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The cell-crossing instability plagues the stress field in the MPM
when linear shape functions are used. Traditionally, this issue has
been addressed by using higher order shape functions, which
introduce additional complexities and computational costs. This
manuscript presents a solution by demonstrating that
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ABSTRACT
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The Material Point Method (MPM) for solid mechanics continues to attract much interest

po1f from those wishing to solve complex non-linear mechanics problems which include large
deformations. Its prominence is rising in many areas of engineering, such as geotechnics and
computer graphics due to the advantages it delivers over competitor methods. In the original
MPV, the background grid is comprised of the simplest linear shape functions. These have the
advantage of simplicity but also are the cause of a major defect that has been studied for a
number of years, the cell-crossing instability. This manifests itself as unphysical oscillations
in the stress fields predicted by the MPM and its cause is precisely the simplicity of the grid
shape functions. The natural answer would seem to be to use higher order shape functions, but
these functions are more challenging than the linear ones in other key aspects. In this paper we
present a new MPM, the Stress-Continuous MPM, that maintains the simplicity of the original
MPM by using the simplest elements, but alleviates the cell-crossing instability by employing a
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novel penalty approach applied to element boundaries. The method has similarities and links
to other stability measures developed for the MPM and used much more widely by researchers
in the unfitted FEM community; these are explored in this paper. The new MPM is robustly
tested on a number of numerical examples which show it to deliver an MPM formulation with
linear shape functions and without severe cell-crossing issues.

1. Introduction

In the context of large deformation mechanics, the Material Point Method (MPM) [1,2] has gained popularity in accurately
modelling history-dependent solid materials. The applications of the MPM span various fields of engineering, including the behaviour
of soil [3] and soft materials [4], growth mechanics [5], and computer graphics [6], testifying to its versatility and reliability.

Despite this widespread use, the MPM still faces intrinsic challenges that reduce its reliability and ease of use. These mainly stem
from the coexistence of a point-based discretisation (the Material Points, MPs), for storing the variables of interest for the simulation
(e.g., density, stress), and a Finite Element grid, where the non-linear problem is solved incrementally. Despite its appearance, the
method uses Lagrangian mechanics since the MPs move in a conforming way with the grid. However, the relative position of the
points within the grid changes because the grid is discharged after the solution is reached and reintroduced before the new step.
This decoupling of the MPs (which are also traditionally used as quadrature points) from the grid constitutes both the strength and
the vulnerability of the MPM: on the one hand, grid distortion is less of a concern in the MPM, as there is only partial distortion
during the increment before the grid is replaced. On the other hand, the lack of conformity between the grid and the MP-based
discretisation undermines many certainties that underpin Finite Element Methods (FEMs).

One of the immediate consequences of decoupling the quadrature points from the grid is that linear shape functions cannot be
used in the MPM without direct consequences. Since the original paper on the MPM employed these shape functions [1], this is
often referred to as the standard MPM (sMPM) to distinguish it from formulations with different functions. Specifically, the sMPM
is severely compromised by the so-called cell-crossing instability, which presents itself as a spurious oscillation in the stress field. The
source of the cell-crossing instability lies in the discontinuity of the gradients of the linear shape functions at the junction between
two adjacent elements. MPs moving across this discontinuity trigger this instability.

Traditionally, the cell-crossing instability is mitigated by increasing the continuity of the shape functions at these locations, as in
Generalised Interpolation MPM (GIMPM) [7] or B-spline-based formulations [8], for example. To extend the continuity of the shape
functions between two elements, larger stencils, positively-defined over at least three elements in a row, are required. However, the
use of higher order shape functions with bigger stencils presents other challenges, which are discussed below. Any MPM formulation
employing the MPs as integration points introduces a quadrature error arising from the incorrect position of the quadrature points
(the MPs move accordingly to the solution field) and their weights, which are taken as proportional to the volume of the continuum
ascribed to each MP.! However, as the order of the shape functions increases, the number of quadrature points required to minimise
the integration error also rises, which, in turn, requires further treatment (see, e.g., [11]).

The quadrature error can also be exacerbated at the boundary of the problem domain, where small overlaps between the MPs’
physical domains and grid elements may occur. This problem is referred to in the literature as the small-cut issue and leads to ill-
conditioned linear systems. When higher order shape functions are used, this problem can affect multiple active boundary elements
in a row, which themselves may not contain MPs, resulting in very small contributions to the entries of the linear system matrix.>
The techniques designed to resolve the small-cut issue share the same underlying rationale, i.e., to control the solution at the nodal
Degrees of Freedom (DoFs) suffering from the small-cut issue.®

Further problems arise with boundaries when using higher order shape functions in the MPM. If these functions are not modified
to compact their stencil, they tend to blur the surface of the boundaries further, diffusing the boundaries over multiple elements.
It follows that treating boundary conditions (BCs) [14,20-27] or phenomena involving the body’s boundary (e.g., contact between
solid bodies [28-30]) requires an ad hoc treatment.

However, if the stencils extend only over one element, conforming Dirichlet BCs can still be enforced on the grid without further
treatments. Other shortcomings of larger stencils are that the MP-to-element search is more computationally expensive, and they
have a less straightforward adaptation to simplex elements (i.e., triangles and tetrahedra), and, more generally, to unstructured
grids.* On top of the above motivations, the GIMPM faces an extra layer of uncertainty regarding how and whether updating its

1 A few techniques available in the literature have tried to alleviate the integration issue either by changing the quadrature rule and reconstructing historical
variables, e.g., [9] or by modifying the MPs’ weights or positions, e.g., [10].

2 A discussion on how higher order shape functions exacerbate the small-cut issue in the MPM can be found in [12] (see Fig. 6B) for solid mechanics and
in [13] for poro-mechanics (see Fig. 8). Both studies highlight that a higher condition number of the matrices to be inverted in the Newton—-Raphson process
is indicative of small-cut instabilities. Specifically, it is demonstrated that shape functions with larger stencils (e.g., the GIMPM) have a condition number that
is considerably greater than that of their lower-order counterparts. For the same reason, the B-spline-based formulation proposed in [14] required a specific
technique to address this instability.

3 Amongst the techniques to counteract the small-cut issue, the ghost method [12,15], the Extended B-splines method [14,16,17] and the aggregation [18,19]
have been introduced for the unfitted FEM and expanded more recently to the MPM.

4 To the best of the authors’ knowledge, only a few exception (see [31-36]) in the vast literature of MPM formulations have focused on unstructured grids.
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characteristic domain should be undertaken. The literature does not provide a consensus on this (refer to [37] for a comparison of
different domain update procedures).

It is clear from the above that there are clear advantages in using linear shape functions over their higher order counterparts
linked to integration (within the bulk of the material and at the boundaries for the small-cut issue), boundary representations,
performance of the MP-to-element assignment, and ease of application to simplex elements and unstructured grids. Therefore, one
returns to examine ways to address the cell-crossing instability.

This paper presents a different perspective on the cell-crossing issue and provides a novel solution to permit the safe use of
linear shape functions in the MPM. Instead of increasing the continuity of the shape functions, a tailored penalty term can be added
to the classical MPM formulation which counteracts the unstable components that cause cell-crossing. Owing to its final purpose
of delivering oscillation-free stress fields, the new method is named the Stress-Continuous MPM (SC-MPM). On top of retaining
the above-listed advantages of linear shape functions with no significant cell-crossing, the discrete linear systems obtained with
the SC-MPM are also well-conditioned and do not suffer from the small-cut issue. Additionally, the SC-MPM has the potential to
straightforwardly transform an unfitted FEM code with low-order shape functions into a ready-to-use MPM code in a few steps.

The organisation of this manuscript is as follows: after this introduction, the equations for a solid material undergoing finite
elasto-plastic deformations are outlined in Section 2 and discretised within an MPM environment in Section 3. The cell-crossing
instability is dissected in Section 4, which motivates the introduction of the SC-MPM in Section 5, containing the key contributions
of the manuscript. Numerical examples that support the SC-MPM and comparisons with other MPM formulations are presented in
Section 6. Section 7 analyses the advantages and disadvantages of the SC-MPM over the competitor techniques.

2. Continuum and semi-discrete frameworks

This section introduces the components of non-linear solid mechanics which constitute the basis for the considered MPM
formulation.

2.1. Governing equations

2.1.1. Kinematics and strain measures

Let the body 7 in the reference configuration occupy a domain £2, which is a subspace of the Euclidean space € in R, Let
this body be deformed according to the smooth mapping ¢ : (2,1) > @ C &, with @ being the domain of the current configuration
at the generic time . Let the Cartesian coordinates on 2 and  be defined by the basis vectors E; and e;, with I,i = 1...n4™,
For simplicity, this work assumes E; = e,;. If X denotes the initial position of a point belonging to the body in £, the mapping ¢
describes the position of the same point in the current configuration, i.e., x; = ¢; (X;,?) in w. The difference between these two
positions, i.e., the current and the original one, is the displacement associated with the point originally in X, i.e.,, u := x — X. Let
the deformation gradient F be the derivative of the mapping ¢, whose components are given by

99, (X)

Fip (X) = ox,

@

Based on the deformation gradient, this work employs the following measures of strain: the left Cauchy—-Green strain B := F - FT
(with - being the inner product, and (s)" the transpose of (s)), and the logarithmic strain e := % In B. The Jacobian, or volume ratio
J, is given by the square root of the determinant of B, i.e., J := y/det (B). If d’v denotes an initial infinitesimal volume and dv its
current counterpart, the Jacobian relates these measures of volume, i.e., dv = J d°v. Given the principle of mas(s) conservation, the

Jacobian also relates the initial and the current densities (°p and p, respectively), according to the formula p = —p.

As proposed by Kroner [38], Lee [39] and Mandel [40], this work assumes a multiplicative decomposition of the deformation
gradient into elastic F¢ and a plastic F” parts, i.e., F = F° - FP. More generally, the superscripts (+)° and (+)” determine quantities
whose definitions are based on the elastic and plastic parts of the deformation gradient, e.g., B® := F¢ - (F T,

2.1.2. Balance of rate of linear momentum
If inertia effects are neglected, the strong updated Lagrangian version of the balance of rate of linear momentum is given by

div-o+pb=0 on o, (2)

00
where div denotes the divergence (i.e., (div - o), = a—”) of the (symmetric) Cauchy stress o, while the body forces per unit mass
X

are indicated by b. !

