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Abstract 
Data-intensive analysis of massive open online courses (MOOCs) is popular. Researchers have 

been proposing various parameters conducive to analysis and prediction of student behaviour 

and outcomes in MOOCs, as well as different methods to analyse and use these parameters, 

ranging from statistics, to NLP, to ML, and even graph analysis. In this paper, we focus on 

patterns to be extracted, and apply systematic data analysis methods in one of the few genuinely 

large-scale data collection of 5 MOOCs, spread over 21 runs, on FutureLearn, a UK-based 

MOOCs provider, that, whilst offering a broad range of courses from many universities, NGOs 

and other institutions, has been less evaluated, in comparison to, e.g., its American counterparts. 

We analyse temporal quiz solving patterns; specifically, the less explored issue on how the first 

number of weeks of data predicts activities in the last weeks; we also address the classical 

MOOC question on the completion chance. Finally, we discuss the type of feedback a teacher 

or designer could receive on their MOOCs, in terms of fine-grained analysis of their material, 

and what personalisation could be provided to a student. 

Keywords: FutureLearn, MOOC, statistics, patterns, feedback. 

1. Introduction  

Online courses have been around for decades, yet often catered to a limited audience only. To 

address this scalability issue, massive open online courses (MOOCs) were developed. Tracing 

back to MIT's 2001OpenCourseWare initiative, MOOCs entered the modern age of successful 

commercialisation with Stanford's Coursera in 2011 [16]. MOOCs have become increasingly 

popular and their scale and availability make it possible to offer a diverse set of students from 

all over the world online courses. Thus, many MOOC providers, such as edX, Udacity, 

Coursera, FutureLearn and XuetangX, have started offering scalable online courses to the 

public. By the end of 2017, the number of MOOC providers has reached a total of 57, and the 

total number of MOOC students has become more than a hundred million1. 

Notwithstanding the unparalleled success of MOOCs, especially in terms of the thriving 

student enrolment, one of the more concerning aspects to date is the staggeringly low 

                                                      
1 https://www.mooclab.club/resources/mooclab-report-the-global-mooc-landscape-2017.214/ 
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participation and completion rate – a funnel with students “leaking out” at various points along 

the way of learning [4, 6]. Despite various studies conducted to investigate the links between 

behaviours and the completion [5, 18, 11], the race for finding predictors of completion, and, 

more importantly, early predictors, continues. 

In this study, we take advantage of the fine-grain resolution of the clickstream data – single 

actions, such as visiting a page and marking it as completed, or answering a quiz, associated 

with student ID (the unique and anonymous ID signed to a student) and timestamps – to depict 

student behavioural patterns over entire courses, and how this may affect their future behaviours 

and the chance of completion of the courses. In particular, this paper presents the results of 

analysing a unique large dataset of FutureLearn MOOC students over several runs, 

investigating a large amount of user behaviour and completion, to extract early factors that can 

predict user behaviour and completion in the later part of a course. Specifically, the paper 

focuses on addressing, at a large scale, or a large variety of courses on different topics, the 

following set of umbrella research questions, around students’ learning outcomes and 

behavioural patterns: 

RQ1: Is the behaviour in the first weeks influencing the behaviour of students in the last 

weeks of the course, regardless of course structure or topic? 

RQ2: Is the behaviour in the first weeks influencing the completion chance of a student, 

regardless of course structure or topic? 

2. Related Research 

The area of analysing ‘big data’ and predicting relationships based on it is one of the hottest 

topics of web-related research [3, 1], encompassing statistics, machine learning, natural 

language processing, a.o.. Most researchers in this area have been focusing on social data 

analysis [12, 21], although other fields have also thriving communities (e.g., medicine [17], 

a.o.). Whilst, traditionally, educational research does not involve such numbers, with the advent 

of the MOOCs [2], the interest in analysing ‘big data’ in education increased, spouting the 

emerging fields of learner analytics and educational data mining. Learning analytics collects 

and analyses data about learners and their contexts, to understand and optimise learning and its 

environments [10], often providing a visual output for learners, educators, designers or 

administrators. Educational data mining, instead, applies computerised methods, such as 

machine learning and data mining, to the enormous volume of educational data [14]. 

