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A B S T R A C T

Platform trials offer a robust framework for evaluating multiple interventions simultaneously against a common 
control group within a single master protocol. Acknowledging their increased importance in the medical and 
social sciences, including education, a specialised software ‘Educational Platform Trials Simulator (EPTS) is 
designed. The software’s user-friendly interface allows users to plan and execute simulations for randomised 
controlled trial designs, analyse data (Bayesian/ Frequentist methods, multilevel models, futility and superiority 
analyses), and visualise results without requiring extensive programming expertise. This practical, economical 
and academic tool facilitates efficient and effective research involving planning and simulating platform trials in 
education and other disciplines.

1. Motivation and significance

Platform trials are an innovative trial design where multiple in
terventions can be evaluated simultaneously against a common control 
group within a single master protocol [1]. They are primarily used in 
medical sciences; however, in recent years, they have gained popularity 
in social sciences as well. Platform trials can offer unique advantages 
over traditional trial designs (e.g., two-arm trials) by investigating 
multiple interventions simultaneously against a common control group 
using specialised statistical tools for allocating participants and ana
lysing results comparing intervention effects on the specific outcome 
[2]. A distinguishing feature of platform trials is that they focus on a 
specific outcome (or disease in a clinical context), rather than on an 
intervention (or treatment). This enables the comparison of multiple 
interventions by allowing new arms to be added and ineffective ones to 
be discontinued, as well as the possibility to update the control arm to 
reflect a new standard of care, at the same time ensuring continuity of 
the overall study [3]. Outcomes can vary significantly depending on the 
context, such as disease outcomes in clinical settings or educational 
outcomes in educational settings. Statistical criteria used to advance or 

drop intervention arms to the next phase are known as decision rules 
[4]. Selecting appropriate decision rules is crucial in platform trials to 
reduce the risk of bias and inefficiency in decision-making during 
interim evaluations. These rules may rely on frequentist or Bayesian 
statistical metrics [5,6]. Frequentist metrics often include test statistics 
associated with P-values and conditional power, while Bayesian metrics 
commonly involve posterior probabilities of futility and superiority [7,
8]. Platform trials are not limited to a single statistical framework; they 
can employ both Bayesian and frequentist approaches [1]. Platform 
trials can discover beneficial interventions with fewer participants, 
fewer failures, less time, and with greater probability of success than a 
traditional two-arm trial [9].

In the education context, platform trials can help comparing multiple 
educational interventions against the same control, which is not possible 
in any traditional two-arm trial designs. Since all the intervention arms 
are compared against the same control group, platform trials have the 
potential to examine which intervention is most effective in improving a 
specific outcome. However, it is also necessary to take control mea
surements at the start and the end of each intervention (as pre- and post- 
intervention outcomes). Platform trials allow the flexibility to consider 
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one single control group for two or more interventions conducted in the 
same period that targeted different outcomes. For example, comparisons 
can be made for one intervention that targeted maths while the other 
targeted literacy, given that all other baseline characteristics are similar 
and the results of these outcomes can be made available (e.g., via Na
tional Pupil Database scores). A platform trial design can also provide 
flexibility to add new literacy or maths interventions later in the trial 
and evaluate multiple literacy or maths interventions at the same time.

There is a notable lack of literature addressing platform trials in the 
field of education. The high level of flexibility provided by platform 
trials can make it difficult to obtain meaningful results in educational 
studies. This is primarily because education trials are typically con
ducted over a single academic year, where excessive adaptivity can have 
implications on student learning and may prove counterproductive. A 
major challenge is the complexity of educational interventions and their 
impact on student learning outcomes [10]. Although these trials have 
proven effective in certain domains, their use in educational research is 
constrained by the unique complexities and ethical considerations 
intrinsic to this field [11].

