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Abstract
Let 𝛼∶ ℕ → 𝑆1 be the Steinhaus multiplicative func-
tion: a completely multiplicative function such that
(𝛼(𝑝))𝑝 prime are i.i.d. random variables uniformly dis-
tributed on the complex unit circle 𝑆1. Helson conjec-
tured that 𝔼|∑𝑛⩽𝑥 𝛼(𝑛)| = 𝑜(

√
𝑥) as 𝑥 → ∞, and this

was solved in a strong form by Harper. We give a short
proof of the conjecture using a result of Saksman and
Webb on a random model for the zeta function.
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1 INTRODUCTION

Let 𝛼 be the Steinhaus random multiplicative function, defined as follows. If 𝑛 is a positive inte-
ger that factorises as

∏𝑘
𝑖=1 𝑝

𝑎𝑖
𝑖
(𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘 are primes) then 𝛼(𝑛) ∶=

∏𝑘
𝑖=1 𝛼(𝑝𝑖)

𝑎𝑖 , where
(𝛼(𝑝))𝑝 prime are i.i.d. random variables with the uniform distribution on 𝑆1, the complex unit
circle {𝑧 ∈ ℂ ∶ |𝑧| = 1}. It is not hard to see that for any given positive integers 𝑛 and𝑚,

𝔼
[
𝛼(𝑛)𝛼(𝑚)

]
=

{
1 if 𝑛 = 𝑚,

0 otherwise.
(1.1)

Let
𝑆𝑥 ∶=

1√
𝑥

∑
𝑛⩽𝑥

𝛼(𝑛).

By (1.1), 𝔼
[|𝑆𝑥|2] ≍ 1. In [8], Helson conjectured that lim𝑥→∞ 𝔼|𝑆𝑥| = 0. This conjecture was

solved in a strong form by Harper [6]. An elegant and simplified variant of Harper’s results, in
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1066 GORODETSKY

a model case, was established by Soundararajan and Zaman [14].† In this note we give a short
proof of the following result.

Theorem 1.1. Fix 𝛿 ∈ (0, 1). We have 𝔼
[|𝑆𝑥|2𝑞] ≪ (log log 𝑥)−𝑞∕2 uniformly in 𝑥 ⩾ 3 and 𝑞 ∈

[0, 1 − 𝛿].

Harper’s result is stronger than Theorem 1.1 in two ways: it is uniform in 𝑞 ∈ [0, 1] (which
requires modifying the upper bound in the statement), and it contains a matching lower bound.
However, Theorem 1.1 readily implies Helson’s conjecture. The proof of Theorem 1.1 still follows
the broad strategy in [6], and in fact was anticipated by Harper [6, p. 11]. To prove Theorem 1.1 we
combine two inequalities. Define the function

𝐴𝑦(𝑠) ∶=
∏
𝑝⩽𝑦

(1 − 𝛼(𝑝)𝑝−𝑠)−1, ℜ𝑠 > 0.

Lemma 1.2. Fix 𝛿 ∈ (0, 1). Uniformly for 𝑦 ∈ [2,
√
𝑥] and 𝑞 ∈ [0, 1 − 𝛿]we have, for some absolute

𝐶 ⩾ 0 and 𝑐 > 0,

𝔼
[|𝑆𝑥|2𝑞] ≪ 𝔼

[(
1

log 𝑦 ∫ℝ
|||||
𝐴𝑦(1∕2 + 𝑖𝑡)

1∕2 + 𝑖𝑡

|||||
2

d𝑡

)𝑞]
+ ((log 𝑦)𝐶𝑒−𝑐 log 𝑥∕ log 𝑦)

𝑞
.

Lemma 1.3. Fix 𝛿 ∈ (0, 1). Uniformly for 𝑦 ⩾ 3 and 𝑞 ∈ [0, 1 − 𝛿] we have

𝔼

[(
1

log 𝑦 ∫ℝ
|||||
𝐴𝑦(1∕2 + 𝑖𝑡)

1∕2 + 𝑖𝑡

|||||
2

d𝑡

)𝑞]
≪ (log log 𝑦)−𝑞∕2.

Taking log 𝑦 = log 𝑥∕(log log 𝑥)2 in Lemmas 1.2 and 1.3 gives Theorem 1.1.
Lemma 1.2 and its proof should be viewed as simplified versions of [6, Proposition 1] and its

proof. Our simplification was inspired by a lemma of Najnudel, Paquette and Simm in a model
case [11, Lemma 7.5]. The same simplification was also used by Harper in the character sum case
[7, p. 13].
Lemma 1.3 corresponds to Key Propositions 1 and 2 in [6]. Unlike Harper’s self-contained

proof which builds on branching process techniques (such as the so-called barrier estimates) and
Berestycki’s thick-point approach to the construction of Gaussian multiplicative chaos (GMC)
[1], we follow a philosophy similar to that of Saksman and Webb [12] (cf. [13]). The relevance
of [12] to Helson’s conjecture was already hinted in [6, p. 11]; here we complete the necessary
arguments and explain how the main coupling result (that is, Gaussian approximation to the
logarithm of randomised Riemann zeta function; see Theorem 3.3) helps reduce Lemma 1.3 to
an analogous moment bound for critical GMC. The advantage of this alternative approach is
that it allows one to circumvent various technical estimates by leveraging existing results in the
literature of GMC such as moment criteria and Kahane’s convexity inequality (see Lemma 3.4

