Solving Order Constraints in Logarithmic Space
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Abstract. We combine methods of order theory, finite model theory,
and universal algebra to study, within the constraint satisfaction frame-
work, the complexity of some well-known combinatorial problems con-
nected with a finite poset. We identify some conditions on a poset which
guarantee solvability of the problems in (deterministic, symmetric, or
non-deterministic) logarithmic space. On the example of order constraints
we study how a certain algebraic invariance property is related to solv-
ability of a constraint satisfaction problem in non-deterministic logarith-
mic space.

1 Introduction

A wide range of combinatorial search problems encountered in artificial intelli-
gence and computer science can be naturally expressed as ‘constraint satisfac-
tion problems’ [7,35], in which the aim is to find an assignment of values to a
given set, of variables subject to specified constraints. For example, the standard
propositional satisfiability problem [37,41] may be viewed as a constraint satis-
faction problem where the variables must be assigned Boolean values, and the
constraints are specified by clauses. Further examples include graph colorability,
clique, and Hamiltonian circuit problems, conjunctive-query containment, and
many others (see [20, 26]). One advantage of considering a common framework for
all of these diverse problems is that it makes it possible to obtain generic struc-
tural results concerning the computational complexity of constraint satisfaction
problems that can be applied in many different areas such as machine vision,
belief maintenance, database theory, temporal reasoning, type reconstruction,
graph theory, and scheduling (see, e.g., [12, 20, 26, 27, 35,42]).

The general constraint satisfaction problem (CSP) is NP-complete. There-
fore, starting with the seminal paper by Schaefer [41], much work has been done
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on identifying restrictions on the problem that guarantee lower complexity (see,
e.g., [3-5,7-9,12-14,20-24, 26]).

The constraint satisfaction problem has several equivalent definitions (see,
e.g., [5,7,14,20,26]). For the purposes of this paper, we define it, as in [8, 12, 20,
26], as the homomorphism problem: given two relational structures, .4 and B,
the question is whether there is a homomorphism from A4 to B. One distinguishes
uniform and non-uniform CSPs depending on whether both 4 and B are parts of
the input or not (see, e.g., [26]). The case when the choice of A is restricted has
been studied in connection with database theory (see, e.g., [13,14,16,26]). In
this paper, as in [8,12,20], we will consider non-uniform constraint satisfaction
problems CSP(B) where the structure B is fixed.

We will concentrate on the much understudied case of constraint problems
in logarithmic space complexity classes. The class NL of problems solvable in
non-deterministic logarithmic space has received much attention in complexity
theory. It is known that NL C NC, and so problems in NL are highly paral-
lelizable.

Despite the large amount of tractable constraint satisfaction problems iden-
tified so far, to the best of our knowledge, only two families of concrete problems
CSP(B) are known to be in NL. The first family consists of restricted versions
of the Boolean satisfiability problem: the so-called bijunctive constraints [41],
including the 2-SATISFIABILITY problem, and implicative Hitting-Set Bounded
constraints [7,8]. The second family consists of implicational constraints [24]
which are a generalization of bijunctive constraints to non-Boolean problems,
and which, in turn, have been slightly generalized in [8]. Dalmau introduced
‘bounded path duality’, a general sufficient condition for a CSP(B) to be in NL,
which is shown to be satisfied by all problems from the two families [8]. However,
this condition is not easy to apply; in general, it is not known to be decidable.

Our main motivation in this paper is to clarify the relation between solvability
of a CSP in non-deterministic logarithmic space and the algebraic condition of
invariance under a near-unanimity operation that is also satisfied by all concrete
problems above. It is known that many important properties of CSPs can be
captured by algebraic invariance conditions (see, e.g., [9,12,20]), and that the
condition mentioned above exactly corresponds to the following property: for
some [, every instance of CSP(B) has precisely the same solutions as the system
of all its subinstances of size [ [12,21]. It is unknown whether this property is
sufficient and/or necessary for a CSP(B) to be in NL. We answer this question
for problems connected with posets by showing that, for such problems, the
condition is sufficient but not necessary (and therefore it is not necessary in
general).