Recently, work based on statistics, machine learning (ML) and visualisation has focussed 

on analyses and predictions directly related to our current paper, as below. Lu et al. [15] extract 

a large number of features (19) to predict dropout, based on ML methods and support vector 

machines (SVM), from 5 courses (similarly to us, although they only analyse 1 run each) on 

Coursera. Qiu et al. [19] extract factors of engagement on XuetangX (China, partner of edX), 

on 11 courses, predicting grades, certificate earning with different methods (LRC, SVM, FM, 

LadFG); their performance is evaluated with area under the curve (AUC), precision, recall, and 

F1 score. Features used include demographics (gender, age, education, etc.), forum (number of 

replies, etc.), learning behaviour (chapters browsed, deadlines completed, time spent on videos, 

doing assignments, etc.); they interestingly use also temporal correlations between their factors 

for the predictions. We are looking also at engagement in a large-scale study, but we analyse 

completion and behaviour, not grades and certificates. Gardner and Brooks [9] discuss correct 

ways of applying predictive models in MOOCs; they evaluate models of student dropout; this 

is a longitudinal study, like ours, looking at 31 runs of 5 courses on Coursera, with 298,909 

learners; they conclude that models utilising clickstream features consistently outperform those 

using forum and quiz features. Whereas here, we focus only on quizzes for our analysis. 

Robinson et al. [20] use NLP to predict dropout on only 1 HarvardX course; language features 

are selected via the lasso logistic regression model; performance is evaluated with AUC. Our 

current study explores a different parameter (i.e., quizzes), in terms only of their quantity, for 

different categories of users, and, importantly, for different study weeks. Crossley et al. [8] do, 

in comparison to our current study, a much smaller-scale study (320 students, from only 1 

course on Coursera), predicting completion (defined as an overall grade of >=70%); they do 
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cohesion analysis with the TASA corpus on the forum discussions; they compare completers 

and non-completers based on a wide set of parameters; evaluate performance with recall, 

precision, and the F1 score; they show that collaborating students have a higher chance to 

complete. These are all interesting areas to explore, on a much wider scale, for future research. 

In [7] we study 6 FutureLearn courses with 23 runs overall, and find statistically relevant 

periods for registration of students, which can predict the likelihood of course completion. Here, 

we are analysing different parameters, to predict not only completion, but also behaviour of 

students. In [13] we investigate 2 FutureLearn courses with 6 runs in total, noticing that gender 

and education may influence students’ behaviours, in terms of comments posted, questions 

attempted and steps (pages) completed. The latter study is our inspiration for the RQs below, 

as, beside looking only at a limited number of courses, [13] did not further research how 

behaviour influences behaviour, or explore connections of behaviour to completion, as is 

done in our current paper. 

3. Methodology 

3.1. Study Setting 

MOOCs in FutureLearn are built upon weekly learning units2. Each of these units contains a 

number of learning blocks. These blocks can have one or more steps – the basic learning items. 

The latter can be articles, images, videos, which can include quizzes. Students can view (access) 

these steps and mark them as completed. Students can also add comments for each of these 

steps. Additionally, specifically for quizzes, students can have several attempts at each quiz 

containing several questions, till they arrive at the correct answer. 

3.2. Data 

All activities of the students are logged with their learner ID (of the student performing that 

activity) and a timestamp. We are analysing data from 5 MOOCs (all courses delivered via the 

FutureLearn platform by the University of Warwick from the start of their activity on 

FutureLearn (2013-2017), which have quizzes. These courses are of various subjects, ranging 

from literature to computer science to social sciences, as follows: ‘Babies in mind’, ‘Big Data’, 

‘Shakespeare and His World’, ‘Supply chains’, ‘The Mind is flat’. Each of these courses was 

delivered repeatedly, in consecutive years. These repeated deliveries are called runs, and we 

are analysing 21 runs in total. Overall, we analyse thus the activity of 218,795 learners, who 

accessed 3,007,789 materials, declared completed 2,794,578 steps, attempted 2,406,574 quiz 

questions, out of which 1,601,665 answers were correct. 