2.1.3. Constitutive behaviour
The free energy function ¥ per unit initial volume under consideration is that of an isotropic Hencky material [41] and is given
by
3

2
v/(e,a)=§(eg)2+56(e;) +% (@), @)
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where K > 0 and G > 0 are the bulk and the shear moduli, while ¢, and ¢, are invariants of the logarithmic strain measure, defined
by
€ 2

L =€ 1 e::e—gul; € 1= Ee:e, 4
with : being the double contraction operator between tensors, and 1 the second order identity tensor. In Eq. (3), ¥ defines a part
of the free energy function responsible for the isotropic hardening, based on a set of internal variables a.

Following the Coleman-Noll procedure [42,43], the elastic constitutive behaviour of the material can be decoupled from the
dissipation, leading to
i d i
. B¢ ==
OB 1= " %a
where 7 = J o is the Kirchhoff stress and g are the thermodynamic forces. For the isotropic plastic part, this work considers the
principle of maximum dissipation (see [44,45]), which results in the flow rule and the evolution of the internal variables

T=2

6]

pED 00

d? =
ot " T oq

, (6)
where d? :=sym(F¢- F”-(F?)~' - (F°)7!) is the symmetric part of the plastic velocity gradient, & (t, q) is the yield function, and 7”
is the plastic multiplier. The (s) notation expresses the material time derivative of (s). As explained in Simo [46,47], the above set of
equations extends the small-strain additive decomposition for elasto-plasticity to the case of finite strains if exponential integration
schemes are employed.

2.2. Boundary conditions

For the problem under consideration, it is assumed that Dirichlet and Neumann boundary conditions (BCs) are prescribed on the
current boundaries dwj and dwy, which satisfy dw = dwp U dwy and dwp N dwy = @. Specifically, it is considered that

u=up on dwp; ()]

oc-n=0 on dwy, 8

where n indicates the outer normal. For simplicity and without loss of generality, this work assumes homogeneous Neumann
boundary conditions. Readers interested in the application of inhomogeneous Neumann boundary conditions in the MPM may refer
to [20-23] for further information.

2.3. Time-discrete, spatially continuous weak form

Since it is recognised that the constitutive equations are non-linear and path-dependent, the equations must be set in a incremen-
tal form. This motivates the introduction of a Backward-Euler (pseudo)-time discretisation between the current n+ 1 configuration
and the previously converged one n. Dropping the subscript (s),,; for the quantities referred to the current configuration, the
time-incremental displacement over the considered interval is denoted by Au := u — u,,. The space of trial functions is given by

Yy (@) = {Au e (' @)"" | 4u = dup, on 6a)D}, ©)

where H'! (w) indicates the Sobolev space of functions in H° (w) with weak gradients also in H° (). A similar space, denoted by
Yy (@), is employed for the test functions §4u.

Hence, exploiting the calculus fundamental lemma and the divergence theorem for the BCs (8), the time-discrete and continuous
in space weak form is as follows: given a, and u,, seek 4u € 7, (®) such that

/grad&Au to(a,u) do —/ §Au-pbdv =0, Védu € ¥y (w). (10)

®

To fully complete the discretisation process, discrete geometry and variables must also be introduced. These are addressed in the
following section.

3. The material point method

This section introduces the MPM, defines the labels for the discrete parts of the geometry and introduces the discrete spaces of
trial and test functions.
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Fig. 1. MPM step phases. Source: Figure reproduced from Pretti et al. [13].

3.1. MPM algorithm

The MPM-based discretisation comprises a cloud of Material Points (MPs) representing the problem domain, where the MPs
carry all the information (e.g., density, stress, etc.) necessary to run the analysis. At each increment, the MPs are immersed in a new
regular grid, Phase (i) in Fig. 1. Since no information is stored at the grid nodes, a mapping from the MPs to the grid is necessary® to
initialise the grid nodal values. This mapping is called Point-to-Grid (P2G) and is illustrated by Phase (ii) in Fig. 1. The equations are
then assembled at the active grid nodes, employing the MPs as quadrature points, Phase (iii) in Fig. 1. Since the MPM is a Lagrangian
method, the grid incremental solution deforms the grid and, conformingly, the MPs displace, Phase (iv) in Fig. 1. If, as here, the
solution is obtained using an implicit approach, Phases (iii) and (iv) are iteratively repeated until a convergence criterion is met.
Since the grid is employed only to compute the incremental solution, it is introduced anew at every time-step. Hence, it is necessary
to map the updated solution from the grid nodes back to the MPs. This is the Grid-to-Point (G2P) mapping and is illustrated by
Phase (v) in Fig. 1. Following the G2P mapping, the grid is discarded, Phase (vi) in Fig. 1. The introduction of a new computational
grid marks the beginning of a new step and the above-described phases are repeated until the problem is solved completely.

3.2. Nomenclature of the computational domains and discretisations

Each point has a volume v”” and is representative of a portion of domain ©"” such that o ~ ®M? := U,’:P'Zl ", with N™P being
the total number of MPs in the simulation (see Fig. 2(a)).

At every time-step, a finite element grid "7 is introduced, Fig. 2(b). This grid discretises a portion of the Euclidean space &,
which fully contains the MP-based discrete domain w™”. The grid "7 consists of elements K (see Fig. 2(b)) with representative
grid size i := maxgcny hg. These elements acts as finite elements in the Finite Element Method, i.e., they possess a set of nodal
variables and discretise a portion of the space over which shape functions are defined. However, for a given time-step, not all the
elements are active.

Let the active elements of the grid be those for which all the nodal shape functions computed at an MP’s current position x"”
gives a non-null contribution, i.e.,

hyact .- {K €T | 3% 1 Ny (x™) > 0 VA eN(K)}, an

where N (K) indicates the set of nodes (vertices) belonging to the K—th element and N, are the elemental shape functions associated
with the node A € W (K). It follows that the current active grid domain, i.e., #@ := |Jgenya K encompasses the MPs’ domains

"c?) ) COMP.

5 The initial mapping from the MPs to the grid is not always necessary in the MPM. For example, if a quasi-static irreducible, displacement-based formulation
for solid mechanics is used, no mapping is required. For a more detailed discussion on this topic, see Pretti et al. [48].
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Fig. 2. Different discretisations in the MPM: the MP-based discretisation is represented on the left, while the grid-based discretisation is on the right.

For reasons that will be explained in Section 5, let 7 (K) denote the set of elemental facets® of a grid element K. If a single
facet F is the intersection F = dK* n K~ of two elements K*, K~ € "T, F is an interior facet when shared between two active
elements of 7 (i.e., if KT, K~ € "T w). Let the set of all interior facets be denoted by T’i"(hT “C’) (see, again, Fig. 2(b)) and yp
be the surface of each of these facts. For simplicity, let us assume that the MPs’ Dirichlet boundary awﬁl P conforms to its grid
counterpart throughout the simulation,” i.e, "dp ~ awg P (see Fig. 2(a)). This assumption permits the strong imposition of the
Dirichlet boundary conditions for shape function with compact stencil.

3.3. Discrete spaces and MPM weak form

In light of the MPM algorithm described in Section 3.1 and the discretisation nomenclature in Section 3.2, the discrete MPM
formulation can now be provided. In the case of the SMPM, the space of linear polynomials over the active elements K & *7
(denoted P! (K)), and the space of continuous functions over the active grid domain (labelled C°("®)) are introduced. The space
of trial functions for the sMPM is given by

dim dim
"y ("0) = {Au e (@)™ | duly € (PUK)"™, A'uly = dup (x4) VA € N (2"p) |, 12)
with A"u| (or 4"u|,) being the restriction of the trial function to the K—th element (or A—th node) and N (0”@ ) the set of nodes
belonging to the (conforming) Dirichlet boundary. A similar definition to the above follows for the test function s4"u € "7%;(%@).
Having introduced these spaces, the discrete weak form reads as follows: given a,, and u,, find 4"u € "7, ("®) s.t.

Z </K gradsAu : o-(a,,,hu) du—/

oa"u - pbdv) =0, Vés'ue "1 ("o). 13)
K K

As no integration rule has been specified so far (and this work agrees with others in seeing the sMPM as a FEM with a relaxed
integration scheme, see [49,50]), the above-introduced formulation matches that of a FEM if the conforming case in considered,
i.e., if @ ~ "@. If a non-conforming case is considered, i.e., @ C @, the above formulation is similar to that of an unfitted FEM and
precautions must be taken to address the small-cut instability in the boundary regions (see Burman [15] or Coombs [12]). However,
as will be explained in Section 5, one of the good aspects of the new formulation suggested in this work is that the small-cut issue
is automatically taken care of.

If the MPs are taken as quadrature points whose weight is given by their volumes, the SMPM weak form becomes: given a;,
and u,”, find A"u € "7, ("®) s.t.

p

>y (u’"f’ @) grad 64"u (x") : o (@™, u"™) — m" §A"u (x") - b(x’"f’)) =0,  Vea'uevy(ho), (14)
K mp|lK
where the extended dependency of the current displacements at the MPs is as follows u™?(u,”(4"uy, ... A"u,), A*u), and mp|K
are the MPs that the elemental shape functions see, which depends on the shape functions’ stencil. In the case of sMPM, the

6 In the n?™—th dimensional space, the term facets is employed to denote a face with dimension n%" — 1, i.e., a point, an edge, and a face for n®" = 1,2,3,
respectively.

7 As for the case of Neumann BCs, the application of non-conforming Dirichlet BCs in the MPM is not addressed in this manuscript. Interested readers can
refer to [14,24-27].
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the considered domain K.
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tative plot).

Fig. 3. Setup of K (top) with shape functions, first (bottom left) and second (bottom right) derivatives. The position of the ball 3 in proximity of the A—th
node is also illustrated.

mp|K coincides with the MPs in the K—th element. The mass of each material point is given by its density and its volume,
i.e., mmp = pmp pmp = 0,7 0P

In the numerical examples in Section 6, the results are sometimes compared with those coming from the Generalised Interpolation
MPM (GIMPM) (see [7,51] for definition and details of implementations). In the GIMPM formulation, shape functions with higher
regularity, specifically C!("®), are used, obtained via the convolution integral of the functions in *¥,, ("®) with a constant function
centred at the MPs’ location (the characteristic function). For the purpose of this work, the critical aspect is the greater regularity
of these functions, which, however, occurs with a larger stencil and the issues already cited above. Similar conclusions on higher
regularity and larger stencils can be drawn for B-Splines MPM, see, for instance, [8,52].

4. The cell-crossing instability

This section discusses the cell-crossing instability, which mainly affects the sMPM and sets the scene for the SC-MPM. Specifically,
Section 4.1 presents a straightforward mono-dimensional setting that quantifies the cell-crossing instability and justifies the adoption
of a penalty term in the SC-MPM (fully detailed in Section 5), while Section 4.2 provides a more mathematical explanation of the
underlying problem.

