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Abstract—A method for machine learning a
Bayesian Belief Network (BBN) and associated dy-
namic decision support tool are presented. This sup-
port tool has been tailored for the early engineering
design stages, where the nature of the design prob-
lem is ill-structured and has traditionally relied on
the designer’s tacit domain expertise. The BBN en-
ables a designer to interactively explore the design
space. The BBN is efficiently induced from a database
of prior design exemplars using a novel information
content metric to greedily construct the causal graph
structure. The method is illustrated using a concep-
tual car design domain.
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1 Introduction

The engineering design process begins with a statement of
a functional need that must be fulfilled. It typically does
not provide any guidance on the structure or nature of the
solution. As a result, during the early phases of the de-
sign process, an engineer must operate with an ill-defined
problem. This fluid type of environment challenges most
design support tools, which tend to be tailored for the
later phases of the design process when the solution is
better defined. For example, CAD and FEA packages
are used for assessing mechanical stress concentrations
for a given part. The information from these determin-
istic tools is then used to modify detailed aspects of the
design with the aim of optimising the design against a set
of clear objectives.

This research will focus on the conceptual design stage.
The conceptual design stage occurs during the earliest
parts of the design process. This is where a design spec-
ification is transformed into an abstract solution, repre-
senting the core concepts of the final design. The fluid
nature of the conceptual design stage provides a challenge
when developing deterministic models of a design at this
phase. Specifically, it is difficult to explicitly define met-
rics for concept quality and this is left to the subjective
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expertise of the design team. The nature of conceptual
design means that it is possible for a ‘good’ concept to
be poorly detailed and thus result in a poor final product
and wvice versa. However, in general good concepts are
more readily transformed into good final products while
poor concepts require greater effort to attain a similar
final high quality level.

A potential approach to this challenge is to adopt a
stochastic perspective of the conceptual design phase.
This allows for a more flexible representation of the design
domain where multiple outcomes are possible. By using
Bayesian Belief Networks (BBNs) to model a design do-
main, it is possible to work with partially defined design
concepts. As more of the design is specified, the more ac-
curate the model becomes at predicting how the remain-
der of the design is likely to be. An interesting and pow-
erful aspect of the BBN is that it does not distinguish be-
tween the design parameters that are directly controlled
by the designer and design characteristics which are de-
termined as a result of the designer’s decisions on the
design parameters. This allows a designer to specify the
characteristics at the outset and to then be guided to-
wards design parameters that are likely to secure these
characteristics.

This research has developed a method for inducing a BBN
from a database of prior design exemplars using a novel
information metric (Section 4). Once the BBN has been
instantiated, a set of search heuristics are proposed to
help guide a designer using the BBN to complete a partial
conceptual design (Section 5). This method is illustrated
using a set of design scenarios (Section 6). The paper
concludes with a discussion of this method and some fu-
ture development avenues for this stochastic approach.

2 Background

The first task in the design process can be argued as de-
termining the specification of the final constructed arte-
fact or product. The specification will be a combination
of ‘demands’ that the design must fulfil and weighted
wishes, which represent desirable but not essential as-
pects of the design. This specification can be expressed
as a simple list of features [1] or encoded as an ‘accept-
ability function’ [2]. The specification guides the designer
towards generating concepts that fulfil the demands. Al-



ternative designs are discriminated between how well they
either fulfil the wishes or evaluate against the acceptabil-
ity function. Provided the specification does not impose
overly restrictive demands, the designer is still left with
a large conceptual design space to explore.

Conceptual design is by definition fluid. It is left to the
detail and embodiment stages to crystalise the design into
an artefact that can be manufactured [3]. A good con-
cept will be easily transformed into a good final design.
Conversely, a poor concept will require extensive effort
to transform into a good final design. This definition of
good/bad concept can only be measured after the final
product has been produced, and is of little use during the
conceptual stage of the design process. Also, the notion
of a ‘good’ final design is domain and context sensitive.
A designer will have a notion of what aspects of the fi-
nal design are desirable, and a good designer will create
concepts that are more likely to have these outcomes.

As ameans for resolving the lack of explicit overall quality
measure, an alternative, stochastic, view is adopted. This
stochastic approach is fundamentally that a good concept
has a high probability of resulting in a good final design,
whereas a poor concept has a low probability of being
transformed into a good design. This leads to a stochastic
view of the design process: the probability of a good
design at the end of the process depends on the quality
of the initial design concept.