In recent years, there has been increased interest in software devel
opment for multi-arm and platform randomised controlled trials in 
clinical settings [12]. Several tools have been developed to support the 
design and simulation of such trials, including SIMPLE, Octopus, NCC, 
HECT, MAMS and the commercial software FACTS. SIMPLE is a modular 
simulation framework designed to improve code shareability and reus
ability in platform trial projects. It uses independent modules to handle 
aspects like recruitment, analysis strategies, and intervention manage
ment, enabling flexible and complex trial designs. The main simulation 
wrapper is general and makes minimal, clearly defined assumptions, 
allowing for varied strategies across interventions. SIMPLE supports 
both novice users, through accessible design, and advanced users, who 
can deeply customise simulations [13]. OCTOPUS is an R package 
designed to help drug developers simulate platform trial designs with 
customisable options for design, endpoints, and operational scenarios. 
While offering flexibility and deep customisation, effective use of 
OCTOPUS requires a solid understanding of its structure and codebase 
[14]. The NCC R package enables simulation of platform trials using 
non-concurrent control data, with support for continuous or binary 
endpoints and varying numbers of treatment arms entering at different 
times. It accounts for differing treatment effects and time trends, offer
ing both frequentist (e.g., fixed/random time effects, regression splines) 
and Bayesian methods (e.g., time machine, meta-analytic predictive 
priors). The package allows flexible and complex trial design simula
tions with multiple analytic options [15]. The HECT is an R Shiny app 
for simulating platform adaptive trials with up to 10 treatment arms, 
supporting both binary and continuous endpoints. It allows for com
parisons between treatments or against a reference, with arms being 
dropped or graduated based on Bayesian posterior probabilities. 
Response-adaptive randomisation is also supported after a burn-in 
period. The app provides detailed output on single trial simulations, 
along with type 1 error and power estimates, and includes comparisons 
to traditional RCTs [16]. The R package MAMS supports the design of 
multi-arm multi-stage (MAMS) trials with various endpoint types within 
a group-sequential framework. Users can customise key design elements 
such as number of treatments, stages, treatment effects, error rates, and 
interim decision rules. It also includes functions to compute operating 
characteristics like rejection probabilities and expected sample size for 
specific hypotheses [17]. FACTS is a clinical trial simulation software to 
support trial design and statistical analysis. It estimates operating 
characteristics where closed-form solutions aren’t feasible and accounts 
for practical aspects like accrual and dropout rates. The software sup
ports various trial types (e.g., dose escalation, treatment comparisons) 
and endpoints (continuous, dichotomous, time-to-event), including 
complex designs like basket and umbrella trials with interim analyses 
and longitudinal modelling [18].

However, to the best of our knowledge, there is still a lack of software 

designed explicitly for cluster-randomised trials (CRTs) and multisite 
trials (MSTs) in relation to educational research and other social science 
fields that often involve hierarchical data structures. To address this gap, 
we have developed the Educational Platform Trials Simulator (EPTS), an 
R-Shiny web application tailored for planning and simulating CRT, MST 
and simple randomised trials (SRT). This software includes functional
ities for conducting multilevel analyses using both Bayesian and Fre
quentist methods, as well as futility and superiority analyses using 
Bayesian methods. By providing a dedicated interactive tool accom
modating functionalities for CRT, MST and SRT designs, EPTS enables 
researchers to simulate complex trial designs that are more aligned with 
the practical requirements of educational and similar multisite studies.

2. Software description

2.1. Software architecture

The EPTS is a web application developed using R-Shiny, a package 
within the R and RStudio statistical software environment. R-Shiny is a 
web-based user interface built on the R language, enabling users to 
execute R functions with their data without needing to install R or 
RStudio. The EPTS is compatible with all web browsers and can be 
accessed through the following link: https://epts-app.shinyapps.io 
/Educational-Platform-Trials-Simulator/. All computations are per
formed remotely on an R-Shiny server. The software’s rules are based on 
calculating Bayesian posterior probabilities of superiority and futility. 
To run the simulator, you need to input some data into the input bar 
manually. The software enables you to save and load simulation outputs. 
Fig. 1 displays the initial window of the software. For all tabs, the input 
bar is located on the left side of the browser window, and the outputs are 
displayed on the right side. All functionalities available in the web 
application are also included in the epts R package, which is available on 
the Comprehensive R Archive Network (CRAN) [19]. The package can 
be installed and loaded using the following commands:

R> install.packages (”epts”)
R> library (epts)

An offline version of the application is included in the package and 
can be launched locally using:

R> runEPTS()

Once installed, the offline version replicates the full functionality of 
the web application but runs entirely on the user’s local machine, 
making it accessible without an internet connection.

2.2. Software functionalities

EPTS consists of seven tabs: data simulation, multi-arm analysis, 
futility analysis, superiority analysis, add new intervention, plot poste
rior probabilities, and user manual. The manual provides detailed de
scriptions of each input option and includes overviews of the outputs.