4.1. Derivation of the penalty for the SC-MPM in a mono-dimensional case

This section considers the setting represented in Fig. 3. This setup is designed to quantify the cell-crossing instability by
comparing the internal force vector calculated using the FEM with linear shape functions and that calculated using the sMPM.
Both methods employ the same setup, and the transition from one method to the other will be clear based on the context. For this
case and throughout this section, let us assume hypothesis of the small deformation (||gradu + (gradu)” || < 1, with || « || being the
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Euclidean/Frobenius norm for vectors/tensors) with finite displacements (||u|| > & ||gradu + (gradu)” ||) and linear elastic material.
The setup of Fig. 3 is mono-dimensional (i.e., %™ = 1), so the Young’s modulus E fully characterises the material behaviour. For
clarity of notation, it is specified that when general quantities are computed on the right-hand side (RHS) of the A—th node, these
are denoted by (+)*. Conversely, they are indicated by ()~ when on the left-hand side (LHS) of the same node. Employing this style
of notation, the setup in Fig. 3 also assumes that the grid is uniform: A = h* = h™.

Let us consider the following integral of the internal force vector coming from the FEM employing linear shape functions over
two neighbouring elements K =K UK™ (see Fig. 3(a))

2h
f/’f'*‘”’”‘”Le ::/0 N, (x) ;N{a (x) Eug dx, forB={A-1,AA+1}. (15)

—— —
=0(x)
The above integral can be partitioned into two parts: one relative to a bubble 3 centred at the position x™” and of diameter (or
length, in this 1D setup) /"7, and its complementary part K \ B (i.e., the two neighbouring elements with the exclusion of the bubble
domain). The partition of the integral of the FEM into these two parts is performed to exclude the difference between FEM and sMPM
regarding how the integral volume is represented. This separation enables the focus to be on the spurious components related to the
cell-crossing. Specifically, the considered bubble must intersect the two neighbouring elements to identify the unstable components
coming from the cell-crossing. In light of this partition, the FEM internal force vector can be written as a function of the position

of the centre of the bubble, i.e.,
int, FEM| _ cint,FEM
£ |K =l

mp
R\B S

X2 int,F EM
= N’ (x N. (x) Eugdx + " _ o (x™Py, (16)
/X IRAC EB‘, b (0 Eugdx + £ TEM| )

mp int,FEM
B(x )+ f,

Focusing on the integral on the bubble’s domain, its integrand function can be approximated with a Taylor expansion at x = x"?,
which gives

I X[ )2
int, _ ! !
£ |B(x""’) = N, (") g (NL (x™P) EuB)/x dx

mp_mp /2
+EY | u / T (N’ (x) N (x)),) (x—x")dx )+ zoo RY (x™) 17)
B A B m, A ’
= xmp—imp /2 X =2

=R (umr)

where |Ri’\’) x"P)| = /;;:‘3{;722 (0] ((x — x™mpyd ) dx as x — x™ and O indicates the leading order of the approximating terms. Since

the dia}nmerggr of the bubble has been chosen to have the same volume (or length, for this 1D example) that the MP represents,
3

ie. fx’;p:;fnp /22 dx = ["P, it can be seen that the 0—th term of the Taylor expansion is the internal force vector computed via the

sMPM, i.e.,

f/;m,FEM|B(xm,;) - anr,.yMPM (xmp) +E 2 <uB/
B X

mp—[mp /2

X[ /2

(Ne e N )

(X me)) dx + 2 RY (x™). (18)
q=2

Hence, the above equation clarifies that the difference between the sMPM internal force vector due to a single MP and the internal
force vector of the linear FEM over a bubble of the same length is an integration error which can be quantified by Taylor expansion
terms of order bigger than zero. Let us now focus on the 1—st term of the Taylor expansion, which gives

omerl]
B X'

mp_jmp /2

XD [2 X4 /2

NX (x"P) Né x"P) (x — x"™P)dx + /

xmp—[mp /2

Nﬁ\ (x"P) N'B’ (x"P) (x — x"P) dx). (19)

The derivatives of the linear shape functions under consideration N (x) =1 — %lx — x| are given by (compare with Fig. 3(b))

N, (%) = —%Sign (x=x4)- (20)

The second derivatives of these functions can only be quantified in a distributional sense, i.e.,
2 2
/NX(x)g(x) dx:—/ zéxAg(x) dx:—zg (xa) 21
R R

for a generic function g(x) at least in H!(R), and with &, Y being the Dirac distribution centred at the A—th node. Hence, the

integral of the second derivatives of the shape functions is non-zero only in the proximity of the A—th node. This means that the

term RE:) (x™P) is non-zero only when cell-crossing happens and that the contribution of the second term on the RHS of Eq. (19)

is non-null only when B = A (compare with Fig. 3(c)). Using a small positive quantity e to still express the term Ri\l) (x™P) as an

integral, it follows that

xp+e Xp+e
N (x™P) (x — x"7) dx) + Eug ("N, (")

—€+xp —€+xp

R (x) = lim <E Z(uB N, (x"P) N (x = x"7) dx). (22)
B
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Since in the MPM the position of the point at different time-steps can vary, and the point can be first on the left of the A—th node (for
a given grid) and then later on its right (for the new grid at the start of next step), x"” is a variable. The notations B~ = {A—1,A"}
and B* = {A*,A + 1} are then useful to distinguish further which side of the first derivatives are under consideration. To remove
the ambiguity of the sign functions appearing in these functions (see Eq. (20) and Fig. 3(b)), the above integrals can be written as

xpte xpte
RS (x") = lim( E Y (ug- Nj_ (x™) N (") (x = x™) dx) + E ) (ugs N, (x"7) N7 (x"P) (x — x") dx)
€0 B— —€e+xp B+ —€+Xxp
Xp+e Xpte
+Eu, <N;\, ") NI (™) (x = ") dx + N}, (x™) NI/ (x™) (x — x™P) dx) : 23)
—€+Xp —€+Xp

Invoking the property of the Dirac distribution the above integrals simplify as follows

R (x"7) = -% <(xA —X")E Y (Nj- (") ug-) + (xp = x™) E Y (Np, (x"7)ug)
B- B+

+ (xp = x"™) EN)_ (x"P)up + (x5 —x") EN}, (xm”)uA>. 24

The factor 2/h corresponds to the jump in the gradient of the shape functions at the A—th node oriented along the normal n*,
ie. % = (N; =N ) n* := [N, I n*. Additionally, the following sums give the elemental values of the stresses

E Z (Ng- (xX"P)ug-) = =6~ n™; (25)
=

EY (N’B+ (x”’”)uB+) =o"nt, (26)
B+

where different signs on the elemental stresses are due to the different outer normals of the elements. Additionally, the sum of
the gradients of the shape functions at the A—th node on different sides gives null contribution, which leads the third and fourth
components on the RHS of Eq. (24) to cancel out as follows

(xa = x"P) EN,_ (xX")up + (xp —x") EN,, (x™)up = (x4 —x™) E (N_ (x"7) + N}, (x")) up =0. 27)

Eq. (24) then simplifies into

1
RY (x") = E ZuB/
B X'

mp_mp /2

X1 /2

(N N (x))l

. (x = x")dx = = (x5 = x"") [N, 1 n" ([c] n*), (28)
In light of the above equation and of Eq. (18), the internal force computed with the FEM with linear shape functions over the bubble
of diameter /" gives the sMPM internal force vector contribution minus spurious contributions activated by the cell-crossing and
high-order terms. In this sense, the goal of the SC-MPM is to cancel out these spurious contributions arising when a MP cross a
cell. The term RS) (x"P) does not go to zero with grid refinement (it actually tends to infinity since [N, ] = %) nor by increasing
the number of MPs per cell, and is the prime cause of cell-crossing instability. As a matter of fact, strategies meant to alleviate this
instability are designed to smooth the jump in the shape function second derivatives to avoid a Dirac distribution at the element
interfaces (see, for instance, [7-9,53-56]). However, all these alternatives come at the cost of increasing the shape functions’ stencil,
which has drawbacks as described earlier in the paper. This manuscript pursues a different approach to mitigate the cell crossing
instability, which counteracts the oscillating effect given by term Rg) (x™P).

As for the residual terms Rf) (x™P), it can be demonstrated how these give rise to a convergent (but not absolutely convergence)
series. This can be appreciated if expanding further the orders of the Taylor expansions, i.e.,

00 xmﬂ+[mp/2 " (x _ Xmﬂ)z 0
RY (x™) = E u / N’ (x) N/ (x) S22 L dx )+ Y RO (xmy. (29)
=RQ (e
Applying the calculus fundamental theorem, the term Rf)(x"“’) becomes
® XMP P /2 ,
R”(x")=-E u / N, (x) N% (x) (x — x"P)dx
A zB: B X™MP—[mp 2 ( A B ) |x"’P
, o2 XMP"MP /2
+ [E 3 (uB(N;\ @O Ng) |, %dx)] : (30)
B * xXMp—[mp /2

Since the boundary term vanishes (the second derivative of the shape functions gives contribution only in correspondence of the
A—th node, see Eq. (21) and Fig. 3(c)), the above residual simplifies as follows

RY ") =-E Y, < /
B X

XM /2

(N0 N (x)),| C(x- x""’)dx) = R (x™), 31)
mp_jmp /2 X

9
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which leads to

o o 0
YR () =R () + RY (") + Y RY () = Y RY (x"7). (32)
q=1 q=3 q=3

Since a similar rationale can be applied to RG) (x"P) and the other high-order terms to infinity, it can be seen that
0 int,sM PM . s .
f,»n“v”,‘,| (") = Z R(") (") = {f (x™P) if max ¢ is an even number; 33)
B

= fint.sMPM (mpy +R“) (x™P) if max ¢ is an odd number,

with the worst-case scenario in terms of spurious components given by max ¢ being an odd number.
4.2. Regularity issues in the sMPM

Let us now consider the contribution of a single MP to the internal force vector in the most general n“”—dimensional scenario
with material and geometrical non-linearities. This contribution can be seen as the result of an integral over the volume of this
functions multiplied by the Dirac 6, distribution centred at the MP location, i.e.,

v ") grad 64" u (x™) @ o (™, u" —v’"‘”(u"'p) ,np grad (64"u("x)) :  o(a,."u) do, (34)

E(Hn (hé))y,dlmx,,d:m E(HO (;,w)),,dzmx,,dzm

where it is hlghlighted that the components of the test functions’ gradient and the stress (related to the gradient of the trial functions)
are in HO( @). Upon closer examination, the only way for the above equation to hold is if §,m, € H O(h ), which violates the
definition of the Dirac distribution (compare with Eq. (21)); these components (of trial and test functions) do not provide sufficient
regularity to define a dual space with a negative exponent for the distribution, resulting in an highly-irregular contribution when a
MP crosses between elements.