The fluidity of the conceptual design phase means it is
difficult to provide concrete evaluation tools. Methods
exist for creating ‘robust’ designs and, through objective
evaluation techniques, guide the designer towards con-
cepts that will be able to tolerate changes in the original
specification [4, 5]. In effect, these methods aim to pro-
vide the most generic design solution that is acceptable.
These methods require a pre-defined evaluation function
for the design that encodes the original design specifica-
tion. An alternative stochastically driven approach is to
bias towards design refinement that do not have ‘spiky’
probability distribution functions (PDFs) [2]. Such PDFs
lack robustness as any deviation from the peak will re-
sult in a significant reduction in the likelihood of design
success.

The approach taken in this paper is to provide guidance
on the order that design variables should be determined.
This designer guidance concept is similar to the Sign-
posting methodology [6], however it uses the shape of
the dynamically computed PDF's rather than pre-defined
domain rules to determine the order that the design vari-
ables should be determined.

An important aspect of this method is the inducing of do-
main models from previous design exemplars. The meth-
ods for creation of domain models can be represented on
a spectrum ranging from expert based through to fully

algorithmic. The expert based end of the spectrum pro-
vides high quality transparent models, however these re-
quire considerable time investment from domain experts
which can be prohibitive. At the other extreme, pure
machine learning methods tend to provide complex and
opaque models, which while accurate, do not necessarily
provide a designer with significant insight into the do-
main.

A motivating factor for this research are the cognitive
aspects that affect human designers. These include the
range of model complexities that can be intuitively han-
dled; the nature of understanding a design domain; the
latent differences between novice and expert designers;
and what constitutes an intuitive interface to a stochas-
tically based design domain model.

3 Bayesian Design

Bayesian design is the use of Bayesian Belief Networks
to support the design process. Bayesian Belief Networks
(BBNs) provide a causal model for a set of observations
or variables [7]. These models are represented graphi-
cally, where the observations are the graph nodes and the
causal links are the directed edges that connect the nodes.
As the networks tend to be relatively sparse, namely
that nodes are typically only attached to a small subset
of other nodes, this significantly simplifies the computa-
tional effort required to make inferences given a set of
observations. As observations are made, these provide
information for the model. The model uses these obser-
vations to make informed estimates on the values of the
non-observed variables. For a non-observed variable, it is
possible to compute its informed (conditional) probability
distribution function. Effectively, the available informa-
tion biases the unobserved variable’s PDF.

In the design context, the observed variables are the de-
sign parameters and characteristics. The distinction be-
tween these is primarily that design parameters are di-
rectly determined by the designer while design character-
istics are a result of the design parameters. For the pur-
poses of this work, no distinction is made between these
two, as it is impossible in general to infer the causal order
between the design variables. For example, when design-
ing a bridge one of the design parameters is the width of
the bridge. The wider the bridge, the greater the poten-
tial flow across the bridge which is a design characteristic
of the bridge. However, a greater potential flow across
the bridge will require a stronger bridge, which can be
achieved through a number of alternatives, e.g. material
choice, structural design, etc., all of which are design pa-
rameters again.

Bayesian design is a stochastic view of design, and is par-
ticularly appropriate for routine early design tasks. Due
to the fluid nature of the early design phases, this is an
appropriate approach. Under the stochastic view, each



design variable has a PDF. This PDF is a mapping from
the values the design variable can take (design space) to
the probability of that variable taking that value. The
probability of a variable taking on a particular value rep-
resents is a measure of how frequently that variable takes
that value in final (e.g. detail phase) designs. This can
be interpreted as a measure of the design knowledge or
experience that exists for achieving the given design vari-
able value. Thus, where low probabilities are encoun-
tered, this provides a warning that a potential challenge
lies ahead in achieving that position in the design space.

As these PDFs are computed within a BBN, these will
be biased where relevant information is available. Rele-
vant information in this context are observations taken
from neighbouring nodes within the network. The up-
dated conditional PDFs (CPDFs) now take into account
the knowledge that exists about a subset of designs from
the domain, as defined by the relevant information that
has been added. So where previously setting a design
variable to particular value might have appeared difficult
to achieve by nature of the low probability of this out-
come, it is possible that given the additional information
this is becomes a much more likely outcome.

