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Abstract - While various PDE models are in discussion since ten 
years and are widely applied nowadays in image processing and 
computer vision tasks, including restoration, filtering, segmentation 
and object tracking the perspective adopted in the majority of the 
relevant reports is the view of applied mathematician, attempting to 
prove existence theorems and devise exact numerical methods for 
solving them. Unfortunately, such solutions are exact for the 
continuous PDEs but due to the discrete approximations involved in 
image processing the results yielded might be quite unsatisfactory. 
The major contribution of this paper is, therefore, to present, from 
an engineering perspective the application of PDE models in image 
processing analysing, from the algorithmic point of view, the 
discretization and numerical approximation schemes used for 
solving them.  It is of course impossible to tackle all PDE models 
applied in image processing in this report from the computational 
point of view. It is, therefore, focused on image impainting PDE 
models, that is on PDEs, including anisotropic diffusion PDEs, 
higher order non-linear PDEs, variational PDEs and other 
constrained/regularized and unconstrained models, applied to 
image interpolation/ reconstruction. Apart from this novel 
computational critical overview and presentation of the PDE image 
impainting models numerical analysis, the second major 
contribution of this paper is to evaluate, especially the anisotropic 
diffusion PDEs, in novel real world image impainting applications 
related to MRI. 
 
Keywords - Variational PDEs, Diffusion PDEs, PDE Discretization, 
Image Impainting, MRI Reconstruction. 

I. INTRODUCTION 

While numerous papers dealing with image processing 
related PDEs from the applied mathematician’s point of view 
already exist, proving for instance theorems for the associated 
continuous PDEs solutions existence or reviewing PDE 
models [1], there is lack of reports presenting the 
computational and numerical analysis perspective of the 
available PDE models. The major goal of this paper is to 
outline, from an engineering perspective, the discretization 
and numerical approximation algorithms for solving the most 
important PDE models in image impainting tasks [2]. This 
critical computational/ algorithmic overview is actually the 
first step towards numerical analysis of these PDE models.  

Regarding image impainting [2], there is a variety of 
available PDE models proposed mainly to smooth and 

denoise images. In the last two decades, the use of nonlinear 
PDEs for image smoothing and denoising has met with 
tremendous success [1]. Before nonlinear PDEs were 
introduced, images were denoised by linear filtering, which is 
equivalent to using the noisy image as an initial condition for 
the heat equation. Although this method removes high 
frequency noise, it also badly blurs edges. To prevent 
blurring, a number of authors suggested using a nonlinear 
diffusion equation or a variational PDE model. Therefore, the 
main PDE categories investigated from the 
computational/algorithmic and engineering perspective in this 
paper are the diffusion and the variational PDE models.  

Among the equations belonging in the first category the 
most famous example is the Perona-Malik equation [3,4]. On 
the other hand, among the most famous examples of PDEs 
belonging in the second category is the variational Mumford-
Shah model [1,3,5] as well as the Total Variation (TV) model 
[6,7]. Although effective, the methods produce piecewise 
constant images, often giving “blocky” results. The Perona-
Malik equation e.g behaves as a backwards heat equation and 
instantly creates jumps (i.e. shocks) in unpredictable 
locations [8]. Such results occur either because of the PDE 
model which might be not representative of the image 
dynamical system or because of the discretization and 
numerical approximation schemes involved. The mainstream 
research on PDEs in image processing is focused mainly on 
improving the PDE models rather than on investigating the 
discretization / numerical approximation algorithms  

In an attempt to improve upon the piecewise constant 
images resulting from second order image diffusions, a 
number of fourth order diffusions have been suggested for 
image denoising mainly. Examples include the ‘Low 
Curvature Image Simplifier’ (LCIS) equation of Tumblin and 
Turk [8,9] as well as similar higher order PDE models [10]. 
Other mainstream such attempts include the imposing of 
constraints in the diffusion PDE models [11].  

Regarding the attempts for improvements in the second 
PDE main category, namely variational PDEs, herein 
numerically examined, the regularization approach [7] will be 
computationally reviewed in this paper. 

The above mentioned PDE models are the most important 
mainstream PDE models for image impainting, and the 

Discretization Schemes and Numerical Approximations of PDE 
Impainting Models and a comparative evaluation on novel real 

world MRI reconstruction applications 
 



contribution of this paper lies on the, from the engineering 
perspective, numerical analysis of all these models.  