As highlighted in Section 4.1, one way to proceed is to increase the order of the trial and test functions, so that the components of
their weak gradients belong at least to H' (hcb) This choice enables the components of trial and test function on the RHS of Eq. (34)
to be sufficiently regular to define a dual space with negative exponent for the é,, distribution. For these smoother functions, the
contribution of each MP is sufficiently regular to mitigate the cell-crossing issue. Conversely, in the SC-MPM presented below, a
penalty term (similar to the unstable component Ril) (x™P) quantified in Eq. (28)) is added to the stationarity of the functional (14)
which acts as a weak regularisation on the solution field and of its gradient.

5. SC-MPM

In this section the SC-MPM is described. Firstly, the penalty term added to create the SC-MPM is shown to share some similarities
with other penalty methods available in the literature, allowing some useful comparisons. Next, since the SC-MPM requires the
reconstruction of the stress field on the element facets, mapping techniques are introduced with the goal of reconstructing the stress
at these positions. Finally, the few steps required to integrate the SC-MPM into an implicit MPM framework are briefly outlined.

5.1. Penalty stabilisation

Stemming from the sMPM weak form (i.e., Eq. (13)), with the addition of a penalty term at the internal facets of active elements,
the new SC-MPM weak form is as follows: given a,” and u,”, find 4" € ¥, ("®) s.t.

Z Z (U""’ @) grad s4"u (x) : o (a:"’,u””’) —m" 5w (x"P) - b(x"’”))
K mp|lK
+8 Z [gradsA™u] - n* - [o] -n*da=0, Véa"ue"¥("®), (35)
FeFin(hyact) YF
where § > 0 is a user-selected penalty factor and the jump operator across the facets implies [(+)]] = (+)* — (+)~. The normal to the
facet in the outer direction with respect to the positive element is denoted with n*. The additional penalty term is integrated with
standard Gauss-Legendre quadrature at all facets F € F"("749") (see Fig. 2(b)).
Removing the dependency from the test functions’ coefficients and expressing the trial discrete functions in *%, b ("@) as
Aru (x"P) = ¥, N (x™P) Au,, the discrete weak form of the SC-MPM is given by: given «,” and u,”, find Au, s.t.

_gint.sMPM ._pextsMPM
=t =t

T X (v @) grad (Na")1) o (a,u) )= D, ) (m Na ") b(x™) )

K mp|K K mp|lK

+f Y Y aplgradN, (x*") 1] - n* - [o (x*")] - n* =0, (36)
FeFin(hact) gp|F

. _ppen
=f,

10



G. Pretti et al. Computer Methods in Applied Mechanics and Engineering 446 (2025) 118168

where gp|F are the facets’ Gauss Points (GPs) at the x8” position and aj is the facets’ area.

It can be seen how this additional penalty term f/’;"" is similar to the spurious contribution Rﬁ:) (x™P) (see Eq. (28)) due to the
cell-crossing issue, but with different sign to counteract it.

The above penalty term shares similarities with the face ghost penalty method (see Burman [15] for the original work, Sticko
et al. [57] for an application to unfitted FEM solid mechanics and Coombs [12] for its application to the MPM) and one of the
penalties (specifically, ¢ in Eq. (11)) suggested by Liu et al. [58] for unfitted interface elliptic problems. However, the penalty
term in Eq. (35) differs from the above-listed terms in the literature in three key aspects: (i) the jump in the gradient of trial functions
is substituted by the jump in the stresses; (ii) the integral is applied to all the internal facets; and (iii) the above term does not scale
only with the grid size.

The modification proposed in (i) is significant not only for geometrically non-linear problems, where the relationship between
stress and strain is more complex than standard infinitesimal linear elasticity, but also for cases involving material non-linearity,
such as plasticity. Therefore, this modification is applicable to a wide range of scenarios that involve different materials within the
framework of finite strain mechanics.

The ghost penalty method states that a penalty term must be added to the facets between active elements on the boundary of the
material and to their neighbouring active elements (compare with [12]). However, the penalty term of the SC-MPM is applied to
all the internal facets (point (ii)), thus including those envisaged by the ghost penalty method (see, again, Fig. 2(a)). This choice is
motivated by the aim of mitigating the cell-crossing instability, which can occur anywhere in the active grid domain. However, this
choice has other consequences. On one hand, it automatically removes the small-cut issue that the ghost penalty method resolves,
thereby inheriting this stability into the SC-MPM. On the other hand, it makes the method more sensitive to the choice of the
parameter f. If strongly enforced (i.e., § - +0), the above term is known to force the solution to lie on a plane, resulting in locking
(see Badia et al. [59] for an explanation of the phenomenon in the case of unfitted FEM). This is not a desirable feature, which
makes careful tuning of # more critical than in the standard ghost penalty approach

The penalty term in Eq. (35) is expected to scale proportionally with a length measure according to physical units. In this sense,
Eq. (28) can be used as a proxy for quantifying the parameter . The residual Ri\” (x™P) is a spurious contribution seen every time a
MP cross a cell. However, because of the way the MPM finds incremental solutions and uses them to compute a total value of the
deformation gradient, this spurious contribution, initially proportional to the distance between the MP and the node, propagates
and increases throughout the time of the simulation. Owing to this incrementally propagating spurious contribution, the following
inequalities hold

[xa = x"P| = |xp = X" —u"P| < |xp — X"P| + [u"P| < |A] + [u"P]. (37)
Since a single parameter valid globally throughout the grid is desired for simplicity, then
|h] + |u™P| < |h| + max |u™P|. (38)
mp

To avoid a dependency on the current displacement «™? that would create additional terms in the linearisation required for the
iterative process, the maximum value of the current displacement can be relaxed to the previously-converged one u,”, which justifies
(in multiple dimensions) the current g to be

B = |IAll + max [|u;”|. (39)
mp

Numerical experiments (see Sections 6.1 and 6.2) that compare f from Eq. (39) with values of f fixed during the entire simulations
support the above rationale. It must also be noted that Eq. (39) considers both the selected discretisation (via the grid size h) and
the specific problem under consideration (via the previously-converged maximum absolute value of the MP’s displacement u,").

5.2. Reconstruction of the historical variables

In the MPM, the only points which store historical variables for the problem domain are the MPs. However, the additional penalty
term requires the stress field at the location of the GPs, which lie on the facets belonging F € F"("7%") (see Eq. (35) and Fig. 2(b)).
Hence, mappings are required to reconstruct the stress field at these positions where the stress variables are not stored. Additionally,
since the facets of the grid elements can become active and inactive during a simulation, initialising and storing historical variables
at the GPs would provide uncorrected stress values because these GPs might have undergone a different loading process to the MPs.

Any mapping procedure requires some weights to mediate the values coming from the initial source of points (the MPs, in this
case). This method adopts weights that are the product of the shape function (to account for the distance of the source point from
the nodes’ facet) and the MPs’ volume (to account for each MP being representative of a portion of volume),® i.e.,

Np (x™P) v™

(Z'"PIK Nj (x™7) Ump) .

m,
wil =

A (40)

8 The choice of mapping (40)-(43), while not unique, strikes a balance between accuracy, simplicity, and computational efficiency. Exploration of alternative
mapping processes, such as that proposed by Mota et al. [60] (see also the references therein), or Moving Least Squares (see, e.g., Sulsky and Gong [9]) is not
considered here. Despite this consideration on the considered mappings, it is essential to note that mappings (40)-(43) serve to inform the penalty term in the
SC-MPM. While this term impacts the solution at the grid nodes and the stress at the MPs, it lacks any physical significance. Therefore, the mappings needed
for its initial reconstruction are not bound by any conservation properties. This is in contrast, for instance, with the mapping of initial velocity field in the case
of dynamic formulations (see Love and Sulsky [61] and in Pretti et al. [48]).
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(a) The variables required to reconstruct the (b) For a given face, the same variables are then
penalty term (A.1) are moved via Egs. (40)-(43) moved from the nodes to the GP locations via the
from the MPs in an element to the grid nodes. shape functions restricted to the selected face.

Fig. 4. The two step procedure to map the variables required to construct the penalty term in Eq. (A.1).

To make the stress field a function of the current displacement for the hyperelastic material described by Egs. (3)-(6), it is more
convenient to reconstruct not so much the stresses directly, but the other quantities on which the stresses depend. This choice is also
motivated by assuming a unique constitutive relationship between MPs and GPs. The above weights are thus used to reconstruct
the historical variables required to compute a stress field for the considered material, these being the previously converged elastic
logarithmic strain, the previously-converged deformation gradient, and any set of internal variables considered in Eq. (3), (see
Simo [46,47] for algorithmic details) i.e.,

(efl)A = 2 W':p (efl)m’}; (41)
mp|K

(F)p= 2 Wi Fir: 42)
mp|K

(@)p= 2, Wil ey, (43)
mp|K

Having employed weights depending on the shape functions, the reconstructed variables are centred at the grid nodes (see Fig.
4(a)), and each of their components is C°("@®) due to the continuity guaranteed by the linear shape functions (see Eq. (12)). The
use of the facet’s shape functions (Fig. 4(b)) permits movement of these variables at the locations of the GPs on the facets, where
the initialisation of the penalty term of the SC-MPM is completed by calling the constitutive relationship. Because of the above-
mentioned continuity of the shape functions, each component of the stress at the 0—th iteration of the Newton-Raphson (NR) is
equal on each side of the neighbouring elements sharing a given facet, making the stress jump zero. This choice minimises the
impact of the penalty term in the SC-MPM. As the incremental solution develops with the subsequent NR iterations, jumps in the
incremental gradients will appear and so the penalty will start to be non-zero and affect the solution. This gradual role of the penalty
in the SC-MPM provides its effectiveness in regularising the stress field without spoiling the solution. However, this regularisation
can be undesirable when localised features, such as shear bands, are intended to form. Both of these points (i.e., smooth stress field
and shear bands) are investigated by the numerical examples presented in Section 6.

5.3. Implementation details

This section briefly details the additional computations (and their position among the phases of the MPM algorithm) required
by the SC-MPM. The additional operations are:

+ Phase (i): for each time-step, initialise the GPs’ quantities for each facet F € T’f"(hT act );

+ Phase (ii): for each time-step, reconstruct the variables necessary for stress employing Egs. (40)—(43);

+ Phase (iii): for each NR iteration, assemble the additional penalty terms (using the nodal updated incremental displacement)

and its contribution to Jacobian matrix of the NR process (Appendix A provides its linearisation).

