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We advance the study of pure de Sitter supergravity by introducing a finite formulation of uni-
modular supergravity via the super-Stückelberg mechanism. Building on previous works, we construct a
complete four-dimensional action of spontaneously broken N ¼ 1 supergravity to all orders in the
Stückelberg fields, which allows for de Sitter solutions. The introduction of finite supergravity trans-
formations extends the super-Stückelberg procedure beyond the second order, offering a recursive solution
to all orders in the Goldstino sector. This work bridges the earlier perturbative approaches and the complete
finite theory, opening new possibilities for de Sitter vacua in supergravity models and eventually string
theory.
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I. INTRODUCTION

One of the most pressing challenges in fundamental
physics today is the discrepancy between theoretical predi-
ctions and observations concerning the vacuum energy’s
size, known as the “cosmological constant problem” [1–4].
In the standard model of cosmology—the ΛCDM model
(Lambda cold dark matter)—the accelerated expansion of
the Universe is attributed to a tiny but constant energy
density, Λ. This implies that our Universe is asymptotically
de Sitter (dS), with a small vacuum energy. Although recent
observations [5,6] suggest the possibility of a “dynamical
vacuum energy” rather than a constant one [7], the core
question remains: why is the cosmological constant so
small or zero, especially when theoretical models predict
much larger values?
The discovery of the Universe’s accelerated expansion in

1998 triggered intense theoretical efforts to construct dS
vacua within string theory and supergravity. The seminal
work of Kachru-Kallosh-Linde-Trivedi (KKLT) in 2003 [8]
proposed how to obtain dS vacua via an “uplifting”

procedure. This method involves uplifting a supersymmet-
ric anti–de Sitter (AdS) vacuum to a dS one by introducing
an anti-D3 brane. The mechanism behind this uplift was
later reinterpreted in a manifestly supersymmetric formal-
ism, specifically through the use of a Volkov-Akulov (VA)
Goldstino theory [9,10], which implements nonlinearly
realized global supersymmetry, coupled to a supergravity
background. This suggested the existence of a scalar-
independent de Sitter supergravity. This work led to the
development of a four-dimensional supergravity theory
with spontaneously broken supersymmetry that admits
dS vacua, commonly referred to as de Sitter supergravity.
The first approach to construct this theory was under-
taken in [11–13], where the key idea was the use of
nilpotent constrained superfields, which eliminate the
scalar component of the chiral multiplet and enforce
nonlinear supersymmetry. A complete local supergravity
action incorporating constrained superfields and nonlinear
supersymmetry was later formulated in a series of
works [14–19], which allowed for the construction of pure
N ¼ 1 supergravity models admitting dS solutions. An
alternative approach was proposed in [20,21], where a
Goldstino brane—a 3-brane object in superspace carrying
the VA Goldstino—was coupled to minimal N ¼ 1
off-shell supergravity. This method was shown to lead to
the same four-dimensional action as the constrained
superfield approach in [15], up to second order in the
Goldstino.
In a different direction, inspired by classical unimodular

gravity [22–28], a novel approach was introduced in [29]
by three of us, where unimodular gravity was extended to

*Contact author: sukruti.bansal@tuwien.ac.at
†Contact author: silvia.nagy@durham.ac.uk
‡Contact author: antonio.padilla@nottingham.ac.uk
§Contact author: e.i.zavalacarrasco@swansea.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 111, 125004 (2025)

2470-0010=2025=111(12)=125004(14) 125004-1 Published by the American Physical Society

https://orcid.org/0000-0002-9861-4435
https://orcid.org/0000-0002-5589-9928
https://ror.org/04d836q62
https://ror.org/01v29qb04
https://ror.org/01ee9ar58
https://ror.org/01ee9ar58
https://ror.org/053fq8t95
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.111.125004&domain=pdf&date_stamp=2025-06-10
https://doi.org/10.1103/PhysRevD.111.125004
https://doi.org/10.1103/PhysRevD.111.125004
https://doi.org/10.1103/PhysRevD.111.125004
https://doi.org/10.1103/PhysRevD.111.125004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


supergravity using a super-Stückelberg mechanism.1,2 We
demonstrated in [38] that this super-Stückelberg approach
yields the same four-dimensional action as the construc-
tions in [20] (and thus [15]), again to second order in the
Goldstino. In these previous works [29,38], we constructed
the four-dimensional action perturbatively up to the second
order in the Stückelberg fields. In the present paper, we take
a significant step forward by constructing the super-
Stückelberg action to all orders, providing the complete
unimodular supergravity action. This represents a substan-
tial advance in the development of a complete and con-
sistent framework for de Sitter vacua in supergravity.
This new approach to pure de Sitter supergravity has the