2.2.1. Data simulation
In this study, we extended the model from Uwimpuhwe et al. [20] 

and Singh et al. [21] to accommodate multiple arms. Suppose Preij and 
Postij are the pre-intervention and post-intervention scores, respectively, 
for pupil i in school j. It is noted that we speak of “pupils” and “schools” 
owing to the educational context within which this work is presented. 
However, one can consider these terms simply as a proxy for the 
respective lower- and upper-level units, which could more generally be 
termed as “individuals” and “sites” (such as class, region, hospital…). 
The indicator variable Tijk takes value 1 if pupil i in school j is in the 
intervention group k, and 0 if pupil i in school j is in the control group. 
The model with multiple intervention arms can be formulated as: 
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Postij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 + β1Preij +
∑K

k=1
β2.kTijk + εij for SRT

β0 + β1Preij +
∑K

k=1
β2.kTijk + bj0 + εij for CR

β0 + β1Preij +
∑K

k=1

β2.kTijk + bj0 +
∑K

k=1

bjkTijk + εij for MST,

where β0 is the intercept, β1 is effect of pre-test, β2.k is the effect of 
intervention k, and εij denotes the residual for pupil i in school j. The bj0 

is a school-specific random intercept and bjk is a random effect for 
school-by- kth intervention interactions.

In order to conduct simulations, the user must first specify the type of 
trial: CRT, MST or SRT. The user specifies the following components in 
the input panel: number of interventions, standard deviation of re
siduals, intercept, effect size, random seed, and attrition rates. For CRT 
and MST, the user must also specify the number of pupils per school, 
number of schools, and for CRT, the percentage of intervention schools 
as well as the intraclass correlation coefficient (ICC). For MST, the user 
specifies the percentage of pupils in intervention groups, standard de
viation of random intercept and the standard deviation of random slope. 
For SRT, the user specifies the total number of participants and the 
percentage of participants in intervention groups.

Optionally, the user can define covariates to include in the 

simulation model. Covariate names must begin with a letter and may 
contain letters, numbers, periods (.), and underscores (_). Names cannot 
start with a digit or underscore, nor include spaces or special characters. 
Each covariate must be specified as either continuous or categorical. For 
continuous covariates, the user defines the standard deviation and 
regression coefficient. For categorical covariates, the user selects a 
reference category, assigns probabilities to each category, and specifies 
coefficients for all non-reference categories.

The simulated data comprises pupil ID (or participant ID for SRT), 
school ID (for CRT and MST), multi-arm interventions, and their cor
responding covariates and post-test scores. For CRT and MST, the 
dataset includes unique school IDs to represent clustering, while for SRT, 
the dataset includes participant IDs only. The first ten rows of the 
simulated data are displayed on the right side of the panel. The simu
lated data can be saved in CSV format.

2.2.2. Multi-arm analysis
The Multi-arm Analysis tab allows the user to analyse the CRT, MST 

and SRT datasets using Frequentist and Bayesian models. First, the user 
must specify the type of analysis as follows: crtBayes: Bayesian analysis 
of cluster randomised trials using vague priors. crtFREQ: Analysis of 
cluster randomised trials using multilevel model under a frequentist 
setting. mstBayes: Bayesian analysis of multisite randomised trials using 
vague priors. mstFREQ: Analysis of multisite randomised trials using 

Fig. 1. The initial window of the EPTS software (note that the input bar on the left hand side is truncated).
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multilevel model under a frequentist setting. srtBayes: Bayesian analysis 
of simple randomised trials using vague priors. srtFREQ: Analysis of 
simple randomised trials under a frequentist setting.

In the input panel, after using simulated data or uploading the 
dataset and specifying the variables, the user can configure the settings 
for Bayesian analysis by specifying the number of Markov Chain Monte 
Carlo (MCMC) iterations per chain and the threshold for estimating the 
Bayesian posterior probability. Vague priors are used as recommended 
by [20] and implemented in [22]. For frequentist analysis, the user can 
choose the Analytical (default), Permutation or Bootstrap option to 
compute effect size confidence intervals. The bootstrapping method 
includes case re-sampling at the student level, case re-sampling at the 
school level, case re-sampling at both levels and residual bootstrapping. 
The functions crtBayes, crtFREQ, mstBayes, mstFREQ, srtBayes and 
srtFREQ from the eefAnalytics package were utilised for multi-arm 
analysis 22. The output will be a forest plot. The plot displays the ef
fect sizes using within and total variances. Users can customise the plot 
by enabling the Plot Customization checkbox. The plot can be down
loaded in TIFF, PDF, SVG, or EPS formats.