3.3. Research Question Interpretation 

Our umbrella research questions are intentionally kept broad, to cover the overall purpose of 

this research. For this paper, we interpret the first weeks or a course as the first half of a course 

(this means different things for different courses; e.g., it comprises weeks 1-2 for a 4-week 

course; weeks 1-4.5 for a 9-week course, etc.). Thus, the last weeks of the course represent here 

the other half of the course, although our main concern is the prediction of the last week, as 

well as the completion of the course.  

Behaviour is referring to questions answered, where we include the total number of 

attempts, wrong attempts as well as correct answers. 

Completion is analysed via 3 scenarios:  

• Scenario 1: 100% of the steps are completed; this means that students actually 

press on the ‘completed’ button;  

• Scenario 2: 100% of the steps are accessed;  

                                                      
2 FutureLearn terminology is highlighted in italics in this section. 
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• Scenario 3: 80% of the steps are accessed. 

Thus, based on the definitions above, the research questions can be rewritten as follows: 

RQ1a/b: Is the number of questions answered correctly in the first half of a MOOC 

influencing the number of questions answered correctly(a)/incorrectly(b) in the last half? 

RQ2.1a/b/c: Is the number of questions answered correctly in the first half of a MOOC 

influencing the chance of a student to achieve 100% completed steps (a)/ 100% accessed steps 

(b)/ 80% accessed steps (c)? 

RQ2.2a/b/c: Is the number of questions answered incorrectly in the first half of a MOOC 

influencing the chance of a student to achieve 100% completed steps (a)/ 100% accessed steps 

(b) / 80% accessed steps (c)? 

Due to the different nature of the MOOCs (e.g., some taking 4 weeks, others 9 weeks; 

some having quizzes every week, others skipping some of the weeks, quizzes being of different 

nature, difficulty and subject) across the 5 courses under investigation, we have considered it 

best to analyse the different courses in parallel, merging only the data from the different runs 

of each course. This way, we could both draw conclusions for all courses, as well as find 

specific characteristics for each course, importantly, allowing for predictions for future runs. 

Moreover, the methodology, as applied to the various subjects and diversity of MOOCs, is 

generic and can be applied elsewhere as well. 

3.4. Analysis 

To address the research questions raised in section 1, we compute the mean value () for the 

behaviour variables selected above (per run, per course, per weeks considered, per learner), 

their variance (σ2), as well as for the number of people in the different subgroups identified. To 

establish if the data is normally distributed, we use the Pearson chi-squared test (establishing 

‘goodness of fit’). Depending on this, we then use a T-test or ANOVA for normally distributed 

data, or the Wilcoxon signed-ranked or the Kruskal-Wallis tests otherwise. The Pearson 

product-moment correlation coefficient is used for establishing relations between variables. The 

Bonferroni correction is used for compensation of multiple comparisons. To avoid bias in the 

results, students with no quizzes answered at all (neither correct nor incorrect) are removed. 

These are students who either only register and never access the course, which are dealt with 

elsewhere [2], or students who may have accessed the course, but have never answered any 

questions (56,289 or 26%). 

4. Results 

This paper presents an analysis of quiz data from 5 courses taught across 21 runs on the 

FutureLearn platform. The analyses focus on rates of quiz questions attempted, correctly 

answered, and incorrectly answered, and how these rates change over the course of a term, for 

both students who complete and do not complete the course. Specifically, in the following, we 

show how we respond to the two research questions, RQ1 and RQ2, at a per course-base, first, 

and then generally. None of our data is normally distributed, and our categorical data consisted 

only of two categories (completers and non-completers), so we use the Wilcoxon signed-ranked 

test throughout. The probabilities for significance are so low that the Bonferroni correction does 

not make any noteworthy changes to the final results (i.e., for p <0.05, also p<0.05*(1/n) 
holds, where n is the number of overall tests performed). 

