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Abstract

Often, in dynamical systems, such as farmer’s crop
choices, the dynamics is driven by external non-
stationary factors, such as rainfall, temperature, and
economy. Such dynamics can be modelled by a non-
stationary Markov chain, where the transition proba-
bilities are logistic functions of such external factors.
We investigate the problem of estimating the param-
eters of the logistic model from data, using conjugate
analysis with a fairly broad class of priors, to accom-
modate scarcity of data and lack of strong prior expert
opinions. We show how maximum likelihood methods
can be used to get bounds on the posterior mode of
the parameters.

Keywords. logistic regression, Markov chain, robust
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1 Introduction

We wish to accurately model agricultural land use,
that is, to predict what crop is grown in any particular
field. Usually, farmers follow set patterns of succes-
sive yearly crop choices in order to preserve nutrients
in the soil. For example, they may have a 3 year cy-
cle, in which they, under normal circumstances, grow
wheat for two years, and then leave the field empty
for the third year. A very simple model for such crop
choices on any particular field is a Markov chain (see
for instance [4, 3]), where the state at time i is the
crop choice at year i. Such a model makes a simplify-
ing assumption, namely that crop choice in any given
year only depends on crop choice in the previous year.

However, crop choices are not only affected by crop
choices of the previous year(s): they are also affected
by various environmental and economical conditions.
In an earlier study, Luo [10] identified some of the
most important factors as rainfall, temperature, profit
margin, and soil type. To model the effect of these
variables on crop choice, in this paper, we propose a

logistic regression model for the crop choice transition
probabilities. For simplicity, in this paper, we only
investigate the impact of rainfall on a simple binary
crop choice: wheat, or something else. Generalisation
to more than one regressor and to more than two crop
choices will be the subject of another paper.

A key challenge with any regression model is to esti-
mate its parameters. First, following [5], we identify a
class of conjugate priors for our model. Next, we fol-
low a similar approach to that of the imprecise Dirich-
let model [13]: we identify a reasonably vacuous set of
conjugate priors, and calculate posterior bounds. A
benefit of this approach is that it can also incorporate
expert opinion, which will be very useful when study-
ing crop types that are uncommon, such as oats. Our
model is thus designed to handle situations in which
data is scarce and in which prior expert opinion may
be lacking.

The novel contributions of this paper are:

1. We present a first step at including imprecision in
non-stationary Markov chains influenced by non-
stationary random variables.

2. We propose a novel approach to imprecise logistic
regression, based on conjugate analysis.

3. The use of maximum likelihood methods for ap-
proximate Bayesian inference in logistic regres-
sion, to arrive at fast algorithms when dealing
with sets of priors, is new, even though relatively
obvious.

The paper is structured as follows. Section 2 intro-
duces the model. Section 3 describes the conjugate
prior and posterior distributions, discusses the param-
eters of the model and their interpretation. Section 4
explains how we can use sets of distributions to ob-
tain posterior bounds. Section 5 has an example. Sec-
tion 6 concludes the paper, and details future areas of
research.
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Figure 1: A Markov chain for crop rotations.

2 Logistic Model

We model crop rotations as a non-stationary Markov
chain, as depicted in Figure 1.

The model has two states: either our current crop is
wheat, which we denote as 1, or our current crop is
not wheat, denoted as 0. The transition probabili-
ties in the Markov chain only depend on the previous
crop grown and the rainfall—which is where the non-
stationarity comes from, as rainfall may change over
years. We denote this by:

πy(x) := P (Yi+1 = 1|Yi = y,Xi = x) (1)

for all y ∈ {0, 1} and x ∈ R, where Yi is the previ-
ous crop choice, and Xi is the rainfall recorded just
before the planting of crop Yi+1. Note that Xi is not
assumed to be part of the state space of the Markov
chain, and is simply a non-stationary random variable
influencing the transition probabilities.