2.2.3. Futility analysis
The Futility Analysis tab allows users to assess futility in platform 

trials. Futility is defined using a minimum expected effect size. We will 
estimate Bayesian posterior probabilities that the effect size for any 
intervention arm will be beyond a specific relevant threshold (i.e., 
minimum expected effect size) utilising trial outcome data from the pre- 
and post- intervention stage [20]. The intervention is considered futile if 
this probability is less than a pre-specified probability threshold [7,12,
23]: 

P(Effect size ≥ Threshold | Data) < Futility Threshold.

The functions crtBayes, mstBayes and srtBayes from eefAnalytics 
package were used to check futility for CRT, MST and SRT data, 
respectively. The user can adjust settings by specifying the number of 
MCMC iterations per chain, and the threshold for estimating the 
Bayesian posterior probabilities, along with the probability threshold for 
futility analysis. The results of the futility analysis will indicate whether 
each intervention is futile or not. The results can be saved in CSV format.

2.2.4. Superiority analysis
Superiority is generally defined as the probability for an intervention 

being better than a designated reference intervention, sometimes also 
referred to as a “common control” [7,24,25]. The Superiority Analysis 
tab evaluates whether interventions are statistically superior to the 
reference intervention. Using Bayesian posterior probabilities, the 
analysis determines whether the probability of an intervention’s effect 
size (relative to the reference intervention) exceeding a specified 
threshold is greater than a user-defined superiority threshold: 

P(Effect size ≥ Threshold | Data) > Superiority Threshold.

Hence, in difference to the Futility Analysis which is carried out in 
relation to the actual control, this Superiority Analysis tab enables direct 
comparisons among interventions.

Users can configure parameters such as the number of MCMC iter
ations per chain, reference intervention, the effect size threshold, and 
the superiority threshold for posterior probabilities. The results of the 
superiority analysis will indicate which interventions, if any, are supe
rior to the reference intervention. The result can be exported in CSV 
format.

2.2.5. Add new intervention
The Add New Intervention tab allows users to expand an existing 

platform trial by adding a new intervention arm. This feature is crucial 
for adaptive platform trials, where new interventions can be introduced 
and evaluated alongside ongoing interventions. Using pre-existing trial 
data from pre- and post-intervention stages, users can add a new 

intervention group to the dataset with customisable parameters.
To generate the new intervention group, users need to specify several 

key parameters, including the number of new schools or clusters, the 
number of pupils per school, the expected effect size, and the attrition 
rate for the new intervention. Users have the flexibility to incorporate 
multiple covariates into the new intervention group. When adding a new 
intervention, users can specify any number of covariates that exist in the 
current dataset. The simulation process uses the mean and standard 
deviation of continuous covariates and the observed distributions of 
binary and categorical covariates from the existing dataset to generate 
corresponding values for the new intervention group, ensuring align
ment with the original dataset’s characteristics. For CRT, the new 
intervention group will be assigned to specific clusters, and for MST, the 
user can control the proportion of pupils receiving the new intervention 
within each new school. The resulting dataset can be downloaded for 
further analysis.

2.2.6. Plot posterior probabilities
The Plot Posterior Probabilities tab visualises the posterior proba

bilities estimate from multiple intervention arms across different 
thresholds, allowing for comparison to check futility. The user can 
modify settings by specifying the number of iterations per chain for 
MCMC and the range of thresholds for estimating the Bayesian posterior 
probabilities. The user can also add a vertical line to represent the pre- 
specified threshold for estimating Bayesian posterior probability 
(Threshold) and a horizontal line to indicate the threshold of Bayesian 
posterior probability (ProbThreshold). By enabling the Plot Custom
ization checkbox, users can personalize their plot with a range of op
tions. These include setting a custom title, as well as custom labels for 
the x- and y-axes and specifying tick intervals. Users can also change the 
colour of the vertical and horizontal line, rename each intervention 
group, and choose specific colours for each intervention. Additionally, 
they can define the plot’s width and height in inches to match their 
preferred output dimensions. The plot is created using the ggplot2 
package and can be downloaded in TIFF, PDF, SVG, or EPS formats [26].