To better contextualise the above steps in an MPM algorithm, the reader can refer to Algorithm 1. These changes have been
implemented in the open-source MPM code AMPLE (A Material Point Learning Environment) [50] and this is used in the numerical
examples that follow.

6. Numerical examples

This section presents three numerical examples that involve both elastic and elasto-plastic materials, tested over a range of
different grid sizes and elements. Comparisons are made with the sMPM and the GIMPM. In the case of quad elements, MPs are
initially evenly distributed in each direction. For simplex elements, MPs are initialised similarly to those of quad elements and

Duffy’s rule [62] is then applied to map the points (and relative volumes) originally belonging to a quad element to the respective

12
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Algorithm 1: SC-MPM pseudo-code. Additional steps required only for the SC-MPM are highlighted by the
grey-coloured background. @ (or @) indicates the loop over MPs (or GPs). When these loops call the constitutive

relationship, a background dashed pattern is added (e.g., Ps ).

= Preprocessing;

Set step counter n+ 1 = 0;

while n + 1 <= N*'7* (loop over simulation steps) do

Identify active grid elements, K € "779¢;

P2G mapping (including variables via Egs. (40)-(43)) @;
Identify internal facets F € Fi" ("79);

Initialise GPs @;

Assemble f/‘;"”SMPM, Eq. (36) @;
Set NR counter k,, ;| = 0;
while criterion > tol (NR iterative loop) do
if k,,; > 0 then
Compute incremental solution A"u;
end
Assemble f ;\"”SM PM Eq. (36), and contribution to tangent matrix@ ;

Assemble f7*" Eq. (36), and contribution to tangent matrix Egs. (A.lS)—(A.lS)@;
Compute NR residual r, = f"*MPM _ gextsMPM y gpen and criterion;

Update NR counter k. ;

end

G2P mapping @;
Postprocessing <«;

Update step counter n + 1;
end

points (and volumes) in a triangle (see, for more details, [63]). To avoid issues related to small cuts, the penalty term from the
SC-MPM is used as a ghost penalty method for both the sMPM and the GIMPM, applying it only at the interfaces between active
boundary elements and their neighbouring active elements. Since the SC-MPM uses linear shape functions, two GPs (gp|F = 2) are
employed at the interfaces for the quadrature rule.

To compare the results, two different types of error measure are employed: local measures defined at MPs, i.e.,

Iy = (Ve |

e T “a
analyt
and global measures, i.e.,
D Y [ A O i )
SRR T A
In the above equations, (+);” denotes the quantity (») coming from numerical analyses and sampled at the MPs’ position and (-):’falw

the numerical value sampled in the same position. v is the MP’s initial volume.

All the numerical examples are solved using a NR iterative process, where the additional terms in the linearised system due to the
penalty term 7" (see Appendix A) are added to those of the standard internal force vector. According to Algorithm 1, the residual
r is computed at each NR iteration. Specifically, this manuscript, similarly to Coombs and Augarde [50], chooses to compute the
criterion of the NR as follows

o lIrl
criterion = [T M P 4 et (46)

where £ are the reaction forces due to the strong imposition of Dirichlet BCs. This criterion value is checked against a tolerance
set to rol = 1 x 107°.

6.1. Mono-dimensional column under self-weight

Example scope. The scope of the example represented in Fig. 5 is fourfold: (i) to investigate the role of the parameter g for the
SC-MPM formulation; (ii) to compare the SC-MPM with sMPM and GIMPM against an analytical stress solution, in the context of
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P
Y

Fig. 5. Graphical illustration of the mono-dimensional column under self-weight. The figure also reports the qualitative ratio between the initial (white) and
final (grey) configurations.

Fig. 6. Initial discretisation for quad elements in the case of n'>Y = 5.

Fig. 7. Initial discretisation for simplex elements in the case of n¢*? = 5.

finite elastic and elasto-plastic mechanics; (iii) to examine the stress-convergence of the methods with grid refinement; and (iv)
compare the runtime of the SC-MPM with those of sMPM and GIMPM. To study (i), a set of elastic analyses (labelled set (a)) with
p spanning 1.5 orders of magnitude has been run and compared against the adaptive formula Eq. (39). A second set of elastic and
elasto-plastic simulations, denoted as set (b), has been setup to explore the scopes (ii)-(iv). For (ii) the analytical solution outlined
in Charlton et al. [51] is used for both the elastic and the elasto-plastic cases. Grids spanning 3 order of magnitudes for linear quad
and simplex (linear triangular) elements have been employed to investigate (iii) and (iv).

Setup. Set (a) of analyses have been run considering an elastic Hencky material E = 1 x 10* Pa and v = 0, making the simulations
entirely mono-dimensional stress-wise. The gravitational acceleration b = [0, g]” has been linearly increased from 0 to 10 m s=2
over 40 pseudo-time steps. The initial density of the material is 300 kg m~3, while the initial height H y is 50 m. Rollers are applied
everywhere on the boundary, with the exception of the top boundary, which is homogeneous Neumann. To vertically discretise
this setup, the analyses employ 160 quad elements vertically, with initially 2 MPs per element per direction. In set (a) the penalty
parameter takes either fixed values of § belonging to the vector [1,5, 10,50, 100, 500] m or the adaptive formula Eq. (39).

Set (b) involves elastic and elasto-plastic simulations, varying the number of vertical elements according to the vector n®*¥ =
[5, 10,50, 100, 500, 1000, 500], where dim(n®s) = N. The grid discretisations for the case of n/*:Y = 5 are shown in Fig. 6 for quad
elements and Fig. 7 for simplex elements. The elastic simulations share the same setup as those of set (a). The elasto-plastic analyses
share the same material as the elastic set, with the exception that a von Mises yield function governs associated plasticity according
to the law

NA

o= Y2 o, 47)
Py

with J, = %s is,s=t—1ir:1,and py =125x% 10* Pa. Owing to non-linear material behaviour, 60 pseudo time-steps are used,

over which the gravitational load is linearly increased. All simulations in set (b) consider the adaptive formula Eq. (39) for 8. In the
case of quad elements, sMPM, SC-MPM and GIMPM are considered. Since the implementation of the GIMPM for simplex elements is
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Fig. 8. Vertical stress for the mono-dimensional column under self-weight for different values of # computed with the SC-MPM with quad elements. The number
of vertical elements is n¢/*¥ = 160.

Table 1

Résumé of the error values for the simulations in Fig. 9.
p [m] e
1 ~2.09 x 107
5 ~5.74 x 1073
10 ~4.11 x 1073
50 ~3.98 x 1073
100 ~6.72 % 1073
500 ~2.68 x 1072
Eq. (39) ~3.63x 1073

more intricate,” only sMPM and SC-MPM are run in this case. The update of the GIMPM characteristic domain follows that proposed
by Charlton et al. [51] based on the principal stretches. To compare the runtimes of the simulations, Durham University’s Hamilton
HPC service has been employed, using MATLAB R2021a running on a Rocky linux 8 operating system on a shared standard node
with 32 cores and 128 GB of RAM.

Results discussion. Fig. 8 and Table 1 report the results for set (a) of simulations. Specifically, Fig. 8 shows the different vertical
stress trends depending on the value of . From the figure, it is clear that higher values, i.e., § = 100 — 500 m, tends to produce a
smooth solution in the middle of the column. However, these higher penalty values spoil the solution at the top and bottom of the
column, as is clear in the magnifications in Fig. 8. An opposite trend is shown by lower values of the penalty (i.e., # =1 — 10 m),
which do not suppress the oscillation in the middle of the column but tend to produce results closer to the analytical solution at the
extremes. The results from the adaptive formula Eq. (39) seem to provide good results, mildly modifying the solution at extreme of
the column while giving no oscillation in its middle.

The qualitative behaviours in Fig. 8 are confirmed by the global error values e°»» reported in Table 1 and graphically reproduced
in Fig. 9 for the different values of g. Specifically, Fig. 9 captures that the values g = 10 — 50 provide a stable region of the error,
which tends to increase significantly when moving away from these value. The results of the adaptive formula Eq. (39) fall within
this stable region and, for the problem under consideration, provide the lowest value of the global error.

It must be noted that this need to balance between the instabilities suppression and representing the correct values at the
boundaries is shared with other stabilisation techniques. This is, for instance, the case of the stabilisation proposed by Brezzi
and Pitkdranta [64] (see the discussion in Boffi et al. [65] on this topic). To comply with the inf-sup condition, these authors
proposed a stabilisation for pressures in the context of Stokes equations for the conforming FEM. The SC-MPM exhibits this similar

9 To the best of the authors’ knowledge, the GIMPM for simplex elements is unavailable in the literature. This lack is likely due to the more challenging
implementation for these elements. Conversely, quad elements for structured grids can exploit the alignment between local and global coordinate systems per
each Cartesian dimension, decreasing the complexity of the implementation.
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Fig. 9. Final global error of vertical stress for different values of # (log-log scale): comparison between assigned values of f and adaptive formula from Eq. (39).
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Fig. 10. Vertical and horizontal stresses for the elasto-plastic mono-dimensional column under self-weight for quad (left) and simplex (right). The number of
vertical elements is n/*? = 160 and the parameter § is adapted according to Eq. (39).

behaviour because the elements at the boundary of the material simultaneously experience two different influences: the imposition
of a boundary condition relevant to the specific problem under consideration, and the application of the SC-MPM penalty term on a
different facet of the same element. These two conditions are imposed on the same element, which can only accommodate a linear
variation of the incremental solution and a constant value of its gradients. This results in an overconstrainment of the element on the
boundary of the material. This phenomenon is also linked to the mildly sub-linear convergence rate of the SC-MPM. Specifically,
(see Table 2) the simplex elements are constrained to a lesser degree than the quad ones thanks to their setup (compare Fig. 6
with 7). However, a qualitative comparison of the stresses along the depth of the column for the elasto-plastic case (see Figs. 10(a)
and 10(b)) demonstrates the dramatic improvement of the SC-MPM over the sMPM, both for quad and simplex elements. In the
case of quad elements (see Fig. 10(a)), the difference in stresses between the SC-MPM and the GIMPM at the top and bottom of the
column is mildly visible.

While this issue at the extremes of the domain suggests a potential area for improvement, grid convergence analysis on set (b)
of simulations (see Figs. 11(a) and 11(b)) indicates that the error at the top of the column does not compromise convergence for
the SC-MPM. From these figures, the overall trends can be observed, concluding that, for the stress errors,

+ sSMPM stagnates, despite of grid refinement;

» GIMPM convergences with grid refinement;

» SC-MPM convergences with grid refinement.

