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ABSTRACT
Accurate and robust modeling of large deformation three-dimensional contact interaction is an important area of engineering,
but it is also challenging from a computational mechanics perspective. This is particularly the case when there is significant inter-
penetration and evolution of the contact surfaces, such as the case of a relatively rigid body interacting with a highly deformable
body. This paper provides a new three-dimensional large deformation contact approach where the Material Point Method (MPM)
is used to represent the deformable material. A new contact detection approach is introduced that checks the interaction of the
vertices of the domains associated with each material point with the discretized rigid body. This provides a general and consis-
tent approach without requiring the reconstruction of an additional boundary representation of the deformable body. A new
energy-consistent material point domain updating approach is also introduced that maintains stable simulations under large
deformations. The dynamic governing equations allow the trajectory of the rigid body to evolve based on the interaction with
the deformable body, and the governing equations are solved within an efficient implicit framework. The performance of the new
contact approach is demonstrated on a number of benchmark problems with analytical solutions. The method is also applied to
the specific case of soil-structure interaction, using geotechnical centrifuge experimental data that confirms the veracity of the
proposed approach.

1 | Introduction

Modeling the interaction between deformable bodies under large
deformations requires robust contact algorithms that are able to
track and handle the evolving contact surfaces while enforcing
the required contact constraints. In many areas of engineering,
one of the bodies can be very stiff compared to the other, which
permits a rigid body assumption for the stiffer material. One such
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application area is soil-structure interaction, which is a key area
of geotechnical engineering, particularly in offshore geotechnics,
where almost all interactions with the seabed involve large defor-
mation processes. This paper focuses on such problems and,
building on the work of Bird et al. [1], adopts the Material Point
Method (MPM [2]), as the numerical method to represent soil
behavior due to the MPM’s established track record of model-
ing large deformation geotechnical problems (see Solowski et al.
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[3] and de Vaucorbeil et al. [4] for review articles). The implicit
dynamic MPM formulation used in this paper is outlined in
Section 2.

There are numerous choices in terms of how to enforce contact
between the soil and the structure. The original MPM includes
a form of no-slip contact in that multiple bodies interact on
a shared background grid, where the governing equations are
assembled and solved. However, most of these methods struggle
to rigorously enforce contact as they lack an explicit definition
of the contact surface between the bodies [5, 6]. The focus in
this paper is on soil-structure interaction where the stiffness of
the structure is sufficiently large, relative to the deformable soil
body, that it can be assumed to be rigid. This allows the con-
tact surface to be based on the geometry of the rigid body [1].
Therefore, this introduction outlines specific MPM contributions
that focus on soil-structure interaction with a clearly defined con-
tact boundary rather than attempt to provide a comprehensive
review of all MPM-based contact formulations (see Bird et al.
[1] for a more detailed overview). Within this context, Naka-
mura et al. [7] used the boundary discretization of an infinitely
rigid body to define the contact surface, while Lei et al. [8]
employed a finite element discretization that allowed the struc-
ture to deform whilst providing an explicit representation of the
contact surface. It is worth noting that in some cases it is pos-
sible to maintain a rigid body conforming background mesh,
which allows the contact constraints to be imposed directly on
the background grid (see, e.g., Martinelli and Vahid [9]). How-
ever, in all but the simplest of cases this necessitates the use of
unstructured background grids, usually simplex elements, which
causes other issues such as cell crossing instabilities as MPM
formulations adopting 𝐶1 continuous basis functions (such as
generalized interpolation [10] and B-spline [11] basis functions)
are only available for structured grids. This paper extends the
two-dimensional quasi-static contact approach of Bird et al. [1] to
three-dimensional dynamic analysis, including coupled soil reac-
tion dependent rigid body motion. The deformable body is repre-
sented by Generalized Interpolation Material Points (GIMPs) to
mitigate cell crossing instabilities. Numerical methods for enforc-
ing contact constraints can be broadly grouped into penalty,
augmented Lagrangian, and Lagrange multiplier methods [12].
Again following Bird et al. [1], here the geometrically non-linear
contact constraints are enforced via a penalty approach, and the
dynamic coupled soil deformation-rigid body motion equations
are resolved using an implicit monolithic solver. The contact
detection and enforcement algorithm is based on the interaction
between the rigid body and the generalized interpolation domain
associated with each material point. This means that the contact
penalty forces are consistent with the internal forces generated
based on the stress state of material points and that no additional
material point-based boundary representation is required. Details
of the approach are covered in Sections 3, 4, and 5, which provide
a description of the rigid body, details of the contact formulation,
and information on specific aspects of the numerical implemen-
tation, respectively.

The key contribution of this paper is a new three-dimensional
MPM-based soil-structure interaction approach for dynamic
problems that allows for the motion of the structure to evolve
based on the response of the deformable body. This is impor-
tant for several areas of offshore geotechnical engineering where

the motion of the rigid body is only partially prescribed. Solv-
ing the coupled equations implicitly permits the use of large
time steps compared to most of the MPM literature that focuses
on explicit solution methods. Enforcing the contact constraints
based on the domains associated with each material point pro-
vides a robust, general, and consistent soil-structure interac-
tion approach. The advantages of the proposed formulation are
demonstrated by a number of benchmark and exemplar test
cases.

2 | Material Point Method

To avoid mesh distortion issues seen in other mesh-based meth-
ods, the MPM requires two spatial discretizations: Material points
representing the physical body and a background grid to solve the
governing equations. A typical time step in the MPM can be bro-
ken down as shown in Figure 1:

a. Initial position: At the start of an analysis the physical body
being analyzed (shown by the light grey shaded region with a
boundary defined by the black line) is discretized as a collec-
tion of material points (shown by the dark grey shaded cir-
cles) with associated volume, mass and constitutive param-
eters (e.g., Young’s modulus). The body lies within a back-
ground grid of sufficient size to cover the full extent of the
material points.

b. Point-to-grid mapping: Information held at material points,
such as mass, stiffness, and forces associated with gravita-
tional loads, any tractions applied to material points, and the
stress in the material, is mapped to the nodes of the back-
ground grid.

c. Governing equation assembly: The governing equations
describing the physical problem being analyzed are assem-
bled at the degrees of freedom of the background grid. This
leads to a finite element-like system of equations, which will
change size depending on the interaction between the mate-
rial points and the grid, as only some nodes will be active in
the analysis (those with contributions from material points,
as shown by the white shaded circles).

d. Grid solution: The governing equations, combined with any
boundary conditions imposed directly on the grid or from
immersed constraints, are solved at the active degrees of free-
dom to determine the primary unknowns of the system of
equations (for static and dynamic stress analysis this would
usually be displacements and accelerations, respectively).
How the equations are solved defines different MPMs and
depends on the nature of the equations and the adopted time
stepping algorithm.

e. Grid-to-point mapping: The solution is mapped from the grid
to the material points, such as displacement, velocity, stress,
deformation, volume, etc.

f. Point/grid update: The positions of the material points are
updated, and the background grid is reset or replaced.

These steps describe a general material point time step for
quasi-static or dynamic stress analysis problems. Details of
the calculation steps will change depending on the solution
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FIGURE 1 | Material point method steps (adapted from Coombs and Augarde [13]). (a) initial position, (b) point-to-grid map, (c) assembly, (d) grid
solution, (e) grid-to-point map, and (f) update points & reset grid.

procedure. This paper is focused on dynamic stress analysis of
solid materials, with an implicit Newmark time discretization.
Key aspects of the formulation are provided in the following
sections. These sections are deliberately brief, with specific ref-
erences for full details, as the focus of the paper is on a new
three-dimensional contact approach.

2.1 | Continuum Formulation

The continuum formulation adopted in this paper is the same
as the quasi-static open-source AMPLE (A Material Point Learn-
ing Environment) code [13], but with the addition of inertia
effects. Full details of the large deformation elasto-plastic contin-
uum mechanics formulation used in this paper can be found in
Charlton et al. [14] and Coombs and Augarde [13]. Within this
approach, the deformation gradient is multiplicatively decom-
posed into elastic and plastic components and combined with
a linear relationship between Kirchhoff stress and logarithmic
elastic strain, along with an exponential map of the plastic
flow rule. The combination of these ingredients allows isotropic
small-strain plasticity algorithms to be used directly within a
large-deformation setting, without modifying the stress update
procedure [15]. The approach is widely used in large deformation

finite element methods (see, e.g., de Souza Neto et al. [16]), and
in material point methods [1, 13, 14, 17–20].

2.2 | Material Point and Background Grid
Spatial Discretization

A background grid of finite elements, 𝐾 , allows the weak state-
ment of equilibrium to be expressed as

∫𝜑𝑡(𝐾)
[∇𝑥𝑆𝑣]𝑇 {𝜎}d𝑉 − ∫𝜑𝑡(𝐾)

[𝑆𝑣]𝑇 {𝑏}d𝑉 + ∫𝜑𝑡(𝐾)
𝜌[𝑆𝑣]𝑇 {𝑣̇}d𝑉

− ∫𝜑𝑡(𝜕Ω)

(
{𝐹 𝜕Ω

𝑁,𝑣
} + {𝐹 𝜕Ω

𝑇 ,𝑣
}
)

d𝑠 = {0} (1)

where {𝑣̇} and 𝜑𝑡 are the acceleration and motion of the material
within the element, which is subjected to body forces, {𝑏}, act-
ing over its volume, 𝑉 , with density, 𝜌, that generates a Cauchy
stress, {𝜎}, in the element. [𝑆𝑣] contains the basis functions that
map information from the nodes (or vertices, 𝑣) of the back-
ground grid to other locations within the grid. [∇𝑥𝑆𝑣] is the
strain-displacement matrix containing derivatives of the basis
functions with respect to the updated coordinates. The last term is
the traction comprising the normal and tangential contact forces

3 of 20

 10970207, 2025, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.70080 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [25/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



for the deformable body, respectively {𝐹 𝜕Ω
𝑁,𝑣

} and {𝐹 𝜕Ω
𝑇 ,𝑣

}. Note that
the traction term is integrated over the boundary of the physical
body, 𝜕Ω, as in general the domain boundary will not coincide
with the background mesh.

