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Abstract. Binary classification is a well known problem in statistics.
Besides classical methods, several techniques such as the naive credal
classifier (for categorical data) and imprecise logistic regression (for con-
tinuous data) have been proposed to handle sparse data. However, a
convincing approach to the classification problem in high dimensional
problems (i.e., when the number of attributes is larger than the number
of observations) is yet to be explored in the context of imprecise proba-
bility. In this article, we propose a sensitivity analysis based on penalised
logistic regression scheme that works as binary classifier for high dimen-
sional cases. We use an approach based on a set of likelihood functions
(i.e. an imprecise likelihood, if you like), that assigns a set of weights to
the attributes, to ensure a robust selection of the important attributes,
whilst training the model at the same time, all in one fell swoop. We do
a sensitivity analysis on the weights of the penalty term resulting in a set
of sparse constraints which helps to identify imprecision in the dataset.

Keywords: Classification · High dimensional data · Imprecise probabil-
ity.

1 Introduction

Classification is a method for assigning a new object to a class or a group based on
the observed features or attributes of the object. Classification is used in many
applications such as pattern recognition for hand writing, disease treatment,
facial recognition, chemical analysis, and so on. In general, a classifier can be seen
as a function that maps a set of continuous or discrete variables into a categorical
class variable. Constructing a classifier from random samples is an important
problem in statistical inference. In our work, we will restrict ourselves to the
case where there are only two classes to choose from, i.e. ‘binary classification’.

Let C be a random variable that takes values in {0, 1}. Let a be a p-
dimensional vector that denotes the attributes of an object and let b = (b1,
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b2, . . . , bp)
T denote the vector of regression coefficients. In a regression setting,

we construct a classifier through a generalised linear model (GLM) as follows:

E(C | a) = h
(
aT b

)
(1)

where h acts as a ‘link’ function and E stands for expectation. We define

π(a) := E(C | a) = P (C = 1 | a). (2)

Logistic regression is a well-used special case of the GLM, which is suitable
for classification with continuous attributes. Note that, for logistic regression, C
follows a Bernoulli distribution. However, in the high dimensional case i.e. when
the number of attributes is more than the number of observations (p > n),
the performance of logistic regression is often not satisfactory. Apart from over-
fitting, numerical optimisation methods often converge to local solutions because
of multi-collinearity. Several techniques have been proposed to deal with this.
Generally, a penalty term is introduced in the negative log-likelihood, leading to
penalised logistic regression. A lasso-type penalty [16] is very popular because
of its variable selection property [15, 21]. However, the lasso-type penalty can be
inconsistent. To tackle this, Zou [22] introduced an adaptive version of the lasso
for penalised logistic regression, which satisfies suitable asymptotic properties
[8] for variable selection, and leads to consistent estimates.

Several works related to classification can be found in the imprecise proba-
bility literature. Zaffalon [19] introduced the idea of the naive credal classifier
related to the imprecise Dirichlet model [18]. Bickis [3] introduced an imprecise
logit-normal model for logistic regression. Corani and de Campos [5] proposed
the tree augmented naive classifier based on imprecise Dirichlet model. Paton et
al. [13, 14] used a near vacuous set of priors for multinomial logistic regression.
Coz et al. [7] and Corani and Antonucci [4] investigated rejection based classi-
fiers for attribute selection. However, high dimensional problems with automatic
attribute selection are yet to be tackled in the context of imprecise probability.

In this study, we propose a novel imprecise likelihood based approach for high
dimensional logistic regression problems. We use a set of sparsity constraints
through weights in the penalty term. Working with a set of weights relaxes the
assumption of preassigned weights and also helps to identify the behaviour of
the attributes, whereas sparsity constraints help in variable selection which is
essential for working with high dimensional problems. We use cross-validation
for model validation using different performance measures [6].

The paper is organised as follows. We first discuss some properties of pe-
nalised logistic regression in Section 2. We discuss our sensitivity based classifier
in Section 3. We discuss the model validation in Section 4, and we illustrate our
results using two datasets in Section 5. We conclude in Section 6.

Throughout the paper, capital letters denote random variables or estimators
that are dependent on any random quantity, and bold letters denote matrices.



Binary Credal Classification under Sparsity Constraints 3

2 Logistic Regressions for sparse problems

High dimensional regression is considered as sparse problem because of the small
number of non-zero regression parameters. We often look for regularisation meth-
ods to achieve this sparsity/attribute selection. In this section, we discuss dif-
ferent penalised logistic regression schemes which are useful to attain a sparse
model.