† See [5] for generalisations of the bounds in [14], and [11, Lemma 7.5] for a different derivation of some of the bounds in
[14].
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A SHORT PROOF OF HELSON’S CONJECTURE 1067

and its proof below), though we pay the price of losing uniformity when 𝑞 approaches 1 due to
an application of Hölder’s inequality.†

2 PROOF OF LEMMA 1.2

We recall two number-theoretic facts. A positive integer is called 𝑦-smooth (resp., 𝑦-rough) if any
prime dividing it is at most 𝑦 (resp., strictly greater than 𝑦). Let Ψ(𝑥, 𝑦) (resp., Φ(𝑥, 𝑦)) be the
number of 𝑦-smooth (resp., 𝑦-rough) integers in [1, 𝑥]. The first fact, due to Rankin [2, Theorem
5.3.1], is the upper bound (for 𝑥, 𝑦 ⩾ 2)

Ψ(𝑥, 𝑦) ≪ 𝑥(log 𝑦)𝐴𝑒−𝑐 log 𝑥∕ log 𝑦 (2.1)

for some absolute 𝐴 ⩾ 0 and 𝑐 > 0. We reproduce the proof: if 𝛼 > 0 then Ψ(𝑥, 𝑦) ⩽

𝑥𝛼
∑
𝑝∣𝑛⇒𝑝⩽𝑦 𝑛

−𝛼 = 𝑥𝛼
∏

𝑝⩽𝑦 (1 − 𝑝
−𝛼)−1. Take 𝛼 = 1 − 𝑐∕ log 𝑦 and note

∑
𝑝⩽𝑦 − log(1 − 𝑝

−𝛼) ≪∑
𝑝⩽𝑦 𝑝

−1 ≪ log log 𝑦 by Mertens’ theorem [10, Theorem 2.7]. The second fact, due to Brun [2,
Theorem 6.2.5], is the upper bound

Φ(𝑥 + 𝐻, 𝑦) − Φ(𝑥, 𝑦) ≪
𝐻

min{log 𝑦, log𝐻}
(2.2)

for 𝑥, 𝑦,𝐻 ⩾ 2. We turn to the proof of Lemma 1.2, which we establish with 𝐶 = 𝐴 + 1. Given
𝑦 ⩾ 2 let 𝑦 be the 𝜎-algebra generated by {𝛼(𝑝) ∶ 𝑝 ⩽ 𝑦}. As long as 𝑛,𝑚 are both 𝑦-rough, the
identity

𝔼
[
𝛼(𝑛)𝛼(𝑚) ∣ 𝑦] = {

1 if 𝑛 = 𝑚,

0 otherwise,
(2.3)

still holds despite the conditioning, using the same argument that gives (1.1). Given 𝑦 ⩾ 2 we
define

𝑆𝑥,𝑦 ∶=
1√
𝑥

∑
𝑛⩽𝑥

𝑛 is 𝑦-smooth

𝛼(𝑛).

Since a positive integer can be written uniquely as𝑚𝑚′ where𝑚 is 𝑦-rough and𝑚′ is 𝑦-smooth,
we have

𝑆𝑥 =
∑

1⩽𝑚⩽𝑥
𝑚 is 𝑦-rough

𝛼(𝑚)√
𝑚
𝑆𝑥∕𝑚,𝑦. (2.4)

†Gaussian approximation is also featured inHarper’swork, but in the formof Berry–Esseen theorem to provide probability
estimates of the correct order for barrier events, which ultimately leads to moment estimates of the correct order. On the
other hand, the Gaussian approximation in [12, 13] at the level of random fields allows Saksman and Webb to establish
distributional convergence of randomised Riemann zeta function (modulus-squared and renormalised) to some random
measure absolutely continuous with respect to a critical GMC measure. With this extra ingredient one could improve
Lemma 1.3 and conclude the convergence of renormalised 𝑞th moments for 𝑞 bounded away from 1 (we omit the details
here).
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1068 GORODETSKY

From (2.3) and (2.4),

𝔼
[|𝑆𝑥|2 ∣ 𝑦] = |𝑆𝑥,𝑦|2 + ∑

𝑦<𝑚⩽𝑥
𝑚 is 𝑦-rough

𝑚−1|𝑆𝑥∕𝑚,𝑦|2. (2.5)

From (1.1) and (2.1),

𝔼
[|𝑆𝑥,𝑦|2] = 𝑥−1Ψ(𝑥, 𝑦) ≪ (log 𝑦)𝐴𝑒

−𝑐
log 𝑥

log 𝑦 .