2.3. Performance

Computational time required to run analyses depends on several key 
factors. The number of pupils (or total number of individuals in study 
population) plays a major role, as larger sample sizes generally lead to 
longer computation times, especially in complex models such as multi- 
arm analyses. Similarly, the number of schools or clusters contributes 
to the complexity of hierarchical models like CRTs and MSTs, increasing 
the time needed for simulation and estimation. The inclusion of multiple 
intervention arms increases the computational workload, as each arm 
introduces additional parameters and comparisons. The type of model 
being used significantly affects processing time as well; for instance, 
Bayesian models typically require more time to fit compared to fre
quentist ones, and CRTs and MSTs tend to be slower than SRTs due to 
their nested structure. In Bayesian analyses, the number of MCMC it
erations is a crucial determinant of computational time, with more it
erations leading to longer runtimes. In frequentist approaches, the use of 
resampling techniques such as permutations and bootstraps similarly 
increase processing time, especially when a high number of iterations is 
required for stable estimates.

To estimate the time needed to perform various analyses within the 
Shiny application, we measured and recorded the computation time for 
each analysis. We used simulated data, including a four-arm design with 
10 schools and 100 pupils per school for the CRT (Appendix A), MST 
designs (Appendix B), and a four-arm SRT (Appendix C) with 1000 in
dividuals. In addition, the simulation inputs for CRT, MST, and SRT are 
provided in Appendix D (Tables D1–D3, respectively), along with an 
estimated computation time for respective approach (Table D4). The 
analytic (default) methods generally required the least amount of time, 
while bootstrap and permutation-based approaches were substantially 
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more time-consuming.
In the Shiny web application version, the server connection will time 

out after 15 min of inactivity, which may interrupt long-running com
putations such as analyses of large datasets, Bayesian analysis with a 
high number of MCMC iterations, or frequentist analysis involving 
extensive permutations or bootstrap resampling. For computationally 
intensive tasks that may exceed this time limit, we strongly recommend 
users to either run the equivalent R functions provided in the epts 
package or use the offline version of the application, which can be 
launched locally via the runEPTS()function.

3. Illustrative example

We present an example to illustrate the usage of the app. First, we 
simulate a CRT dataset with three interventions, ten schools, and 100 
pupils per school. The number of schools assigned are 2 for the control 
group, 3 for Intervention 1, 2 for Intervention 2, and 3 for Intervention 3. 
The complete simulation inputs are provided in Appendix D (Table D1). 
Fig. 2 shows an example of simulated data with three interventions and 
three covariates. The simulated data can be downloaded and saved as a 
CSV file for future use in other tabs. This simulated data set is available 
in Appendix A. For multi-arm analysis, click on the "Multi-arm analysis" 
tab. Under the "Data Source" section, either select "Use Simulated Data" 
or upload a dataset by clicking the "Browse" button under "Choose CSV 
File". After choosing the "crtBayes" option via radio buttons, we input 
the variables and set the number of simulations (MCMC iterations per 
chain) to 10,000, with a 0.05 threshold of effect size for estimating 
Bayesian posterior probability. Fig. 3 displays the effect sizes as a forest 
plot. Next, we select the "Futility analysis" tab and set the number of 
simulations to the default (10,000), with a 0.05 threshold of effect size 
for estimating Bayesian posterior probability and a 0.8 probability 
threshold for futility analysis. The threshold of effect size beyond 0.05 is 
often considered meaningful in educational trials, as an effect beyond 
0.05 is converted to one month of additional progress, while an effect 
size below 0.05 is interpreted as 0 months of progress [27]. The idea of 
considering a 0.80 probability threshold comes from the concept of 
statistical power in educational trials, where 0.80 is considered a 
meaningful and acceptable value [28]. The screenshot of the futility 
analysis results is presented in Fig. 4A. Then, to perform the superiority 
analysis, we should navigate to the "Superiority Analysis" tab. We use 
the same default values as in the futility analysis and set intervention 2 
as the reference intervention. The screenshot of the superiority analysis 

results is shown in Fig. 4B To illustrate how to introduce a new inter
vention arm, we navigate to the ‘Add New Intervention’ tab. After 
uploading the existing dataset, we proceed to specify the parameters for 
the new intervention. In this example, we add 2 new schools with 100 
pupils each, set an expected effect size of 0.4, and an attrition rate of 0.1. 
Once configured, clicking "Add New Intervention" integrates the new 
intervention group into the dataset. The dataset, which includes the new 
intervention arm, is provided in Appendix E. Finally, we select the "Plot 
Posterior Probabilities" tab and input the parameters similar to the 
"Futility tab". After selecting "Add a vertical line" and "Add a horizontal 
line", we specified the "Value for Vertical Line" as 0.05 and the "Value for 
Horizontal Line" as 0.8. Fig. 5 shows the posterior probability plot. In 
Fig. 5, with a threshold of 0.05 and a ProbThreshold of 0.8, interventions 
1 and 2 were found to be futile. A step-by-step video tutorial is also 
provided in Appendix F to demonstrate the entire process outlined 
above.