The focus of the herein presentation is, however, the 
discretization and numerical approximation algorithms 
involved in these PDE models. Although the mainstream 
discretization algorithm is, as mentioned above the finite 
difference method, there are many variations of it [8] that will 
be herein reviewed as well as the more recent Radial Basis 
Functions (RBF) discretization schemes that will be analysed 
in the context of the above PDE models, along with other 
important discretization and numerical approximation 
models, including [12]-[15]. 

Apart from this numerical analysis overview of the most 
important PDE models in image impainting, the second major 
goal of the paper is to comparatively evaluate mainly 
anisotropic diffusion PDE models in innovative MRI 
reconstruction applications. Although, the performance of the 
second order diffusion PDE models mainly in image 
denoising is known to a certain extend, other recent models, 
like the fourth order diffusion PDEs have almost unknown 
performance.  The goal of the comparative study herein 
conducted is, therefore, first to evaluate newer more 
promising diffusion PDE models in novel MRI reconstruction 
problems. The real world complex task selected as a platform 
for evaluating the previously mentioned PDE models and the 
associated discretization schemes is the MRI reconstruction 
from sparsely sampled k-space. The goal in such a case is to 
reduce the measurement time by omitting as many scanning 
trajectories as possible. This approach, however, entails 
underdetermined equations and leads to poor image 
reconstruction due to Nyquist sampling theorem possible 
violations. 

The organization of this paper is as follows. In section II 
an overview of the principles and the concepts of the PDE 
models applied to image impainting tasks is presented. In 
section III special attention is paid to the discretization 
schemes and numerical approximations of such PDE models. 
Section IV illustrates a comparison between second and 
fourth order PDE models in the novel application of MRI 
reconstruction from sparsely sampled k-spaces. Finally, 
section V concludes the paper.  

II. OVERVIEW OF IMAGE IMPAINTING PDE MODELS 
FROM AN ENGINEERING POINT OF VIEW 

Partial Differential Equations have led to an entire new 
field in image processing and computer vision. They offer 
several advantages: 

 Better and intuitive mathematical modeling, connection 
with physics and better approximation to the Euclidean 
geometry of the problem. Deep mathematical results 
with respect to well-posedness are available, such that 
stable algorithms can be found.  

 They allow a reinterpretation of several classical 
methods under a novel unifying framework. This 
includes many well-known techniques such as Gaussian 

convolution, median filtering and morphological 
operations of dilation/erosion.  

 This understanding has also led to the discovery of new 
methods. They can offer more invariances than classical 
techniques, or describe novel ways of shape 
simplification, structure preserving filtering, and 
enhancement of coherent line-like structures.  

 The PDE formulation is genuinely continuous. Thus, 
their approximations aim to be independent of the 
unifying grid and may reveal good rotational invariance. 

Moreover, the majority and the most useful image analysis 
techniques are nonlinear, which is due to the inability of 
linear systems to successfully model important problems. The 
most known vision problem modeled via PDEs is that of 
multiscale analysis, which is a useful and often required 
framework for many tasks such as feature/ object detection, 
motion detection, stereo and multi- band frequency analysis. 

Consider a multiscale operator tT  mapping an input image 

f  to an output image ( )tT f , which results from the 

interaction of f  with some kernel function dependent on a 
continuous scale parameter 0t ≥ , i.e. 

( )( , ) ( , , )tT f x y u x y t= . The scale-space function 

( , , )u x y t  holds all the history of transforming f though all 

the scales and van be viewed as the output of tT  at any fixed 
scale t . The evolution of u in scale-space as a continuous 
dynamical system can be modeled by evolution PDEs of the 
type

( , , ) ( , , , , , , , , )t xx xy yy x yu x y t function u u u u u u x y t= and 
u  can be viewed as the solution of the PDF with ιnitial 
condition ( , ,0) ( , )u x y f x y= . 