We introduce a parameter 𝑇 ∈ [
√
𝑥𝑦, 𝑥] and write the𝑚-sum in (2.5) as 𝑇(1)𝑥,𝑦 + 𝑇

(2)
𝑥,𝑦 where

𝑇
(1)
𝑥,𝑦 ∶=

∑
𝑦<𝑚⩽𝑇

𝑚 is 𝑦-rough

𝑚−1|𝑆𝑥∕𝑚,𝑦|2, 𝑇
(2)
𝑥,𝑦 ∶=

∑
𝑇<𝑚⩽𝑥

𝑚 is 𝑦-rough

𝑚−1|𝑆𝑥∕𝑚,𝑦|2.
The expectation of 𝑇(1)𝑥,𝑦 satisfies

𝔼
[
𝑇
(1)
𝑥,𝑦

]
= 𝑥−1

∑
𝑦<𝑚⩽𝑇

𝑚 is 𝑦-rough

Ψ(𝑥∕𝑚, 𝑦) ≪ (log 𝑦)𝐴
∑

𝑦<𝑚⩽𝑇

𝑚−1𝑒
−𝑐

log(𝑥∕𝑚)

log 𝑦 (2.6)

by (1.1) and (2.1). The last expression can be bounded and estimated by a geometric sum:

(log 𝑦)𝐴
∑

𝑦<𝑚⩽𝑇

𝑚−1𝑒
−𝑐

log(𝑥∕𝑚)

log 𝑦 = (log 𝑦)𝐴𝑒
−𝑐

log 𝑥

log 𝑦
∑

𝑦<𝑚⩽𝑇

𝑚−1𝑒
𝑐
log𝑚

log 𝑦

≪ (log 𝑦)𝐴𝑒
−𝑐

log 𝑥

log 𝑦
∑

𝑘∶ 𝑦∕𝑒<𝑒𝑘⩽𝑒𝑇

𝑒
𝑐 𝑘
log 𝑦 ≪ (log 𝑦)𝐴+1𝑒

−𝑐
log(𝑥∕𝑇)

log 𝑦 .

We now treat 𝑇(2)𝑥,𝑦 . Observe 𝑆𝑡,𝑦
√
𝑡 =

∑
𝑛⩽𝑡, 𝑛 is 𝑦-smooth 𝛼(𝑛) is a function of ⌊𝑡⌋ only, that is,

𝑆𝑡,𝑦
√
𝑡 = 𝑆⌊𝑡⌋,𝑦√⌊𝑡⌋ ≍ 𝑆⌊𝑡⌋,𝑦√𝑡. Setting 𝑟 ∶= ⌊𝑥∕𝑚⌋ we may write

𝑇
(2)
𝑥,𝑦 ≪

∑
1⩽𝑟<𝑥∕𝑇

|𝑆𝑟,𝑦|2 ∑
𝑇<𝑚⩽𝑥

𝑚 is 𝑦-rough
𝑚∈(𝑥∕(𝑟+1),𝑥∕𝑟]

𝑚−1 ⩽
∑

1⩽𝑟<𝑥∕𝑇

|𝑆𝑟,𝑦|2 Φ(𝑥𝑟 , 𝑦) − Φ( 𝑥

𝑟+1
, 𝑦)

𝑥∕𝑟
. (2.7)

By the assumption 𝑇 ⩾
√
𝑥𝑦 and (2.2) we can upper bound the right-hand side of (2.7) by

𝑇
(2)
𝑥,𝑦 ≪

1

log 𝑦

∑
1⩽𝑟<𝑥∕𝑇

|𝑆𝑟,𝑦|2
𝑟

≪
1

log 𝑦 ∫
𝑥∕𝑇

0

|𝑆𝑡,𝑦|2 d𝑡𝑡 .
Here we used that min{log 𝑦, log𝐻} ≍ log 𝑦 for 𝐻 = 𝑥∕𝑟 − 𝑥∕(𝑟 + 1), when 𝑟 < 𝑥∕𝑇 and 𝑇 ⩾√
𝑥𝑦. In summary,

𝔼
[|𝑆𝑥|2 ∣ 𝑦] ≪ 1

log 𝑦 ∫
𝑥∕𝑇

0

|𝑆𝑡,𝑦|2 d𝑡𝑡 + 𝑋,
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A SHORT PROOF OF HELSON’S CONJECTURE 1069

where

𝑋 ∶= |𝑆𝑥,𝑦|2 + 𝑇(1)𝑥,𝑦 ⩾ 0, 𝔼[𝑋] ≪ (log 𝑦)𝐴+1𝑒
−𝑐

log(𝑥∕𝑇)

log 𝑦 .

By Hölder’s inequality and subadditivity of the function 𝑎 ↦ 𝑎𝑞,

𝔼
[|𝑆𝑥|2𝑞 ∣ 𝑦] ⩽ (𝔼[|𝑆𝑥|2 ∣ 𝑦])𝑞 ≪ (

1

log 𝑦 ∫
𝑥∕𝑇

0

|𝑆𝑡,𝑦|2 d𝑡𝑡
)𝑞

+ 𝑋𝑞.

By the law of total expectation and another application of Hölder and subadditivity,

𝔼
[|𝑆𝑥|2𝑞] ≪ 𝔼

[(
1

log 𝑦 ∫
𝑥∕𝑇

0

|𝑆𝑡,𝑦|2 d𝑡𝑡
)𝑞]

+ (𝔼[𝑋])𝑞

≪ 𝔼

[(
1

log 𝑦 ∫
∞

0

|𝑆𝑡,𝑦|2 d𝑡𝑡
)𝑞]

+

[
(log 𝑦)𝐴+1𝑒

−𝑐
log(𝑥∕𝑇)

log 𝑦

]𝑞
.