potential to offer a new pathway to finding de Sitter vacua
in perturbative string theory, being qualitatively different to
traditional nilpotent superfield methods. For example, the
Stückelberg fermion may be the Goldstino associated with
broken superspace symmetries due to branes, as in [20],
or else a proxy for higher form fields. Indeed, to the latter
point, this work is an important step in generalizing
Henneaux and Teitelboim’s version of unimodular gravity
[25] to the supersymmetric case. Such a theory would have
potential application to the cosmological constant problem
by inspiring a supersymmetric version of vacuum energy
sequestering (VES) [39–45].
To introduce our construction strategy, we begin in Sec. II

by discussing the case of unimodular gravity. Although our
approach may appear unconventional compared to the
standard treatment in the unimodular gravity literature,
we present it as a gradual introduction to the more complex
case of supergravity. Following this, in Sec. III, we move on
to construct the full unimodular supergravity theory. In
Sec. III A, we first introduce the finite supergravity trans-
formations of a chiral superfield, which, to our knowledge,
have not been presented previously. These transformations
are essential for the subsequent section, where in Sec. IV, we
develop the super-Stückelberg procedure to all orders.
Finally, we conclude in Sec. V, while in Appendix A we
give the combined infinitesimal diffeomorphism and local
supersymmetry transformations of the supergravity fields.
In Appendix B we summarize important identities and
proofs used throughout the main text. Additionally, in
Appendix C, we outline an alternative approach to our
construction for further consideration.

II. UNIMODULAR GRAVITY AND THE
STÜCKELBERG PROCEDURE

As awarm-up, let us consider standard unimodular gravity,
a restricted version of Einstein-Hilbert gravity for which the
determinant of themetric is taken to be a constant [28,46–52].

Locally, the theory is equivalent to general relativity (GR),
owing to the fact that the determinant of the metric can be set
to any constant by a suitable choice of gauge in a neighbor-
hoodof anypoint in spacetime. Thedifferencemanifests itself
globally, with the cosmological constant entering as an
integration constant in unimodular gravity, rather than a fixed
coupling constant, as in GR. The action for unimodular
gravity can be written as follows:

SUMG¼
1

16πGN

Z
d4x½ ffiffiffiffiffiffi

−g
p

R−2ΛðxÞð ffiffiffiffiffiffi
−g

p
−ϵ0Þ�; ð2:1Þ

where ϵ0 is a constant (often set to unity) and the Lagrange
multiplier,ΛðxÞ, imposes the constraint on the determinant of
the metric. This Lagrange multiplier transforms as a scalar
under diffeomorphisms. This means that the last term in the
actionbreaks diffeomorphismsexplicitly. Indeed, the action is
only invariant under transversediffeomorphisms that preserve
the determinant of the metric.
The full set of diffeomorphisms can be restored using a

Stückelberg trick. This is done by introducing four new
Stückelberg fields, yμðxÞ, as if wewere carrying out a passive
coordinate transformation, xμ → yμðxÞ. The action becomes

SUMG ¼ 1

16πGN

Z
d4x½ ffiffiffiffiffiffi

−g
p

R − 2ΛðxÞð ffiffiffiffiffiffi
−g

p
− ϵ0j det JjÞ�;

ð2:2Þ

where the Jacobian Jμν ¼ ∂yμ=∂xν. The action is now
manifestly invariant under diffeomorphisms xμ → x0μðxÞ,
as long as the Stückelberg fields transform as scalars,
yμðxÞ → y0μðx0Þ ¼ yμðxÞ. Variation of the actionwith respect
to the Stückelberg fields now forces the Lagrange
multiplier to be a constant, ∂μΛ ¼ 0. As such, it plays the
role of a cosmological constant in the effective gravity
equations. The system is equivalent to plain vanilla GR with
a cosmological constant whose value is just an inte-
gration constant, presumably set by boundary conditions.
In order to align our discussion with what is to come for

supergravity, let us redefine the Stückelberg fields using an
exponential map,

yμðxÞ ¼ eϕ
νðxÞ∂νxμ: ð2:3Þ

When there is an exponential coordinate transformation

yμ ¼ e−Kxμ, we have det J ¼ 1·e−K⃖ , with the operator
K⃖ ¼ Kμ

∂⃖μ ¼ ð−1Þμ∂⃖μKμ þ ð−1Þμ∂μKμ acting to the left
[cf. (B7)]. Setting Kμ ¼ −ϕμ, the det J appearing in action

(2.2) is ¼ 1:eϕ⃖. After repeatedly integrating by parts, we
can rewrite the action as

SUMG ¼ 1

16πGN

Z
d4x½ ffiffiffiffiffiffi

−g
p ðR − 2ΛÞ − ϵ0e−ϕ

νðxÞ∂νΛ�:

ð2:4Þ

1In recent years, the Stückelberg mechanism has been further
extended to asymptotic symmetries [30–33].