The impact of rainfall on these transition probabilities
is typically either monotonically increasing, or mono-
tonically decreasing. Therefore, a logistic regression
model for πy(x) seems fairly reasonable:

πy(x) =
eαy+xβy

1 + eαy+xβy
. (2)

where αy and βy are parameters of the model.

For example, when it rains a lot, farmers are usually
more likely to grow wheat, if the previous crop grown
was also wheat; see Figure 2. To produce Figure 2,
we used maximum likelihood to fit a logistic regres-
sion curve to some actual data when the previous crop
grown was wheat—in fact, the data is shown in Ta-
ble 3 for y = 1, and will be explained further in the
paper. Note that the relationship is actually reversed
if the previous crop is not wheat (y = 0).

Also note that the data used here is quite limited, as
we used only 10 observations. In reality, wheat versus
non-wheat will not be an issue as wheat is a very com-
mon crop. However, some crop types, such as oats,
are very rare, and will suffer from scarcity of data.
For actual applications, our model will be appropri-
ate to handle such crop types specifically. Here, we
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Figure 2: Logistic regression of the probability of
growing wheat against rainfall, when the previous
crop grown was wheat.

chose wheat versus non-wheat because that data was
readily available, but of course other crop types will
be investigated in the future, including rare ones.

We also assume that we have some model for the re-
gressor X, say a probability density fγ(x) with pa-
rameter γ.

For further details about logistic regression, see for
instance [1].

3 Parameter Estimation

3.1 Data

We now wish to estimate the parameters of the model,
given some data. We have recorded crop transitions
and rainfall of a number of fields over a number of
years. Specifically, we have ny(x) observations where
the previous crop choice was y and rainfall was x—
obviously, ny(x) will be zero at all but a finite number
of x ∈ R. Of these ny(x) observations, the crop choice
was 1 in ky(x) cases.

Because we effectively have two separate logistic re-
gression models—one for y = 0 and one for y = 1—it
makes sense to split our data into two sets accord-
ingly. Table 1 tabulates the full data set. Table 2
tabulates the same data, but split according to the
value of y.



current current
previous crop crop

crop rain total count
y x ny(x) ky(x)

1 46 1 0
0 52 1 0
0 38 1 1
1 30 1 1
1 37 1 0
...

...
...

...

Table 1: Crop rotation data.

previous
y = 0

current current
crop crop

rain total count
x n(x) k(x)

52 1 0
38 1 1
...

...
...

previous
y = 1

current current
crop crop

rain total count
x n(x) k(x)

46 1 0
30 1 1
37 1 0
...

...
...

Table 2: Crop rotation data split by y.

3.2 Likelihood

Our inspiration is the work by Chen and Ibrahim
[5], who propose a conjugate prior distribution of the
form:

exp

(
m∑
i=1

s
[
ti(α+ xiβ)− ln(1 + eα+xiβ)

])
(3)

where ~x = (x1, . . . , xm) are the observed locations of
the regressor, α and β are parameters of the logistic
model (as in Eq. (2)), and s and ~t are hyperparame-
ters. However, our notation is simpler if we work di-
rectly with the count functions ny(x) and ky(x) which
are defined for all x ∈ R, rather than having to enu-
merate over observed locations explicitly.

Specifically, in terms of ny(x) and ky(x), our likeli-
hood is:

Ly(αy, βy, γy|ny, ky) = py(ky|ny, αy, βy)f(ny|γ) (4)

where
f(ny|γ) =

∏
x∈R

fγ(x)ny(x) (5)

and

py(ky|ny, αy, βy)

=
∏
x∈R

(
ny(x)

ky(x)

)
πy(x)ky(x)(1− πy(x))ny(x)−ky(x).

(6)

The above products over x ∈ R are well defined: be-
cause ky(x) and ny(x) are zero at all but a finite num-
ber of x, all but a finite number of factors are equal
to one.

Because the likelihood is a product of a function of γ
and a function of (αy, βy), we can separate our infer-
ence procedure accordingly. In the following, we will
concern ourselves with inference about (αy, βy) only,
and leave inference about γ to another paper.