We take 𝑇 = 𝑥3∕4 and conclude by applying Parseval’s theorem in the form [10, Equation (5.26)]

2𝜋 ∫
∞

0

||||∑𝑛⩽𝑡 𝑓(𝑛)||||
2
d𝑡

𝑡2
= ∫ℝ

|||||
𝐹𝑓(1∕2 + 𝑖𝑡)

1∕2 + 𝑖𝑡

|||||
2

d𝑡,

where 𝑓 is any arithmetic function with Dirichlet series 𝐹𝑓(𝑠) ∶=
∑
𝑛 𝑓(𝑛)∕𝑛

𝑠 whose abscissa of
convergence is smaller than 1∕2; we apply it for 𝑓(𝑛) = 𝛼(𝑛)𝟏𝑛 is 𝑦-smooth and 𝐹𝑓 = 𝐴𝑦 .

Remark 2.1. By a classical result of de Bruijn [3, Equation (1.9)], 𝐴 = 0 is admissible in (2.1).
Moreover, one saves a factor of log 𝑦 in (2.6) by using (2.2). This shows Lemma 1.2 holds with
𝐶 = 0.

3 PROOF OF LEMMA 1.3

Our approach to Lemma 1.3 is based on the theory ofmultiplicative chaos, the connection towhich
becomes evident if one considers the Taylor series expansion

𝐴𝑦(𝜎 + 𝑖𝑠) =
∏
𝑝⩽𝑦

[
1 −

𝛼(𝑝)

𝑝𝜎+𝑖𝑠

]−1
= exp

{
−

∑
𝑝⩽𝑦

log

(
1 −

𝛼(𝑝)

𝑝𝜎+𝑖𝑠

)}

= exp

{[∑
𝑝⩽𝑦

𝛼(𝑝)

𝑝𝜎+𝑖𝑠

]
⏟⎴⎴⏟⎴⎴⏟
=∶𝑦,1(𝑠;𝜎)

+
1

2

[∑
𝑝⩽𝑦

(
𝛼(𝑝)

𝑝𝜎+𝑖𝑠

)2
]

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=∶𝑦,2(𝑠;𝜎)

+

[∑
𝑝⩽𝑦

∑
𝑗⩾3

1

𝑗

(
𝛼(𝑝)

𝑝(𝜎+𝑖𝑠)𝑗

)𝑗
]

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝑦,3(𝑠;𝜎)

}
(3.1)

for 𝜎 ⩾ 1

2
. Since |𝑦,3(𝑠)| ⩽ ∑

𝑝

∑
𝑗⩾3 𝑝

−𝑗∕2 < ∞ uniformly in 𝑦 ⩾ 3, 𝜎 ⩾ 1

2
and 𝑠 ∈ ℝ, and expo-

nential integrability can also be established for 𝑦,2 (see the statement and proof of Lemma 3.1 for
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1070 GORODETSKY

details), we just need to understand the behaviour of exp
(
2ℜ𝐺𝑦,1(𝑠; 𝜎)

)
d𝑠 as 𝑦 → ∞. It turns

out that moment estimates for such sequence of random measures were already available if
𝛼(𝑝) were Gaussian, and thus our task is to translate these results back to the Steinhaus case
by Gaussian approximation.
Our analysis here is closely related to the works of Saksman and Webb who showed the

convergence of the sequence of measures√
log log 𝑦

log 𝑦
exp

(
2ℜ𝑦,1(𝑠; 12 )

)
d𝑠 and

√
log log 𝑦

log 𝑦

|||𝐴𝑦(12 + 𝑖𝑠)|||2d𝑠
as 𝑦 → ∞ (see [12, Theorem 5; 13, Theorem 1.9]). While 𝑦-uniform moment estimates were not
explicitly established in these works, we note that the necessary ingredients were already con-
tained in their analysis. For concreteness, we will recall in Section 3.2 their coupling result, and
explain how that could lead to the proof of Lemma 1.3.
In the following, we will denote ℜ

𝑦,𝑗
(𝑠; 𝜎) ∶= ℜ𝑦,𝑗(𝑠; 𝜎), and suppress the dependence on 𝜎

whenever there is no risk of confusion. Moreover, all Gaussian fields are assumed to have zero
mean unless otherwise specified.

3.1 Exponential moments of 𝒚,𝟐

Lemma 3.1. We have

sup
𝑛∈ℤ,𝑦⩾3,𝜎⩾ 1

2

𝔼

[
sup

𝑠∈[𝑛,𝑛+1]

𝑒
𝜆ℜ

𝑦,2
(𝑠;𝜎)

]
< ∞ ∀𝜆 ∈ ℝ.

Proof. Let us write 𝛼(𝑝) = 𝑒𝑖𝜃𝑝 where 𝜃𝑝
𝑖.𝑖.𝑑.
∼ Uniform([0, 2𝜋]). Using the trigonometric identity

cos 𝑥 − cos 𝑦 = −2 sin(
𝑥+𝑦

2
) sin(

𝑥−𝑦

2
), we have

ℜ
𝑦,2
(𝑠) − ℜ

𝑦,2
(𝑡) =

∑
𝑝⩽𝑦

𝑝−2𝜎
[
cos(2𝜃𝑝 − 2𝑠 log 𝑝) − cos(2𝜃𝑝 − 2𝑡 log 𝑝)

]
= −

∑
𝑝⩽𝑦

2

𝑝2𝜎
sin

(
2𝜃𝑝 − (𝑠 + 𝑡) log 𝑝

)
sin ((𝑡 − 𝑠) log 𝑝)

𝑑
=

×
∑
𝑝⩽𝑦

2

𝑝2𝜎
sin(2𝜃𝑝) sin ((𝑠 − 𝑡) log 𝑝).