In order theory, there is a rich tradition of linking combinatorial and alge-
braic properties of posets (see, e.g., [6,28-30,39,45,46]). We use such results in
order to get combinatorial properties of posets that can be described in first-
order logic with the transitive closure operator. As is known from finite model
theory, sentences in this logic can be evaluated in non-deterministic logarith-
mic space. We use the poset retraction problem as a medium for applying finite



model theory results to the considered CSPs. The notion of retraction plays an
important role in order theory (see, e.g., [11,28,39]), and this problem has also
been studied in computer science along with the problem of satisfiability of in-
equalities in a poset and the extendibility problem (see, e.g., [2,12,29,38]). As
intermediate results that are of independent interest, we describe two classes of
posets for which the retraction problem is solvable in deterministic or (complete
for) symmetric logarithmic space.

The complexity class SL (symmetric log-space) appears in the literature less
often than L and NL, so we say a few words about it here. It is the class
of problems solvable by symmetric non-deterministic Turing machines in loga-
rithmic space [31], and L C SL C NL. This class can be characterized in a
number of ways (see, e.g., [1,15,36]) and is known to be closed under comple-
mentation [36]. It contains such important problems as the UNDIRECTED st-
CONNECTIVITY problem and the GRAPH 2-COLORABILITY problem [1,36,40];
it was shown in [25] that the GRAPH ISOMORPHISM problem restricted to col-
ored graphs with color multiplicities 2 and 3 is SL-complete. It is known (see,
e.g., [15]) that sentences of FO + STC, first-order logic with the symmetric
transitive (reflexive) closure operator, can be evaluated in symmetric logarith-
mic space.

Proofs of all results in this paper are omitted due to space constraints.

2 Constraint Satisfaction Problems

A wocabulary T is a finite set of relation symbols or predicates. Every relation
symbol R € 7 has an arity ar(R) > 0. A 7-structure A consists of a set A,
called the universe of A, and a relation R4 of arity ar(R) for every R € 7. All
structures considered in this paper are finite.

A homomorphism from a 7-structure A to a 7-structure B is a mapping
h: A — B such that (ai,...,a.r(r)) € RA implies (h(ay),.. .y h(aqar(r))) € RB
for every R € 7. If there exists a homomorphism from A to B, we write A — B.

We consider the problem CSP(B) where only structure A is the input, and
the question is whether A — B. Of course, one can view CSP(B) as the class of
all 7-structures A such that A — B. So we have a class of problems parameter-
ized by finite structures B, and the ultimate goal of our research is to classify
the complexity of such problems. The classic problems of this type are various
versions of GRAPH COLORABILITY and SATISFIABILITY of logical formulas.

Ezample 1 (H-coloring). If B is an undirected irreflexive graph H then CSP(B)
is the GRAPH H-COLORING problem. This problem is SL-complete if H is bi-
partite [36,40], and NP-complete otherwise [17]. If H is a complete graph K}
then CSP(B) is the GRAPH k-COLORABILITY problem.

Ezample 2 (2-SAT). Let B be the stucture with universe {0,1} and all at most
binary relations over {0,1}. Then CSP(B) is exactly the 2-SATISFIABILITY prob-
lem, it is N'L-complete [37].



Ezample 8 (NAE-SAT). Let B be the stucture with universe {0,1} and one
ternary relation R = {(a,b,c) | {a,b,c} = {0,1}}. Then CSP(B) is exactly the
NOT-ALL-EQUAL SATISFIABILITY problem as defined in [41], it is NP-complete.

The most significant progress in classifying the complexity of CSP(B) has
been made via methods of finite model theory [12,26] and methods of universal
algebra [3-5,20-23]. In [8,9], both approaches are present.

The finite model theory approach aims at defining CSP(B) or its complement
in various logics. Most of the known results in this direction make extensive use
of the logic programming language Datalog.