2For other supersymmetric extensions of the unimodular
theory, see [34–37].
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This form of the action might have been anticipated by
introducing the Stückelberg fields through an active, as
opposed to a passive, transformation. This is because the
scalar Lagrange multiplier transforms as

Λ → e−ϕ
νðxÞ∂νΛ ð2:5Þ

under an active coordinate transformation, where the
transformation parameter is identified with the
Stückelberg fields, ϕμðxÞ. The action (2.4) is now readily
obtained from the original unimodular action (2.2) by
performing this active transformation on all fields.
The transformation law for the ϕμ is nontrivial. Consider

a general coordinate transformation, which, in the passive
form, corresponds to xμ → x0μ ¼ eξ

ν
∂νxμ. If we express this

as an active transformation on the various terms in the
action (2.4), we see, for example, that ΛðxÞ → Λ0ðxÞ ¼
e−ξ

νðxÞ∂νΛðxÞ and ϕμðxÞ → ϕ0μðxÞ, where ϕ0μ is to be
determined. Of course, the GR part of the action is
automatically invariant under a general coordinate trans-
formation. Focusing on the Stückelberg part of the
Lagrangian, invariance requires that

e−ϕ
νðxÞ∂νΛðxÞ → e−ϕ

0νðxÞ∂νΛ0ðxÞ ¼ e−ϕ
νðxÞ∂νΛðxÞ: ð2:6Þ

Using the fact that ΛðxÞ ¼ eξ
νðxÞ∂νΛ0ðxÞ, we immediately

infer that

e−ϕ
0νðxÞ∂ν ¼ e−ϕ

νðxÞ∂νeξνðxÞ∂ν : ð2:7Þ

We now make use of the integral form of the Baker-
Campbell-Hausdorff formula,3 and work to linear order in ξ
to obtain

ϕ0νðxÞ∂ν¼ϕνðxÞ∂ν−
ad½ϕνðxÞ∂ν�

1−ead½ϕνðxÞ∂ν �
ξνðxÞ∂ν

¼ϕνðxÞ∂νþ
X∞
k¼0

Bþ
k ð−1Þkadk½ϕνðxÞ∂ν�

k!
ξνðxÞ∂ν; ð2:8Þ

where Bþ
k are the Bernoulli numbers,

Bþ
0 ¼1; Bþ

1 ¼1

2
; Bþ

2 ¼1

6
; Bþ

3 ¼0; Bþ
4 ¼−

1

30
;…

ð2:9Þ

and adXðYÞ ¼ ½X; Y�. It is relatively easy to show that
½ad½ϕνðxÞ∂ν��kξνðxÞ∂ν ¼ ½Lk

ϕξ
ν�∂ν, where Lϕ denotes the Lie

derivative with respect to ϕμ. The (active) transformation
law for ϕμ can now readily be expressed as

ϕ0μðxÞ ¼ ϕμðxÞ − Lϕ

1 − eLϕξμðxÞ : ð2:10Þ

Although standard unimodular gravity is a useful frame-
work in which to develop the tools we will use in the
coming sections, its direct applications are limited. This is
because it is equivalent to GR with a cosmological
constant, at least at the classical level. The extension of
these ideas to supergravity is more interesting, however, as
it allows us to describe a supersymmetric action with de
Sitter solutions that only break supersymmetry spontane-
ously. In the coming sections, we will see how this can be
done consistently with a supergravity action, including
Stückelberg fields at all orders.

III. UNIMODULAR SUPERGRAVITY

We now turn our attention to supergravity and begin by
reviewing the construction of unimodular supergravity via
the super-Stückelberg procedure discussed in [29,38].
We start with the chiral superspace action for old
minimal N ¼ 1 supergravity, working in the conventions
of [55]

S ¼ −
6

8πGN

Z
d4 xd2ΘERþ H:c:; ð3:1Þ

where the components of the chiral supergravity superfield
R are given by

R ¼ −
1

6

�
M þ Θðσμσ̄νψμν − iσμψ̄μ þ iψμbμÞ

þ Θ2

�
1

2
Rþ iψ̄μσ̄νψμν þ

2

3
MM� þ 1

3
bμbμ

− ieμaDμba þ
1

2
ψ̄ ψ̄ M −

1

2
ψμσ

μψ̄νbν

þ 1

8
εμνρσðψ̄μσ̄νψρσ þ ψμσνψ̄ρσÞ

��
: ð3:2Þ

Further, E is a chiral density superfield, generalizing the
scalar density

ffiffiffiffiffiffi−gp
in GR whose components are

E ¼ F 0 þ
ffiffiffi
2

p
ΘF 1 þ ΘΘF 2; with

F 0 ¼
1

2
e;

F 1 ¼
i

ffiffiffi
2

p

4
eσμψ̄μ;