Since | 2

𝑝2𝜎
sin(2𝜃𝑝) sin ((𝑠 − 𝑡) log 𝑝) | ⩽ 2𝑝−2𝜎|𝑠 − 𝑡| log 𝑝 and

∑
𝑝 𝑝

−2 log2 𝑝 ⩽

∫ ∞
1 𝑥−2 log2 𝑥d𝑥 = 2, we obtain by Hoeffding’s inequality (A2) in Theorem A.1 that

ℙ
(|ℜ

𝑦,2
(𝑠) − ℜ

𝑦,2
(𝑡)| ⩾ 𝑢) ⩽ 2 exp

(
−

𝑢2

2
∑
𝑝⩽𝑦(2𝑝

−2𝜎|𝑠 − 𝑡| log 𝑝)2
)
⩽ 2 exp

(
−

𝑢2

16|𝑠 − 𝑡|2
)
(3.2)
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A SHORT PROOF OF HELSON’S CONJECTURE 1071

for all 𝑢 ⩾ 0 and 𝑠, 𝑡 ∈ ℝ. Comparing (3.2) to (A3), let 𝑇 ⊂ ℝ be any bounded interval of length |𝑇|
and define 𝑑(𝑠, 𝑡) ∶= 2

√
2|𝑠 − 𝑡|. Following the notations in TheoremA.2, the cover number with

respect to the metric 𝑑 satisfies 𝑁(𝑇, 𝑑, 𝑟) ⩽ 1 + ⌊2√2|𝑇|∕𝑟⌋ for any 𝑟 > 0, and

𝛾2(𝑇, 𝑑) ≪ ∫
∞

0

√
log

(
1 + ⌊2√2|𝑇|∕𝑟⌋)d𝑟 = 2

√
2|𝑇|∫ 1

0

√
log

(
1 + ⌊𝑢−1⌋)d𝑢 ≪ |𝑇|

by Dudley’s entropy bound (A4). Thus it follows from Theorem A.2 (with 𝑋𝑡 ∶= ℜ
𝑦,2
(𝑡)) that

ℙ

(
sup
𝑠,𝑡∈𝑇

|ℜ
𝑦,2
(𝑠) − ℜ

𝑦,2
(𝑡)| ⩾ 𝑢) ⩽ 𝐶 exp

(
−

𝑢2

𝐶|𝑇|2
)

∀𝑢 ⩾ 0

for some constant 𝐶 > 0 uniformly in |𝑇| > 0, 𝑦 ⩾ 3 and 𝜎 ⩾ 1

2
, from which we deduce

sup
𝑦⩾3,𝜎⩾ 1

2
,|𝑇|⩽𝐾 𝔼

[
sup
𝑠,𝑡∈𝑇

𝑒
𝜆
[ℜ

𝑦,2
(𝑠;𝜎)−ℜ

𝑦,2
(𝑡;𝜎)

]]

⩽ sup
𝑦⩾3,𝜎⩾ 1

2
,|𝑇|⩽𝐾

[∑
𝑗⩾1

𝑒|𝜆|𝑗ℙ( sup
𝑠,𝑡∈𝑇

|ℜ
𝑦,2
(𝑠) − ℜ

𝑦,2
(𝑡)| ∈ [𝑗 − 1, 𝑗]

)]
⩽ 𝐶

∑
𝑗⩾1

𝑒|𝜆|𝑗𝑒− (𝑗−1)2

𝐶𝐾2 < ∞.

(3.3)

On the other hand, since

ℜ
𝑦,2
(𝑡)

𝑑
=

∑
𝑝⩽𝑦

𝑝−2𝜎 cos(2𝜃𝑝) and
∑
𝑝⩽𝑦

𝑝−4𝜎 ⩽
∑
𝑝⩽𝑦

𝑝−2 ⩽
1

2
,

another application of Hoeffding’s inequality (this time using (A1) in Theorem A.1) shows that

sup
𝑦⩾3,𝜎⩾ 1

2
,𝑡∈ℝ

𝔼

[
𝑒
𝜆ℜ

𝑦,2
(𝑡)
]
⩽ sup
𝑦⩾3,𝜎⩾ 1

2

exp

(
𝜆2

2

∑
𝑝⩽𝑦

𝑝−4𝜎

)
⩽ 𝑒𝜆

2∕4 ∀𝜆 ∈ ℝ. (3.4)

To conclude our proof, note that

sup
𝑛∈ℤ,𝑦⩾3,𝜎⩾ 1

2

𝔼

[
sup

𝑠∈[𝑛,𝑛+1]

𝑒𝜆ℜ𝑦,2(𝑠;𝜎)
]
= sup

𝑛∈ℤ,𝑦⩾3,𝜎⩾ 1

2

sup
𝑡∈[𝑛,𝑛+1]

𝔼

[(
sup

𝑠∈[𝑛,𝑛+1]