A Datalog program over a vocabulary 7 is a finite collection of rules of the
form

to : —tl,...,tm

where each ¢; is an atomic formula R(vq,...,v;). The predicates occuring in
the heads of the rules are the intensional database predicates (IDBs), while all
others are extensional database predicates (EDBs) and must belong to 7. One of
the IDBs is designated as the goal predicate. A Datalog program is a recursive
specification of the IDBs with semantics obtained via least fixed-points (see [43]).

For 0 < j < k, (j, k)-Datalog is the collection of Datalog programs with
at most k variables per rule and at most j variables per rule head. A Datalog
program is linear if every rule has at most one IDB in its body.

In [12], tractability of many constraint satisfaction problems was explained
in the following way: if ~CSP(B), the complement of CSP(B), is definable in
(4, k)-Datalog for some j,k then CSP(B) is solvable in polynomial time. Dal-
mau [8] introduced “bounded path duality” for B, a general sufficient condition
for CSP(B) to be in NL. This condition is characterized in seven equivalent
ways, one of them being definability of =CSP(B) in linear Datalog. However,
only definability by linear (1, k)-Datalog programs is known to be decidable (for
any fixed k) [8]. It is noted in that paper that all known concrete structures B
with CSP(B) in NL have bounded path duality.

The algebraic approach to CSP(B) uses the notion of a polymorphism.

Definition 1 Let R be an m-ary relation on B, and f an n-ary operation on
B. Then f is said to be a polymorphism of R (or R is invariant under f) if, for
every (b1, .-, bm1), -+, (Din, -+ -, bmn) € R, we have

bi1 bia -+ bip f(bi1,b12, ..., bin)
b21 b22 e b2n f(b21; b227 LR b2n)

. . . = . €R.
bml bm2 e bmn f(bmla bm2: L) bmn)

An operation on B is said to be a polymorphism of a T-structure B if it is a
polymorphism of every R®, R € .



Ezample 4. 1) It is easy to check that both permutations on {0,1} are poly-
morphisms of the relation R from Example 3, while the binary operation min is
not.
2) The polymorphisms of a poset are simply the monotone operations on it.
3) The dual discriminator on B is defined by

y ify=z,

pe(T,y,2) = {1- otherwise.

One can verify that y170,1y is a polymorphism of the structure B from Example 2.

Let Pol(B) denote the set of all polymorphisms of B. This set determines the
complexity of CSP(B), as the following result shows.

Theorem 1 ([20]) Let By and By be structures with the same universe B. If
Pol(By) C Pol(Bs) then CSP(B2) is polynomial-time reducible to CSP(By).

Moreover, if the equality relation =p on B can be expressed by using predi-
cates of By, conjunction, and ezistential quantification, then the above reduction
1s logarithmic-space.

Examples of classifying the complexity of CSP(B) by particular types of
polymorphisms can be found in [3-5,8,9,20-23]. It follows from [22,24] that if
pp is a polymorphism of B then CSP(B) is in NL. This result is generalized
in [8] to give a slightly more general form of ternary polymorphism guaranteeing
that CSP(B) is in NL.

Definition 2 Let f be an n-ary operation. Then f is said to be idempotent if
f(z,...,x) =z for all x, and it is said to be Taylor if, in addition, it satisfies n
identities of the form

f(xila-")xin) :f(yila-"vyin); i:]-:"'vn
where x;;,y;; € {x,y} for all i,j and x;; # yi fori=1,...,n.

For example, it is easy to check that any binary idempotent commutative
operation and the dual discriminator are Taylor operations. The following result
links hard problems with the absence of Taylor polymorphisms.

Theorem 2 ([29]) Let B be a structure such that Pol(B) consists of idempotent
operations. If B has no Taylor polymorphism then CSP(B) is NP-complete.

3 Poset-Related Problems

In this section we introduce the particular type of problems we work with in
this paper, the poset retraction problem and the order constraint satisfaction
problem. Here and in the following the universes of A, B, P, Q etc. are denoted
by A, B, P, Q etc., respectively.