To investigate RQ1a/b, we analyse correct and wrong answers for all weeks first. 

Subsequently, for RQ2 and its sub-questions, we hone in on the early weeks, when comparing 

to the completion chance. Fig. 1 displays the overall number of correct and wrong answers for 

each week in which a test is available (i.e., weeks W1 and W5 have no test and are not 

represented), for the ‘Big Data’ course, a Computer Science course, averaged for all its runs 

(here, 2 runs). We can see that the number of answers, either correct or wrong, of the students 

who don’t complete, decreases gradually. Based on such an analysis, we decided to estimate 

the possibility to predict the completion, based on the correct or wrong answers in the early 
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weeks. For Week 2 correct answers, the mean of completing students is 4.92 (σ2=0.38), just 

slightly higher than the mean of correct answers of non-completing students (=4.75; σ2=1.3), 

and this difference is statically significant (Wilcoxon signed-rank test: p=0.0038); however, 

Week 2’s wrong answers are not significantly different. 

   
Fig. 1. Big Data (Computer Science): Correct versus Wrong answer evolution, per week (Wi; 

i{2,3,4,6,7,8,9}); students completed (blue), or didn’t (red), as per Scenario 3 (80% accessed). 

This situation clearly improves, starting with Week 3 (see Table 1), from which we have 

statistical significance throughout. Fig. 2 and Fig. 3 show the boxplots of weeks 3 and 4, 

respectively, for correct and wrong answers (default whisker in R of 1.5 IRQ is used); one can 

see how these significant differences also increase in size, as well as how the groups are slowly 

more defined. Due to lack of space, we haven’t represented boxplots for the remaining weeks, 

but the trend of significance and larger difference continues. 

Table 1. Big Data, all runs: average correct and wrong numbers of questions per week, versus the 

completion status (Yes/No). 

Week Answers Completed? Mean () σ2 p (Wilcoxon) 

2 Correct Yes 4.92 0.39 0.003803 

2 Correct No 4.75 1.13  

2 Wrong Yes 1.76 5.89 0.8782 

2 Wrong No 1.60 4.23  

3 Correct Yes 4.83 0.96 2.2e-16 

3 Correct No 2.61 6.20  

3 Wrong Yes 3.10 9.76 2.2e-16 

3 Wrong No 1.82 7.48  

4 Correct Yes 4.72 1.30 2.2e-16 

4 Correct No 1.76 5.70  

4 Wrong Yes 1.99 9.05 2.2e-16 

4 Wrong No 0.74 3.96  

To analyse RQ1 for the ‘Big Data’ course, we studied the answers in early weeks, 

compared to the final ones. Week 2 is the earliest possible predictor for Week 9 (see Fig. 4). 

Interestingly, correct answers in the weeks compared are statistically significantly correlated 

for completers (Scenario 1; Pearson’s: W2-W9: 0.3, p = 1.40e-10; W3-W9: 0.54, p < 2.2e-16; 

W4-W9: 0.69, p < 2.2e-16; W6- W9: 0.75, p < 2.2e-16; W7-W9: 0.86, p < 2.2e-16; W8-W9: 

0.9, p < 2.2e-16). Thus, whilst predictions could be made starting Week 2, the precision is 

expected to increase in later weeks. A similar analysis for non-completers shows that only 

starting with Week 3 the correlations become significant, and thus likely candidates for 

prediction. Fig. 4 further indicates classes that could be identified for Week 2; for instance, the 

red dots on the x-axis of the left image represent students who have not given any correct answer 

in one or more weeks; similar red dots on the x-axis of the right image represent students 

without wrong attempts – possibly due to them making no attempts that particular week. 
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Fig. 2. Big Data: left to right: Week 3 correct answers; Week 3 wrong answers; (YES denotes 

completed, as per Scenario 3 (80% accessed); No denotes not completed). 

 
Fig. 3. Big Data: left to right: Week 4 correct answers; Week 4 wrong answers; (YES means 

completed, as per Scenario 3 (80% accessed); NO means not completed). 