Note that we have subscript y everywhere. To keep
notation readable, we will drop it in the remainder of
this section. So, we can write:

p(k|n, α, β)

=
∏
x∈R

(
n(x)

k(x)

)
π(x)k(x)(1− π(x))n(x)−k(x) (7)

For conjugate analysis later, we rewrite this in canon-
ical form [2, p. 202, Definition 4.12], which, after some
manipulations, yields:

∝ exp

(∑
x∈R

k(x)(α+ xβ)− n(x) ln
(
1 + eα+xβ

))
(8)

up to a normalisation constant that is a function of x
only. The above sum over x ∈ R is well defined, be-
cause k(x) and n(x) are zero at all but a finite number
of x.

3.3 Conjugate Prior and Posterior

Following [5, p. 470, Eq. (6.1)], we can now simply
define a conjugate prior [2, p. 266, Proposition 5.4]
for logistic regression:

f0(α, β|s, t)

∝ exp

(∑
x∈R

s(x)
[
t(x)(α+ xβ)− ln

(
1 + eα+xβ

)])
,

(9)

where s and t are non-negative functions on R such
that s(x) = t(x) = 0 for all but a finite number of
x ∈ R, and 0 ≤ t(x) ≤ 1 for all x ∈ R.

Writing the posterior distribution down is a simple
task [2, p. 269, Proposition 5.5]. We simply multiply



Eq. (8) and Eq. (9), to obtain:

f(α, β|k, n, s, t)
∝ f0(α, β|s, t)p(k, n|α, β) (10)

∝ exp

(∑
x∈R

(s(x)t(x) + k(x))(α+ xβ)

− (n(x) + s(x)) ln
(
1 + eα+xβ

))
(11)

It is clear the prior distribution and posterior distri-
bution are of the same family:

f(α, β|k, n, s, t) = f0(α, β|σ, τ) (12)

where

σ(x) := s(x) + n(x), and (13)

τ(x) :=
s(x)t(x) + k(x)

s(x) + n(x)
. (14)

We now study this family in a bit more detail.

3.4 Interpretation of Hyperparameters

A key problem we are faced with is the choice of prior
hyperparameters s(x) and t(x). Ideally we want a
direct interpretation of the parameters. Eqs. (13)
and (14) show that, as usual, the hyperparameters
can be interpreted as a prior virtual sample, with s(x)
observations at X = x, s(x)t(x) of which are wheat
(Yi+1 = 1). The implications of such specification
may however not be entirely clear to an expert, and
therefore it seems more appealing, at least to us, to
relate the hyperparameters to the prior predictive in-
stead, as is commonly done for the regular exponen-
tial family through a famous result by Diaconis and
Ylvisaker [6, Theorem 2].

To apply [6, Theorem 2], the number of parameters
must be equal to the dimension d of the space Rd in
which the hyperparameter t lives. Therefore, if we
relax the model by replacing α+xβ with an arbitrary
function θ(x)—i.e. if we were to drop the assumption
that π(x) has a logistic form—then [6, Theorem 2]
applies, and t(x) is precisely the prior prediction for
π(x) (see [5, Eqs. (2.4) and (2.5)]).

For our actual model, however, there are only two
parameters to estimate (α and β), but unfortunately,
the hyperparameter t effectively lives in Rd, where d is
the number of x where s(x) is non-zero. Specifically,
although we have conjugacy, it is very easy to see
that, in general, the prior predictive π̂0(x) is not equal
to the hyperparameter t(x), i.e. t(x) is not a prior
expectation for π(x), unless d = 2.