The most characteristic PDEs for Image Impainting are: 

A. Linear heat-diffusion PDE.  

The most investigated PDE method for smoothing images 
is to apply a linear diffusion process for modeling Gaussian 
scale-space [16]. The convolution of an image with a 
Gaussian function of increasing variance is equivalent from a 
physical point of view with linear diffusion filtering. The 
connection of Gaussian convolution and linear diffusion 
filtering extends its limits to multiscale analysis. When there 
is not clear in advance which is the right scale, it is desirable 
to have an image representation at multiple scales. Diffusion 
could be thought as a physical process that equilibrates 
concentration differences without creating or destroying 
mass. The equilibration property is expressed by Fick’s law: 

which states that a concentration gradient u∇  causes a 
flux j , aiming to compensate the gradient. The relation 
between u∇  and j  is described by the diffusion tensor D , 
a positive definite symmetric matrix. The case where u∇  and 
j  are parallel is called isotropic. Then the diffusion tensor 

uDj ∇⋅−=  (1) 



may be replaced by a positive scalar-valued diffusivity g . In 
the general anisotropic case, u∇  and j  are not parallel.  

The observation that diffusion does only transport mass 
without destroying it or creating new mass is expressed by 
the continuity equation: 

)( jdivut −=∂  (2) 
where t denotes the time. By connecting Fick’s law with 

the continuity equation we end up with the diffusion 
equation: 

)( uDdivut ∇⋅=∂  (3) 
Equation (3) appears in many physical transport processes. 

In image processing we may identify the concentration with 
the gray value at a certain location.  

B. Anisotropic Diffusion PDE Models 

Since linear filtering causes edge blurring and linear 
shifting, the development of anisotropic nonlinear diffusion 
PDEs for multiscale directional image smoothing and edge 
detection was motivated. Perona and Malik ([4]) proposed a 
nonlinear diffusion method for avoiding the blurring and 
localization problems of linear diffusion filtering (hence tT  
nonlinear). This Perona-Malik scheme appears to be the finite 
differences discretization of a nonlinear PDE not followed by 
a theory of well-posedness. It was known that, despite its 
success at its intended purpose the scheme is very sensitive to 
the presence of noise and the choice of parameters such as the 
resolution of the digital image - a fact intimately connected 
with the lack of a continuum PDE theory. The work of Lions 
et al. [17] replaced the Perona-Malik scheme with one that 
has all the desirable characteristics of the original, as well as 
a rigorously established continuum limit. A scale – space is 
an image representation at a continuum of scales, embedding 
the image into a family of gradually simplified versions of it 
[17]. The practical implication is much more stable behavior 
with respect to the presence of noise and different resolutions. 

Computationally, solving the modified Perona-Malik 
anisotropic diffusion equation, mainly following Rothe's 
approximation in time and finite element method in space, 
involves the PDE 

u_t - div ( g( |grad G_sigma * u|) grad u ) = f (u_0 - u) 
together with zero Neumann boundary conditions and initial 
condition representing the processed image. Here, g(s) tends 
to 0 for s tends to infinity. It causes the selective smoothing 
of the image regions and keeping of the edges on which the 
'gaussian gradient' is large (G_sigma is smoothing kernel of 
the convolution). Such image analysis is included in the so-
called nonlinear scale space theory. 

C. Differential Morphology PDE Models 

Independently from the Gaussian scale-space ideas and 
their anisotropic/nonlinear versions, nonlinear PDEs were 
developed to model multiscale morphological dilations/ 
erosions or distance propagation in images [18]-[21]. These 

morphological PDEs are related to a broader classes of 
nonlinear PDEs that can model nonlinear dynamics in image 
analysis. The PDEs governing multiscale morphology and 
curve evolution are of Hamilton-Jacobi type and are related 
to the eikonal equation of optics and are solved via weighted 
distance transforms, which are bandpass slope filters. These 
slope filters may be implemented sequentially and in parallel. 

Two-dimensional max/min-sum nonlinear difference 
equations model the space dynamics of morphological 
systems and are related to numerical solutions. Moreover, 
nonlinear signal transforms, called slope transforms, can 
analyze morphological systems in a transform domain, in a 
way conceptually similar to the application of Fourier 
transform to linear systems. 

D. Variational PDE Models 

The variational approach to the image denoising problem 
seeks to exhibit the "restored" image as the minimizer of a 
functional defined over the space of all images. The first task 
is clearly to decide which space of functions to take images 
from. For example, Sobolev spaces are ill suited for this 
purpose since their elements cannot have discontinuities. 
Such discontinuities need to be allowed because one of the 
most important features of images, namely "edges" 
correspond squarely to this type of behavior.  