In the MPM, the physical body being analyzed is represented
by a number of discrete material points with an associated vol-
ume, 𝑉𝑝, and mass, 𝑚𝑝. This allows the volumetric integrals in
Equation (1) to be approximated by an assembly over the material
points

A
∀𝑝

(
[∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝 − [𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝 + [𝑆𝑣𝑝]𝑇 {𝑣̇𝑝}𝑚𝑝

)
− A

𝑝∈𝑃𝑐

(
{𝐹 𝜕Ω

𝑁,𝑣𝑝
} + {𝐹 𝜕Ω

𝑇 ,𝑣𝑝
}
)
= {0} (2)

Note that the subscripts on the basis functions, [𝑆𝑣𝑝], have
changed to highlight that they depend on both basis functions
associated with the background grid and the characteristic func-
tion associated with the material point, 𝑝, which describes a mate-
rial point’s influence (see Section 2.3 for details). The subscripts
of the contact forces, {𝐹 𝜕Ω

𝑁,𝑣𝑝
} and {𝐹 𝜕Ω

𝑇 ,𝑣𝑝
}, have also changed to

highlight that contact is occurring at the material point 𝑝 ∈ 𝑃𝑐 ,
where 𝑃𝑐 is the set of material points in contact with the rigid
body. In this paper, it is assumed that Dirichlet boundary condi-
tions are imposed directly on the nodes of the background grid
as the imposition of general Dirichlet constraints is a separate
area of research (see, e.g., [18, 21–23]). The traction term will be
discretized in Section 4.

2.3 | Basis Functions

In this paper we adopt Generalized Interpolation Material Point
(GIMP [10]), basis functions to mitigate the widely documented
cell crossing instability and also to provide a convenient way to
track contact between the deformable material (represented by
material points) and a rigid body. The basis functions, 𝑆𝑣𝑝, are
obtained by integrating the product of the shape functions asso-
ciated with the background grid, 𝑆𝑣, with a characteristic func-
tion, 𝜒𝑝, over the cuboid defining the domain associated with the
material point,Ω𝑝, normalized by the volume of the domain. This
generates 𝐶1 continuous basis functions that smooth the transfer
of internal force from the material points to the grid nodes as a
material point transitions between elements. The domain updat-
ing procedure is detailed in Section 5.2.

2.4 | Discretization in Time

The discrete weak statement of equilibrium (2) is discretized
in time by a Newmark time integration scheme. The Newmark
parameters are taken to be 𝛾 = 1∕2 and 𝛽 = 1∕4, resulting in
an unconditionally stable implicit algorithm for linear problems
[24]. A key point within MPMs is that the nodal displacements at
the end of each time step are discarded, and the background grid
is reset or replaced. Therefore, it is assumed that the nodal dis-
placements at the start of the step are zero, {𝑢𝑛

𝑣
} = {0}, whereas

the nodal velocities and accelerations at the start of the time step
are projected from the material point values using

{𝑣𝑛
𝑣
} = [𝑀]−1A

∀𝑝

(
[𝑆𝑣𝑝]𝑇 {𝑣𝑛

𝑝
}𝑚𝑝

)
and {𝑣̇𝑛

𝑣
} = [𝑀]−1A

∀𝑝

(
[𝑆𝑣𝑝]𝑇 {𝑣̇𝑛

𝑝
}𝑚𝑝

)
(3)

where [𝑀] = A∀𝑝

(
[𝑆𝑣𝑝]𝑇 [𝑆𝑣𝑝]𝑚𝑝

)
is the consistent mass matrix.

{𝑣𝑛
𝑝
} and {𝑣̇𝑛

𝑝
} at the material point velocities and accelerations at

the start of the time step (assumed to be equal to those from the
end of the previous time step). At the end of the time step, a FLIP
grid-to-particle mapping is performed [25].

2.5 | Stabilization

The MPM can suffer from instabilities linked to the arbitrary
nature of the interaction between the material points and the
background grid, potentially leading to very small contributions
to the mass and/or stiffness matrix. These small contributions can
result in conditioning issues and, therefore, issues with the inver-
sion of the mass/stiffness matrix. In this paper, the ghost penalty
approach of Burman [26] is adopted to mitigate this issue based
on the MPM implementation of Coombs [27]. The technique adds
a penalty stabilization term to the mass and/or stiffness matrix
that introduces additional continuity of the gradient of the solu-
tion across faces of the background grid at the boundary of the
physical body (i.e., in elements with a small cut potential). In this
paper the mass and stiffness stabilization parameters are set to
𝛾𝑀 = 𝜌∕4 and 𝛾𝐾 = 𝐸∕30, respectively, where 𝜌 and 𝐸 are the
volume weighted average density and Young’s modulus of the
material points that occupy the elements that share the element
boundary where the stabilization is applied.

3 | Rigid Body

To describe the contact kinematics between the rigid body and
the material points, it is necessary to define the various coordi-
nate systems that exist. This includes the local coordinates of the
triangular facets that form the rigid body’s surface, and also the
global coordinates of the rigid body, which are used to describe its
kinematics. Much of the details presented here can be found in
the book by Wriggers [12]. However, the mathematical tools that
are used here are briefly detailed for both readability and consis-
tent nomenclature.

3.1 | Coordinate Systems

The surface of the rigid body is discretized by a triangular mesh,
as in the left of Figure 2.

On each triangle in the global domain, 𝐾 , a contravariant coor-
dinate system is defined, 𝒙′ = 𝒆𝛼𝜉𝛼 , where 𝒙′ ∈ 𝐾 , is shown by
the square marker in Figure 2. Similarly on the local domain 𝐾̂ ,
shown on the right Figure 2, another contravariant coordinate
system is defined, 𝜼 = 𝒆̂𝛼𝜉𝛼 . Between the two coordinate systems,
there is the affine mapping,

𝒙′ = 𝚵(𝒙𝑛, 𝜼) (4)

where 𝒙𝑛 are the nodal positions of the rigid body triangle. The
mapping is such that the contravariant components, 𝜉𝛼 , are con-
vected between the coordinate systems [28],

𝒙′ = 𝒆𝛼𝜉𝛼 and 𝜼 = 𝒆̂𝛼𝜉𝛼 (5)
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FIGURE 2 | The rigid body global and local coordinate systems.

such that the value 𝜉𝛼 remains constant between the local and
global domains when the mapping (4) is performed. To track the
movement of a contact point over a triangle, it is convenient to
do so with nodal shape functions and the local coordinates 𝜉𝛼

defined at the nodes 𝜉𝛼
𝑛

, where 𝑛 is the nodal number. The value
of 𝜉𝛼 can therefore be described as

𝜉𝛼 =
3∑
𝑛

𝑁𝑛(𝜉)𝜉𝛼
𝑛

(6)

where 𝑁𝑛(𝜉) are the nodal shape functions. Substituting Equation
(6) into Equation (5) gives the description for the position 𝒙′ but
using the local element shape functions,

𝒙′ = 𝒆𝛼

3∑
𝑛

𝑁𝑛(𝜉)𝜉𝛼
𝑛
=

3∑
𝑛

𝑁𝑛(𝜉)𝒙𝑛 (7)

where 𝒙𝑛 is the position of the triangle corners in the global
domain. Additionally, the tangent to the rigid body in the global
domain 𝒕𝛼 , see Pietrzak and Curnier [29], is found with the
derivative of shape functions with respect to 𝜉𝛼

𝒕𝛼 = 𝜕𝒙

𝜕𝜉𝛼
= 𝒆𝛽

3∑
𝑛

𝜕𝑁𝑛(𝜉)
𝜕𝜉𝛼

𝜉𝛽
𝑛
=

3∑
𝑛

𝜕𝑁𝑛(𝜉)
𝜕𝜉𝛼

𝒙𝑛 (8)

3.2 | Kinematics

A rigid body is defined by a set of nodes unable to move rela-
tive to each other; the motion of all the nodes is described with a
single set of rigid body degrees of freedom. The work presented
here was originally developed for geotechnical engineering prob-
lems, which often involve a chain or wire pulling a rigid body,
such as a plough or anchor. Here, a truss frame is used to model
the chain/wire, and the frame is also used to describe the kine-
matics of the rigid body. The kinematic description is achieved
by using the vertices of a truss element to describe the position
of all nodes. An example of this for a single triangle of the rigid
body is shown in Figure 3, where the motion of the truss frame is
restricted to the 𝑦-plane.