We can still arrive at some sort of interpretation for
t(x) as follows. Inspired by [6, Theorem 2], by the
usual properties of integration and densities:∫∫

R2

∂

∂α
f0(α, β|s, t) dα dβ = 0 (15)∫∫

R2

∂

∂β
f0(α, β|s, t) dα dβ = 0 (16)

These equations yield:∑
x∈R

s(x)t(x) =
∑
x∈R

s(x)π̂0(x) (17)∑
x∈R

xs(x)t(x) =
∑
x∈R

xs(x)π̂0(x) (18)

where

π̂0(x) := P (Yi+1 = 1|Yi = y,Xi = x, s, t) (19)

=

∫∫
R2

π(x)f0(α, β|s, t) dα dβ (20)

Note that we should write π̂0y(x) but we omit the
subscript y for ease of notation as usual.

These equations show that t(x) in some sense
‘matches’ π̂0(x), the more so for values of x where
s(x) is larger. Of course, for any given prior specifi-
cation of the function π̂0, even for fixed s, there will
be many different functions t that satisfy Eqs. (17)
and (18), so the choice of t(x) is not uniquely deter-
mined by our prior expectation about π(x).

As mentioned, there is however a special case where
the conditions of [6, Theorem 2] are satisfied, and so
where we do get a direct interpretation of t(x). This
occurs when there are only two points {x1, x2} where
s(x) is non-zero. In this case, Eqs. (17) and (18) do
have a unique solution, namely:

t(x1) = π̂0(x1) and t(x2) = π̂0(x2) (21)

regardless of s(x1) and s(x2) (of course, this also fol-
lows directly from [6, Theorem 2]). Whence, for sim-
plicity and interpretability, this is the case that we
will consider in practical examples later. In this case,
as we shall see, s(x1) and s(x2) also carry their usual
interpretation, in determining the speed by which our
posterior will move away from our prior.

4 Inference

4.1 Posterior Transition Probability

For inference, we are mostly interested in the posterior
transition probability:

π̂(x) := P (Yi+1 = 1|Yi = y,Xi = x, k, n, s, t) (22)

=

∫∫
R2

π(x)f(α, β|k, n, s, t) dα dβ (23)



where it is worth recalling that π(x) is a non-linear
(logistic) function of α and β. Specifically, taking into
account our uncertainty about α and β as given by the
posterior, we are interested in evaluating Eq. (23).
The challenge now is the evaluation of the integral.
One option is to directly numerically integrate. How-
ever, as eventually, we want to use sets of distribu-
tions, this may not necessarily be the most sensible
route to take.

Therefore, we may prefer to rely on faster approxi-
mations of the integral. A first crude idea would be
to approximate the prior (Eq. (9)) by a multivariate
normal distribution; Chen and Ibrahim [5] mention
that for large sample sizes this approximation yields
the exact solution. Whilst the mean can be easily ap-
proximated through the mode, obtaining the covari-
ance structure is somewhat more difficult (a starting
point would be [5, Theorem 2.3]). Interestingly, there
are variational techniques for direct updating of the
mean and covariance structure [9], which means that
we would need to perform the multivariate normal
approximation only once, on the initial prior.

However, this approach still requires numerical inte-
gration. As just mentioned, when we move to sets
of priors, this might easily become computationally
intractable, as we will have to update, approximate,
and integrate, for every prior in the set. A more crude
but also much faster approximation would be to sim-
ply pretend that all probability mass is concentrated
at the mode of the posterior. It is relatively straight-
forward to show that the mode can be obtained by
solving the following system of non-linear equations
for α and β:

∑
x∈R

σ(x)τ(x) =
∑
x∈R

σ(x)π(x) (24)∑
x∈R

xσ(x)τ(x) =
∑
x∈R

xσ(x)π(x) (25)

where it is again worth recalling that π(x) is a non-
linear (logistic) function of α and β. To obtain an ap-
proximate value for π̂(x), we simply plug in the solu-
tion (α∗, β∗) into the expression for π(x) (see Eq. (2)):

π̂(x) ≈ eα
∗+xβ∗

1 + eα∗+xβ∗ . (26)

Although this approximation is obviously horribly
crude, we note that in fact it corresponds to the max-
imum likelihood estimate, where the data has been
augmented with pseudo counts. Hence, it reflects cur-
rent practice quite well, and arguably even improves
it, by allowing for additional prior information to be
taken into account.