Let A, B be structures such that B C A. Recall that a retraction from A
onto B is a homomorphism h : A — B that fixes every element of B, that is
h(b) = b for every b € B.

Fix a poset P. An instance of the poset retraction problem PoRet(P) is a poset
Q such that the partial order of P is contained in the partial order of Q, and
the question is whether there is a retraction from Q onto P. Again, we can view
PoRet(P) as the class of all posets Q with positive answer to the above question,
and then =PoRet(P) is the class of all instances Q with the negative answer. This
problem was studied in [2,12,38]. For example, it was proved in [12] that, for
every structure B, there exists a poset P such that CSP(B) is polynomial-time
equivalent to PoRet(P).

In [38], a poset P is called TC-feasible if ~PoRet(P) is definable (in the
class of all instances of PoRet(P)) by a sentence in a fragment of FO + TC,
first-order logic with the transitive closure operator, over the vocabulary 7 that
contains one binary predicate R interpreted as partial order and the constants c,,
p € P, always interpreted as the elements of P. The fragment is defined by the
condition that negation and universal quantification are disallowed. Since any
sentence in FO + TC is verifiable in non-deterministic logarithmic space [15]
and NL = CoNL [19], TC-feasibility of a poset P implies that PoRet(P) is in
NL. Note that even if —PoRet(P) is definable by a sentence in full FO + TC
then, of course, PoRet(P) is still in NL.

Let P = {p1,...,pn} and let 75 be a vocabulary containing one binary pred-
icate R and n unary predicates Si,...,S,. We denote by Pp the m»-structure
with universe P, RP? being the partial order < of P, and Sip” = {p;}. We call
problems of the form CSP(Pp) order constraint satisfaction problems. Note that
if B is simply a poset then CSP(B) is trivial because every mapping sending all
elements of an instance to a fixed element of B is a homomorphism. The main
difference between CSP(Pp) and PoRet(P) is that an instance of CSP(Pp) is
not necessarily a poset, but an arbitrary structure over 7.

The following theorem will provide us with a way of obtaining order con-
straint satisfaction problems in NL.

Theorem 3 Let P be a poset. If ~PoRet(P) is definable (within the class of all
posets containing P) by a 1 -sentence in FO + TC then CSP(Pp) is in NL.

By analysing the (proof of the) above theorem one can show that the prob-
lems PoRet(P) and CSP(Pp) are polynomial-time equivalent. Invoking the result
from [12] mentioned in this section, we get the following statement.

Corollary 1 For every structure B, there exists a poset P such that CSP(B)
and CSP(Pp) are polynomial-time equivalent.

It is not known whether the equivalence can be made logarithmic-space, and
so the corollary cannot now help us in studying CSPs in NL. We believe that
Corollary 1 is especially interesting in view of Theorem 1 because polymorphisms
of a poset may be easier to analyse. In particular, note that all polymorphisms
of Pp are idempotent, and so, according to Theorem 2, in order to classify the



complexity of CSP(B) up to polynomial-time reductions, it suffices to consider
posets with a Taylor polymorphism.

Other poset-related problems studied in the literature are the satisfiability of
inequalities, denoted P-SAT, and the extendibility problem Ext(P). An instance
of P-SAT consists of a system of inequalities involving constants from P and
variables, and the question is whether this system is satisfiable in 7. The problem
P-SAT plays an important role in type reconstruction (see, e.g., [2,18,38]), it
was shown to be polynomial-time equivalent to PoRet(P) for the same P [38].
An instance of Ext(P) consists of a poset Q and a partial map f from Q to P,
and the question is whether f extends to a homomorphism from @ to P. The
problem Ext(P) was studied in [29], where it was shown to be polynomial-time
equivalent to CSP(Pp), so all four poset-related problems are polynomial-time
equivalent.

It is easy to see that PoRet(P) is the restriction of Ext(P) to instances where
@ contains P and f = idp is the identity function on P, while the problem
Ext(P) can be viewed as the restriction of CSP(Pp) to instances where the
binary relation is a partial order. Of course, if CSP(Pp) is in NL then so are
the other three problems.