𝑒
𝜆
[ℜ

𝑦,2
(𝑠;𝜎)−ℜ

𝑦,2
(𝑡;𝜎)

])
𝑒𝜆ℜ𝑦,2(𝑡;𝜎)

]

⩽

⎛⎜⎜⎝ sup
𝑛∈ℤ,𝑦⩾3,𝜎⩾ 1

2

sup
𝑡∈[𝑛,𝑛+1]

𝔼

[(
sup

𝑠∈[𝑛,𝑛+1]

𝑒
2𝜆

[ℜ
𝑦,2
(𝑠;𝜎)−ℜ

𝑦,2
(𝑡;𝜎)

])]⎞⎟⎟⎠
1

2 ⎛⎜⎜⎝ sup
𝑦⩾3,𝜎⩾ 1

2
,𝑡∈ℝ

𝔼
[
𝑒2𝜆ℜ𝑦,2(𝑡;𝜎)

]⎞⎟⎟⎠
1

2

by Cauchy–Schwarz, and the desired result immediately follows from the two estimates (3.3) and
(3.4). □
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1072 GORODETSKY

3.2 Ingredients frommultiplicative chaos theory

In this subsection we will always assume 𝜎 = 1

2
. Recall ℜ

𝑦,1
(𝑡) = ℜ

∑
𝑝⩽𝑦

𝛼(𝑝)

𝑝1∕2+𝑖𝑡
. We aim to show

that

Lemma 3.2. For any 𝑞 ∈ [0, 1), we have

sup
𝑦⩾3

𝔼

[(√
log log 𝑦

log 𝑦 ∫
1

0

exp
(
2ℜ

𝑦,1
(𝑡)

)
d𝑡

)𝑞]
< ∞.

To establish this claim, we now recall a coupling result from [12, 13].

Theorem 3.3 cf. [12, Theorem 7 and Lemma 17; 13, Theorem 1.7]. On some suitable probability
space one can construct i.i.d. random variables (𝛼(𝑝))𝑝 with the uniform distribution on 𝑆1 and a
collection of (real-valued) random fields ̃ℜ

𝑦,1
and 𝐸𝑦 on [0, 1] such that

ℜ
𝑦,1
(⋅) = ̃ℜ

𝑦,1
(⋅) + 𝐸𝑦(⋅)

simultaneously for all 𝑦 ⩾ 3 almost surely, where

∙ 𝐸𝑦 is a sequence of continuous fields which converges uniformly almost surely as 𝑦 → ∞ and
satisfies

𝔼

[
sup
𝑦⩾3

sup
𝑡∈[0,1]

𝑒𝜆𝐸𝑦(𝑡)

]
< ∞ ∀𝜆 ∈ ℝ;

∙ ̃ℜ
𝑦,1

is a sequence of continuous Gaussian fields with the property that

sup
𝑠,𝑡∈[0,1], 𝑦⩾3

|||||𝔼
[̃ℜ

𝑦,1
(𝑠)̃ℜ

𝑦,1
(𝑡)

]
−
1

2
log

(
1|𝑠 − 𝑡| ∧ log 𝑦

)||||| < ∞. (3.5)

We also recall a fact about existence of moments of critical Gaussian multiplicative chaos.

Lemma 3.4. Let 𝐺𝑇(⋅) be a collection of (real-valued) continuous Gaussian fields on [0, 1] with

sup
𝑥,𝑦∈[0,1], 𝑇>0

|||||𝔼[𝐺𝑇(𝑥)𝐺𝑇(𝑦)] − log
(

1|𝑥 − 𝑦|
)
∧ 𝑇

||||| < ∞. (3.6)

Then for any 𝑞 ∈ (0, 1), we have

sup
𝑇>0

𝔼

[(√
𝑇 ∫

1

0

𝑒
√
2𝐺𝑇(𝑥)−𝔼[𝐺𝑇(𝑥)

2]d𝑥

)𝑞
]
< ∞. (3.7)

Sketch of proof. This claimwas established as [4, Corollary 6] when𝐺𝑇 is the white-noise decom-
position of ∗-scale invariant fields (which ultimately follows from earlier results onmultiplicative
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A SHORT PROOF OF HELSON’S CONJECTURE 1073

cascades). In the general case, let us recall a consequence of Kahane’s convexity inequality (see,
for example, [4, Lemma 16]): if 𝑌(⋅) and 𝑍(⋅) are two continuous Gaussian fields satisfying
𝔼[𝑌(𝑠)𝑌(𝑡)] ⩽ 𝔼[𝑍(𝑠)𝑍(𝑡)] for all 𝑠, 𝑡 ∈ [0, 1], then

𝔼

[(
∫

1

0

𝑒𝑌(𝑥)−
1
2
𝔼[𝑌(𝑥)2]d𝑥

)𝑞
]
⩾ 𝔼

[(
∫

1

0

𝑒𝑍(𝑥)−
1
2
𝔼[𝑍(𝑥)2]d𝑥

)𝑞
]

∀𝑞 ∈ (0, 1). (3.8)

Suppose 𝐺𝑇(⋅) is the white-noise decomposition of some ∗-scale invariant field on [0,1], and
𝐺𝑇(⋅) is another collection of continuous Gaussian fields satisfying (3.6). Since both collections
of Gaussian fields satisfy (3.6), there necessarily exists some constant 𝐶 > 0 such that

𝔼[𝐺𝑇(𝑠)𝐺𝑇(𝑡)] ⩽ 𝔼[𝐺𝑇(𝑠)𝐺𝑇(𝑡)] + 𝐶 ∀𝑠, 𝑡 ∈ [0, 1].