2.1 Penalised Logistic Regression (PLR)

Consider the generalised model in Eq. (1). For logistic regression, we use the
following link function:

h(x) :=
exp(x)

1 + exp(x)
. (3)

We define a vector C := (C1, C2, . . . , Cn)T denoting n observed classes such that,
Ci ∈ {0, 1}. The Ci are thus Bernoulli random variables. Let a := [a1, a2, . . . , an],
with ai ∈ Rp, denote the observed attributes for n objects, so that aT corre-
sponds to the design matrix in the terminology of classical statistical modelling.
It is easy to see that the negative log likelihood of the data is:

− log(L(C,a; b)) =

n∑
i=1

(
− Ci

(
aTi b

)
+ log

(
1 + exp(aTi b)

))
. (4)

Therefore, the maximum likelihood estimate of the unknown parameter b is:

B̂lr := arg min
b
{− log(L(C,a; b))}. (5)

Here, we denote estimates, such as B̂lr, with capital letters because they are ran-
dom variables (as they depend on C, which is random). The matrix of observed
attributes a is denoted with a lower case letter, as it is customary to consider it
as fixed and thereby non-random.

In high dimensional problems, we often seek for regularisation methods to
avoid overfitting. We use penalised logistic regression (PLR) [15, 21] as a regu-
larisation method which is defined by:

B̂plr(λ) := arg min
b
{− log(L(C,a; b)) + λP (b)} , (6)

where P (b) is a penalty function. We get sparse estimate for b when:

P (b) :=

p∑
j=1

|bj |q (7)

with 0 ≤ q ≤ 1. However, for q < 1, the problem is non-convex (see Fig. 1) and
the optimisation is computationally expensive. In contrast, for q = 1, the penalty
is a lasso-type penalty [16], which is convex and easy to solve numerically. The
value of λ is chosen through cross-validation, where λ acts as a tuning parameter.
In Fig. 1, we show contours of different `q penalties for two variables..
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q=2 q=1 q=0.5 q=0.01

Fig. 1. Contour plots of (7) for different `q penalties.

2.2 Adaptive Penalised Logistic Regression (APLR)

The lasso type penalty in PLR can be inconsistent in variable selection and
it is also not asymptotically unbiased. This issue can be resolved by assigning
carefully chosen weights in the penalty term. This approach is known to be
adaptive penalised logistic regression (APLR) [22, 2].

Let B̂ := (B̂1, B̂2, · · · , B̂p) be any root-n consistent estimate for our logistic
regression problem. Then, for any fixed γ > 0, the APLR [22] estimates are given
by:

B̂aplr(λ, γ) := arg min
b

− log(L(C,a; b)) + λ

p∑
j=1

Wj(γ)|bj |

 (8)

where

Wj(γ) :=
1

|B̂j |γ
. (9)

Note that, for γ = 0, Eq. (8) becomes the regular penalised logistic regression
with lasso penalty. Zou [22] showed that with these weights along with some
mild regularity conditions, APLR follows desirable asymptotic properties for
high dimensional problems [8].

Computation For γ > 0, the objective function of APLR is given by:

J(b) :=

 m∑
i=1

[
−Ci

(
aTi b

)
+ log

(
1 + exp(aTi b)

)]
+ λ

p∑
j=1

Wj(γ)|bj |

 , (10)

where Wj(γ) is given by Eq. (9). Now, for optimality Eq. (10) must satisfy
Karush-Kuhn-Tucker condition. Therefore, we have,

0 ∈
m∑
i=1

[
−ajiCi + aji

exp(aTi b)

1 + exp(aTi b)

]
+ λWj(γ)∂(|bj |), (11)

where, ∂|bj | is defined [12] as

∂(|bj |) = sign(bj), (12)
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with

sign(bj) :=


{−1} if bj < 0

[−1, 1] if bj = 0

{1} if bj > 0,

(13)

for j = 1, 2, · · · , p.
Let S := (S1, S2, · · · , Sp) be subject to the constraint S ∈ sign(B̂aplr). Then,

B̂aplr satisfies the following:

m∑
i=1

−ajiCi + aji
exp

(
aTi B̂aplr(λ, γ)

)
1 + exp

(
aTi B̂aplr(λ, γ)

)
 = −λWj(γ)Sj (14)

m∑
i=1

aji

Ci − exp
(
aTi B̂aplr(λ, γ)

)
1 + exp

(
aTi B̂aplr(λ, γ)