Solving a system of non-linear equations is non-trivial.
However, Green [8] provides a Newton Raphson al-
gorithm specifically for the maximum likelihood esti-
mate of logistic regression. We can essentially recy-
cle algorithms like these to find the mode, simply by
adding some pseudo counts to the data to reflect our
prior.

4.2 Sets of Prior Distributions

We now want to propose sets of prior distributions, in
a similar vein to Walley’s imprecise Dirichlet Model
[13]. In this section, we study the inferences resulting
from an arbitrary but fixed prior function for s(x),
namely:

s(x) :=

{
s if x ∈ X ,
0 otherwise,

(27)

for some finite set X ⊆ R, and an arbitrary set of
prior functions T for t(x). We explain how to calcu-
late posterior bounds based on this set of priors, and
the observed data. Practical choices for reasonably
vacuous sets of prior distributions will be discussed
further in Section 5.

4.3 Posterior Transition Probability Bounds

For the above choice of s(x), Eqs. (24) and (25) can
be written as:

s
∑
x∈X

(π(x)− t(x)) +
∑
x∈R

(n(x)π(x)− k(x)) = 0,

(28)

s
∑
x∈X

x(π(x)− t(x)) +
∑
x∈R

x(n(x)π(x)− k(x)) = 0.

(29)

If we can solve the above equations for all t ∈ T, then
we obtain a set Θ∗ of solutions (α∗, β∗), one solution
for each t ∈ T. Each member of Θ∗ corresponds to an
estimate of the posterior transition probability as in
Eq. (26). Whence,

π(x) ≈ inf
(α∗,β∗)∈Θ∗

eα
∗+xβ∗

1 + eα∗+xβ∗ , (30)

π(x) ≈ sup
(α∗,β∗)∈Θ∗

eα
∗+xβ∗

1 + eα∗+xβ∗ , (31)

are the desired lower and upper posterior approxima-
tions of the transition probability.

5 Example

As discussed in Section 3.4, there is a direct interpre-
tation of t(x) when X = {x1, x2}. We will explore
this case here.



previous
y = 0

current current
crop crop

rain total count
x n(x) k(x)

18 1 1
68 1 1
24 1 1
19 1 1
99 1 0
16 1 0
20 1 0
119 1 0
102 1 0
87 1 1
17 1 0
29 1 0

previous
y = 1

current current
crop crop

rain total count
x n(x) k(x)

72 1 1
105 1 1
6 1 0

104 1 1
77 1 0
69 1 0
15 1 0
63 1 0
35 1 1
25 1 0

Table 3: Actual crop rotation data split by y.

We take a set of functions for t(x) and a constant s.
The most vacuous choice would be:

Tv = {t ∈ RR : t(x) = 0 when x /∈ X ,
0 < t(x) < 1 when x ∈ X} (32)

Solving the optimisation problem (Eqs. (30) and (31))
over Tv is rather involved. For a simple quick analy-
sis, we restrict ourselves to the extreme points of Tv,
namely:

T′v = {t ∈ RR : t(x) = 0 when x /∈ X ,
(t(x1), t(x2)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}} (33)

We will use data collected from actual fields to illus-
trate the ideas we have talked about. The data is
shown in Table 3. It consists of 22 observations of
crop transitions [12], and the corresponding rainfall
recorded in the month of planting for each crop [11].

Figure 3 shows π̂(x) for each element of T′v, where we
have specified s = 2, x1 = 30, and x2 = 80, and we
are looking at the model for y = 1. Each line corre-
sponds to one estimate. The grey region represents
the posterior estimates from the most vacuous set Tv
(we actually used a 21×21 grid over the unit square).
As can be seen π and π are very closely matched in
both cases (almost shockingly so!), so it seems very
reasonable to use only T′v instead of the full set Tv,
for ease of computation.

