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We present the first search for weakly interacting massive particles (WIMPs) using the back-
ground rejection capabilities of SuperCDMS *. A blind analysis of data from an exposure of
577 kg-days leads to an upper limit on the spin-independent WIMP-nucleon cross section of
1.2 x 107*2 cm? at 8 GeV. This result probes new parameter space for WIMP-nucleon scat-
tering cross section for light WIMPs with masses < 6 GeV/c? and is in tension with WIMP
interpretations of recent experiments.

The detection and identification of the dark matter in the Universe constitutes one of the
greatest challenges in modern Physics. A generic weakly interacting massive particle (WIMP)
is a well motivated candidate, as it can be produced in the right amount and searched for in
direct and indirect detection experiments. Recent excesses of events reported by CDMS IT (Si},
CoGeNT 3, CRESST-I14, DAMA ®, and possible indirect evidence from gamma rays from the
galactic centre %, can be interpreted in terms of WIMPs with mass in the 6-30 GeV/c? range.
Various theoretical constructions also provide WIMP candidates in this mass range 7891011

The direct search for light WIMPs is extremely challenging, since they produce only low-
energy nuclear recoils, forcing experiments to lower their analysis energy thresholds 1213:14,15,16,
Following this approach, low-energy recoils in the range 1.6-10 keV,,; (nuclear-recoil equivalent
energy) from the SuperCDMS experiment at the Soudan Underground Laboratory !” have been
analysed, exploiting the excellent background discrimination capabilities of the new detectors .

SuperCDMS at Soudan is an upgrade to the Cryogenic Dark Matter Search (CDMS II) 8
with new detector hardware, operating in the same location with the same low-radioactivity
setup ' since March 2012. The target consists of five towers, with three 0.6-kg cylindrical
germanium crystals each. These detectors (iZIPs) are instrumented with interleaved ionization
and phonon sensors on their flat faces. From the measured ionization and phonon energy,
we derive the recoil energy and the “ionization yield,” the ratio between ionization and recoil
energy. This is a key quantity to discriminate nuclear recoils (expected from WIMP interactions)
from electron recoils (expected from most backgrounds), since nuclear recoils exhibit a reduced
ionization yield compared to electron recoils. Moreover, the iZIP sensor layout greatly improves
the determination of a fiducial volume in the bulk, designed to reject events in the peripheral
regions of the detectors (which present a reduced ionization yield and pollute the signal region)?.
The fraction of the total phonon or ionization energy measured by the guard sensors is encoded
in “radial partition” parameter through which radial fiducialization is defined. Similarly, a “z
partition” parameter is constructed from the fraction measured by the sensors on each face and
used to define the z fiducialization.

The data presented here was recorded between October 2012 and June 2013 using the seven
detectors with the lowest trigger thresholds. The remaining detectors are used to reject events



which deposit energy in more than one detector (incompatible with WIMP interactions). Pe-
riods of abnormal detector behavior and elevated noise are removed from the analysis. After
accounting for these losses, the exposure is 577 kg-days. To prevent bias when defining the
event-selection criteria, all single-detector hits with recoil energies between a time-dependent
noise threshold and 10 keV,,, and with ionization energy consistent with nuclear recoils, were
removed from study, i.e. blinded. A distinct open set of data, containing 97 kg-days of exposure,
was constructed from periods following 252Cf calibrations.

The relation between the total phonon energy and the mean ionization energy of nuclear
recoils for each detector, as determined from 2°2Cf calibration data, is consistent with Lindhard’s
model. The nuclear-recoil band is defined by accepting events within 3o of the mean ionization
energy. The nuclear-recoil equivalent energy is constructed from the total phonon energy by
subtracting the contribution of Luke-Neganov phonons corresponding to the mean nuclear-recoil
ionization response for the respective total phonon energy.

Hardware trigger thresholds for each detector were adjusted several times during the WIMP
search. For each period of constant trigger threshold, the trigger efficiencies as functions of total
phonon energy were measured using '33Ba calibration data. Analysis thresholds are set to be
1o below the energy at which the detector trigger efficiency is 50% in periods of time for which
this quantity is above the noise threshold used in the data blinding, and equal to such threshold
otherwise. The combined efficiency is an exposure-weighted sum of the measured efficiency for
each detector and period, and is shown in the left-hand side of Figure 1.

Three levels of data-selection criteria have been used to identify triggered events as WIMP
candidates. A first data-quality cut rejects poorly reconstructed and noise-induced events, re-
moving also periods of abnormal noise and spurious triggers (for which the pulse shape is in-
consistent with that expected for real events). The second level (preselection) singles out event
configurations consistent with WIMPs, requiring single-scattered events that feature energies
within the 30 nuclear-recoil band and phonon partitions consistent with bulk nuclear recoils.
A loose fiducial volume, constructed from the ionization partitions, further restricts events to
be consistent with bulk nuclear recoils. Similarly, events near the detectors’ sidewalls are re-
jected by requiring the guard electrodes on both faces to be within 20 from the mean of the
baseline noise. Events coincident with the muon veto are also rejected. The final level of event-
selection (discrimination) uses a boosted decision tree (BDT) with four discriminators: the
total phonon energy, ionization energy, phonon radial partition and phonon z partition. A BDT
was trained for each detector using simulated background events and nuclear recoils from 2°2Cf
calibration weighted to mimic a WIMP energy spectrum, accounting for the selection criteria
acceptance. The BDT discrimination thresholds for individual detectors were chosen simulta-
neously to minimize the expected 90% confidence level (C.L.) Poisson upper limit of the rate
of passing events per WIMP exposure. The BDT was trained and optimized separately for 5,
7, 10, and 15 GeV/c? WIMPs. Events that pass any of the four WIMP-mass optimizations
are accepted into the signal region as candidates. The left-hand side of Figure 1 shows the
cumulative efficiency after applying each level of selection criteria and the analysis thresholds.