)
 = λWj(γ)Sj . (15)

Now, let h(aT B̂) :=
(
h
(
aT1 B̂

)
, h
(
aT2 B̂

)
, · · · , h

(
aTn B̂

))T
, where h is the link

function defined in Eq. (3). Then, we can write Eq. (15) as,

a
[
C − h

(
aT B̂aplr(λ, γ)

)]
= λW (γ) · S (16)

where ‘·’ denotes component wise multiplication. Note that Eq. (16) is not ana-
lytically solvable for B̂aplr. However, any sub-gradient based numerical optimi-
sation method can be applied to solve it. Once we have the estimate, we can
then define, for any new object with known attributes a∗ ∈ Rp and unknown
class C∗,

Π̂(a∗, λ, γ) := P
(
C∗ = 1 | a∗; B̂aplr(λ, γ)

)
= h

(
aT∗ B̂aplr(λ, γ)

)
. (17)

We can then for instance classify the object as 0 if Π̂(a∗, λ, γ) < 1/2, as 1 if
Π̂(a∗, λ, γ) > 1/2, and as either if Π̂(a∗, λ, γ) = 1/2. The parameter γ is often
simply fixed (usually taken to be equal to 1), and λ is chosen through cross-
validation, as with PLR.

Properties For a sequence of n observations, where ai is the attribute vector
for the i-th observation, we now denote:

an := a =
[
a1, · · · , an

]
(18)

in order to make the dependence of this p×n matrix on n explicit. Define by b∗ :=
(b∗1, · · · , b∗p) the vector of true regression coefficients. Assume the true model to
be sparse, then without loss of generality S := {j : b∗j 6= 0} = {1, 2, · · · , p0},
where p0 < p. Let φ(x) := log(1 + exp(x)), then for any observation ai ∈ Rp
(1 ≤ i ≤ n), we define the Fisher information matrix by:

I(b) := φ′′(aTi b)aia
T
i =

[
I11 I12
I21 I22

]
(19)

where, I11 is a p0 × p0 matrix.
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Regularity Conditions: We define the following regularity conditions for asymp-
totic properties of APLR.

C.1 Let λn(γ) be a sequence such that, for γ > 0

lim
n→∞

λn(γ)√
n

= 0 and lim
n→∞

λn(γ) · n(γ−1)/2 =∞. (20)

For example, the above holds for λn(γ) = n1/2−γ/4.
C.2 The Fisher information matrix is finite and positive definite.
C.3 Let there exist an open set B ⊆ Rp, such that b∗ ∈ B. Then for every b ∈ B

and observation ai ∈ Rp (1 ≤ i ≤ n), there exists a function M so that∣∣φ′′′(aTi b)∣∣ ≤M(ai) <∞. (21)

Let Sn = {j : B̂aplr, j 6= 0}.

Theorem 1. Under C.1-C.3, APLR estimates satisfy the following properties:

P.1 Consistency in variable selection, i.e.

lim
n→∞

P (Sn = S) = 1 (22)

P.2 Asymptotic normality, i.e.

√
n
(
B̂aplr, S − b∗S

)
d→ N(0, I−111 ) (23)

Note, that here B̂aplr, S is dependent on both λn(γ) and γ but we skip writing
it for the sake of notation.

P.1 and P.2 are well known results for high dimensional problems and the
proofs can be found in [22].

3 Imprecise Adaptive Penalised Logistic Regression

The use of data-driven weights in APLR makes APLR consistent in attribute
selection, where the parameter γ is pre-assigned (usually equal to 1) or is esti-
mated through cross-validation. However, high dimensional problems are sparse
in nature, i.e. we have to deal with very limited information and therefore a
single vector of weights is often proved to be sensitive and leads to misclassifica-
tion, especially when the variability of the attributes is negligible with respect to
each other. Sometimes, APLR may also perform poorly during model validation
as, a single value of γ can provide two very different vectors of weights for two
different parts of a single dataset. For instance, fixing γ = 1, essentially gives us
the inverse of the absolute values of our estimates, which are generally sensitive
to the data in sparse regime. So, we propose a sensitivity analysis of APLR over
an interval of γ and obtain a non-determinate classifier. We call this method as
imprecise adaptive penalised logistic regression or simply IAPLR. This allows
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the weights to vary in the order of γ providing us a set of sparse constraints
of the form

∑p
j=1 |bj |/|B̂j |γ . This set of weight vectors allows the model to be

flexible but consistent as we only rely on the data-driven weights.
The sensitivity analysis gives us a set of APLR estimates as a function of

γ. We use this set of APLR estimates to obtain a set of estimated probabilities
which are used for the decision making.