This leads into exploiting design BBN as a design sup-
port tool. A designer will start with a specification that
defines a subset of the design variables. These defined
variables can be considered as observations and thus be
entered into the BBN. The BBN can now provide CPDFs
for the unobserved variables. These unobserved variables
were not part of the specification, and hence it may be
assumed that the designer is free to set these arbitrarily.
The designer wishes to produce a design concept that will
have the greatest chance of producing a good concept, as
these are least likely to require extensive effort during the
detailing phases to produce a good final design. Hence,
the designer should be attracted to set design variables
to their most likely states, as these represent the states
where the most knowledge and/or experience exists.

Where a number of different variables require determin-
ing, a simple ordering heuristic can be applied. De-
sign variables with narrow ‘spiky’ distributions should
be determined first, proceeding through until the vari-
ables with the ‘flattest’ PDF's being last [2]. This ensures
that design variables with narrow likely ranges are set
suitably as early as possible. If this is not done, it is
possible that through the setting of another design vari-
able, the ‘narrow’ design CPDF disappears altogether,
thus representing a highly unlikely design. In effect, this
is the stochastic equivalent of over constraining a design.
Similarly, the ‘flat’ PDF's are likely to become spikier as
more of the design is defined. By monitoring how each
individual PDF changes with each additional design vari-
able setting, it is possible to dynamically guide a designer
through the order in which the design variables should be
set. It is worth noting, however, that these are no more

than guiding heuristics. Designers are at liberty to navi-
gate through the design domain based on their personal
experience or instincts.

4 Inducing Bayesian Networks

To use Bayesian Belief Networks as a design support tool,
it is essential to acquire a good BBN in the first instance.
The first step to achieve this is the creation of a suitable
representation or encoding of the design domain. This
provides a definition of the conceptual design space of the
domain under consideration. A simple, but suitable, rep-
resentation format is a design vector. The design param-
eters and characteristics form the variable components of
the vector. As discussed in the previous section, these
are to be the nodes of the BBN.

The next step is identifying the causal links between these
design variable nodes. One method for achieving this is
to use an expert (or panel of experts) to manually iden-
tify the links. While this is expected to produce accu-
rate models, it is a time consuming exercise. As the do-
main becomes more complex in terms of number of design
variables, the complexity of the model creation increases
quadratically with the number of design variables. Fur-
ther, once the nodes have been linked, the PDFs and
CPDFs that are associated with the nodes and arcs re-
spectively must be defined. This requires considerably
greater consideration than identifying the causal links.
As a result, the expert crafted BBN is not appealing.

An alternative method for identifying the causal links in
the BBN is to apply data mining techniques to a database
of previous design exemplars. These techniques analyse
the given database and create a network that provides
a sufficiently close representation of the stochastic phe-
nomenon observed in the database.

4.1 Information Content based metric

Most efficient BBN inducing algorithms require that the
overall causal order is known prior to running the algo-
rithm. However, where this ordering is not known, the
complexity of most BBN graph inducing algorithm ex-
plodes to O(n!), where n is the number of variables. In
this research, it is assumed that the causal order of the
design variables is not known prior to running the al-
gorithm. A novel greedy algorithm has been developed
for this work that reduces the computational complexity
down to O(n?). This breadth-first greedy approach has
been tested on some well known databases and performs
well in terms of identifying the correct BBN. The overall
process is illustrated in Figure 1.

The graph search algorithm implements a greedy search
heuristic based on a measure of the information content
of the conditional probability distribution. Recall the
definition of conditional probability:
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Figure 1: Flowchart representing the greedy BBN learning algorithm.

P(B=b|A=a) = B=hA=0)

Where the events A and B are independent, P(B, A) =
P(B)P(A). Hence, when A and B are independent
P(B|A) = P(B). By considering the difference between
the observed conditional and prior probability distribu-
tions, it is possible to measure the mean variation in this
difference:

I(4,B) = E[P(B| 4) - P(B)? (2)

The variation, I, represents how much more information
is contained in the conditional probability distribution
above the information contained in the prior probability
distribution. A large value for I indicates that the condi-
tional probability distribution contributes greatly to the
knowledge of the domain while a small value indicates
that the two variables are likely to be relatively indepen-
dent of each other.