4 Near-unanimity Polymorphisms

In this section we prove that posets with a polymorphism of a certain form, called
near-unanimity operation, give rise to order constraint satisfaction problems in
NL.

Definition 3 A near-unanimity (NU) operation is an l-ary (I > 3) operation
satisfying

f(y7:1;7"'7:1;):f(x7y7m7"'7m):‘-‘:f(m7"'7m7y):m
for all z,y.

Near-unanimity operations have attracted much attention in order theory
and universal algebra (see, e.g., [10,28-30,39,45,46]). For example, the posets
having a ternary NU polymorphism (known as a majority operation) are precisely
retracts of direct products of fences [39], where a fence is a poset on {ay, ... ,ax}
such that ag < a; > as < ...ap or ap > a1 < as > ...ap, and there are
no other comparabilities. Posets with an NU polymorphism (of some arity) are
characterized in a number of ways in [28, 30].

It was proved in [12, 21] (using different terminology) that if a structure B has
an NU polymorphism then CSP(B) is solvable in polynomial time. In [12], such
problems are said to have bounded strict width, while in [21] they are shown to be
related to the so-called strong consistency, a notion from artificial intelligence.
Moreover, it was shown in these papers that the presence of an (I + 1)-ary NU
polymorphism f is equivalent to the [-Helly property for B and to definability
of =CSP(B) by an (I, k)-Datalog program with a special property. Not going



into formal definitions here, the intuition behind these properties is that every
relation invariant under f is decomposable into its [-fold projections, and so a
mapping from A to B that is not a homomorphism can be shown to be such
using only at most [-element subsets of A.

Interestingly, up until now all known concrete structures B with CSP(B)
in NL have an NU polymorphism. It is mentioned in [8] that all two-element
structures B with an NU polymorphism (which precisely correspond to the first
family mentioned in the introduction) have bounded path duality, and so the
correponding problems CSP(B) belong to NL. All known concrete structures B
that have at least three elements and such that CSP(B) in NL have a ternary
NU polymorphism derived from dual discriminators (see Example 4) [8], these
are the problems from the second family.

Our next result shows that every order constraint satisfaction problem with a
near-unanimity polymorphism is in NL. Note that by [10], for every I > 3, there
exists a poset that has an [-ary NU polymorphism, but no such polymorphism of
smaller arity. Moreover, it was proved in [28] that it can be decided in polynomial
time whether a poset has an NU polymorphism, while in [12] this was shown to
be true for any fixed arity [ for general structures.

In the following we deal mostly with posets, and so we use symbol < (rather
than R) to denote partial order. Recall that a poset is called connected if its
comparability graph is connected.

An important tool used in the proof of the next theorem is the notion of a
poset zigzag introduced in [45]. Intuitively, a P-zigzag is a minimal obstruction
for the extendibility problem Ext(7). More formally, a poset X = (X, <¥) is
said to be contained in a poset Q = (Q,<9) if <YC<? | and it is said to be
properly contained if X # Q. A P-zigzag is a pair (Q, f) such that f is a partial
mapping from Q to P that cannot be extended to a full homomorphism, but, for
every poset X properly contained in Q, the mapping f|x is extendible to a full
homomorphism from X" to P. The key fact in the proof of the following theorem
is that a connected poset has a near-unanimity polymorphism if and only if the
number of its zigzags is finite [30].

Theorem 4 Let P be a poset with an NU polymorphism. Then PoRet(P) is in
SL and CSP(Pp) is in NL. If, in addition, P is connected then PoRet(P) is in
L.

Theorem 4 generalizes a result from [38] where it was shown that if poset
P has the 2-Helly property then PoRet(P) is in NL. Moreover, together with
Theorem 2 it completely covers the classification of complexity of PoRet(P) for
bipartite posets given in [38].

5 Series-Parallel Posets

In this section we exhibit the first concrete examples of structures without
NU polymorphism but with constraint satisfaction problem solvable in non-
deterministic logarithmic space. We deal with the poset-related problems for



series-parallel posets. These posets have been studied in computer science be-
cause they play an important role in concurrency (see, e.g., [32-34]).