Let us define an independent Gaussian random variable with mean 0 and variance 𝐶, and set
𝑌(𝑥) ∶=

√
2𝐺𝑇(𝑥) as well as 𝑍(𝑥) ∶=

√
2
[
𝐺𝑇(𝑥) + ]

. Then

𝔼[𝑌(𝑠)𝑌(𝑡)] = 2𝔼[𝐺𝑇(𝑠)𝐺𝑇(𝑡)] ⩽ 2
{
𝔼[𝐺𝑇(𝑠)𝐺𝑇(𝑡)] + 𝐶

}
= 𝔼[𝑍(𝑠)𝑍(𝑡)] ∀𝑠, 𝑡 ∈ [0, 1],

and from (3.8) we deduce

𝔼

[(
∫

1

0

𝑒
√
2𝐺𝑇(𝑥)−𝔼[𝐺𝑇(𝑥)

2]d𝑥

)𝑞
]
⩾ 𝔼

[(
∫

1

0

𝑒
√
2(𝐺𝑇(𝑥)+ )−𝔼[(𝐺𝑇(𝑥)+ )2]d𝑥

)𝑞
]

= 𝔼
[(
𝑒
√
2𝑞−𝑞𝔼[ 2]

)]
𝔼

[(
∫

1

0

𝑒
√
2𝐺𝑇(𝑥)−𝔼[𝐺𝑇(𝑥)

2]d𝑥

)𝑞
]
,

where the equality follows from independence. Using 𝔼
[
𝑒
√
2𝑞 ]

= 𝑒𝑞
2𝔼[ 2], we see that

sup
𝑇>0

𝔼

[(√
𝑇 ∫

1

0

𝑒
√
2𝐺𝑇(𝑥)−𝔼[𝐺𝑇(𝑥)

2]d𝑥

)𝑞
]
⩽ 𝑒𝑞(1−𝑞)𝐶 sup

𝑇>0
𝔼

[(√
𝑇 ∫

1

0

𝑒
√
2𝐺𝑇(𝑥)−𝔼[𝐺𝑇(𝑥)

2]d𝑥

)𝑞
]

and the bound (3.7) for 𝐺𝑇 implies an analogous bound for 𝐺𝑇 , as claimed. □

Proof of Lemma 3.2. Let 𝑞 < 𝑞′ < 1. Using Hölder’s inequality, we obtain

sup
𝑦⩾3

𝔼

[(√
log log 𝑦

log 𝑦 ∫
1

0

exp
(
2ℜ

𝑦,1
(𝑡)

)
d𝑡

)𝑞]

⩽

⎛⎜⎜⎝sup𝑦⩾3
𝔼

[
sup
𝑡∈[0,1]

𝑒(1−𝑞∕𝑞
′)
−1
𝐸𝑦(𝑡)

]1−𝑞∕𝑞′⎞⎟⎟⎠ sup𝑦⩾3
𝔼

⎡⎢⎢⎣
(√

log log 𝑦

log 𝑦 ∫
1

0

exp
(
2̃ℜ

𝑦,1
(𝑡)

)
d𝑡

)𝑞′⎤⎥⎥⎦
𝑞∕𝑞′

≪𝑞,𝑞′ sup
𝑦⩾3

𝔼

[(√
log log 𝑦 ∫

1

0

exp
(
2̃ℜ

𝑦,1
(𝑡) − 2𝔼[̃ℜ

𝑦,1
(𝑡)2]

)
d𝑡

)𝑞′
]𝑞∕𝑞′
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1074 GORODETSKY

by Theorem 3.3, where in the last inequality we used 2𝔼[̃ℜ
𝑦,1
(𝑡)2] = log log 𝑦 + 𝑂(1) by (3.5). The

claim now follows from Lemma 3.4 with 𝑇 = log log 𝑦 and 𝐺𝑇(𝑡) ∶=
√
2̃ℜ

𝑦,1
(𝑡). □

Proof of Lemma 1.3. Letmax(1, 2𝑞) < 𝑟 < 𝑟′ < 2. We have

𝔼

[(
1

log 𝑦 ∫ℝ
|||||
𝐴𝑦(1∕2 + 𝑖𝑡)

1∕2 + 𝑖𝑡

|||||
2

d𝑡

)𝑞]
⩽ 𝔼

⎡⎢⎢⎣
(

1

log 𝑦 ∫ℝ
|||||
𝐴𝑦(1∕2 + 𝑖𝑡)

1∕2 + 𝑖𝑡

|||||
2

d𝑡

)𝑟∕2⎤⎥⎥⎦
2𝑞∕𝑟

⩽

{∑
𝑛∈ℤ

8

(1 + 𝑛2)
𝑟∕2

𝔼

[(
1

log 𝑦 ∫
𝑛+1

𝑛

|||𝐴𝑦(1∕2 + 𝑖𝑡)|||2d𝑡
)𝑟∕2

]}2𝑞∕𝑟

(3.9)

by Hölder’s inequality and then the subadditivity of 𝑎 ↦ 𝑎𝑟∕2. Since the law of 𝛼(𝑝) is rotation-
ally invariant, we have