To better quantify the above trends, two averaged measures are introduced, these being the averaged slope, denoted m, and the
local (among three points) Menger curvature, indicated by y. These quantities are defined as follows
loge®” — log e

N
om._ Ly, om ith m@-@ . i -1 . 48
m N ; [i,i—1] wi m[i,i—l] 10g (.)l _ log (.)i—l ’ ( )
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Table 2

Summary of the average slopes and maximum absolute curvatures in Figs. 11(a) (quad elements)
and 11(b) (simplex elements) for the mono-dimensional consolidation test in the elastic and elasto-plastic
cases. Negative values of the curvatures are indicated in red.

Quad elements Simplex elements
Elastic Plastic Elastic Plastic
ol
SMPM m ~ 0.09 0.04 0.06 0.01
max (| x®"'|) » 0.59 0.64 0.55 0.45
ol _ _ _ —
SC-MPM m ~o 0.88 0.78 0.95 0.75
max (| x®"'|) ~ 0.24 0.42 0.15 0.31
GIMPM m” . -1.21 -1.08 - -
max (| "' |) & 0.14 0.3 - -
4450
(o). ._ [i,i=2] with P‘( ).(H) = (log (.)1 , log(e:)) (49)

Xy = ,
[,i=2] ). p©).(D ).l p©).( ). p©).(D
d(P: P )d(Px P )d(Pi—l P )

where A[;;_ is the area of the triangle defined by the points (Pi(°)’(.), })i(:){(.)’ PI.(:)Z’(.)), and d (Pl.(')’(.), P‘I,(:)l’(.)) is the Euclidean distance

els els
between two of the considered points. The different values of m°>"y" and the maximum absolute values of y°"v resulting from the

analyses are reported in Table 2. Based on these data, it can be seen that the SMPM can be slightly diverging (positive slope) or
converging (negative slope) depending on the simulation and the selected value of slope. However, despite the single values, the
average slope of the sMPM lines only affects the second decimal place beyond zero of these slopes, which is why it can be concluded
that SMPM de facto stagnates. For this reason, the analysis average curvature ;("’";“ provides non-indicative results. Conversely, the
GIMPM converges at a superlinear rate.'? These results are confirmed in the literature for very similar setups (see Charlton et al. [51]
and Coombs and Augarde [50]). More specifically, the slopes in the elastic case are initially superlinear, but they flatten progressively
towards unity and are overall —1.21 for the considered analyses. This is also confirmed by the small value of the maximum absolute
curvature, with a value equal to 0.14. The elasto-plastic case with GIMPM exhibits instead a less steep initial values of slope, resulting
in an overall trend close to m®" = —1.08. Lastly, the proposed SC-MPM formulation converges almost linearly in the elastic case
(approximately —0.88 for quad elements and —0.95 for simplex elements), showing a trend which reflects that of a conforming
FEM analysis with linear shape functions. This convergence is less steep in the elasto-plastic case (approximately —0.78 for quad
elements and —0.75 for simplex), which, even though as not good as that of the elastic case, confirms that the historical variables
reconstruction Egs. (40)-(43) provide a good estimate for the values at the facets between elements. It must also be noted that the
maximum absolute curvatures between the SC-MPM and the GIMPM behave similarly both for the elastic and elasto-plastic case.
This indicates that the maximum absolute variation of the slopes of the lines behaves similarly between the two methods. These
results are highly significant because, to the best of the authors’ knowledge, they demonstrate the first numerical convergence using
linear shape functions with a penalty modification of the original MPM (i.e., the SC-MPM'"). It must also be pointed out that, for
triangular elements, the lack of symmetry in the discretisation (compare with Fig. 7 for the case of n®/>:¥ = 5) introduces spurious
shear stresses even in the elastic case, where the analytical solution dictates only the presence of ¢,,. However, Fig. 11(b) confirms
that this source of error does not affect the convergence properties, with the error ¢ constantly being slightly above the error e%».

Fig. 12(a) displays the runtimes for the simulations across the various grid refinements spanned for simulations (b). It is evident
that simulations with simplex elements are slightly more expensive, which is caused by the larger number of cells (compare Figs. 6
and 7 and relative MPs). Interestingly, the most time-consuming simulation arises from the sMPM method using simplex elements
in the elasto-plastic case, whereas the cheapest one is provided by the GIMPM using quad elements in the elastic case. These trends
are supported by the average NR iterations per step shown in Fig. 12(b), where the sMPM, presenting cell-crossing and oscillatory
behaviour, struggles the most to converge. In codes based on implicit MPM solvers, particularly when dealing with a large number
of DoFs, the bottleneck is typically the linear solver rather than the loop over MPs (or facets’ GPs), which can be easily parallelised.
At the same time, the linear solver’s performance is influenced by the bandwidth of the tangent matrix. In this mono-dimensional
setup, the bandwidth is relatively small. Consequently, even the GIMPM analyses — which involve larger stencils and thus a greater
bandwidth — complete their computations in shorter runtimes compared to those requiring additional NR iterations for the sSMPM
method. Hence, for this specific setup, the increase in NR iterations leads to longer computational times for the problem. Fig. 12(a)
also highlights that the SC-MPM scales linearly in a log-log scale of n;” versus runtime, similarly to the sMPM and the GIMPM.
This means that the more costly loop over the facets’ GPS (each of which calls the constitutive relationship) does not significantly
burden the SC-MPM, keeping its time costs consistent with those of the other methods.

10 The GIMPM is expected to converge at a rate bigger than the SC-MPM because the GIMPM is locally a higher-order method, employing piece-wise linear and
second-order shape functions. Conversely, the SC-MPM employs only piece-wise linear shape functions, thus qualifying as a low-order method when compared
with GIMPM.

11 The literature has also proposed the Staggered Grid MPM (SGMPM) [66], to mitigate the cell-crossing instability while maintaining the compact stencils.
However, for a mono-dimensional column under self-load similar to that presented in this section, the SGMPM exhibits stagnation with grid refinement. This
further remarks on the positive results of the SC-MPM, since avoiding cell-crossing with a compact shape functions’ stencil and achieving numerical convergence
has been a longstanding challenge in the MPM literature.
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Fig. 11. Error convergence comparison for quad (left) and simplex (right) elements.
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Fig. 12. Run times (left) and average NR iterations (right) for mono-dimensional column under self-weight. Quad elements for the sMPM, SC-MPM and GIMPM,
and simplex elements for the sSMPM and SC-MPM are considered for the elastic and elasto-plastic case.
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Fig. 13. Graphical illustration of the two-dimensional test with MMS.

6.2. Two-dimensional test with MMS

Example scope. This two-dimensional test uses the Method of Manufactured Solutions (MMS). The desired displacement field is as
follows

asin X sin Xz
u(X)= [ZX] = Ly" Ly2)]|. (50)
0

y

where a describes the amplitude of the displacements and Ly and L, are the rectangle lengths reported in Fig. 13.

As standard in the MMS, body forces are computed from the deformation gradient Eq. (1), the elastic logarithmic strains defined
in Section 2.1, the adopted elastic constitutive relationship (Egs. (3) and (5)) and computing the divergence of the Cauchy stress
as stated by equilibrium Eq. (2). For the sake of brevity, the computation of the two-dimensional body forces from the given
displacements is omitted (see [67] or [68] for procedural details), while their equations are given in the supplementary materials.

This example aims to compare the new SC-MPM with the sMPM and the GIMPM adopting quad and simplex elements. The
GIMPM formulation is only considered for quad elements. The sinusoidal displacement field provides a more challenging plane
strain solution than that assumed in Section 6.1. Moreover, analytical solutions in terms of any quantities of interest are readily
available thanks to the MMS. To exclude possible errors due to the imposition of BCs (especially for the convergence plots), the
whole rectangle was modelled despite the symmetry along the horizontal axis.

Similarly to Section 6.1, a set of simulations (labelled (a)) is run with the SC-MPM to compare given values of f against the
adaptive formula Eq. (39). Adopting this adaptive formula for 8, set (b) of simulations is run with different grid refinements for
quad elements (employing sMPM, SC-MPM, and GIMPM) and simplex elements (using sMPM and SC-MPM). Errors in displacement
and stress fields are compared against the analytical solutions.

Setup. All the analyses for this example use a material with the following elastic properties, E = 1 x 10* Pa and v = 0.3 and an
initial density of 100 kg m~3. The analyses are run in 8 pseudo time-steps, over which the displacement amplitude (denoted a in
Eq. (50)) is linearly increased from 0 to its final value of 1 m. All boundary conditions are rollers. The dimensions of the rectangle
(see Fig. 13) are Ly = Ly = 6 m. These lengths are subdivided by grid of size h = rL, which implies 4 = h, = h, for quad elements
and a maximum edge size of h allowed by setup for simplex elements. The case of rf =1 is illustrated in Figs. 14 and 15 for quad
and simplex elements, respectively. In the case of simulation set (a), rf is set to 5. In the case of simulation set (b), rf takes the
following values [1,2,4, 8, 16, 24]. Since the displacement solution is a sinusoidal function, the number of MPs that initially populate
each element is 4 per direction.

Simulation set (a) considers different values of the penalty parameter g, these being [0.01,0.05,0.1,0.5,1,5] m and the adaptive
formula Eq. (39). The choice of these values, lower than those considered in Section 6.1, is due to the less constrained nature of
this problem. Simulations in the set (b) use the adaptive formula Eq. (39) to test its validity across different grid scales.

In order to compare some quantities of interest for the simulations included in set (b), a diagonal coordinate 5 (see Fig. 13) is
introduced that passes through the points O = (0,0) [m], A = (6,6) [m] and B = (0, 12) [m]. Given the setup of the simulations, the
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Fig. 14. Initial discretisation for quad elements in the case of rf =1, V/nPoFs ~ 13.49.

Fig. 15. Initial discretisation for simplex elements in the case of rf =1, V/nPoFs ~ 14.42.

Table 3

Résumé of the error values for the simulations () in Fig. 16.
p [m] et e°
0.01 ~3.8x 1072 ~6.97 x 1072
0.05 ~2.45x 1072 ~4.63 x 1072
0.1 ~1.68 x 1072 ~3.42x 1072
0.5 ~8.35x 1073 ~222% 1072
1 ~1.08 x 1072 ~3.08 x 1072
5 ~3.42% 1072 ~9.15x 1072
Eq. (39) ~1.19 x 1072 ~3.32x 1072

MPs will not lie precisely on the axis defined by the coordinate #. Hence, a bandwidth from the axis n (visible in grey in Fig. 13)
is defined according to the following formulae

|xmP — ymP| < 0.2

5 on (51)
[x™P 4+ y"P — 12| < =

rf
MPs that meet one of the above criteria are included in the plots along the # axis. Since this MMS will include a strong component
of shear, in the case of GIMPM, the corner update algorithm described in Coombs et al. [37] defines the update of the characteristic
length.
The comparison of the runtimes for simulations in the set (b) made use of similar setups to those in Section 6.1 (Hamilton
HPC service, MATLAB R2021a running on a Rocky linux 8 and operating on a shared standard node with 32 cores) with the RAM
extended to and 256 GB to avoid memory bottlenecks in the analyses.