3.1 Decision rule

Consider the APLR estimates defined by Eq. (8) and Eq. (9). As we described
earlier, we perform a sensitivity analysis on the parameter γ. This gives us a
set of estimated probabilities dependent on γ, such that γ ∈ [γ, γ]. We use the
notion of credal dominance [19] for the decision criteria.

We can then for instance classify a new object with attributes a∗ ∈ Rp as
{0} if Π̂(a∗, λ, γ) < 1/2 for all γ ∈ [γ, γ], as {1} if Π̂(a∗, λ, γ) ≥ 1/2 for all
γ ∈ [γ, γ], and as {0, 1} (i.e. indeterminate) otherwise. Note that our classifier
now returns non-empty subsets of {0, 1} rather than elements of {0, 1}, to allow
indeterminate classifications to be expressed.

3.2 Prediction Consistency

We define the following:

a∗,S := [a∗,j ]j∈S , (24)

i.e., a∗,S is a p0-dimensional vector.

Theorem 2. Let a∗ ∈ Rp such that aT∗,Sa∗,S > 0. Then for γ > 0 and under
C.1 -C.3, we have the following:

√
n
(
Π̂(a∗, λn(γ), γ)− π(a∗)

)
d→ N

(
0, [π(a∗) (1− π(a∗))]

2
aT∗,SI

−1
11 a∗,S

)
(25)

where, I11 is the leading block matrix of the Fisher information matrix defined
in Eq. (19).

Proof. We know that, under C.1-C.3 APLR estimates satifies P.1. Therefore, as
n→∞,

aT∗ B̂aplr = aT∗,SnB̂aplr, Sn = aT∗,SB̂aplr, S . (26)

Then from Eq. (26), we have,

Π̂(a∗, λn(γ), γ) = h
(
aT∗,SB̂aplr, S

)
. (27)

Now, by P.2, we know that B̂aplr, S is root-n consistent. Therefore,(
B̂aplr, S − b∗S

)
= Op(n

−1/2). (28)



8 Basu et al.

Following the approach of [1] for logistic regression problems, we apply Taylor’s
series expansion in Eq. (27) with respect to the true parameter b∗S . Then we
have,

Π̂(a∗, λn(γ), γ) = h
(
aT∗,Sb

∗
S
)

+
(
B̂aplr, S − b∗S

)T ∂h (aT∗,Sb∗S)
∂b∗S

+ op(n
−1/2) (29)

= π(a∗) +
(
B̂aplr, S − b∗S

)T ∂h (aT∗,Sb∗S)
∂b∗S

+ op(n
−1/2). (30)

Here, op(n
−1/2) comes from the condition mentioned in Eq. (28). Now, re-

arranging the terms we get,

Π̂(a∗, λn(γ), γ)− π(a∗) =
(
B̂aplr, S − b∗S

)T ∂h (aT∗,Sb∗S)
∂b∗S

+ op(n
−1/2). (31)

Now, from P.2 we have,

√
n
(
B̂aplr, S − b∗S

)
d→ N

(
0, I−111

)
. (32)

Then, applying Eq. (32) in Eq. (30), we get

√
n
(
Π̂(a∗, λn(γ), γ)− π(a∗)

)
d→ N

0,

[
∂h
(
aT∗,Sb

∗
S
)

∂b∗S

]T
I−111

∂h
(
aT∗,Sb

∗
S
)

∂b∗S

 .

(33)
Now,

∂h
(
aT∗,Sb

∗
S
)

∂b∗S
=

exp
(
aT∗,Sb

∗
S
) (

1 + exp
(
aT∗,Sb

∗
S
))
− exp

(
aT∗,Sb

∗
S
)2(

1 + exp
(
aT∗,Sb

∗
S

))2
 a∗,S (34)

=

 exp
(
aT∗,Sb

∗
S
)(

1 + exp
(
aT∗,Sb

∗
S

))2
 a∗,S (35)

= h
(
aT∗,Sb

∗
S
)1−

exp
(
aT∗,Sb

∗
S
)

1 + exp
(
aT∗,Sb

∗
S

)
 a∗,S (36)

= h
(
aT∗,Sb

∗
S
) (

1− h
(
aT∗,Sb

∗
S
))
a∗,S (37)

= h
(
aT∗ b
∗) (1− h (aT∗ b∗)) a∗,S (38)