(
𝐴𝑦 (1∕2 + 𝑖(𝑡 + 𝑛)) , 𝑡 ∈ [0, 1]

) 𝑑
=

(
𝐴𝑦 (1∕2 + 𝑖𝑡) , 𝑡 ∈ [0, 1]

)
. In particular,

(3.9) is equal to

(∑
𝑛∈ℤ

8

(1 + 𝑛2)
𝑟∕2

)2𝑞∕𝑟

𝔼

[(
1

log 𝑦 ∫
1

0

|||𝐴𝑦(1∕2 + 𝑖𝑡)|||2d𝑡
)𝑟∕2

]2𝑞∕𝑟
. (3.10)

Using (3.1), the absolute (deterministic) bound for |𝑦,3(⋅)| as well as Hölder’s inequality, we see
that

𝔼

[(
1

log 𝑦 ∫
1

0

|||𝐴𝑦(1∕2 + 𝑖𝑡)|||2d𝑡
)𝑟∕2

]2∕𝑟

⩽ 𝔼

⎡⎢⎢⎣
(
sup
𝑠∈[0,1]

𝑒
2𝐺ℜ

𝑦,3
(𝑠)

)𝑟∕2(
sup
𝑠∈[0,1]

𝑒
𝐺ℜ
𝑦,2
(𝑠)

)𝑟∕2(
1

log 𝑦 ∫
1

0

exp
(
2ℜ

𝑦,1
(𝑡)

)
d𝑡

)𝑟∕2⎤⎥⎥⎦
2∕𝑟

≪
⎛⎜⎜⎝sup𝑦⩾3

𝔼

[
sup
𝑠∈[0,1]

𝑒
𝑟
2
(1− 𝑟

𝑟′
)−1ℜ

𝑦,2
(𝑠)

] 2
𝑟
− 2

𝑟′ ⎞⎟⎟⎠
⎛⎜⎜⎜⎝𝔼

⎡⎢⎢⎣
(

1

log 𝑦 ∫
1

0

exp
(
2ℜ

𝑦,1
(𝑡)

)
d𝑡

) 𝑟′

2 ⎤⎥⎥⎦
2

𝑟′ ⎞⎟⎟⎟⎠.
The first factor on the right-hand side is ≪𝑟,𝑟′ 1 by Lemma 3.1, and whereas the second fac-
tor is ≪ (log log 𝑦)−1∕2 by Lemma 3.2 with the implicit constant being uniform for 𝑟′ bounded
away from 2 (as a consequence of Hölder’s inequality). Substituting this back to (3.10), we con-
clude the proof with an upper bound of order (log log 𝑦)−𝑞∕2 and the desired uniformity in
𝑞 ∈ [0, 1 − 𝛿]. □

APPENDIX A: PROBABILITY RESULTS
Theorem A.1 Hoeffding [9]. Let (𝑋𝑖)𝑖⩽𝑛 be a collection of independent random variables with
𝔼[𝑋𝑖] = 0 and |𝑋𝑖| ⩽ 𝑐𝑖 for each 𝑖 ⩽ 𝑛. Then 𝑆𝑛 ∶= ∑𝑛

𝑖=1 𝑋𝑖 satisfies
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𝔼
[
𝑒𝜆𝑆𝑛

]
⩽ exp

(
𝜆2

2

𝑛∑
𝑖=1

𝑐2
𝑖

)
∀𝜆 ∈ ℝ (A1)

and ℙ(|𝑆𝑛| ⩾ 𝑢) ⩽ 2 exp(− 𝑢2

2
∑𝑛
𝑖=1 𝑐

2
𝑖

)
∀𝑢 ⩾ 0. (A2)

TheoremA.2Generic chaining bound, cf. [15, Equation (2.47)]. Let (𝑋𝑡)𝑡∈𝑇 be a collection of zero-
mean random variables indexed by elements of a metric space (𝑇, 𝑑) satisfying

ℙ(|𝑋𝑠 − 𝑋𝑡| ⩾ 𝑢) ⩽ 2 exp(− 𝑢2

2𝑑(𝑠, 𝑡)2

)
∀𝑠, 𝑡 ∈ 𝑇, 𝑢 ⩾ 0. (A3)

Then there exists some absolute constant 𝐶1 > 0 such that

ℙ

(
sup
𝑠,𝑡∈𝑇

|𝑋𝑠 − 𝑋𝑡| ⩾ 𝑢) ⩽ 𝐶1 exp

(
−

𝑢2

𝐶1𝛾2(𝑇, 𝑑)
2

)
∀𝑢 ⩾ 0.

The special constant 𝛾2(𝑇, 𝑑) can be estimated from above by Dudley’s entropy bound: there exists
some absolute constant 𝐶2 > 0 independent of (𝑇, 𝑑) such that

𝛾2(𝑇, 𝑑) ⩽ 𝐶2 ∫
∞

0

√
log𝑁(𝑇, 𝑑, 𝑟)d𝑟 (A4)

where 𝑁(𝑇, 𝑑, 𝑟) denotes the smallest number of balls of radius 𝑟 (with respect to 𝑑) needed to cover
𝑇.
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