The truss element in Figure 3 is comprised of two nodes, 𝒙𝑀 and
𝒙𝐷 from which a tangent 𝒕𝑟𝑏 and normal 𝒏𝑅𝐵 are defined. They

FIGURE 3 | Rigid body: Truss frame description.

are respectively computed by

𝒕𝑅𝐵 =
𝒙𝐷 − 𝒙𝑀||𝒙𝐷 − 𝒙𝑀 || and 𝒏𝑅𝐵 = 𝑹 ⋅ 𝒕𝑅𝐵 (9)

where 𝑹 is a rotation matrix of 90∘ about the 𝑦-axis. The nodal
position of the triangle element,𝒙𝑛, can now be described as func-
tion of 𝒙𝑀 , 𝒕𝑅𝐵 , 𝒏𝑅𝐵 and two scalar values 𝐵𝑛 and 𝐴𝑛 which have
unique, and constant, values for each node,

𝒙𝑛 = 𝐴𝑛𝑰 ⋅ 𝒏𝑅𝐵 + 𝐵𝑛𝑰 ⋅ 𝒕𝑅𝐵 + 𝒙𝑀 = (𝐴𝑛𝑹 + 𝐵𝑛𝑰) ⋅ 𝒕𝑅𝐵 + 𝒙𝑀 = 𝑮𝑛(𝜽)
(10)

where 𝑰 is the identity matrix and 𝑮𝑛(𝜽) is the function for the
position 𝒙𝑛 dependent on the variable 𝜽 which is a vector con-
taining the points 𝒙𝑀 and 𝒙𝐷. Every node in the rigid body is
described by Equation (10) which for all nodes has the variables
𝒙𝑀 and 𝒙𝐷, hence there is potential for relative motion between
the nodes. Substituting Equation (10) into (7) gives,

𝒙′ =
3∑
𝑛

𝑁𝑛(𝜉)
[
(𝐴𝑛𝑹 + 𝐵𝑛𝑰) ⋅ 𝒕𝑅𝐵 + 𝒙𝑀

]
=

3∑
𝑛

𝑁𝑛(𝜉)𝑮𝑛(𝜽) (11)

In Section 4, 𝒙′ is used as the contact point of the rigid body with
the material point, for which the implicit solver will require its
first and second variations, provided in Appendix A.
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Lastly, the residual for the equation of linear momentum of the
truss frame, with the contact forces, is included in the monolithic
solver, presented in Section 2.4, to form a coupled problem. The
residual for linear momentum takes the form,

A
𝑓∈𝐹

{𝜎𝑓}d𝑉 − A
𝑓∈𝐹

{𝑏}d𝑉 + A
𝑓∈𝐹

[𝑚𝑓 ]{ ̇𝑣𝑓}d𝑉

−A
𝑙∈𝐿

(
{𝐹 𝑙

𝑁
} + {𝐹 𝑙

𝑇
}
)
d𝑠 = {0} (12)

where {𝜎𝑓} is the internal truss force, 𝐹 is the set for all truss ele-
ments 𝑓 , 𝐿 is the set for all rigid body triangles 𝑙, [𝑚] is the nodal
mass matrix for 𝑓 , {𝑏𝑓} is the nodal external force vector, { ̇𝑣𝑓} is
the nodal acceleration and the last term is the contact forces act-
ing on the triangles of the rigid body, split into normal, {𝐹 𝑙

𝑁
} and

tangential components {𝐹 𝑙
𝑇
}, [30].

4 | Contact

This section presents the description of the contact forces present
in Equations (2) and (12). When considering the contact between
the material point 𝑝 and the triangle 𝑙, the general form for the
contact forces is

𝛿𝑈 = 𝛿𝑈𝑁 + 𝛿𝑈𝑇 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′)

(
{𝐹 𝑙

𝑁
} + {𝐹 𝜕Ω

𝑁,𝑣𝑝
}
)

d𝑠

+ ∫𝜓𝑡(𝑙)∩𝛿(𝒙′)

(
{𝐹 𝑙

𝑇
} + {𝐹 𝜕Ω

𝑇 ,𝑣𝑝
}
)

d𝑠 (13)

where 𝛿(𝒙′) is the Dirac delta function and 𝒙′ is the projection
of the position of the material point 𝑝 onto the rigid body sur-
face, using the Closest Point Projection (CPP) scheme, detailed
in Section 4.2.

4.1 | Contact Introduction

This section describes the contact formulation between the rigid
body and the GIMPs. Using the same contact methods as in
the Finite Element Method (FEM), the contact formulation and
methodology are driven by the gap function [12, 31]. The gap
function is the projection of a point from the secondary surface
(s), with coordinates 𝒙′, onto the main surface (m), with coordi-
nates 𝒙. The gap function is used to: (i) determine if there is con-
tact and between which point and surface; (ii) how much overlap
there is; and (iii) through the rate derivative of the gap function
to determine the relative tangential velocity.

Here, the CPP scheme is used to determine the gap function,
see the works of Curnier and their coworkers [29, 31]. How-
ever, other methods do exist, such as ray-tracing (see Poulios and
Renard [32]), which has been applied to GIMP-to-GIMP contact,
Pretti [6].

4.2 | Gap Function

To define the gap function, first the definition of the main (m) and
secondary (s) surfaces/domains needs to be established, as well as
the general contact methodology. Here, a point-to-surface contact

is used, where the points are the primary domain, consisting of
the GIMP vertices, and the secondary domain is the triangular
surface of the rigid body.

The CPP gap function is the minimum distance of a point’s pro-
jection point onto the surface, defined as,

𝒈𝑁 (𝜉(𝜏)𝛼, 𝜏) = 𝑔𝑁 (𝜉(𝜏)𝛼, 𝜏)𝒏(𝜉(𝜏)𝛼, 𝜏)

= 𝒙(𝜏) − 𝒙′(𝜉(𝜏)𝛼, 𝜏) and 𝑔𝑁 = 𝒈𝑁 ⋅ 𝒏 (14)

where 𝜏 is time and 𝜉(𝜏)𝛼 is a function that describes the local
location of the projection on the surface. The normal contact law
is described by the Signorini–Hertz–Moreau conditions, which
are a function of 𝑔𝑁 and the corresponding normal penetration
force 𝑝𝑁 ,

𝑔𝑁

{
= 0 contact
≥ 0 no contact

, 𝑝𝑁

{≤ 0 contact
= 0 no contact

and 𝑔𝑁𝑝𝑁 = 0

(15)

Where the last condition is relaxed for the penalty method.

Following the work of Curnier et al. [31] an objective definition
of the relative velocities can be obtained as a total time derivative
of 𝒈𝑁 , which is necessary to evaluate the frictional component of
contact. It is expressed as

𝒈̇𝑁 (𝜉𝛼(𝜏), 𝜏) = 𝑔̇𝑁 (𝜉𝛼(𝜏), 𝜏)𝒏(𝜉𝛼(𝜏), 𝜏) + 𝑔𝑁 (𝜉𝛼(𝜏), 𝜏) 𝒏̇(𝜉𝛼(𝜏), 𝜏)

∶= 𝒈̊𝑁 (𝜉𝛼(𝜏), 𝜏) + 𝒈̊𝑇 (𝜉𝛼(𝜏), 𝜏)

∶= 𝒈̊𝑁 (𝜉𝛼(𝜏), 𝜏) + 𝒕𝛼(𝜉𝛼(𝜏), 𝜏) 𝜉̇𝛼(𝜏) (16)

where 𝒈̊𝑁 is rate of penetration and 𝒈̊𝑇 is the relative tangential
velocity between the two points. Following the work of [12, 31]
the residual for contact can be expressed as

𝛿𝑈 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′)

(
𝛿𝑔𝑁𝑝𝑁

)
d𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
normal

+ ∫𝜓𝑡(𝑙)∩𝛿(𝒙′)

(
𝛿𝜉𝛼𝒕𝛼 ⋅ 𝒑𝑡

)
d𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
tangential

(17)

where 𝛿(𝒙′) is the Dirac delta function at the current position
of the secondary surface. Additionally, the first variations of the
normal and tangential gap rates are required 𝒈̊𝑁 = 𝒏𝛿𝑔𝑁 and
𝒈̊𝑡 = 𝒕𝛼𝛿𝜉𝛼 . The linearization of Equation (17) for the normal and
tangential components is respectively found in Appendix B.

4.3 | Normal and Tangential Contact Forces

The magnitude of the normal force, in the direction 𝒏, to resist
interpenetration, 𝑝𝑁 in Equation (17), is calculated using a
penalty force

𝑝𝑁 = 𝜖𝑁𝑔𝑁 (18)

The methodology presented here for determining the friction act-
ing between the two bodies is an extension of the 2D method
proposed by Bird et al. [1] for GIMP-to-rigid body contact, which
itself is based on the work of Wriggers [12]. The methodology
starts by defining the total tangential movement of a point on the
surface,
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𝒈𝑇 = ∫𝜏

𝒈̊𝑇 d𝑡 = ∫𝜏

𝒈̊slip d𝑡 + ∫𝜏

𝒈̊stick d𝑡 = 𝒈slip + 𝒈stick (19)

which is comprised of the components: (i) 𝒈slip, which is the
purely dissipative and forms the plasticity component of the fric-
tion model, and (ii) the tangential stick, 𝒈stick. Here, the Coulomb
friction law is used, where the frictional force is defined as,

𝒑𝑇 = 𝜇||𝑝𝑁
|| 𝒈̊slip||𝒈̊slip|| if ‖‖𝒑stick

‖‖ > 𝜇||𝑝𝑁
||,

where 𝒑stick = 𝜖𝑇 𝒈stick (20)

where 𝜇 is the coefficient of friction, which is assumed constant,
and 𝜖𝑇 is a penalty constant. 𝒑stick is a penalty method to enforce
sticking contact; it is a purely elastic and recoverable motion of
the particle along the surface. The friction law is subject to the
Karush-Kuhn-Tucker (KKT) conditions,

𝑓 = ||𝒑stick|| − 𝜇|𝑝𝑁 | ≤ 0, 𝜆 ≥ 0 and 𝑓𝜆 = 0 (21)

where 𝑓 is the frictional yield function, and 𝜆 is the yield rate.
The computation and the linearization of frictional contact are
presented in Appendix B.

5 | Numerical Implementation

This section details two critical elements of the material
point-rigid body interaction that need careful treatment to realise
an accurate and robust numerical implementation, namely: (i)
the contact detection approach using the corners of the GIMP
domains and (ii) the update of these domains to maintain a stable,
energy consistent solution.

5.1 | Closest Point Projection (CPP) for Contact
Detection

The description of the gap function is fundamental to model-
ing contact, as described in Section 4. However, when consid-
ering contact between a point and an irregular surface there
are algorithmic nuances that need to be discussed which can
be overlooked when going from a mathematical-to-algorithmic
description, particularly in the case when GIMP domains are
used to detect contact. The focus of this section is the calcula-
tion of Equation (14) and presents an extension of the 2D contact
methodology presented by Bird et al. [1] to 3D.