A background model was developed that includes Compton recoils from the gamma-ray
background; 1.1-1.3 keV X-rays and Auger electrons from L-shell electron-capture (EC) decay
of 67Zn, 68Ga, %®Ge and "'Ge; and decay products from 2'°Pb contamination on the detectors
and their copper housings. The right-hand side of Figure 1 shows the individual components
of the background model as a function of the 10 GeV/c? BDT discrimination parameter after
applying the preselection criteria. This background model was finalized prior to unblinding and
predicted 6.1Jj(1):é (stat.+syst.) events passing the BDT selection. Simulations of radiogenic and
cosmogenic neutrons predict an additional 0.098+0.015 (stat.) events. These estimates included
only known systematic effects. Because the accuracy in background modeling required for a full
likelihood analysis is difficult to achieve in a blind analysis of this type, the decision was made
before unblinding to report an upper limit on the WIMP-nucleon cross section.
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Figure 1 — Left) Cumulative efficiencies after sequential application of each stage of event selection. From top to
bottom, these are data-quality criteria, trigger and analysis thresholds, preselection criteria, and BDT discrim-
ination with 68% C.L. (stat. + syst.) uncertainty band. Right) Components of the background model passing
the preselection criteria, summed over all detectors. For comparison, a 10 GeV/c*> WIMP with cross section
6 x 107*2 cm? is shown on top of the total background. Events passing preselection criteria are overlaid showing
the statistical errors. The bottom plot shows the difference between the data and the background expectation.
Tan bars indicate the systematic uncertainty (68% C.L.) on the background estimate.

Upon unblinding, eleven candidates were observed, which are shown on the left-hand side of
Figure 2. This is consistent with the background prediction for most detectors, except for the
three high-energy events in detector T5Z3 (for which there is a probability of only 4 x 10~% to
observe this many background events). However, this detector has an ionization guard electrode
shorted to ground and, although the background model was developed to account for this, the
altered electric field may have affected the selection of background model templates, and thus the
background estimate. Otherwise, the background model has been found to reproduce correctly
most features of the true background, as evidenced in the right-hand side of Figure 1. The
systematic uncertainty is dominated by the uncertainty of the expected ionization of sidewall
events originating from 2°Pb and 21°Bi. P-value statistics comparing the data passing the
preselection criteria with the blind background model prediction range from 8-26% for the
BDTs trained to each of the four WIMP masses.

On the right-hand side of Figure 2 we show the 90% C.L. upper limit on the spin-independent
WIMP-nucleon cross section, calculated using the optimum interval method without back-
ground subtraction for standard halo assumptions. Statistical and systematic uncertainties
in the fiducial-volume efficiency, the nuclear-recoil energy scale, and the trigger efficiency were
propagated into the limit by Monte Carlo and are represented by the narrow gray band around
the limit. The limit is consistent with the expected sensitivity for masses below 10 GeV/c? as
shown by the green band in Figure 2. The discrepancy above 10 GeV/c? is due to the three
high-energy events in T5Z3, which are in tension with the background expectation. These results
strongly disfavour a WIMP interpretation of the CoGeNT excess, which also uses a germanium
target. Similar tension exists with WIMP interpretations of several other experiments, including
CDMS 1I (Si), assuming spin-independent interactions and a standard halo model. New regions
of WIMP-nucleon scattering for WIMP masses below 6 GeV/c? are excluded. This constitutes
the first search for WIMPs exploiting the full background rejection capability of SuperCDMS.
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Figure 2 — Left) Veto-anticoincident single-scatter events within the ionization-partition fiducial volume that pass
the data-quality selection criteria. Large encircled shapes are the 11 candidate events. Shaded regions (from
light to dark) are the 95% confidence contours expected for 5, 7, 10 and 15 GeV/c? WIMPs. The band of
events above the expected signal contours corresponds to bulk electron recoils, including the 1.3 keV activation
line at a total phonon energy of ~3 keV. High-radius events near the detector sidewalls form the wide band of
events with near-zero ionization energy. For illustrative purposes, an approximate nuclear-recoil energy scale is
provided. Right) The 90% confidence upper limit (solid black) based on all observed events is shown with 95%
C.L. systematic uncertainty band (gray). The pre-unblinding expected sensitivity in the absence of a signal is
shown as 68% (dark green) and 95% (light green) C.L. bands.
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