To validate the performance of the EPTS, we conducted an additional 
simulation study based on a real-world educational trial. Specifically, we 
used summary estimates from the Lexia trial, a multisite education trial, 
as input parameters for the simulation [29]. Key trial characteristics, 
including the number of interventions, sample size per school, standard 
deviations, and coefficients, were entered into the simulator. Detailed 
input parameters are provided in Appendix D (Table D5). After running 
the simulation, we compared the resulting effect size and coefficients to 
those reported in the original Lexia trial. The simulation and actual trial 
data showed good agreement, with only minor deviations. For example, 
the effect size obtained from the simulated data was 0.10 compared to 
the reported effect size of 0.11, and the pre-test coefficients were simi
larly close (simulated: 4.15; reported: 4.14). As part of a sensitivity 
analysis, we also varied the simulated effect sizes while considering all 
the other parameters with similar values from Lexia trial. When simu
lating an effect size of 0.15, the resulting estimate was 0.13; similarly, a 
simulated effect size of 0.10 yielded a result of 0.09. These findings 
further support the model’s consistency and its capacity to approximate 
real-world outcomes within a reasonable margin. Adjustments to the 
model parameters could further improve the accuracy, but the current 
simulation already offers valuable insights.

4. Impact

The presented R-Shiny app provides software with a graphical user 
interface for simulating platform trials of various design types which are 

Fig. 2. Simulated cluster randomised data with three interventions.

M. Sayari et al.                                                                                                                                                                                                                                  SoftwareX 31 (2025) 102214 

5 



Fig. 3. Forest plot of comparison of effect sizes (Top: Estimated using total variance, Bottom: Estimated using within-cluster variance).

A

B

Fig. 4. Screenshot of results A: Futility analysis, B: Superiority analysis.

Fig. 5. Posterior probability plot for a four-arm cluster randomised trial.
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of particular relevance in the educational sciences. This app is filling a 
critical gap since it is often very hard to get access to real data sets in 
education, requiring lengthy approval processes such as in the UK via 
the Integrated Data Service (IDS). Hence, there is a general lack of 
available educational data for development and testing of analytic 
methods as well as for training purposes. Furthermore, the tool may be 
used to understand the impact of setting and changing certain parame
ters on trial outcomes. Such results provide important insights for the 
design of new trials and can be used to discard certain parameter settings 
or trial configurations without running actual, costly, trials.

The EPTS allows users without programming expertise to simulate 
CRT, MST, as well as SRT data, set key parameters of the simulation, and 
simulate platform trials in education and other social science disciplines. 
Additionally, it can be used to simulate traditional two-arm trials, 
making it a versatile tool for trial design and analysis. To the best of our 
knowledge, this is the first free, open-source, web-based software based 
on the R environment enabling the simulation of data from CRT and 
MST designs.

5. Conclusion

In this paper, we have introduced an R-Shiny app for simulating 
CRTs, MSTs and SRTs. The app is an open-source, browser-based 
simulator for planning platform trials in the context of education. The 
app allows the user to set key features of the simulation and create 
various scenarios. The software also includes various graphical outputs 
to aid in interpreting futility and superiority. With its user-friendly 
interface and powerful simulation capabilities, EPTS is a valuable tool 
for researchers engaged in studies based on CRT, MST or SRT design, 
providing an accessible yet comprehensive approach to trial simulation. 
While the EPTS and this paper have been motivated by an unmet need in 
the educational sciences, the tool can in principle be used also in other 
sciences, assuming that researchers are able to match conventions and 
notations accordingly. For instance, a multi-centre clinical trial could 
correspond to either a multi-site trial or a cluster-randomised trial in 
education. While it is beyond the scope of this paper to draw compre
hensively all such connections, we encourage the wider use of this EPTS, 
and welcome feedback, by users from various sciences.

Data availability

The data simulated for the illustrative example section is available in 
Appendix A. The source code is available in GitHub repository (htt 
ps://github.com/Mohammad-sayari/Educational-Platform-Trials-Simu 
lator).
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