= π(a∗) (1− π(a∗)) a∗,S . (39)

Therefore, using Eq. (39) in Eq. (33), we have

√
n
(
Π̂(a∗, λn(γ), γ)− π(a∗)

)
d→ N

(
0, [π(a∗) (1− π(a∗))]

2
aT∗,SI

−1
11 a∗,S

)
(40)

The result shows that for infinite data stream, the estimated probabilities
will be equal to the true probability π(a∗).
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4 Model Validation

In our method, we perform a sensitivity analysis over γ. This gives us a set of
estimated probabilities for each fixed value of λ. Depending on these values in
this set, the predicted class will be either unique or both ‘0’ and ‘1’. Therefore,
the classical measures of accuracy will not be applicable in this context. So we
use the following performance measures, proposed by Corani and Zaffalon [6] for
Naive Credal Classifier (NCC).

4.1 Measures of Accuracy

We use cross-validation for model validation where λ is used as a tuning param-
eter. We consider the following performance measures [6, 14] for credal classifi-
cation.

Definition 1 (Determinacy). Determincay is the performance measure that
counts the percentage of classifications with unique output.

Definition 2 (Single accuracy). Single accuracy is accuracy of the classifi-
cations when the output is determinate.

There are two other performance measures called indeterminate output size
and set accuracy. However, in the context of binary credal classification, inde-
terminate output size is always equal to 2 and set accuracy is always equal to
1.

The above mentioned performance measures will be used for model validation
but for the model selection, we first need to choose an optimal λ, i.e. a value of λ
that maximises the performance of our model. For this purpose, we need to use
a trade-off between determinacy and single accuracy. We use u65 utility on the
discounted accuracy, as proposed by Zaffalon et al. [20]. We display u65 on the
discounted accuracy measure in Table 1, where each row stands for predicted
class and each column stands for the actual class.

{0} {1}
{0} 1 0
{1} 0 1
{0, 1} 0.65 0.65

Table 1. Discounted utility (u65) table for binary credal classification

Note that, for binary credal classification, we can formulate this unified u65
accuracy measure in the following way:

Accuracy = Determinacy× Single accuracy + 0.65× (1−Determinacy) (41)
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4.2 Model Selection and validation

We use nested loop cross-validation for model selection and validation. We first
split the dataset D in 2 equal parts D1 and D2. We take D1 and split it in 5
equal parts. We use 4 of them to train our IAPLR model and use the remaining
part for the selection of λ. We do this for each of the 5 parts to get an optimal
λ based on the averaged performance measure. After obtaining the optimal λ
though cross-validation, we validate our model with D2 for model validation.

We repeat the same for D2, we use D2 to obtain an optimal λ for model
selection and then validate it using D1. By this way, we use each observation
exactly once for testing. This also gives a comparison between these two models
and gives us an idea of interactions between the observations.

5 Illustration

We use two different datasets for illustration. The Sonar dataset is a regular
logistic regressional data while the LSVT dataset is high dimensional. In both
cases, we normalise the attributes to avoid scaling issues and split the datasets
in two equal parts DS,1 DS,2 (Sonar) and DL,1, DL,2 (LSVT). We first select our
model using DS,1 (DL,1). We vary our set of weights through 20 different γ’s
ranging from 0.01 to 1. We take a grid of 50 λ values. We find optimal λ by
5-fold cross validation. We use this optimal λ for model selection.

We compare our results with the naive credal classifier (NCC) [19]. For this,
we first categorise the attributes in 5 factors. We train our model in a grid of
the concentration parameter s with 50 entries ranging from 0.04 to 2. We run
a 5-fold cross-validation the choice of optimal s and this value of s for model
selection. We also compare our result with naive Bayes classifier (NBC) [11] and
APLR [22, 2]. For APLR select the value of optimal λ through a 5-fold cross-
validation. We use glmnet [9] for training APLR and IAPLR model. We validate
our model using DS,2 (DL,2). We then select our model using DS,2 (DL,2) and
validate using DS,1 (DL,1) to capture interaction between the observations.

We show a summary of our results in Table 2. The left most column de-
notes the training set. We show determinacy in the second column. In third and
fourth column, we display the single accuracy and utility based (u65) accuracy,
respectively and in the right most column we display range of active attributes.

5.1 Sonar Dataset

We use the Sonar dataset [10] for the illustration of our method. The dataset
consists of 208 observations on 60 attributes in the range of 0 to 1. Sonar signals
are reflected by either a metallic cylinder or a roughly cylindrical rock, and
the attributes represent the energy of the reflected signal within a particular
frequency band integrated over time. We use these attributes to classify the
types of the reflectors.