The vertices of the GIMP domains are the points in contact
with the faceted surface of the rigid body, consistent with the
point-to-surface contact described in Section 4. This is necessary
so that contact occurs on the material boundary, otherwise the
contact is not consistent and spurious stresses are observed for the
contact GIMPs [1]. The GIMP domains provide an explicit repre-
sentation of the extent of the physical material that is consistent
with the discretisaiton of the governing equations. The integra-
tion to construct the basis functions, 𝑆𝑣𝑝, is exact; thus, through
inspection of the calculation of the linear momentum residual,
(2), it is also an integral of a function over an exact domain.
The point-to-surface contact between a vertex of the GIMP and a

FIGURE 4 | CPP: A contact vertex (red dot) of a GIMP domain,
shown in gray, in contact with a rigid body triangle, blue. The gap function
is also shown by the yellow arrow.

triangle of the rigid body surface is described with Figure 4 where,
the position of the GIMP vertex is described as

𝒙𝑔𝑛 =
∑
𝑣∈𝐸

𝑁𝑣𝒙𝑣 (22)

which when in contact is the point 𝒙 that is projected onto point
𝒙′ in Equation (14).

As described in Section 3, the surface of the rigid body is con-
structed from a triangular mesh to produce a constant normal
direction over each triangle surface. Points and lines of the mesh
do not have a normal description and hence it is not possible to
define a gap function for them, see the work of Curnier et al. [31]
for this argument. Hence, contact is only observed on the triangle
faces.

The choices made so far can have two possible issues when
considering rigid bodies with concave surface representations
that, if not properly addressed, could undermine the contact for-
mulation. These issues are associated with the governing equi-
librium equation (specifically, the contact detection and asso-
ciated forces) and the convergence of the iterative solver. In
terms of contact forces, an issue with not being able to define
a gap function for the points/lines is that it may be possible for
points to travel into the domain undetected in the case of con-
cave edges/corners (contact detection blind spots). However this
problem is mitigated by each GIMP having 8 potential points
of contact, and in addition CAD software can be used to cham-
fer concave edges/corners to reduce the likelihood of this phe-
nomenon occurring. A concave 3D scenario where contact is not
detected at some GIMP corners is shown in Figure 5a, with a 2D
slice shown in Figure 5b. The green and red regions are where the
contact constraint can and cannot be applied, respectively. From
an algorithmic point of view, these red/green zones are not iden-
tified explicitly; the red regions are simply the result of the CPP
being onto a line or point, and the green regions are a CPP onto a
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FIGURE 5 | Closest point projection: (a) is the 3D view of a GIMP in contact with a concave edge of the rigid body, (b) is the corresponding slice
view through the domain with green regions showing where the CPP is onto triangles, and red regions the CPP onto points/lines of the rigid body.

FIGURE 6 | GIMP contact update: The converged position of the GIMP domain for time step 𝑛 is shown in (a), the updated position for the beginning
of step 𝑛 + 1 is shown in (b) and the updated position for the beginning of step 𝑛 + 1 after the gap minimization in (c). The surface of the rigid body is
shown by the dashed line.

triangle. This represents a potential source of numerical instabil-
ity for concave rigid body geometries. A point in the red region
could be quite far inside the rigid body since there is no force
resisting the penetration. During the load step this point could
move into green region with a significant gap size, resulting in a
large instantaneous contact force that could cause convergence
problems1. To ensure convergence with a reasonable step size,
once a GIMP vertex enters the red region its normal penalty is
set to zero, is deemed inactive, and its contribution remains zero
throughout the remainder of the time step. This is similar to the
active-inactive set methods presented in other works [33]. In this
class of methods, a check is performed to ensure the active set
is optimal in terms of a compromise between enforcing the con-
tact conditions and stability of the non-linear solution process.
Here, the possible set of contact points can only be reduced dur-
ing the load step and is therefore termed a no-return active set
strategy. The decision to not perform additional checks is influ-
enced by various mitigating factors, primarily that the density of
the contact detection points, the GIMP vertices, is higher than
the density of the nodes of the background grid. If a GIMP has
all its vertices set to a zero penalty parameter, nearby GIMPs are
likely to be in contact. This means that the contribution of a single

inactive vertex to the contact force assembled on the grid is likely
to be small. It also means that the case of a single vertex becom-
ing inactive should not significantly influence the behavior of the
Newton-Raphson solver. Furthermore each GIMP has eight ver-
tices, any of which could be in contact with the rigid body. The
likelihood of all these vertices being set to an inactive state when
they should be in contact during a time step is small.

5.2 | GIMP Domain Update Procedure

Large time steps can be taken when solving a contact problem
implicitly, and in the GIMPs which are in contact can undergo
significant deformation, as shown in Figure 6a, during which
the normal contact condition remains met. Once the time step is
complete a reset algorithm is performed on the mesh and GIMP
domains, see Figure 1f, during which the GIMPs are reset from a
distorted to regular shape, with the volume of the GIMP domain
equal to the material volume, see Figure 6b. Whilst this is accept-
able in other regions of the mesh, for GIMPs in contact a large,
purely numerical, increase in the gap function is introduced, as
shown in Figure 6b, despite no external work being performed.

8 of 20 International Journal for Numerical Methods in Engineering, 2025
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ALGORITHM 1 | Energy Minimization Algorithm.

Calculate 𝐸old =
∑8

𝑛

(
𝜖old
𝑁,𝑛

𝑔old
𝑁,𝑛

)2
;

exit← 0;
while exit = 0 do

Calculate the residual 𝑅𝑖 =
𝜕𝐸

𝜕𝑥𝑖

;
if 𝐸∕𝐸old>0.01 then

Calculate update step vector 𝑣𝑖 =
𝑅𝑖ℎ𝑝

200|𝑅𝑖| ;
Update the MP position 𝑥𝑖 ← 𝑥𝑖 − 𝑣𝑖 ;
Recalculate 𝐸 ;

else
exit← 1;

end
end

The result is that at the beginning of the new time step, a sig-
nificant unrealistic normal contact force can exist. This affects
the numerical stability of the algorithm since a large nonlinear-
ity is introduced, which often results in non-convergence of the
solver. This overlap is particularly problematic since the size of
the nonlinearity is the same, regardless of the size of the time step.
Therefore, reducing the time step size and corresponding load
increment size can restore stability, but the solver will continue to
fail regardless of the time step size; consequently, the simulation
will fail.

To solve this problem an energy minimization is performed dur-
ing the update of the GIMP. The energy minimization is pre-
sented as,

argmin
𝑥𝑖∈3

𝐸(𝑥𝑖) where 𝐸(𝑥𝑖) =
8∑
𝑛

[
𝜖old
𝑁,𝑛

𝑔old
𝑁,𝑛

− 𝜖new
𝑁,𝑛

𝑔new
𝑁,𝑛

(𝑥𝑖)
]2

(23)

where 𝑥𝑖 is the position of the GIMP domain centre, 𝑔𝑁,𝑛 is the
magnitude of the normal gap function at node 𝑛, 𝜖𝑁,𝑛 is the nor-
mal penalty, with the superscripts 𝑜𝑙𝑑 and 𝑛𝑒𝑤 corresponding to
the previously converged and current variable state. The authors
emphasise that this is a solution to the problem, but there could
be other possible variations on this, perhaps also considering how
much the material is moved to satisfy (23). However, for the range
of problems considered here, using (23) has delivered both stable
and accurate results.

The method to solve this problem is presented in Algorithm 1.
This will update the GIMP position from its uncorrected state,
Figure 6b, to its new state, Figure 6c. For this algorithm, an
explicit forward Euler method was used. An implicit method was
considered, however during numerical testing it was observed
that during the solve it moved the GIMP so it was out of contact,
meaning 𝑔new

𝑁,𝑛
= 0 ∀𝑛 causing the convergence of Algorithm 1 to

stagnate. In this regard the forward Euler approach was consid-
ered more robust, with the step size of the method constrained
by the minimum side length, ℎ𝑝, of the GIMP in contact, divided
by 200.

The factor of ℎ𝑝∕200 was chosen as a compromise, as the
algorithm is entirely multiplicative and fast; however, reducing

FIGURE 7 | Cube under compression: The initial geometry and mesh
setup.

the step size beyond a reasonable value could make it expensive.
ℎ𝑝∕200 is also an upper bound to ensure the algorithm converges
and to limit the possibility of the GIMP being pushed out contact.

6 | Numerical Simulations

This section will demonstrate the capabilities of the proposed
method via four numerical examples. The first two examples test
the method against analytical solutions to check specific aspects
of the contact formulation. The third and fourth examples are
comparisons with physical modeling results to demonstrate that
the method can obtain robust, physically correct results without
parameter tuning.

6.1 | Cube Under Compression

6.1.1 | Example Scope

A 1D contact problem with an analytical solution, but modeled in
3D, is used as a patch test for the normal contact formulation. The
patch test will investigate the stress solution of one of the GIMPs
in contact with the rigid body, as an inconsistent formulation will
show poor agreement with the analytical solution [34]. Also con-
sidered is the stress solution and the global error when the normal
contact penalty is varied. In the limit as the penalty→ ∞ the error
in the Signorini–Hertz–Moreau conditions should tend to zero,
and hence the stress solution converges to the true solution.

6.1.2 | Setup

The geometry of the problem is shown in Figure 7 and consists
of two unit-sized cubes, one rigid and one deformable. The rigid
body is displaced in the 𝑥-direction by Δ𝑥 whilst the deformable
body has roller boundary conditions on all mesh boundaries. As
shown in Figure 7, the GIMP faces which will be in contact with
the rigid body are not consistent with a mesh boundary, hence are
free to move subject to the contact.

The deformable body is elastic with Young’s Modulus 𝐸 =
103 Pa, Poisson’s ratio 𝜈 = 0 and a contact normal penalty of
𝜖𝑁 = 𝑝𝑓 𝐸 Pa, where 𝑝𝑓 is the penalty factor that is used to very
the contact penalty. It is discretized uniformly with a Cartesian
mesh with element edge length 𝑑𝑥 = 0.1 m. Each element ini-
tially contains 2 GIMPs in each direction with edge length 1

2
𝑑𝑥.
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FIGURE 8 | Cube under compression: (a) is the stress at the contact GIMP for different penalty values, with the corresponding error for a rigid body
displacement of 0.2 m shown in b.