A variational approach has been proposed [5] for the 
solution of the image segmentation problem, where the 
segmentation is obtained by finding the minimizer of an 
energy, given an original image. The correct space of 
functions for minimizing the energy, turns out to be a subset 
of functions of bounded variation. The Mumford-Shah model 
is a non-typical variational problem, whose analysis led to a 
wealth of new mathematics. Numerical implementation of the 
Mumford-Shah model has also been a subject of intense 
mathematical research. The energy is very difficult to handle 
since it requires minimization over subsets. The work of L. 
Ambrosio and V. M. Tortorelli [1] has rigorously shown how 
to approximate it in the sense of Gamma convergence by 
elliptic functionals. In a different vein, the work of T. Chan 
and L. Vese [1] has shown how the level set method of S. 
Osher and J. Sethian can be effectively utilized in the 
minimization of these types of energies.  

Another successful example of the variational and PDE 
method is the Total Variation (TV) minimization [6]. An 
improved version of the latter technique that is based on the 
Connectivity Principle is the Curvature Driven Diffusions 
(CCD) inpainting scheme [3,22]. 

III. METHODS FOR PDEs NUMERICAL SOLUTION 
AND DISCRETIZATION 

The numerical solution of partial differential equations 
(PDEs) has been dominated by either finite difference 
methods (FDM), finite element methods (FEM) and finite 
volume methods (FVM). These methods can be derived from 
the assumptions of the local interpolation schemes. These 



methods require a mesh to support the localized 
approximations; the construction of a mesh in three or more 
dimensions is a non-trivial problem. Typically with these 
methods only the function is continuous across meshes, but 
not its partial derivatives.  

In practice, only low order approximations are used 
because of the notorious polynomial snaking problem. While 
higher order schemes are necessary for more accurate 
approximations of the spatial derivatives, they are not 
sufficient without monotonicity constraints. Because of the 
low order schemes typically employed, the spatial truncation 
errors can only be controlled by using progressively smaller 
meshes. The mesh spacing, h, must be sufficiently fine to 
capture the functions of the partial derivative behavior and to 
avoid unnecessarily large amounts of numerical artifacts 
contaminating the solution. Spectral methods while offering 
very high order spatial schemes typically depend upon tensor 
product grids in higher dimensions [23]. 

The last decade the idea of using meshless methods for the 
numerical solution of PDEs has received much attention [24]-
[25] and methods based on wavelets [26]-[27]. The 
underlying idea with meshless methods is the wish to design a 
numerical algorithm for PDEs without requiring a mesh as in 
FEM and similar methods. 

A. Solving PDEs with Radial Basis Functions (RBF) 

The idea of solving numerically PDEs based on Radial 
Basis Functions (RBFs) mostly have dealt with elliptic 
problems, although some efforts have been made to solve 
time dependent parabolic or hyperbolic problems 

When RBFs were first introduced to scattered data fitting 
and to numerical solution of PDEs [23]. This was done in the 
form globally supported RBFs and specifically of 

multiquadrics (MQ) 2 2( )r r cφ = +  of thin plate splines 
2( ) logr r rφ = , or Gaussians 

2 2

( ) c rr eφ −= , where 

r x=  with 0c ≠ is a parameter.  
For the solution of the scattered data fitting problem [28] 

an RBF based expansion of the form 

( ) d

2
1

( )  ,    
n

j j
j

s x c x x xφ
=

= − ∈Ω ⊆∑  

and then, the coefficients jc  are determined by satisfying 
the interpolation conditions 

( )  ( ),    1, 2,...,i is x f x i n= =  

where f is a known function that generates the data to be 
fitted. There exists a trade-off principle, which says that the 
spectral convergence is achieved at the cost of instability.  

Moreover, gradient based methods are ill-conditioned, and 
converge rapidly only under certain restricted conditions. In 
addition, gradient methods pose the risk of being trapped in a 
local minimum, rather than in the global minimum.  