The graphical model search algorithm begins by measur-
ing the pairwise information content between each vari-
able pair. This is computed for both directions as in
general I(A, B) # I(B, A). For each design variable, the
system is seeded with a partial model containing the given
variable and the variable that has the greatest informa-
tion content of its conditional probability distribution.
Where a partial model would be repeated, the variable
with the next highest information content is selected.

These partial models are ordered in increasing informa-
tion content order. The next step is to merge partial
models with low information content, creating a new par-
tial model whose information content is given by the sum
of its parts. The two lowest information content scoring
models with a common variable are merged, resulting in
one fewer partial models. Where there are more than
two candidate models for combining, the tie breaker is
determined by (1) resulting model complexity followed
by (2) lower information score. This is repeated until all
partial models are exhausted. The above greedy algo-
rithm results in a single graphical model.

5 Implementation

To test the above design heuristics, it was necessary to
implement the stochastic algorithm. To ensure wide ac-
cess to the algorithm, it was decided to implement the
interactive design support tool using Microsoft’s Visual
Basic (VB) within Excel. Most office desktops have ac-
cess to Excel, and thus a large population of potential
beta-testers exists.

The code is structured in two parts: The first part is
a one-shot machine learning algorithm that uses Equa-
tion 2 to induce the network from a given dataset of
prior design exemplars. As this only needs to be run
once, it was written in Matlab rather than VB. While
this restricts the ability for arbitrary users to use their
own dataset, this is not a part of the user trial. The
second part of the code represents the user interface to
the BBN. Figure 2 contains the flowchart for the itera-
tive and designer led search process. This is encoded as
a VB macro that reads the current design state from the
Excel design spreadsheet and computes the PDFs of the
unspecified design variables. These PDFs are extracted
from the database of design exemplars that resides on
a separate spreadsheet. The conditional PDF's are com-
puted from the joint probabilities that can be extracted
by frequency counting within the database.

The final aspect to be considered is how the displayed
PDFs are interpreted by the designer as heuristics for the
design search process. For each unspecified design vari-
able, the relevant PDF for that variable is displayed in the
columns adjacent to the design specification. As argued
earlier, it is suggested that the designer focuses first on
the variables with narrow distributions and then moves
onto variables with ever wider distributions. This is the
variable ordering heuristic. The second heuristic guides
the designer to the value that each variable should be
set to. It is suggested that the designer selects the value
that has an acceptably high probability associated with
it. This represents the most likely outcome for the design,
or conversely, the design with the greatest likelihood of
success. Each time the designer amends the design, the
VB macro recomputes the PDFs for each remaining un-
specified design variable.
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Figure 2: Flowchart representing the overall design search process.

6 Case Study: Preliminary Car Design

As an initial trial of the stochastic design search method,
the well known UCI machine learning car design database
was used [8]. This database contains a sample of 1728 de-
signs, each with a full set of observations. Each sample
represents a conceptual car design. The cars are rep-
resented as a 10-dimensional vector comprising of both
design parameters and design characteristics. The design
parameters are: the target purchase price; the expected
maintenance cost; the designed safety level; the number
of doors; the number of passengers; and the volume of
luggage that can be carried. The design characteristics
are: the overall cost of ownership; the comfort level; the
technology level; and the overall car acceptability. All the
design variables are discrete. A set of predetermined rules
was used to map the design parameters onto the design
characteristics to create the database that was then used
by the greedy BBN induction algorithm. The structure
of these rules is given in Figure 3. These structured rules
provide a means for comparing the stochastic design tool
to the original and defining structure of the design space.

The car database was first loaded into Matlab and passed
to the BBN learning algorithm. This generated a net-
work representing the causal links between the design
variables. The algorithm produces exactly as many arcs
as there are design variables. This resulted in a non-tree
structure. In a tree structure each node, with the excep-
tion of the root node, should have a single child. The
structure that was produced by the learning algorithm
had the ‘safety’ node linked to both the ‘technology’ and
‘car acceptability’ nodes. By considering the information
content of the two arcs coming out of the safety node, the
arc with the lower information content was deleted. The
resulting tree network that was learnt from the dataset
had an identical causal structure to the underlying rule
structure used to create original the design database, as
illustrated in Figure 3. This network was then encoded
in the Excel spreadsheet, along with the database.

To illustrate the use of the design search tool, a hypo-
thetical design scenario is used. The scenario embodies
a partial design specification that a designer must meet.
The designer must also specify the remainder of the de-
sign in such a manner that it is compatible with the given
specification.