Results discussion. Based on the comparison of the global errors in displacement and stress fields presented in Fig. 16 and Table
3, it is evident that the minimum values occur at a § value of 0.5 m for set (a). This value of g represents the lowest point of the
v-shaped errors in Fig. 16, and, by selecting constant values of § progressively further away from 0.5, both error measures increase.
Interestingly, the adaptive formula Eq. (39) delivers error values very close to the lowest points of the v-shaped errors, thus further
demonstrating its reliability.

Fig. 17 and Table 4 display trends similar to those observed in the mono-dimensional problem 6.1, where the SMPM shows
stagnation, while the SC-MPM (for quad and simplex elements) and the GIMPM (for quad elements only) demonstrate convergence.
This behaviour is consistent with the global errors in both displacement and stress. Additionally, Fig. 17(a) shows that the sMPM
fails with quad elements at rf = 16, \/nDoFs ~ 193.5. The cause of this failure is also visible in Fig. 20(a), considering rf = 24 and
vnDoFs ~ 289.5, and is attributed to the emergence of numerical fractures near the y-axis. The failure of the sSMPM analysis also
negatively affects the values of the average slopes and maximum curvatures, which are illustrated in red in Table 4 and should not
be taken as indicative. In contrast, neither the SC-MPM nor the GIMPM exhibits this spurious fracture, irrespective of the grid size.
The SC-MPM demonstrates approximately linear convergence for both displacements and stresses. The slopes for the stress and the
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Fig. 16. Final global errors of vertical stress for different values of g (log-log scale): comparison between assigned values of g and adaptive formula from Eq. Eq.
(39) for simulations (a).
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Fig. 17. Error convergence comparison for quad (left) and simplex (right) elements.

displacements are quite similar, with respective values of m® V™™ ~ —0.98 for quad elements and me-V"™"

nDoFs

~ —1.04 for simplex
~= —0.99 for quad elements and m* ~= —1.08 for simplex elements. However, these values are well
correlated, as indicated by the very low values of maximum absolute curvature. The GIMPM initially exhibits nearly second-order
convergence, transitioning to first-order convergence for the displacement field on finer grids. The stress convergence for the GIMPM
follows a similar pattern (i.e., initially closer to second-order behaviour and linear with finer grids), with its average values of slope
being m® V"™ &~ ~1.09.

Fig. 18 presents the normalised displacement u, along the normalised axis # for the finer grid with rf = 24, with v/nDoFs ~ 289.5
for quad and v/nDoFs ~ 310.8 for simplex elements. Notably, the sSMPM results exceed the values predicted by the analytical
solution, particularly evident when using quad elements (see Fig. 18(a)). In contrast, there is little discernible difference between
the displacements computed using the SC-MPM, GIMPM, and the analytical solution.

Fig. 19 illustrates the normalised values of pressure p := (¢ : 1)/3 and shear stress o,, along the normalised axis 5. These are
again considered for the finer grid as in the case of Fig. 18. The results indicate that the pressure and shear stress values predicted by
the sMPM are spoiled by the cell-crossing instability, which is particularly evident for the shear stresses with simplex elements (see

DoFs
elements, and m* n
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Table 4

Summary of the slopes and maximum curvatures of the trends in Figs. 17(a) (quad elements) and 17(b)

(simplex elements) for the two-dimensional test with MMS. Red quantities are reported but must not be

considered as significant.

Quad elements Simplex elements

me Vi —-0.91 —-0.20
SMPM max (| y“V©*"|) 1.02 2.41
moVPr -1.59 -0.22
max (| =V ) » 1.79 2.18
m VT -0.99 -1.08
SC-MPM max (| V")) & 0.27 0.12
mo VP -0.98 -1.04
max (| z@ V") & 0.13 0.12
m VT -1.84 -
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Fig. 18. Horizontal displacements for the two-dimensional MMS test for quad (left) and simplex (right). The refinement factor of the grid is rf = 24 and the
parameter § =0.5 m for the sMPM and GIMPM, while the SC-MPM uses the adaptive formula Eq. (39).

Figs. 19(c) and 19(d)). On the other hand, the SC-MPM produces results that are very close to those obtained from both the GIMPM
and the analytical solution for quad elements (as shown in Figs. 19(a) and 19(c)) and align closely with the analytical solution
for simplex elements (Figs. 19(b) and 19(d)). These findings confirm the effectiveness of SC-MPM in achieving well-behaved stress
results, especially when compared to the sMPM, which employs the same shape functions.

Figs. 20 and 21 illustrate the error contours in a logarithmic scale for the displacement (Fig. 20) and stress fields (Fig. 21) for
analyses (b) with rf = 24 (\/nDoFs ~ 289.5 for quad elements and \/nDoFs ~ 310.8 for simplex elements). Upon initial examination,
it is evident that the top rows of Figs. 20 and 21 (obtained with the sMPM) exhibit errors that are several orders of magnitude
larger than those in the bottom rows (computed with the SC-MPM). In the case of the displacement field, the maximum errors in
Fig. 20(a) are displayed close to the y-axis for the sMPM with quad elements. This is because of the artificial numerical fracture
mentioned above for this specific set. For the sMPM with simplex elements (Fig. 20(b)), the errors along the y-axis persist, but more
significant errors are clustered at the corners of the rectangle. These errors are not fully resolved even in the case of SC-MPM (Figs.
20(c) and 20(d)) and are more prominent for the simplex elements (Fig. 20(d)). To understand this behaviour, it is important to
note that, although the Dirichlet BCs are conforming and strongly enforced, the MPs close to these boundaries are not free from
quadrature errors. The contours of the stress field errors provided by the sMPM (Figs. 21(a) and 21(b)) present a less smooth error
distribution than their displacement counterparts, with peaks of red colour rippling the surface. Similar patterns are observed for
the SC-MPM (Figs. 21(c) and 21(d)), but the magnitude of errors primarily falls within the blue scale, indicating that they are
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Fig. 19. Pressures (top row) and shear stresses (bottom row) for the two-dimensional MMS test for quad (left) and simplex (right). The refinement factor of the
grid is a =24 and the parameter § = 0.5 m for the sMPM and GIMPM, while the SC-MPM uses the adaptive formula Eq. (39).

orders of magnitude lower than those produced by the sMPM. Additionally, as demonstrated in Fig. 17 and Table 4, the errors
associated with the SC-MPM decrease with grid refinement, justifying the higher computational cost when employing refined grids.
The same rationale (i.e., SC-MPM'’s capacity to mitigate cell-crossing instability) applies to the maximum errors. In the case of quad
elements (Figs. 21(a) and 21(c)), the maximum stress error is located midway through the rectangle’s height and is more towards the
right-hand side. For simplex elements (Figs. 21(b) and 21(d)), the maximum stress error in this region is less pronounced; however,
errors at the corners of the rectangle are more significant than those observed with quadrilateral elements.

The comparison of the numerical performances of the sMPM, GIMPM, and SC-MPM is reported in Fig. 22. The exhibited trends
are similar to those in Section 6.1, with the simplex elements being more expensive. For these elements, the SC-MPM is slightly more
computationally expensive than the sMPM (Fig. 22(a)), despite its average NR iterations being consistently lower (Fig. 22(b)). For
the three larger simulations (rf = 8 — 24), the SC-MPM is approximately in the range between 13.8% — 14.5% more expensive than
the sMPM. The GIMPM appears instead to be the most expensive simulation for quad elements. For this two-dimensional setup,
the bandwidth of the tangent matrix is consistently bigger than the mono-dimensional Section 6.1, which motivates the GIMPM
slowest performance. The three largest simulations (rf = 8 — 24) for the GIMPM and SC-MPM take 31.9% to 43.2% and 13.5% to
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Fig. 20. Contours of the displacement error (logarithmic scale) for the sMPM (top row) and the SC-MPM (bottom row). Quad (left column) and simplex (right
column) elements are considered.

17.5% more time, respectively, compared to those with the sMPM. In this context, the SC-MPM proves to be the most cost-effective
converging formulation, demonstrating a scaling trend similar to both the GIMPM and sMPM.

6.3. Elasto-plastic collapse

Example scope. This numerical example (whose initial setup is illustrated in Fig. 23) has been developed to evaluate the SC-MPM
with a more practical scenario, demonstrating extreme displacements and deformations. Additionally, the mapping described in
Eq. (43), which involves a strain-like thermodynamic variable, is assessed, as the material under consideration is elasto-plastic with
linear isotropic hardening.

Setup. The isotropic Hencky material described by Egs. (3) and (5) has been considered, where the free energy part controlling the
isotropic hardening is ¥ () = %H a?, with H being a constant value. Von Mises plastic yield function similar to that of Section 6.1
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elements are considered.

has been considered, with the difference of the hardening parameter, i.e.,

V2 J
¢(r,q)=—2—\/§<1—i>=o, 52)
o, 3 oy
where ¢ = —% = —H a. Specifically, the chosen values of the Young’s modulus and Poisson’s ratio are E = 1 x 10® Pa and v = 0.3,
while the plastic parameters appearing in the yield functions are o), = 22 x 10’ Pa and H = —1 x 10° Pa. Given the negative value

of H, it can be seen that softening is introduced. The initial density of the material has been set to p = 750 kg m~3.

The material, initially occupying the whole height of the simulation (8 m) and one-third of the width (total length of 24 m), is
discretised into quad (Fig. 23(a)) and simplex (Fig. 23(b)) elements, with a maximum element size of 1/6 m. Two MPs per element
per direction initially populate each grid element. If the MPs fall beyond the length of 8 m, these are cancelled from the initial setup.
This is clearly visible in of Fig. 23(b), where the right-hand side of the homogeneous Neumann boundary is non-conforming from
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(b)

Fig. 23. Initial configurations for the elasto-plastic collapse problem for the quad (top) and simplex (bottom) elements.

the beginning of the simulation. The conforming boundaries from point A to C (i.e., bottom and left sides in Fig. 23) are rollers,
while the top (from point C to B) is homogeneous Neumann.