Initially, the distance between the rigid and deformable body is
10−3 m, the rigid body is then displaced Δ𝑧 = −0.2001 m over 5
time steps. The error in the 𝐿2 norm is presented as

𝑒 =

(∑
∀𝑝

|𝜎 − 𝜎𝑝|2𝑉 0
𝑝

)1∕2

with 𝜎 = 𝐸 log
(

𝑙

𝑙0

)(
𝑙0

𝑙

)
(24)

as the analytical stress solution, which is constant, where 𝑙 is the
deformed length of the column, measured here using the final
position of the rigid body contact surface, and 𝑙0 is the original
length of the deformable body with length 1m. 𝑉 0

𝑝
the original

volume of the GIMP, and 𝜎𝑝 is the stress at the GIMP.

6.1.3 | Results Discussion

The results presented here demonstrate that the stress at GIMPs
in contact with the rigid body is consistent and converges to the
analytical solution when the penalty is increased for a range of
rigid body displacements, as shown in Figure 8a. The results indi-
cate that when 𝑝𝑓 is near 100𝐸, there is good agreement between
the numerical and analytical results for this problem. Addition-
ally, Figure 8b shows the global stress solution error and the posi-
tion error, the interpenetration between the GIMP in contact and
the rigid body. Both error measures decrease as the penalty factor
increases. These figures therefore show that the stress solution
for the GIMP in contact with the rigid body is consistent and that
when the penalty is increased the overlap between the two bodies
converges to zero.

6.2 | Rolling Sphere

6.2.1 | Example Scope

The previous problem demonstrated optimal convergence for a
pseudo-static problem, which considered only normal contact.

Here, the normal and frictional contact formulation is validated
by modeling a sphere rolling down a slope. The numerical results
are compared to the problem’s analytical solution for a range of
friction coefficients, testing the numerical framework’s ability to
accurately capture the slip and stick states of Coulomb friction.

6.2.2 | Setup

Figure 9a shows the loading, geometry, and mesh for this
problem. Although the problem models a sphere rolling down
a 45∘ slope, the slope is represented as horizontal to ensure a
smooth interface between the sphere and the GIMPs. If the slope
was angled and gravity applied in the vertical direction, the slope,
represented by the vertices of the GIMP domains, would not be
smooth and there is the potential that the sphere could bounce
depending on the exact interaction between the sphere and the
domain corners at a given time step. The distance between the
contact points would also be larger, which would likely give a
less accurate result with oscillations in the rotational velocity. To
simulate the angled slope, gravitational acceleration is applied
at an angle corresponding to the original slope, with 𝑔𝑖 = 9.81 ×
[1∕

√
2, 0,−1∕

√
2]⊤ m∕s2.

The kinematics of the rigid body are modeled by a series of elastic
truss elements with only displacement degrees of freedom. Since
the rigid body is free to rotate and translate, both the translational
and rotational inertia need to be represented correctly. Although
this is a 3D problem, the sphere is restrained in the 𝑦-direction
and hence the rotational inertia needs only to be correct about the
𝑦-axis. Therefore, the truss elements are arranged as in Figure 9b.
At the centre of the sphere is a node with zero mass, which is sur-
rounded by a ring of equally spaced nodes on the y-plane, which
do have mass. To ensure the rotational inertia of the ring is consis-
tent with the sphere’s rotational inertia, the diameter of the ring
is set to 𝑑𝑚 = 𝑑𝑏

√
(2∕5). Here, 100 nodes are used, each having a

mass of 1∕100 kg.
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FIGURE 9 | Rolling sphere: Initial geometry and mesh setup is shown in (a) and the corresponding truss frame in (b).

FIGURE 10 | Rolling sphere: The comparison of simulation results with reference data for different coefficients of friction is shown in (a), (b)
considers different sphere refinements for 𝜇 = 0.2.

The sphere has a diameter 𝑑𝑏 = 1 m and is constructed from
3120 triangles arranged on a latitude-longitude grid. The level
of refinement of the sphere was chosen as a compromise. Too
few triangles and the sphere would bounce along the surface
with all results tending to 𝜇 = 0.0. Too many triangles would
increase the cost of the simulation, but with little change to the
results. The smallest and most slender triangles are at the poles,
whilst the most regular and largest triangles are at the latitude
0∘. The sphere is oriented in Figure 9a such that the equator of
the sphere, where the most regular triangles exist, rolls along
the material points. The material domain has dimensions, 𝐿𝑥 =
10 m, 𝐿𝑦 = 1 m, 𝐿𝑧 = 1 m. The elements in the domain are of
unit size and individually contain 4 material points in each direc-
tion. The analytical solution for this problem is defined for two
rigid bodies in contact. For the deformable body to behave like
a rigid body, homogeneous Dirichlet BCs were applied on all its
exterior surfaces. The normal and tangential contact penalties for
this problem are set as 50𝐸 and 25𝐸, with 𝐸 = 105Pa.

The analytical solution to this problem is presented as the
distance 𝑑𝑥 the sphere has moved down the slope as a function

of time. The solution has two forms, depending on whether the
frictional contact is in a slip or stick state

𝑑𝑥(𝑡) =

{
(𝑔𝑡2∕2)

[
sin(𝜃𝑠) − 𝜇 cos(𝜃𝑠)

]
if slipping, tan(𝜃𝑠) > 3𝜇

𝑔𝑡2 sin(𝜃𝑠)∕3 else sticking
(25)

where 𝑔 = |𝑔𝑖| is the gravitational acceleration, 𝜃𝑠 = 45∘ is the
slope angle, 𝑡s is time and 𝜇 ∈ {0, 0.1, 0.2, 0.4, 1.0} are the friction
coefficients considered here.

6.2.3 | Results Discussion

A comparison of the numerical and analytical results is shown in
Figure 10a.

For 𝜇 ∈ {0, 0.1, 0.2}, the sphere is in a slip state, with increas-
ing 𝜇, less slip occurs and hence the slower ball velocity. Over
this range, Figure 10a shows good agreement, with the numer-
ical results showing a very slight under-prediction of the ball
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TABLE 1 | Rolling sphere: Comparison of relative sphere position at 𝑡 = 0.5 s with 𝜇 = 0.2 and varying tangential penalty parameter values against
a reference solution of 0.6674 m, for 𝜖𝑇 = 2500𝐸.

Penalty parameter, 𝝐𝑻 0.0025𝑬 0.025𝑬 0.25𝑬 2.5𝑬 25𝑬 250𝑬

Difference (%) 20.0 8.6 1.0 6.8 × 10−4 0.0 0.0

TABLE 2 | Rolling sphere: Comparison of simulation time and position at 𝑡 = 0.5 s with 𝜇 = 0.2 for varying sphere discretization. The analytical
solution is 0.6937 s.

Number of surface triangles 180 3120 8844 11 704 13 944

Run time (s) 44 276 560 1707 2587
Position (m) 0.6785 0.6674 0.6679 0.6677 0.6690
Position error (%) 2.19 3.79 3.72 3.74 3.56

position with time. Good agreement is also seen for the stick
states, 𝜇 ∈ {0.4, 1.0}, demonstrating that once the sphere is stick-
ing, the solution is largely invariant to 𝜇. Since there are GIMP
vertices coming into contact at the front of the sphere, and leav-
ing contact on the trailing surface, if a small time step is used,
such as in an explicit analysis, high-frequency oscillations in the
sphere’s rotation velocity could manifest. However, high frequen-
cies are not seen in the results presented here due to adopting
an implicit time stepping algorithm with a time step of 𝑑𝑡 =
0.02 s. As discussed previously, low-frequency oscillations (i.e.,
bouncing) could occur if a coarse representation of the sphere is
adopted; these oscillations are avoided by sufficiently refining the
sphere’s surface.

The tangential penalty parameter value influences the results in
both slip and stick states. For slipping to occur, the trial tangen-
tial force needs to exceed a limiting value (see Equation (B12)).
Lowering the tangential penalty allows more relative movement
under a stick state, which represents a less rigorous enforcement
of the KKT conditions. The impact of changing the tangential
penalty parameter, 𝜖𝑇 , on the sphere position at 𝑡 = 0.5 s with
𝜇 = 0.2 is reported in Table 1, where the case of 𝜖𝑇 = 2500𝐸 is
taken as the reference solution. Table 1 demonstrates that for
the adopted normal penalty parameter, there is no change in the
sphere’s position vs. the reference case provided that 𝜖𝑇 ≥ 25𝐸.

In the setup for this numerical experiment, a point was made that
the number of surface triangles was a compromise between an
accurate representation of the sphere’s surface and the run time.
Table 2 presents a comparison of the computational time with
the sphere’s position at 𝑡 = 0.5 s for 𝜇 = 0.2 for different num-
bers of surface triangles representing the sphere’s surface. Table 2
shows that increasing the number of surface triangles from 3120
to 13 944 slightly improves the agreement between the numeri-
cal and analytical response, but at a 9.4 times run time increase.
It can also be seen that the position of the sphere is relatively
insensitive to the number of surface triangles between the 3120,
8844, and 11 704 discretizations. In this context, 3120 surface tri-
angles represent a good compromise between accuracy and run
time. Representing the sphere with 180 surface triangles appears
to offer a more accurate result—this is an artefact and linked to
the sphere acting more like a polyhedron with the coarse dis-
cretization, and by chance offering a better agreement with the
analytical solution. This is confirmed by Figure 10b that shows

the position error-time response of the sphere with 180, 3120, and
13 944 surface triangles. The 180 case is oscillatory, linked to the
sphere bouncing along the surface as relatively large triangular
facets come in and out of contact. The other two discretizations
show a monotonically increasing error with time, again with little
difference between the 3120 and 13 944 cases.

6.3 | Cone Penetration Test

6.3.1 | Example Scope

In this section, a pseudo-static Cone Penetration Test (CPT) into
dry sand with a homogeneous relative density is performed. The
cone resistance, the vertical force acting on the cone, is then com-
pared to experimental results obtained by Davidson et al. [35]
for two different relative densities of sand, and a range of mesh
refinements.