Galperin and Zheng [29] argue that all collocation 
methods are intrinsically ill conditioned. Ill-posed and badly 
formulated problems can possess-equivalent solutions that 
represent physical reality despite the mathematical 
nonexistence of an exact solution. Only Galperin, Pan, and 
Zheng [30] have used global optimization on a few limited 
problems, with extra-ordinary results.  

Although it is clear that the numerical solutions of PDE, 
ODE, integral, and integro-differential equations would 
greatly benefit from the global optimization, the major 
implementation impediment is the lack of robust multi-
parameter global optimization software. Unfortunately, 
gradient based methods are ill-conditioned, and converge 
rapidly only under certain restricted conditions. In addition, 
gradient methods pose the risk of being trapped in a local 
minimum, rather than in the global minimum. Ferrari and 
Galperin [31] have published a software package of a fast 
one-dimensional adaptive cubic algorithm. It is hopeful that 
fast multi-dimensional global optimization software packages 
would be developed soon.  

Therefore there are serious limitations to the applicability 
of global methods and for large dimension problems the 
solution should employ localization schemes ([32]). The 
localization of the basis functions leads to locally (compactly) 
supported RBFs. One of the most popular compactly 
supported RBFs has been proposed by Wendland ([32]) in 
order to use compactly supported RBFs in the context of 
scattered data fitting or to solve PDEs, an hierarchical 
strategy has been developed leading to a multilevel 
algorithm, in which residuals are fitted iteratively and are 
used to update the solution. Then, he computational 
complexity is held proportional to the number of points used 
at the computational mesh, while achieving at least linear 
convergence. The addition of an approximate smoothing is 
also needed that ensures superlinear convergence in an entire 
scale of Sobolev (or more generally Besov) spaces ([32]). 

B. Solving PDEs with Wavelets 

The wavelet approach and the associated multiresolution 
analysis has the following advantages ([27]): 
• provide nice approximation spaces ,j jV W  suitable for the 

computation of an approximate solution to problems in 
which small-scale structures are localized in space and 
whose location vary in time 

• leads to fast hierarchical algorithms with 
( log )O N N order of complexity, since multiresolution is 

the keystone for the design of fast algorithms and 
• characterized by nice properties that ensure efficient 

inversion. 
The strength of the wavelet-based approaches appears to 

be clear for the problems with many spatial scales, distributed 
unevenly over the domain.  

 

 



C. Solving PDEs with Multi Dimensional Wave Digital 
Filters (MD-WDFs) 

An alternative approach for simulating and solving PDEs 
in discrete space-time has been proposed by Fettweis and is 
based on properties of Kirchhoff networks [33]-[37]. This 
technique involves firstly finding a multi-dimensional lumped 
electrical network which represents the behavior of the linear 
or non-linear system. From this network, a discrete-time 
equivalent is developed in a set of computational nodes 
represented by a multi-dimensional wave digital (MDWD) 
filter. Those computational nodes can not be mapped one to -
one to processor elements. A Locally Parallel-Globally 
Sequential approach may be used for the partitioning of the 
set of nodes in blocks and the final efficient implementation 
of the MDWD model [38]. 

From a computational point of view, this method allows a 
very great level of parallelism because each point in the n-D 
grid can be updated simultaneously if sufficient computing 
resources are available. Generally, this approach can be 
applied to problems with finite propagation speed, i.e. 
systems described by sets of hyperbolic partial differential 
equations. This represents a large range of problems. Elliptic 
and Parabolic PDEs can be dealt with MD-WDFs too, after 
some modifications to the equations. This technique has been 
successfully applied to the solution of wave problems, like 
Maxwell's equations, fluid, acoustical, and transmission-line 
problems, but not to image processing yet. 

The main distinct advantages of an MDWD model are: 
 High accuracy due to the use of the WDF structure, 

which is known to have low roundoff noise 
characteristics [33] 

 Internal multi-dimensional passivity (reflecting the 
passivity of the system to be modeled) which guarantees 
numerical robustness,  

 Guaranteed numerical stability properties required 
 Generation of a 2nd order difference equation relating the 

value of a point on the grid to previous values of nearest-
neighbor grid points (locality property).  