Note that the case t1 = 1, t2 = 0, goes against the
data, and corresponds to a non-natural shape for π
in this problem. Thus, Figure 3 also highlights the
importance of including constraints on π which follow
from prior expert opinion, for instance by removing
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Figure 3: π̂(x) based on Tv and T′v for y = 1.

those values from Tv for which π violates those con-
straints. A less vacuous prediction for larger values of
x would result. Of course, other techniques for learn-
ing under order constraints, which have been studied
for instance in the context of Bayesian network learn-
ing [7], could also have some potential here.

Our choice for x1 and x2 is also important. In Fig-
ure. 4, we use x1 = 10 and x2 = 100, which lean more
towards the extremes of the range of observations in x.
This changes our inferences quite substantially. The
largest impact is observed for the case t1 = 1, t2 = 0,
and as we just saw, removing such unnatural values
for t from Tv might be reasonable. In any case, this
also demonstrates the importance of choosing x1 and
x2 sensibly, particularly under the vacuous model Tv.
For example, a sensible choice would be to take for x1

the first quartile and for x2 the third quartile, of the
observations in x (or of our prior distribution for x).

The inference also depends on the the value of s. As
in the imprecise Dirichlet model, smaller values of s
produce tighter bounds, as seen in Figure. 5.

6 Conclusion

In this paper, we proposed a new model for land use,
which aims to properly capture epistemic uncertainty
about crop rotations, in an interpretable, robust, and
efficient way. Thereby, we presented a first step at in-
cluding imprecision in non-stationary Markov chains
influenced by non-stationary random variables.

In a nutshell, starting from earlier work by Chen and



0 50 100 150 200
Rain

0.0

0.2

0.4

0.6

0.8

1.0

T
ra
ns
it
io
n
pr
ob
ab
ili
ty

t1 = 0 t2 = 0

t1 = 0 t2 = 1

t1 = 1 t2 = 0

t1 = 1 t2 = 1

Figure 4: The impact of changing x1 and x2.
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Figure 5: 3 different sets of π̂(x) for different values
of s.

Ibrahim [5], we proposed a new model for imprecise
logistic regression, using sets of conjugate prior dis-
tributions for a generalised linear model with logis-
tic link function, to get bounds on the probability of
growing wheat as a function of rainfall.

We investigated the interpretation of the hyperparam-
eters of the model, which turns out to be somewhat
non-trivial, unless the model is constrained in a very
specific way.

We care about robustness, because typically, for cer-
tain rare crop types, only a small amount of data is
available. This results in posterior probabilities which
are highly sensitive to prior specifications. By using
sets of priors, our approach allows us to draw accu-
rate robust inferences even from near-vacuous prior
knowledge about crop rotations.

Due to the non-linearity of our model, one might fear
that the updating process is highly complicated. We
proposed the use of maximum likelihood methods for
approximate Bayesian inference, effectively via data
augmentation, to arrive at fast algorithms when deal-
ing with sets of priors. Much to our surprise, it turns
out that using the set of extreme points in our prior
specifications still captures the posterior bounds ex-
tremely well. We suspect that this is due to the mono-
tonicity of the link function.

An obvious weakness of our analysis is the use of the
posterior mode as a very crude approximation to the
actual posterior expectation. However, the other op-
tions for evaluating the posterior expectation are com-
putationally far more complex, making a robust anal-
ysis over sets of parameter values infeasible, at least
in our initial attempts. Nevertheless, the use of the
posterior mode corresponds quite well to current prac-
tice: a standard technique for estimating the parame-
ters in logistic regression goes by maximum likelihood
estimation, and the posterior mode can be interpreted
as such.

Concerning the actual crop modelling, this work is
still in its infancy. We have yet to judge the effects
of the simplifying assumptions we have made, and we
still need to assess the validity of our model. We plan
to use the posterior bounds in conjunction with a pre-
dictive model for rainfall, to make predictions about
future crop distributions. We also plan to extend the
model to deal with multiple crop choices (i.e. more
than just wheat) and multiple regressors (i.e. not just
rainfall, but also economic factors).
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