 
Fig. 4. Big Data: left (correct answers) to right (wrong answers), distribution of completers (blue) and 

non-completers (red) in Week 2 versus Week 9 (as per Scenario 3 (80% accessed). 

 
Fig. 5. Shakespeare and His World (Literature): illustrating the 3 scenarios for attempted quizzes: left to 

right, Scenario 1: completed (‘YES’) are only students who have clicked that they ‘learned’ all (100%) 

of the ‘steps’ (material): 1,117 students; Scenario 2: completed are students who accessed 100% of the 

steps: 3,678 students; Scenario 3: completed are students who accessed 80% of the steps: 7,137 students. 

We performed similar analyses on all 5 courses, for all 3 scenarios. We illustrate this with 

a course at the other end of the spectrum, ‘Shakespeare and His World’ (Literature, 5 Runs). 

Fig. 5 shows how the 3 scenarios affect the classification of students as completers or not. 

Beside the difference in numbers of completers, the median for these is relatively constant for 
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the 3 scenarios, as is the box-size. What varies more is the median for non-completers, and the 

number of outliers. Due to the lack of space, we don’t repeat this for the other 3 courses. 

Fig. 6 shows the evolution for correct and wrong answers over the 10 weeks of the course, 

partitioned between students who completed (blue) and those who didn’t (red). It can be seen 

that the number of answers is decreasing for those students who will not complete – regardless 

if they are correct or wrong answers. The number of correct answers for completers (blue, left 

side), on the other hand, remains relatively constant, whilst the numbers of wrong answers for 

completers (blue, right side) has more fluctuations, depending on the week. The figure shows 

also a marked similarity with Fig. 1, and this is consistent with our analyses of the rest of the 

courses (not displayed here, due to lack of space). This pattern is similar for the other three 

courses analysed – see Fig. 7. The figure also shows that the different courses had different 

number of weeks, as well as not all weeks did provide test and quizzes. 

  
Fig. 6. Shakespeare and His World (Literature): Correct versus Wrong answer evolution, per week 

(Wi; i{1-10}); students completed (blue), or didn’t (red), as per Scenario 3 (80% accessed). 

 

 

 
Fig. 7. The Mind is flat (Psychology) above, Babies in mind (Psychology2) middle, Supply chains 

(Business) below: Correct versus Wrong answer evolution, per week (Wi; i{1-10}); students completed 

(blue), or didn’t (red), as per Scenario 3 (80% accessed). 
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Further analysing in details the ‘Shakespeare and His World’ course, to better visualise the 

weekly evolution of the distribution of correct and wrong answers for completers and non-

completers, Fig. 8 shows that completers normally tend to answer all questions correctly for 

each week (see upper left side image), whereas non-completers clearly have a lower median for 

each week, as well as a greater variance for correct answers. For wrong attempts, completers 

have been very busy in the first weeks with very many wrong attempts, but slowly converge 

towards almost no wrong attempts. Non-completers follow a similar pattern, although they have 

fewer attempts in general, and ‘give up’ at an earlier stage (lower right side, Week 4). Unlike 

for the ‘Big Data’ course, the means for completers versus non-completers for correct and 

wrong answers for all weeks (W1-W10) are significantly different (Wilcoxon: p < 2.2e-16). 

 
 

Fig. 8. Shakespeare and His World (Literature): left side: Correct versus right side: Wrong answer 

evolution, per week; blue are the students who complete, red who don’t, as per Scenario 3 (80% 

accessed). 

For behaviour prediction, as for the ‘Big Data’ course, we analyse the earliest quiz (here, 

in Week 1) versus the latest (here, in Week 10), visualised as scatterplot in Fig. 9. We also test 

correlation for correct versus wrong answers. The correlation becomes statistically significant 

(Pearson’s: p < 2.2e-16) starting Week 2 (which is here the second week of tests). Comparable 

results (Pearson’s: p < 2.2e-16, starting Week 2 or Week 1 for correlation) are found for the 

remaining 3 courses and 14 runs, clearly indicating behavioural prediction opportunities, in 

terms of number of quizzes solved correctly or incorrectly in the early weeks, which allow for 

the prediction of quizzes solved correctly or incorrectly in the later weeks. 