 The use of massive parallelism. 
while its limitations are: 

 In general it induces a non standard (non-rectangular) 
sampling grid into the simulation space 

 It is not directly applicable to parabolic and elliptic PDEs 

IV. EXPERIMENTAL STUDY 

An experimental study has been conducted in order to 
evaluate the diffusion PDE (the 2nd order model of Perona-
Malik [4] and the 4th order model in [10]), out of the models 
outlined in sections II and III above, when applied to the 
novel application of MRI reconstruction from sparsely 
scanned k-spaces. A thorough experimental study of the 
discretization schemes and PDE numerical approximation 
techniques is under the way by the authors regarding the 
same reconstruction task as well as different real world MRI 
reconstruction problems, including reconstruction of 

compressed MRI and reconstruction of MRI images when 
communicated through AWGN channels with fading effects. 
In the herein limited study, however, the second as well as 
the fourth order diffusion PDEs are evaluated. The methods 
involved have been applied to an MRI image database which 
has been downloaded from the Internet, namely, the Whole 
Brain Atlas http://www.med.harvard.edu/AANLIB/ 
home.html (copyright © 1995-1999 Keith A. Johnson and J. 
Alex Becker). These images have 256 by 256 dimensions. 
The k-space data for these images have been produced by 
applying the 2D FFT to them. Radial and spiral trajectories 
have been used to scan the resulted 256 X 256 complex array 
of k-space data. In the case of radial scanning 4 X 256 = 1024 
radial trajectories are needed to completely cover k-space. On 
the other hand, in the case of spiral scanning 60 spirals are 
enough for attaining a good image reconstruction. In order to 
apply the PDE techniques involved in this study, the k-space 
has been sparsely sampled using 128 only radial trajectories 
in the former case and 30 only spiral trajectories in the latter. 

Moreover, the simplest “interpolation” approach, namely 
filling in the missing samples in k-space with zeroes and then 
reconstructing the image, has been invoked.  These methods 
(2nd and 4th order PDEs as well as the zero-filling based 
reconstruction) have been implemented in the MATLAB 
programming language and all simulations have been carried 
out using the MATLAB programming platform.  

Concerning the measures involved to quantitatively 
compare the performance of the various interpolation 
techniques, we have employed the usually used Sum of 
Squared Errors (SSE) between the original MRI image pixel 
intensities and the corresponding pixel intensities of the 
reconstructed image as well as the RMS error in dB.  

The quantitative results obtained by the different 
interpolation methods involved are outlined in table 1.These 
results show a superiority of the fourth order PDE in terms of 
MRI image reconstruction performance. 

Test  Sam
pled  

zero-filled 
reconstruction 

2nd order dif-
fusion PDE [4] 

4th order PDE 
model in [10] 

Picture Tra-
jecto
ries 

SSE dB SSE dB SSE dB 

tc1  128 
rad. 

3.71 
E3 

15.26 3.28E3 16.57 2.32E3 18.44 

tc1  30 
spir. 

1.61 
E4 

3.76 9.87E3 8.02 8.35E3 9.78 

tl4  128 
rad. 

2.49 
E3 

15.51 1.60E3 18.82 0.9E3 19.23 

tl4  30 
spir. 

1.03 
E4 

4.11 5.34E3 8.9 4.21E3 10.56 

dg1  128 
rad. 

3.38 
E3 

10.04 2.42E3 12.45 1.64E3 12.77 

038 128 
rad. 

2.47 
E3 

14.32 1.39E3 18.13 0.95E3 18.32 

Table 1. The quantitative results with regards to reconstruction 
performance of the various methodologies involved  
 



 
Fig.1. The 4th order PDE model reconstructed image showing a 
normal brain slice 38- (http://www.med.harvard.edu/AANLIB/cases/ 
caseM/mr1/038.html), the zerofilled image reconstruction and the 2nd 
order diffusion PDE reconstructed image 

V. CONCLUSIONS AND FUTURE TRENDS 

A critical overview of the PDE models applied to image 
impainting problems and their most prominent discretization 
schemes and numerical approximations is herein presented 
from an engineering perspective. Additionally, a limited 
experimental study concerning the novel application of PDE 
models in MRI reconstruction from sparsely sampled scans is 
herein considered. A detailed experimental study on this as 
well as on other real world innovative applications of PDE 
models in MRI reconstruction is under the way by the 
authors. Moreover, the application of the MD-WDF approach 
in numerically approximating PDEs in MRI reconstruction is 
the major future goal of the authors. 
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