Three simulations with quad elements (covering sMPM, SC-MPM and GIMPM'?) and two with simplex elements (including sMPM
and SC-MPM) have been run. In all these simulations, the gravitational load is linearly increased with time from 0 to the maximum
value of g = 9.8 m s~2. However, to save computational time, the total pseudo-time of the simulation T = 100 s has been divided
according into 80 non-equal time-steps according to the following geometric series,

m—1
T=Y atych (53
p=0

where A1y = 2.5 s, m — 1 = 80, and the common ratio has been set to ¢ ~ 0.979943. In this way, shorter time-steps are selected
towards the end of the simulations, where the material non-linear behaviour and the geometrical non-linearity are combined. For
all of these simulations, the penalty parameter has been set according to the adaptive formula Eq. (39).

12 Similarly to Section 6.2, since the simulation is mainly shear dominated, the corner update algorithm described in Coombs et al. [37] is used to update
the GIMPM characteristic domain.
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Fig. 24. Displacements over pseudo-time at the MPs closest to points A (left figure), B (central figure), and C (right figure) for the different analyses of the
elasto-plastic collapse problem.

Results discussion. Fig. 24 reports the displacements over time at points A, B, and C for all the simulations. It can be seen that
the simulation employing the sMPM with simplex elements fails in correspondence with the 54nd pseudo-time step. This failure
is attributed to a high level of stress oscillation, which, compounded by the nonlinear behaviours, causes the NR solver to fail to
converge. Upon closer inspection, it appears that the displacements predicted by the SC-MPM are generally closer to those obtained
with the GIMPM than to those calculated with the sMPM. Despite these minor differences, the overall displacement trends are quite
similar, as are the deflection shapes at the final time step, which can be seen in the contour plots in Figs. 25-27.

The contours shown in Fig. 25 illustrate the pressure field at the final time step of the completed simulations for four methods:
GIMPM with quad elements (Fig. 25(a)), sMPM with quad elements (Fig. 25(b)), SC-MPM (Fig. 25(c)) with quad elements and
SC-MPM with simplex elements (Fig. 25(d)). The decision to plot the pressure field stems from the intention to compare the stress
components related to the total strain, which is entirely elastic. As observed in the contours, there is very little difference between
the GIMPM solution and the SC-MPM results. This further highlights the benefit of the SC-MPM for both quad and simplex elements
and proves its advantage over the sMPM, which is plagued by cell-crossing instability.

Similarly, Fig. 26 takes the contours plot of \/E into account. This time, the goal is to compare the part of the stresses that
reach yielding and decrease due to plasticity and softening. From the contours, it is evident that the majority of the slope has reached
the yield stress, which has appropriately decreased due to the effects of softening. A few unyielded parts resist in the proximity of
point B and its surrounding areas, and a tiny portion close to point A. The plots generated by the GIMPM (Fig. 26(a)) and SC-MPM
(Figs. 26(c) and 26(d)) are very similar, with only minor differences. However, it is important to compare these contours with those
from the sMPM (Fig. 26(b)), which tends to predict spurious, patchy unyielded zones.

For the same reason dealing with the SC-MPM smoothening the displacement and stress field, plastic strains obtained with the
GIMPM and the SC-MPM are substantially different. Specifically, the SC-MPM with quad elements (Fig. 27(c)) delivers a smoothened
equivalent plastic logarithmic strain, while the same method with the simplex elements (Fig. 27(d)) exhibits very similar contours
with though some grid-dependency. On the other hand, the GIMPM (Fig. 27(a)) produces narrower bands of maximum values for
ej. However, it also exhibits noisy behaviour in the transitional areas between these bands, particularly noticeable near point A
and slightly to its left. In conformity with the stress contour plots in Figs. 25(b) and 26(b), the contours of €/ computed with the
SMPM (Fig. 27(b)) suffers from cell-crossing instability. Despite the differences between the SC-MPM and the GIMPM contours of
el it must be highlighted that the Cauchy continuum with classical elasto-plasticity fails to accurately model strain localisation
(see, for instance, Dietsche et al. [69]). Hence, while the SC-MPM and GIMPM results are different, neither represents the physical
phenomena with the desired mesh-independent results.

7. Conclusions

Table 5 provides a summary of the benefits and weaknesses of the SC-MPM, informed by the theoretical considerations made in
Section 4, the outline of the SC-MPM in Section 5 and the numerical comparisons with the sMPM and the GIMPM in Section 6.

Numerical evidence shows that SC-MPM delivers a converging displacement and stress field for quad and simplex elements
employing low-order and reduced-stencil shape functions. Furthermore, the SC-MPM provides a stress field free from the cell-crossing
instability, which severely inhibits the utility of the sMPM. For quad elements, higher order shape functions have been investigated
in the literature to mitigate the cell-crossing, but these come with larger stencils, which blur the body’s boundary and trigger even
more easily the small-cut issue (unless otherwise addressed, see, e.g., [14,19]). On the other hand, simplex elements have received
less attention, and, to the best of the authors’ knowledge, no current techniques allow the use of low-order shape functions to
generate a cell-crossing-free stress field with these elements. The SC-MPM resolves these issues within a unified framework for the
implicit version of the MPM, and maintains runtimes (see Figs. 12(a) and 22(a)) scaling similarly to those of the GIMPM and the
sMPM. As indicated above, the SC-MPM technique has the potential to convert an unfitted FEM code that employs linear polynomials
into an (oscillation-free) MPM code with only minor modifications. This capability further highlights the connection between the
MPM and the family of unfitted FEMs (see to the discussion in [70]).

27



G. Pretti et al.

p
' 2.3e+04

o - 10000
—0
— -10000

-20000

i

l llim"""\\\\\\\\‘ﬁ\\ﬁ“\'\\\mm'ﬁ‘f\\‘m\.

(a) Contours of the pressure field for the GIMPM

with quad elements.

P
2.3e+04

L e — e

- 10000
R o
— -10000

- -20000

-3.5e+04

m\ \“ ““ \\\\\\\\\\ MM

(c) Contours of the pressure field for the SC MPM

with quad elements.

Computer Methods in Applied Mechanics and Engineering 446 (2025) 118168

14
l 2.3e+04

~ 10000

e

(b) Contourb of the pressure ﬁeld for the sMPM with

quad elements.

P
[ 2.3e+04

< 10000
N .
— -10000

- -20000

-3.5e+04

(d) Contours of the pressure field for the SC MPM

with simplex elements.

Fig. 25. Contours of the pressure field at the last pseudo time-step for the completed simulations of the elasto-plastic collapse problem.
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Fig. 26. Contours of /2 J, at the last pseudo time-step for the completed simulations of the elasto-plastic collapse problem.

Table 5

Résumé of the advantages and disadvantages of the SC-MPM.

Advantages

Disadvantages

« cell-crossing mitigated & better
displacements compared with sMPM
« numerical convergence restored
for quad and simplex elements

« solution is always guaranteed
(small-cut issue avoided by default)
« reduced stencil for shape functions
« competitive runtimes

« mild diffusion
of historical variables
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Fig. 27. Contours of €] (equivalent plastic logarithmic strain) at the last pseudo time-step for the completed simulations of the elasto-plastic collapse problem.

However, since the SC-MPM relies on an artificial smoothing and on the mappings Egs. (40)-(43), this method tends to diffuse
the historical variables slightly, thus not capturing the strain localisation phenomena. At the same time, it must be noted that
strain localisations are also incorrect in the case of the GIMPM, as it is in the classical theory of elasto-plasticity for the Cauchy
continuum (see, in this regard, the references in [71] for materials techniques apt to reproduce localisations). Hence, the implications
of reproducing strain localisation with other techniques (e.g., via the Cosserat continuum [71]) still employing the SC-MPM remain
an open question that deserves more investigation.
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Appendix A. Linearisation of the SC-MPM penalty term

For the sake of linearisation, only the contribution of the additional penalty term in Eq. (35) for the SC-MPM is considered
below. Specifically, its contribution relative to a single facet of surface y, and depending on the nodal displacements of the + and
— elements (making the dependencies explicit) can be written in Cartesian components as follows:

pen 0NX () ON, (@) (ot (ot (ut — =) nt (ut
f, =8 : Sin Fm = n; (u )(aik (u )—aik (u )) o (u ) da (ulp). (A1)
F

J J
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To make the indices of the linearisation clearer, the nodal indices (generically indicated with A) are particularised depending on
their belonging to element + or — as follows

« indices I, H are for the nodes of the + element; and
« indices J,K are for the nodes of the — element.

In this fashion, the terms in Eq. (A.1) can be divided in the following way

pen _ o4+ +— —+ -
fAh —fIh +fIh +th +1,", (A.2)
where
++ . ()N;' + o+ o+ g,
fr =8 5”’% n o) ny da; (A.3)
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YF J
—_— aNJ_ + = o+
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rF J
The current normal to the facet F in the outer direction of the element + is updated as follows:
(4F*)" -mt
te ) M (A7)
Il (4F*)™" -nf|l

where AF* .= F*. (F;)_1 and n} is the outer normal to the positive facet at the beginning of the step, which is known once the
computational grid is introduced. To describe the components of vectors/tensors living in this configuration (i.e., at the beginning of
the step), the Cartesian basis vectors E; with [ = 1,...,n%"™ are also introduced. As for those in the original and spatial configuration,
all these basis vectors match, i.e., E; = E i =e; with I, I,i=1,...,n%" When the current normal direction is linearised, this gives
only a contribution with respect to the nodal displacements of the + element, i.e.,

on’t oN
J + H +
=_-T" —Z§ R A.8
[qu H i':q o ( )

where T" =1—-n* ®n™.
Other than the above equations, when linearising with respect to the nodal displacements, the following chain rule is employed
I@F _ 0@* 0y _ 9(F Ny

auip aF;, auip OF>, 0x;

Fyn S (A.9)

Using the first part of the chain rule on the RHS of the above equation, the following derivatives are calculated as follows
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where 3 FT” depends on the material constitutive relationship. Based on Egs. (A.9) and (A.11), the following quantity is also
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m

Pre-multiplying by n* the Nanson’s formula, the current infinitesimal area can be expressed as a function of the facets’ area at
the beginning of the step (denoted by da, and with outer normal n})

da=n! (n;fda) =nf (AJ+ (AF*');/:;I (WT)M) da,, (A.13)

where AJT = \/det(AF* - (AF*)T). For this case, the derivative with respect to the displacement field gives a contribution only for
those nodes belonging to the facet, i.e.,
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= T:lns ox, 5mp da (A.14)
Using the different building blocks Egs. (A.8)-(A.14), the linearisation of the different components of the SC-MPM penalisation

defined by Egs. (A.3)-(A.6) are as follows
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