The ‘accessible luxury’ design scenario specified a com-
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Figure 3: Rule structure for the conceptual car domain.

bination of design parameters and characteristics. The
specified design parameters were: the car should have
low maintenance costs; be a four-door design; and have
a high safety level. The car was to have the following
characteristics: it should have a high comfort level and it
should have a high acceptability level.

The stochastic search method suggested the following
course of action (see also Table 1):

Technology level: set to ‘very high’
Luggage space: set to ‘high’

Overall cost of ownership: set to ‘low’
Passengers: set to ‘4’

ARl o A

Purchase price: set to ‘low’

In this scenario there were occasions where the guidance
to selecting the variable value was ambiguous. For ex-
ample, determining the overall cost of ownership placed
equal weight between selecting ‘low’ or ‘high’ (see Step 3
in Table 1). In this case, as the car is intended to be
‘accessible’, the designer selects ‘low’. Had the designer
selected ‘high’, this changes the options that are offered
two steps later when selecting the purchase price where
the designer is offered ‘high’ or ‘very high’.

7 Discussion

There are two aspects to this stochastic design search
method: inducing the BBN design model from previ-
ous design exemplars and using the BBN as a search
tool. The information based induction algorithm ap-
pears to perform well, based on a series of tests using



Table 1: Search path for the unspecified design variables
for the ‘Accessible luxury’. The PDF/Likelihood columns
contain the probability values for the various design op-
tions available. Selected variable/value in bold.

Step Variable PDF /Likelihood

1 buying 025 0.25 0.25 0.25
persons 0 033 0.67
luggage 0 033 0.67
PRICE 0.5 0 0.5 0
TECH 0 0 0 1

2 persons 0 033 0.67
luggage 0 033 0.67
PRICE 0.5 0 0.5 0

3 buying 025 0.25 0.25 0.25
persons 0 1 1
PRICE 0.5 0 0.5 0

4 buying 1 1 0 0
persons 0 1 1

5 buying 1 1 0 0

databases taken from known source models. The car de-
sign database provided an example of this, where it iden-
tified the network structure with a single extra arc. This
spurious arc was easy to identify, as it was the arc with
less information from one of two potential arcs that broke
the tree structure.

Using the BBN induced from the design database as a
dynamic search tool offers an efficient search strategy
when the two search heuristics are employed. The feasi-
ble design scenarios mainly followed the search heuristics,
with the designer rarely ‘deviating’ from the first ranked
choice. Further trials are needed where the designer does
not follow these suggestions.

Where a designer starts with an infeasible design, as per
the final design scenario, the stochastic search tool simply
reports constant zero PDFs for the unspecified variables.
In the reported scenario, the designer used knowledge of
the BBN structure to identify the ‘neighbouring’ design
variables to modify blindly. An improvement would be to
provide some form of guidance to identify fruitful modi-
fications to the current partial design specification. This
would allow the designer to ‘unblock’ the infeasible de-
sign specification using a minimal change to the original
specification.

8 Conclusions and Future Work

Using the Bayesian Belief Network with the two search
heuristics provides an efficient conceptual design search
tool. The two heuristics aid the designer to first iden-
tify the next design variable that should be determined,
followed by which value would provide the most robust

design. A powerful aspect of the BBN approach is that
the designer need not distinguish design parameters from
design characteristics. This allows a designer to spec-
ify design characteristics that are not normally under a
designer’s direct control. However, it must be empha-
sised that the designer is not constrained by the design
heuristics and is free to explore the design space in other
orders. This offers the designer the flexibility that is es-
sential during the conceptual design stage.

Further work is required in a number of areas. Research is
needed on how to develop a more intuitive user interface
to the BBN. There is a need for metrics for PDF ‘spik-
iness’ versus ‘flatness’. This is critical as it will not be
possible for a designer to identify the narrowest of PDF's
in a design domain with considerably more variables. An-
other key area for further work is to develop methods for
identifying design variables in infeasible design specifica-
tions that could be fruitfully slackened. Currently, the
designer only has the network to identify neighbouring
variables but no information on which variable should be
modified.

Finally, this work was based on an artificial database with
a fully tested set of designs (in terms of the design pa-
rameters). Further investigations are required where this
is not the case, as this represents real design situations.
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