6.3.2 | Setup

The geometry and node distribution of the problem is shown in
Figure 11a. Provided that the external boundaries are sufficiently
far from the cone, the stress solution around the cone is symmet-
ric in the circumferential direction. Problem symmetry could be
exploited to reduce computational cost, as in the axisymmetric
model of Bird et al. [1], however, in this case, one quarter of the
problem is analyzed to test the 3D implementation. This is done
by setting roller boundary conditions at 𝑥 = 0 m and 𝑦 = 0 m
that represent planes of symmetry. On the remaining external
boundaries, 𝑥 = 𝐿𝑥 m, 𝑦 = 𝐿𝑦 m, and 𝑧 = 0 m, and roller bound-
ary conditions are also applied. The cone’s displacements are fully
prescribed; in total, the CPT is displaced −5 m in the 𝑧-direction
over 200 equal time steps, with equal load increment. However,
if a time step fails, the step size is reduced by a factor of 2 until
convergence is achieved. The step size is then reset to the original
size, and the analysis progresses until the specified displacement
is achieved.

The dimensions of the body are provided in Table 3. The red por-
tion of the domain, shown in Figure 11a, is defined by the dimen-
sions 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧. In this region, the discretization is uniform
with length 𝑑𝑥. In the remainder of the domain, the blue region,
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FIGURE 11 | Cone penetration test: The initial geometry and mesh setup are shown in (a), with the CPT penetration of 1.2 m shown in (b). The
displacement magnitude is shown in (b), blue is 0 m and red is 0.5 m.

TABLE 3 | Cone penetration test: Deformable domain lengths.

Dimension 𝑳𝒙 𝑳𝒚 𝑳𝒛 𝑼𝒙 𝑼𝒚 𝑼𝒛

Length (m) 5 5 10 2.5 2.5 5

the distances between nodes are scaled with a power law from the
boundary of the red region to the end of the domain,

𝑑𝑥𝑖+1 = (𝑑𝑥𝑖)1.3 (26)

where 𝑑𝑥𝑖 is the distance between the node 𝑖 and node 𝑖 − 1 in
a particular direction. An indication of this nodal distribution is
outlined in Figure 11a with the red dots.

The material used in the real experiment was dry silica sand
obtained from Congleton in the UK [35]. There are many
sophisticated models for modeling sand; however, from the
justifications and results observed in Bird et al. [1] for mod-
eling CPTs, a linear-elastic, perfectly-plastic material with a
Drucker-Prager yield surface is sufficient. All the properties for
the Drucker-Prager yield surface can be determined using the
equations provided by Brinkgreve et al. [36], and for an overview
of the use of the equations see Bird et al. [1]. However, the initial
state of the material due to gravity also has to be considered, and
hence, the Young’s modulus will vary with depth. If a negligible
cohesion is assumed (here we use 𝑐 = 300 Pa), the variation of the
Young’s modulus can be determined using the formula provided
by Schanz et al. [37].

𝐸50 = 𝐸ref
50

(
𝜎𝑣𝐾0

𝑝ref

)𝑚𝐸

with 𝜎𝑣 = 𝑑𝑝𝜌 (27)

TABLE 4 | Cone penetration test: Material properties.

Property 38% 44% 82%

Reference Young’s
modulus, 𝐸

𝑟𝑒𝑓
50 (kPa)

22 800 26 400 49 200

Density, 𝜌 (kN∕m3) 16.5 16.7 18.2
Poisson’s ratio 0.3 0.3 0.3
Friction angle (˚) 32.8 33.5 38.3
Dilation angle (˚) 2.8 3.5 8.3
Apparent cohesion (kPa) 0.3 0.3 0.3
Coefficient of earth

pressure at rest, 𝐾0

0.45 0.44 0.38

Stiffness exponent, 𝑚𝐸 0.58 0.57 0.44

where 𝐾0 = 1 − sin(𝜙) is the coefficient of earth pressure at rest
[38], 𝜎𝑣 is the vertical stress and 𝑑𝑝 is the distance of the MP
from the surface of the sample (i.e., the depth), 𝑚𝐸 is an exponent
controlling the variation of stiffness [36]. Here, two relative densi-
ties are considered, 38% and 82%, with the values of their material
properties provided in Table 4, alongside 44%, which is used in
Section 6.4.

The normal and tangential contact penalties are respectively
50𝐸𝑝 and 25𝐸𝑝, where 𝑝 is the GIMP that is contact with
the material point. This variation in the penalties is required
since the material has an inhomogeneous Young’s modulus,
and the variation enables a more accurate representation of the
conduct boundary conditions without making the non-linear
solver unstable through an excessively high penalty.

13 of 20

 10970207, 2025, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.70080 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [25/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 12 | Cone penetration test: Results for CPT tip load with
depth.

6.3.3 | Results Discussion

The results for the CPT tip load with depth are shown in Figure 12
for a range of refinements, 𝑑𝑥 = {0.075, 0.1, 0.2, 0.3} m.

Figure 12 shows that for the most refined mesh, 𝑑𝑥 = 0.075 m,
good agreement is obtained for both relative densities. It is impor-
tant to note that these results are pure predictions, and there is
no tuning of the parameters for the material model or numer-
ical parameters performed to obtain a better agreement. It is
also observed that with refinement, the solutions converge in the
same direction towards the experimental result, and in addition,
the magnitude of the oscillations also decreases. The most likely
cause for the oscillations is material points coming in and out of
contact with the cone. With refinement each GIMP in contact car-
ries a smaller portion of the load and therefore has a smaller effect
on the global response.

6.4 | Plough

6.4.1 | Example Scope

The final problem considered is the modeling of a seabed cable
plough, with the geometry shown in Figure 13. The plough is
pulled through dry sand at a constant speed and depth. The
required horizontal pull (or tow) force predicted by the numerical
model is compared to the steady state experimental data obtained
by Robinson et al. [39] in a 50𝑔 geotechnical centrifuge. To sim-
plify the numerical analysis, the numerical model considers the
full-scale problem at 1𝑔, which the centrifuge represents. Follow-
ing the scaling analysis for dry sand by Robinson et al. [40], this
means that both length and time are scaled equally, hence the
plough is pulled the full scale length but at the model speed. The
experiment in [39] reaches an equilibrium in both plough depth
and pull force. Here, the plough will be fixed at the recorded
plough depth, and the pull force will be compared to the experi-
mental steady state force.

FIGURE 13 | Plough: Dimensioned drawing of the plough, metres.

6.4.2 | Setup

The numerical setup for modeling the full plough is shown in
Figure 14 with the geometry of the plough provided in Figure 13
and corresponding dimension values in Table 5.

The distribution of the initial Cartesian mesh is outlined in
Figure 14, where the red dots show the initial distribution of the
element nodes on the boundary of the mesh. To reduce the com-
putational cost, only half the problem is modeled, achieved using
symmetric boundary conditions in 𝑥. The purpose of the initial
mesh is primarily to set up the initial material point distribu-
tion. As the plough travels through the domain, the mesh, but not
the material points, is adaptively refined and recovered to reduce
the cost associated with the linear solve. In the red regions, the
nodes are uniformly distributed with a spacing of 𝑑𝑥m. In the
blue region, the node spacing is not uniform and is subject to the
power law

𝑑𝑥𝑥+1 = (𝑑𝑥𝑖)1.3 (28)

where 𝑑𝑥𝑖 is the distance between node 𝑖 and 𝑖 − 1 and 𝑑𝑥1 = 𝑑𝑥.
If a node does land exactly on the boundary of the domain, then
the nearest node created by the power law series is snapped to the
domain boundary. The node distribution is such that the high-
est density of nodes and material points is around the nose of
the plough, marked 𝐴, where the most complicated 3D displace-
ments occur. Elsewhere, where the displacement field is more 2D,
such as at the main wedge of the plough, there is a greater refine-
ment in the 𝑥 and 𝑦 directions compared to the 𝑧 direction. This
is obtained through the refined region marked 𝐵 in Figure 14.
The material that is not in contact with the plough has only a
coarse refinement. Lastly, the sizes of the refined region sizes will
depend slightly on the values of 𝑑𝑥 so that all elements in this
region are equally sized. This can be expressed by the following
equation

𝑈̄ =
⌈

𝑈

𝑑𝑥

⌉
𝑑𝑥 (29)

where 𝑈 is the desired size of the refined region and 𝑈̄ is the
actual size. The initial number of GIMPs per elements is 8, with
a 2 × 2 × 2 equally spaces configuration.

On all faces, a roller boundary condition is applied, except on
the top face where a homogeneous Neumann boundary exists,
and on the face marked 𝐶 , see Figure 14. On the face 𝐶 , a Sig-
norini boundary condition exists so that material can move away

14 of 20 International Journal for Numerical Methods in Engineering, 2025

 10970207, 2025, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.70080 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [25/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 14 | Plough: Initial numerical setup of a plough being pulled through dry sand.

TABLE 5 | Plough: Deformable domain length.

Dimension 𝑳𝒙 𝑳𝒚 𝑳𝒛 𝑼𝒚 𝑨𝒛 𝑼𝒛 𝑫

Length (m) 20 10 7.5 1.875 1.725 0.25 1.85

FIGURE 15 | Plough: (a) Side view of Signorini boundary conditions with adaptive refinement in 𝑥 shown in (b).

from the domain boundary but cannot move across it. Pragmati-
cally, this is enforced with a second rigid body with no friction as
shown in Figure 15a. The plough was incremented at a step size
of 0.025 m, and there was no interaction between the plough and
the secondary rigid body.

In initial testing, it was observed that the majority of the defor-
mation was occurring at the front of the plough, therefore, to
reduce the computational cost of the simulation, mesh adapta-
tion was developed in 𝑥 as the plough moved through the domain,
as shown in Figure 15b. About the tip of the plough, in both the
positive and negative directions, a region with 𝑈𝑥 = 0.5 m was
uniformly refined. Outside this region, the power law described
with Equation (28) was used. To prevent the rigid body penetrat-
ing GIMPs all edges with an angle convex edges with an angle less
than 90% were filleted with a radius equal to the minimum side
half length of the GIMP, there were approximately 10 segments
per 90∘ of fillet.