Recall that a linear sum of two posets P; and P5 is a poset P;+Ps with the
universe P U P, and partial order <Pt U <72 U{(p1,p2) | p1 € P1,p2 € P2}.

Definition 4 A poset is called series-parallel if it can be constructed from sin-
gletons by using disjoint union and linear sum.

Let k denote a k-antichain (that is, disjoint union of k singletons). A 4-
crown is a poset isomorphic to 2 + 2. The N-poset can be described as 2 + 2
with one comparability missing (its Hasse diagram looks like the letter “N”).
Series-parallel posets can be characterized as N-free posets, that is, posets not
containing the N-poset as a subposet, [44].

Denote by A the class of all series-parallel posets P with the following prop-
erty: if {a,a’,b,b'} is a 4-crown in P, a and o' being the bottom elements, then
at least one of the following conditions holds:

1. there is e € P such that a,a’,e,b,b’ form a subposet in P isomorphic to
2+1+2

2. infp(a,a’) exists;

3. supp(b,b') exists.

Recall that infp and supp denote the greatest common lower bound and the
least common upper bound in P, respectively.

Theorem 5 Let P be a series-parallel poset. If P € A then PoRet(P) is in
SL and CSP(Pp) is in NL. Otherwise both problems are NP-complete (via
polynomial-time reductions).

The class A can be characterized by means of “forbidden retracts”.

Lemma 1 A series-parallel poset P belongs to A if and only if it has no retrac-
tion ontooneof1+2+2+4+2,24+2+2+1,14+24+24+2+4+2+4+1,2+4+2,and
24+2+2,.

It was proved in [46] that a series-parallel poset P has an NU polymorphism
if and only if it has no retraction onto one of 2+2,14+2+ 2,2+ 2+ 1, and
1+2+ 2+ 2+ 1. Combining this result with Theorem 5 and Lemma 1 we can
get, in particular, the following.

Corollary 2 If P is one of 1+2+2,2+2+1, and 1+2+2+2+1 then
PoRet(P) is in SL and CSP(Pp) is in NL but Pp has no NU polymorphism.

It should be noted here that TC-feasibility of posets 2+ 2+ 1and 1 + 2 + 2
was proved in [38].

In fact, we can say more about the complexity of PoRet(P) for the posets
mentioned in Theorem 5.

Proposition 1 If P € A and P has no NU polymorphisms then PoRet(P) is
SL-complete (under many-one logarithmic space reductions).



6 Conclusion

It is an open problem whether the presence of an NU polymorphism leads to solv-
abilty of a CSP(B) in non-deterministic logarithmic space for general structures.
In this paper we solved the problem positively in the case of order constraints and
also proved that this algebraic condition is not necessary. Hence, if the general
problem above has a positive answer, then the algebraic condition characterizing
CSPs in NL (if it exists) is of a more general form than an NU polymorphism.

Motivated by the problem, Dalmau asked [8] whether structures with an NU
polymorphism have bounded path duality. At present, we do not know whether
the structures Pp from the two classes described in this paper have bounded
path duality. It follows from results of [9, 29] that if Pp has an NU polymorphism
then =CSP(Pp) is definable in (1,2)-Datalog, and the same can be shown for
structures Pp with P € A. There may be some way of using special proper-
ties of posets for transforming such (1,2)-Datalog programs into linear Datalog
programs.

It is easy to see that the posets from our two classes are TC-feasible (see
definition in Section 3). It was shown in [38] that the class of TC-feasible posets
is closed under isomorphism, dual posets, disjoint union, direct products, and
retractions. Using these operations one can easily construct TC-feasible posets
lying outside the two classes. For example, direct product of 2 + 2 4+ 1 and its
dual poset neither has an NU polymorphism nor is series-parallel. In this way
one can find further order constraint satisfaction problems in NL. Theorem 1
provides another way of obtaining further CSPs in NL because, clearly, the
equality relation =p can be expressed in Pp.
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