In the top row of Fig. 2, we show the cross validation plots with respect to
λ. For DS,1, the optimal λ is found to be 0.039 and for DS,2 the value is equal
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to 0.087. We observe from Table 2, that IAPLR outperforms the rests in terms
of derermincay and u65 utility measure. It also has a good agreement in model
validation with respect to the datasets unlike NCC or NBC which are sensitive
with respect to the training dataset. It performs an automatic variable selection
like APLR. We show the selected variables in the left most column. For IAPLR,
we have a range of active attributes unlike APLR, which is computed using
γ = 1. We observe that for DS,1, the sparsity of the model is more sensitive
than the sparsity of the model trained by DS,2. In the top row of Fig. 3, show
the sensitivity of sparsity with respect to γ for the optimal value of λ obtained
through cross-validation. We observe that for both partitions the method selects
more attributes as the value of γ increases.

5.2 LSVT Dataset

We use the LSVT dataset [17] for the illustration with high dimensional data.
The dataset consists of 126 observations on 310 attributes. The attributes are 310
different biomedical signal processing algorithms which are obtained through 126
voice recording signals of 14 different persons diagnosed with Parkinson’s disease.
The responses denote acceptable (1) vs unacceptable (2) phonation during LSVT
rehabilitation.

In the bottom row of Fig. 2, we show the cross validation plots with respect
to λ. For DL,1, the optimal λ is found to be 0.018 and for DL,2 the value is equal
to 0.014. We observe from Table 2, that IAPLR outperforms the rests. It also has
a good agreement in model validation with respect to the datasets unlike NCC,
NBC and APLR. We notice that the sparsity levels are significantly different for
different partitions of the dataset. We show the sparsity level in the bottom row
of Fig. 3. We observe that for both partitions the method rejects more attributes
as the value of γ increases.

6 Conclusion

In this article, we introduce a novel binary credal classifier for high dimensional
problems. We exploit the notion of adaptive penalised logistic regression and
use an imprecise likelihood based approach for the classifier. We illustrate our
result using two different datasets One involving sonar signals bounced from two
hard objects and the other involving LSVT rehabilitation of patients diagnosed
with Parkinson’s disease. We compare our result with naive credal classifier,
naive Bayes classifier and adaptive penalised logistic regression. We observe that
our method is in good agreement with NCC in terms of single accuracy but
outperforms NCC in terms of the determinacy and u65 utility measure. We
notice that for both Sonar and LSVT dataset, NCC performs better than any
other method for the second partition of the datasets. We observe that, IAPLR
or APLR performs relatively better than the other methods as it does not rely
on the factorisation. Our method also does an automatic attribute selection. We
notice that the sensitivity of the attribute selection is almost monotone with
respect to the parameter γ.
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Fig. 2. Cross-validation curve with respect to the tuning parameter λ. The top row rep-
resents the results obtained for DS,1 (left), DS,2 (right) and the bottom row represents
that of DL,1 (left), DL,2 (right).
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Fig. 3. Sensitivity of sparsity with respect to γ. The top row represents the results
obtained for DS,1 (left), DS,2 (right) and the bottom row represents that of DL,1 (left),
DL,2 (right).
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Method Training Deter. Single Acc. u65 Active

IAPLR (λ = 0.039) DS,1 0.87 0.73 0.72 28–43
IAPLR (λ = 0.087) DS,2 0.87 0.77 0.75 17–25

NCC (s = 0.02) DS,1 0.77 0.68 0.67 –
NCC (s = 0.56) DS,2 0.49 0.78 0.72 –

NBC DS,1 – – 0.59 –
NBC DS,2 – – 0.74 –

APLR (λ = 0.104) DS,1 – – 0.71 12
APLR (λ = 0.189) DS,2 – – 0.72 9

IAPLR (λ = 0.018) DL,1 0.98 0.82 0.82 17–24
IAPLR (λ = 0.014) DL,2 0.83 0.85 0.81 40–51

NCC (s = 0.08) DL,1 0.14 0.78 0.67 –
NCC (s = 0.04) DL,2 0.25 0.88 0.71 –

NBC DL,1 – – 0.51 –
NBC DL,2 – – 0.40 –

APLR (λ = 0.052) DL,1 – – 0.81 11
APLR (λ = 0.285) DL,2 – – 0.76 11

Table 2. Summary of model selection and validation
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