6.4.3 | Results Discussion

Here, the numerical results for the plough tow force are com-
pared to the equivalent centrifuge experiment, [40], and addition-
ally, the performance of the numerical algorithm is discussed. In
the previous sections, the geometry of the rigid bodies was rel-
atively simple, and in addition, the point of the CPT coincided
with the edge of the domain, so there was no risk of the rigid
body going inside a material point. For this problem, however, the
plough contains many surfaces which are connected via rounded
concave and convex edges.

Three mesh sizes were considered, 𝑑𝑥 = {0.075, 0.15, 0.2} m, and
the results of the plough tow force with plough positions are
shown in Figure 16 alongside the experimental data. The primary
observation from the numerical results is that with increas-
ing refinement, the tow force gets closer to the experiment,
with generally good agreement obtained between mesh sizes
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FIGURE 16 | Plough: Comparison of numerical results for pull load with plough position against experimental data for three mesh refinements.

FIGURE 17 | Plough: Deformed GIMP positions colored according to the 𝑥 displacement (red is 3 m, blue is 0 m) for a plough embedded 10 m into
the material for the refinement 𝑑𝑥 = 0.075 m.

FIGURE 18 | Plough: Deformed GIMP positions colored according to
the 𝑥 displacement (red is 1 m, blue is 0 m) for a plough just before (a) and
just after, (b) the front wedge is embedded. (a) Just before, (b) Just after.

𝑑𝑥 ∈ {0.075, 0.15} m and the experimental results (Figure 17).
The trend of the numerical results being consistently slightly
higher than those observed experimentally is consistent with the
CPT problem results, and again, the simulation is purely predic-
tive, and no adjustments to the material or numerical parameters
were performed. It is also likely that reducing relative density
could close the distance between the results. Before 7.45 m, the
plough is embedding itself into the domain from the side. In this

initial region, 0 → 7.45 m, the results are the most chaotic with
sudden changes in the force caused by the buildup of material
in front of the plough from the initial embedment. Additionally,
there are sharp peaks in the load caused by the different parts of
the plough coming into contact with the domain. For example,
the greyed region in Figure 16 is the plough wedge first coming
into contact, going from Figure 18a,b.

The plough is the most complex geometry considered in this
paper, and it is therefore appropriate to comment on the sta-
bility of this problem. For all meshes, the plough was incre-
mented by 0.025 m each time step. If the time step failed to con-
verge, the step size was reduced by a factor of 2 and restarted.
The displacement increment sizes were recorded for each mesh
size and are plotted in Figure 19. The figure shows that for all
meshes the algorithm remained stable for all mesh sizes, with
only 𝑑𝑥 = 0.075 m requiring a reduction in the displacement step
size. This shows that not only was good agreement with exper-
imental data achieved, but the algorithms presented here are
robust and reliable.

7 | Conclusion

This paper provides a new 3D large deformation contact for-
mulation for modeling the interaction between deformable and
rigid bodies. The method uses the definition of the GIMP domain
to impose point-to-surface contact between the vertices of the
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FIGURE 19 | Plough: Comparison of successful load increment sizes for the three mesh sizes.

GIMP domains and the surface of the rigid body. Importantly, no
additional boundary reconstruction is necessary, and the contact
constraints are applied consistently with the numerical represen-
tation of the extent of the physical material. This is important—it
has been demonstrated that the correct stress field at the con-
tact boundary is recovered only when the contact conditions are
applied consistently (confirming the 2D result of Bird et al. [1]).
As each of the vertices of the GIMP domain can individually be
in contact with the rigid body, the possibility of a material point
being undetected when interacting with a locally concave rigid
body is significantly reduced. This paper has also introduced a
new energy minimization domain updating approach at the con-
verged state at the end of each time step. The approach main-
tains that the final extent of the physical material represented
by each material point domain is consistent with the energy in
the contact penalty spring at the converged state. If the mate-
rial point domains were updated without this consideration, large
spurious material point domain-rigid body overlaps and there-
fore contact penalty spring forces (and additional energy) could
be generated, leading to physically questionable and numeri-
cally unstable simulations. The frictional interaction between the
deformable and rigid bodies was validated using the analytical
solution of a sphere rolling down a slope. This validated both
the normal and the frictional contact, modeled using Coulomb
friction, for a rigid body that was free to move. To validate the
formulation for example practical problems, two in the area of
soil-structure interaction were chosen, with comparisons made
against experimental results obtained from a geotechnical cen-
trifuge, there being no analytical solutions. This included the load
on the end of the cone for a CPT and the tow force required to
pull a plough at a fixed depth through sand. Both agreed well
with experimental data, and both saw convergence towards the
experimental result with refinement. The numerical results were
based on a purely predictive methodology, i.e., the material con-
stitutive parameters were not tuned to match the experimental
results, implying that the method can be reliably used to inter-
polate within and extrapolate beyond the physical dataset. Addi-
tionally, it was demonstrated for the plough that the solution
methodology was stable for difficult contact problems with con-
cave geometries.
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Endnotes
1 This typically presents itself as a bouncing situation, where a contact

point moves either in-and-out of the rigid body or between the red and
green region.
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Appendix A

Rigid Body First and Second Variations

This appendix provides the first and second variations of a point on a tri-
angle surface, 𝒙′. The definition from Equation (10) is repeated here, with
a slight abuse of the sum notation,

𝒙′ = 𝑁(𝜉)𝑮(𝜽) = (𝐴𝑹 + 𝐵𝑰) ⋅ 𝒕𝑅𝐵 + 𝒙𝑀 (A1)

Its first variation is

𝛿𝒙′ = 𝜕𝑁(𝜉)
𝜕𝜉𝛼

𝛿𝜉𝛼𝑮(𝜽) + 𝑁(𝜉) 𝜕𝑮(𝜽)
𝜕𝜽

⋅ 𝛿𝜽 (A2)

and second variation

Δ𝛿𝒙′ = 𝜕𝑁(𝜉)
𝜕𝜉𝛼

Δ𝛿𝜉𝛼𝑮(𝜽)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝒕𝛼Δ𝛿𝜉𝛼

+ 𝜕𝑁(𝜉)
𝜕𝜉𝛼

𝛿𝜉𝛼 𝜕𝑮(𝜽)
𝜕𝜽

⋅ Δ𝜃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=
(

𝜕(Δ𝒙′ )
𝜕𝜉𝛽

)
𝛿𝜉𝛼

+ 𝜕𝑁(𝜉)
𝜕𝜉𝛼

Δ𝜉𝛼 𝜕𝑮(𝜽)
𝜕𝜽

⋅ 𝛿𝜃

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=
(

𝜕(𝛿𝒙′ )
𝜕𝜉𝛽

)
Δ𝜉𝛼

+ 𝑁(𝜉)Δ𝜽 ⋅
𝜕2𝑮(𝜽)

𝜕𝜽2 ⋅ 𝛿𝜽

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝛿𝜽⋅
(

𝜕2𝒙′

𝜕𝜽2

)
⋅Δ𝜽

(A3)

which requires the following definitions,

𝜕(𝛿𝒙′)
𝜕𝜉𝛽

= 𝛿

(
𝜕𝒙′

𝜕𝜉𝛽

)
and 𝜕(Δ𝒙′)

𝜕𝜉𝛽
= Δ

(
𝜕𝒙′

𝜕𝜉𝛽

)
(A4)

and
Δ
(

𝜕(𝛿𝒙′)
𝜕𝜉𝛽

)
= 𝜕𝑁(𝜉)

𝜕𝜉𝛽

Δ𝜽 ⋅
𝜕2𝑮(𝜽)

𝜕𝜽2 ⋅ 𝛿𝜽 (A5)
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Additionally, Equations (A2) and (A3) are dependent on the first and sec-
ond variations of 𝑮(𝜽), respectively given as

𝜕𝑮𝑛(𝜽)
𝜕𝜽

⋅ 𝛿𝜽 = (𝐴𝑛𝑹 + 𝐵𝑛𝑰) ⋅ 𝛿𝒕𝑅𝐵 + 𝛿𝒙𝑀 (A6)

and
Δ𝜽 ⋅

𝜕2𝑮𝑛(𝜽)
𝜕𝜽2 ⋅ 𝛿𝜽 = (𝐴𝑛𝑹 + 𝐵𝑛𝑰) ⋅ Δ𝛿𝒕𝑅𝐵 (A7)

Furthermore the first and second variation of 𝒕𝑅𝐵 are also required,
respectively,

𝛿𝒕𝑅𝐵 =
(
𝑰 − 𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵||𝒗||

)
⋅

𝜕𝒗

𝜕𝑡
𝛿𝑡 =

(
𝑰 − 𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵||𝒗||

)
⋅ 𝛿𝒗 (A8)

where 𝒗 = 𝒙𝐷 − 𝒙𝑀

and

Δ𝛿𝒕𝑅𝐵 = Δ
[(

𝑰 − 𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵||𝒗||
)
⋅ 𝛿𝒗

]
= Δ

(
1||𝒗||

)(
𝑰 − 𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵

)
⋅ 𝛿𝒗

+
(

1||𝒗||
)(

𝑰 − Δ𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵

)
⋅ 𝛿𝒗

+
(

1||𝒗||
)(

𝑰 − 𝒕𝑅𝐵 ⊗ Δ𝒕𝑅𝐵

)
⋅ 𝛿𝒗 (A9)

where

Δ
(

1||𝒗||
)

= −𝒗||𝒗||3 ⋅ Δ𝒗 and Δ𝒕𝑅𝐵 =
(
𝑰 − 𝒕𝑅𝐵 ⊗ 𝒕𝑅𝐵||𝒗||

)
⋅ Δ𝒗

Appendix B

Contact First and Second Variations

To complete the description of the normal and the tangential contact, it is
necessary to have their linearizations, which are required for the implicit
solve.

