

D = Trace [SA]

S ≥ 0, D ≥ 0  

[S](N+1)(N+1) = [D](M+1)(M+1) = 1 (B.9) 

Consequently, the optimization problem in (B.9) is an SDP-based problem that is globally solved by [Ŝ](N+1)(N+1). So the proposition holds. ▪ 

Appendix C 

Proof Of Theorem 2 
According to the MSE definition, we can write 

MSEmin = E
{⃦
⃦ŝ − sAptCommand2016;2

}
= E{(ŝ − s)s} − E{(ŝ − s)ŝ} (C.1) 

Due to orthogonality, we have E{(ŝ − s)ŝ} = 0. Thus, 

MSEmin = E
(
sŝ − s2) = E(sŝ) − E

(
s2) (C.2) 

It is well understood that E(sŝ) = E(ŝ2
). Now, we can rewrite 

MSEmin = E
(

ŝ2)
− E
(
s2) (C.3) 

Clearly, E(s) = E(ŝ). Therefore, it can be concluded that 

MSEmin = EE
(

ŝ2)
− E
(
s2) − (E(s))2

+ (E(ŝ))2
= σ2

ŝ − σ2
s (C.4) 

So, the theorem holds. ▪ 

Appendix D 

Proof Of Theorem 3 
We can rewrite (9) as below: 

min
D

max
‖sAptCommand2016;T≤SM

{s∗(I − DY)∗(I − DY)s+ Tr(DΣwD∗)} (D.1) 

The worst parameters can be specified as the solution to the above equation: 

max
‖sAptCommand2016;T≤SM

s∗(I − DY)∗(I − DY)s (D.2) 

By replacing v= T1
2 s, we can write: 

max
s∗Ts ≤ SM

s∗(I − DY)∗(I − DY)s = max
v∗v ≤S2

M

v∗T − 1
2(I − DY)∗(I − DY)T − 1

2v = S2
Mλmax (D.3)  

where λmax denotes the maximum eigenvalue in T− 1
2(I − DY)∗(I − DY)T− 1

2. Therefore, we can state λmax as the solution to 

min
λ

λ  

s.t.T − 1
2(I − DY)∗(I − DY)T − 1

2 ≤ λI (D.4) 

Using (D.3) and (D.4), the problem in (D.1) can be written as below: 

min
D, λ

{
Tr(DΣwD∗)+ S2

Mλ
}

(D.5)  

which is equivalent to the following according to (D.4): 

min
λ,D,c

c  

s.t.Tr(DΣwD∗) + S2
Mλ ≤ c  
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T − 1
2(I − DY)∗(I − DY)T − 1

2 ≤ λI (D.6) 

Thus, we showed that the original problem is formulated as an SDP which can be solved very efficiently in polynomial time. 
Using K = vec(DΣ1/2

w ), we rewrite (D.6) as follows: 

K
∗
K + S2

Mλ ≤ c (D.7) 

However, to solve an SDP problem, the constraints need to be in form of linear matrix inequality (LMI). Using Schur’s complement, we can express 
the constraints (D.6) as LMIs in the variables λ, D, and α. Therefore, we have: 
[

c − S2
Mλ K

∗

K I

]

≥ 0 (D.8)  

and 
⎡

⎣
λI T − 1

2(I − DY)∗

(I − DY)T − 1
2 I

⎤

⎦ ≥ 0 (D.9) 

And this completes the proof. ▪ 

Appendix E 

Proof of Theorem 4 
Obviously, the localization MSE for a typical node is given by 

MSE = E
{
‖ ŝj − sj ‖

2} = MSE = E
{
‖ Φ(ai) − sj ‖

2} =
∑

j=1,2,…,N

∑

i=1,2,…,M

(
ŝj − sj

)2P
(
sj, ai

)

= E
{

E
((

ŝj − sj
)2
⃒
⃒
⃒ai

)}
=

∑

i=1,2,…,M
P(ai)

[
∑

j=1,2,…,N

(
ŝj − sj

)
P
(
sj
⃒
⃒ai
)
] (E.1) 

To minimize MSE we can write the following: 

L =
∑

j=1,2,…,N

(
ŝj − sj

)2P
(
sj
⃒
⃒ai
)
=

∑

j=1,2,…,N

(
Φ(ai) − sj

)2P
(
sj
⃒
⃒ai
)

= E
(

s2
j

⃒
⃒
⃒ai

)
− 2ŝjE

(
sj
⃒
⃒ai
)
+ ŝ2

j
∂L
∂ŝj

= 0⇒ŝj = E
(
sj
⃒
⃒ai
)
: ∀s

(E.2) 

Thus, 

ŝj = E
(
sj
⃒
⃒ai
)

(E.3) 

And this completes the theorem. ▪ 
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