 

Fig. 9. Shakespeare and His World: left to right, distribution of completers in Week 1 versus Week 10 

(blue dot means completed, as per Scenario 3 (80% accessed); red dots denote not completed). 

Additionally, we have found statistically significant differences (based on Wilcoxon, as 

data distribution is non-normal) for completers versus non-completers in the general number of 
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attempts at quizzes, as well as number of quizzes for the different weeks – with interesting 

results in the early weeks (1, 2). The Bonferroni correction did not change the results, despite 

the multiple comparisons. When analysing the 5 courses together, specifically, first, second and 

third week versus the last week in terms of behaviour, as well as completion, we obtain surfaces 

as summarised in Fig. 10, for the three scenarios, showing the sparse nature of correctly 

answered questions, which are mostly either fully answered, or not at all (very few positive 

peaks – for correct answers; and negative peaks – for incorrect ones); e.g., the peek pointing 

downwards, at (0,0), is where the majority of students didn’t answer questions either in week 

(1,2,3) or in the last week, and did not complete; the small positive peak (5,5) shows students 

who answered all questions in the early as well as late weeks and completed.   

Table 2. P (Wilcoxon) results for behaviour (correct answers) on the first, second and third weeks, 

respectively, versus the last week in the three scenarios: 100% completed (Scenario 1), 100 Accessed 

(Scenario 2) and 80% accessed (Scenario 3). 

Scenario (all courses) Scenario 1 Scenario 2 Scenario 3 

Week comparisons: p-value 

First week versus last week 0.02524 0.004072 2.20E-16 

Second week versus last week 0.02349 2.20E-16 2.20E-16 

Third week versus last week 0.02145 0.0001778 2.20E-16 

 

 
completion rate of 100% (Scenario 1).  

 
access rate of 100% (Scenario 2).  

 
access rate of 80% (Scenario 3).  

Fig. 10. All 5 courses together: number of students who answered questions correctly (above)/ 

incorrectly (below) in the first, second or third week versus last week for the three scenarios; blue: 

completion; red: non-completion.  
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5. Discussion 

Overall, we have answered RQ1, by showing that completers have similar behaviour with 

respect to quiz answering in early weeks, as they have in later weeks; this statement is valid for 

correct answers (RQ1a), as well as for incorrect attempts (RQ1b). Similarly, we have answered 

RQ2: we can use behaviour variables, such as questions answered, to visualise the potential 

partitioning of completers versus non-completers. Importantly, we have found statistical 

significance in the difference in means between completers and non-completers, for the number 

of attempts in general, the correctly answered quiz questions (RQ2.1a/b/c), and, finally, 

incorrectly answered ones (RQ2.2a/b/c). Analysing the findings more in-depth, we can also 

remark the following. Fig. 1 shows that students who keep working and answering questions 

are more likely to complete the ‘Big Data’ course, regardless of the accuracy of their answers 

(follow completers (blue) for both correct answers (left) and wrong answers (right)). This 

observation is in line with prior work and is confirmed by all analyses of our 5 courses and 21 

runs (see, e.g., Fig. 6 and Fig. 7, where completers have the majority of wrong answers for the 

latter half of the course). Table 1 shows the prediction becoming simpler, the closer the test 

results are to the predicted outcome – here, completion. However, what is interesting is that the 

first correct set of test results already could predict this outcome, as the difference between 

completers and non-completers is already significant – although, of course, the difference 

between means is still small, only in week 3 becoming large enough to possibly notice more. 