Variation of Normal Contact Residual

The residual for the normal contact, from Equation (17), repeated here
for readability, is

𝛿𝑈𝑁 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′ )

(
𝛿𝑔𝑁𝜖𝑁𝑔𝑁

)
d𝑥 (B1)

where 𝒑𝑁 = 𝜖𝑁𝒏𝑔𝑁 from Equation (18). Linearizing (B1) gives the gradi-
ent of the residual, necessary for the Newton-Raphson scheme,

Δ𝛿𝑈𝑁 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′ )

(
Δ(𝛿𝑔𝑁 )𝜖𝑁𝑔𝑁 + 𝛿𝑔𝑁Δ(𝜖𝑁𝑔𝑁 )

)
d𝑥 (B2)

where 𝛿𝑔𝑁 , Δ(𝛿𝑔𝑁 ) and Δ(𝜖𝑁𝑔𝑁 ) are defined below. Following closely
the work of Pietrzak and Curnier [29], and Wriggers [12], the forms of
the first and second variations of the gap functions can be provided. The
gap function, (14), is restated here for convenience

𝑔𝑁 =
[
𝒙(𝜏) − 𝒙′(𝜉(𝜏)𝛼, 𝜏)

]
⋅ 𝒏 (B3)

where 𝒙 is the point, the vertex of the GIMP domain, in contact with the
rigid body surface at time 𝜏, where 𝜉𝛼(𝜏), 𝛼 ∈ {1, 2}, is a function describ-
ing the local position of the CPP projection onto the surface that is used
to describe the global contact position 𝒙′. The first variation of the gap
function is

𝛿𝑔𝑁 =
[
𝛿𝒙 − 𝛿𝒙′] ⋅ 𝒏 (B4)

where 𝛿 denotes the first variation. The second variation of the normal
gap 𝑔𝑁 is

Δ𝛿𝑔𝑛 = −𝒏 ⋅
(

𝜕(𝛿𝒙′)
𝜕𝜉𝛼

Δ𝜉𝛼 + 𝜕(Δ𝒙′)
𝜕𝜉𝛼

𝛿𝜉𝛼 + 𝛿𝜽 ⋅
(

𝜕2𝒙′

𝜕𝜽2

)
⋅ Δ𝜽

)
+ 𝑔𝑁𝒏 ⋅

(
𝜕(𝛿𝒙′)
𝜕𝜉𝛼

)
𝐴𝛼𝛽

(
𝜕(Δ𝒙′)

𝜕𝜉𝛽

)
⋅ 𝒏 (B5)

where 𝜉𝛼 is the local coordinate on a triangular element of the rigid body,
with its first variations 𝛿𝜉 or Δ𝜉, and

[𝐴𝛼𝛽 ]−1 = [𝐴𝛼𝛽 ] = 𝒕𝛼 ⋅ 𝒕𝛽

is the inverse of the first fundamental form matrix.

Variation of the Tangential Contact Residual

The tangent residual, Equation (17), is

𝛿𝑈𝑇 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′ )

(
𝛿𝜉𝛼𝒕𝛼 ⋅ 𝒑𝑇

)
d𝑥 (B6)

where 𝒑𝑇 is the tangential pressure that acts to resist sliding motion con-
tact. Similarly to the normal contact, linearizing (B6) gives

Δ𝛿𝑈𝑇 = ∫𝜓𝑡(𝑙)∩𝛿(𝒙′ )

(
Δ(𝛿𝜉𝛼)𝒕𝛼 ⋅ 𝒑𝑇 + 𝛿𝜉𝛼Δ(𝒕𝛼 ⋅ 𝒑𝑇 ))

)
d𝑥 (B7)

where Δ(𝛿𝜉𝛼) and Δ(𝒕𝛼 ⋅ 𝒑𝑇 ) are defined below. The local coordinate 𝜉𝛼(𝜏)
is a function of the CPP; its first and second variations are therefore not
trivial. The first variation is

𝛿𝜉𝛼 = 𝐴𝛼𝛽

[
(𝛿𝒙 − 𝛿𝒙′) ⋅ 𝒕𝛽 + 𝑔𝑁𝒏 ⋅

𝜕(𝛿𝒙′)
𝜕𝜉𝛽

]
(B8)

and the corresponding second variation is

Δ𝛿𝜉𝛼 = 𝐴𝛼𝛽

[
−𝒕 ⋅

(
𝛿𝜉𝜎 𝜕(Δ𝒙′)

𝜕𝜉𝜎
+ Δ𝜉𝛾 𝜕(𝛿𝒙′)

𝜕𝜉𝛾
+ 𝛿𝜽

(
𝜕2𝒙′

𝜕𝜽2

)
Δ𝜽

)
− 𝛿𝜉𝛾 𝒕𝛾

(
𝜕(Δ𝒙′)

𝜕𝜉𝛽

)
− Δ𝜉𝛾 𝒕𝛾

(
𝜕(𝛿𝒙′)
𝜕𝜉𝛽

)
+ (𝛿𝒙 − 𝛿𝒙′) 𝜕(Δ𝒙

′)
𝜕𝜉𝛽

+ (Δ𝒙 − Δ𝒙′) 𝜕(𝛿𝒙
′)

𝜕𝜉𝛽

+ 𝑔𝑁𝒏 ⋅ Δ
(

𝜕(𝛿𝒙′)
𝜕𝜉𝛽

)]
(B9)

Stick and Slip

The first variation of the frictional force in the tangential direction, 𝒕𝛼 ⋅
𝒑𝑇 , is required in Equation (B7). The variation of 𝒑𝑇 is a function of the
discretization of the movement of a point over the surface, the friction law,
and the friction state (slip or stick). Therefore, first, the total tangential
movement over the discrete time step 𝑚 + 1 is defined as

𝒈̊𝑇Δ𝑡 ≈ 𝒈𝑇 ,𝑚+1 − 𝒈𝑚
𝑇 ,𝑚

= 𝒕𝛼,𝑚+1Δ𝜉𝛼 = 𝒕𝛼,𝑚+1(𝜉𝛼
𝑚+1 − 𝜉𝛼

𝑚
)

= Δ𝒈𝑇 (B10)

Next, the elastic trial stick state can be defined as

𝒑tr = 𝜖𝑇 (𝒈𝑇 ,𝑚+1 − 𝒈slip,𝑚) = 𝒑𝑇 ,𝑚 + 𝜖𝑇Δ𝒈𝑇 (B11)

where (𝒈𝑇 ,𝑚+1 − 𝒈slip,𝑚) is the trial stick movement that has occurred, 𝒑𝑇 ,𝑚

is the previously converged tangential friction vector. The right-hand side
of Equation (B11) is possible as 𝜇 in Equation (21) is constant [1, 12].
With these definitions, the trial stick state is used with yield surface (21)
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to determine if the contact is in a stick or slip state, and subsequently, the
frictional force can be calculated using

𝒑𝑇 =

{
𝒑tr if ||𝒑tr|| ≤ 𝜇|𝑝𝑁 |, stick
𝜇|𝑝𝑁 |(𝒑tr∕||𝒑tr||) if ||𝒑tr|| > 𝜇|𝑝𝑁 |, slip

(B12)

With the above definitions the variation of 𝒕𝛼 ⋅ 𝒑𝑇 can be defined. Starting
generally, the first variation is

Δ
(
𝒕𝛼 ⋅ 𝒑𝑇

)
=
[(
Δ𝒕𝛼

)
⋅ 𝒑𝑇

]
+
[
𝒕𝛼 ⋅

(
Δ𝒑𝑇

)]
(B13)

The Δ𝑡𝛼 term is simply,

Δ𝑡𝛼 = 𝜕(Δ𝒙′)
𝜕𝜉𝛼

(B14)

noting that 𝛿 and Δ are equivalent operators. The second term of (B13)
requires the variation Δ𝒑𝑇 , which is either acting in stick or slip, defined
in Equation (B12).

Stick

For the stick case, the frictional force takes the form

𝒑𝑇 = 𝒑𝑇 ,𝑚 + 𝜖𝑇Δ𝒈𝑇 = 𝒑𝑇 ,𝑚 + 𝜖𝑇 𝒈
Δ
𝑇

where Δ𝒈𝑇 , the total tangential movement over the surface during a time
step, is redefined as 𝒈Δ

𝑇
to avoid conflicting notation with first and sec-

ond variations. It is first convenient to define the variation in tangential
movement,

Δ𝒈Δ
𝑇
= (Δ𝒕𝛼,𝑚+1)(𝜉𝛼

𝑚+1 + 𝜉𝛼
𝑚
) + 𝒕𝛼,𝑚+1(Δ𝜉𝛼

𝑚+1) (B15)

This enables the definition of the first variation of the stick contact force,

Δ𝒑𝑇 = 𝜖𝑇Δ𝒈Δ𝑇 (B16)

Slip

For the slip case 𝒑𝑇 has the form

𝒑𝑇 = 𝜇|𝑝𝑁 |( 𝒑tr||𝒑tr||
)

and its corresponding variation is

Δ𝒑𝑇 = 𝜇(Δ|𝑝𝑁 |)( 𝒑tr||𝒑tr||
)
+ 𝜇|𝑝𝑁 |Δ( 𝒑tr||𝒑tr||

)
(B17)

where
Δ|𝑝𝑁 | = 𝜖𝑁Δ|𝑔𝑁 | = 𝜖𝑁

𝑔𝑁||𝑔𝑁 ||Δ𝑔𝑁 (B18)

and

Δ
(

𝒑tr||𝒑tr||
)

=
(
𝑰 − 𝒔 ⊗ 𝒔||𝒑tr||

)
⋅ Δ𝒑tr where 𝒔 = 𝒑tr∕||𝒑tr|| (B19)

noting that 𝒑tr = 𝒑𝑇 ,𝑚 + 𝜖𝑇 𝒈
Δ
𝑇

; it is the same as the stick form of 𝒑𝑇 and
also therefore has the same form for the first variation.
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