We removed students with 0 total answers from all our analyses of quizzes; however, it is 

important to note that the data remaining was still quite sparse: many students decided to only 

answer one question, e.g., in the early weeks, which is somewhat understandable, as students 

may have tried to attend, but then had to give up (due to the difficulty of the course, or simply 

due to other constraints, such as time). However, we also had students who only engaged with, 

e.g., questions in Week 4, which raises further questions on the ways the students in MOOCs 

learn and interact with these systems, and how their learning goals may not coincide with those 

of the designers (e.g., it is possible that only subjects in Week 4 were interesting for those 

students, and thus their learning goal had been achieved with that sparse activity). Teachers 

and designers can benefit from such analyses generating feedback for their course, for future 

improvements. It is clear from Fig. 6, for instance, that Week 6 was especially difficult for the 

‘Shakespeare and His World’ course, which can be fed back to the course designers. Fig. 8 

strengthens the conclusion that completers are more active, even if they get many questions 

wrong – but, interestingly, this happens more at the start of the course (upper right, weeks 1-4), 

after which students possibly get ‘the hang of it’. Fig. 4 and Fig. 9 show the potential of finding 

separate classes, which can serve as predictors, or, even more importantly for a teacher, as 

groups of users for which a certain type of intervention is necessary (manually or done by a 

personalisation rule-based system). Thus, even if prediction may not be possible for all 

learners at a given stage, certain sub-groups could be given attention. For instance, learners who 

don’t attempt any quizzes in a certain week, thus at risk of disengaging could be (automatically 

or via a tutor) encouraged to at least try. Moreover, learners who try but fail could be 

encouraged by automatic or manual messages stating that those who try many times are more 

likely to complete, etc. – depending on the temporal pattern of the respective week, and based 

on precise statistical data. With the analysis as part of an integrated platform, a teacher could 

get lists of students needing reminders, depending on the design aims of the IS running the 

MOOC. 

Overall, we can see that courses with more runs can be better predictors, which is very 

useful. This means that the next time such a course is run, the teachers can have clear 

expectations in terms of student behaviour, and can take early measures against undesired 

outcomes (such as, but not exclusively, completion). However, the results also show that the 

self-declared completion (pressing the ‘complete’ button) is less of a reliable indicator of actual 

involvement in FutureLearn courses than the quizzes are. Thus, any predictor of completion 

should take the latter into account, and could ignore the former. 

Summarising, the main contributions and findings of the study presented here are: 
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• We have described and visualised novel detailed temporal patterns of quiz answering, 

including pairwise comparisons of early weeks (1, 2, 3) and last week in terms of the 

number of correct/ incorrect answers as well as completion.  

• Completion is significantly correlated to behaviour, as follows:  

o The number of question attempts (both wrong and correct) decrease 

significantly over the term for students who do not complete the course. 

o The difference in the number of correct and incorrect question attempts each 

week for completers versus non-completers is statistically significant as early 

as the 3rd week of the course. Those who do not complete the course have, on 

average, few question attempts (both correct and incorrect). 

• Novel temporal behaviour patterns of significance are found: The correlation between 

number of question attempts in early weeks of the course, versus the last increases 

throughout the term, and is statistically significant from the third week onwards, for 

individual courses, and starting in week 1, for courses overall (Table 2). 

• Specific examples for teacher and designer feedback and adaptation are discussed.  

6. Conclusion and Future Work 

In this paper we have analysed how learners are learning in MOOCs in general, and, 

specifically, in all FutureLearn courses of the University of Warwick. Important novel features 

of our research are the longitudinal aspect (of a truly long-term study of 21 runs of 5 courses), 

the systematic approach and analysis of the features, the focus on the early prediction with 

relatively simple variables, and the temporal aspect of our analysis. Additionally, our 

contributions include the discussion on personalisation rules which could be introduced, either 

automatically (via the design of the IS), or via a teacher’s feedback, based on the analysis and 

visualisations provided. Scatterplots can provide a first insight into the clusters available. We 

also recommend analysis of courses separately, due to their clear differences in the way various 

variables are instantiated (i.e., test timings, test length, test difficulty, etc.). 

Further work includes analysing students accessing courses but not answering quizzes, as 

their motivation may shed light on other reasons for non-completion. Similarly, we will analyse 

the rich comments exchanged by students, potentially with graph-based methods. 
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