F 2 ¼ −
1

2
eM� −

1

8
eψ̄μðσ̄μσν − σ̄νσμÞψ̄ν; ð3:3Þ

3Namely, given eZ ¼ eXeY , the integral formula for Z is given
by Z ¼ X þ ðR 1

0 BðeadXetadY ÞdtÞY, where BðxÞ ¼ x logðxÞ
x−1 . Taking

X ¼ ϕνðxÞ∂ν and Y ¼ ξνðxÞ∂ν in (2.7) and working to linear
order in ξμðxÞ, (2.7) leads to (2.8), upon using also that

BðeyÞ ¼ y
1−e−y ¼

P∞
k¼0

Bþ
k y

k

k! . See, e.g., [53] or [54] for details.
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where the determinant of the vielbein, e ¼ det eaμ, ψμðxÞ is
the gravitino, and bμðxÞ andM are the auxiliary fields in the
old minimal supergravity model.
Under an infinitesimal and combined diffeomorphism

and local supersymmetry transformation, which we will
henceforth refer to as an infinitesimal supergravity trans-
formation, E transforms as

δE ¼ −∂M½ð−1ÞMΞME�; ð3:4Þ

where

ð−1ÞM ¼
�
1; M ¼ μ;

−1; M ¼ α;
ð3:5Þ

and the superfield ΞM is given by

Ξμ ¼ ξμ þ 2iΘσμϵ̄þ Θ2ψ̄νσ̄
μσνϵ̄;

Ξα ¼ ϵα − iΘσμϵ̄ψα
μ þ Θ2

�
−iωαβ

μ ðσμϵ̄Þβ þ
1

3
M�ϵα −

1

2
ψα
νðψ̄μσ̄

νσμϵ̄Þ þ 1

6
bμðεσμϵ̄Þα

�
; ð3:6Þ

where ϵ is the parameter of local supersymmetry (SUSY)
transformations and ξμ is the diffeomorphism parameter.
It is now convenient to introduce the following notation:

ΞM ≡OM
N̄ξ

N̄ ; ð3:7Þ

where the index N̄ runs over ðμ; α; α̇Þ, ξN̄ is a vector
containing the diffeomorphism and supersymmetry trans-
formation parameters

ξN̄ ≡
0
B@ ξμ

ϵα

ϵ̄α̇

1
CA; ð3:8Þ

and the components of the matrix OM
N̄ are given by

OM
ν¼

�
δμν ; M¼μ

0; M¼α
; OM

β¼
�
0; M¼μ

δαβþ 1
3
Θ2M�δαβ; M¼α

ð3:9Þ

and

OM
β̇ ¼

(
2iΘβσμ

ββ̇
þ Θ2ðψ̄νσ̄

μσνÞβ̇; M ¼ μ

iΘβψα
μσ

μ
ββ̇
þ Θ2

�
−iωμ

αβσμ
ββ̇
− 1

2
ψα
νðψ̄μσ̄

νσμÞβ̇ þ 1
6
bμεαγσ

μ
γβ̇

�
; M ¼ α:

ð3:10Þ

It is important to note that the Θ dependence of ΞM is
entirely contained in OM

N̄ . For future use, let us also
introduce the notation

ξM ¼ ΞMjΘ¼0 ¼ OM
N̄ jΘ¼0ξ

N̄ ¼
	
ξμ

ϵα



: ð3:11Þ

Following [29,38], we define the action for unimodular
supergravity as

S¼−
6

8πGN

Z
d4xd2Θ

�
ERþ1

6
ΛðE−E0Þ

�
þH:c:; ð3:12Þ

where we have introduced the Lagrange multiplier chiral
superfield

Λ ¼ Λ0 þ
ffiffiffi
2

p
ΘΛ1 þ Λ2Θ2 ð3:13Þ

and the constant superfield4

E0 ¼ ϵ0 þ
i
2
mΘ2; ð3:14Þ

with ϵ0 and m real constants. Action (3.12) has two chiral
superfields R and Λ. We will show the supergravity
transformation of a chiral superfield in Sec. III A. Varying
action (3.12) with respect to Λ, we arrive at the constraint

E ¼ E0; ð3:15Þ

which is the SUSYanalog of the unimodularity condition in
GR. In components, (3.15) reads

4We take the spinor component of E0 to vanish for simplicity.
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1

2
e ¼ ϵ0;

i
ffiffiffi
2

p

4
eσμψ̄μ ¼ 0;

−
1

2
eM� −

1

8
eψ̄μðσ̄μσν − σ̄νσμÞψ̄ ν ¼

i
2
m: ð3:16Þ

The action (3.12) is invariant under a restricted set of SUSY
and diffeomorphism transformations, δE ¼ 0 [see Eq. (3.4)],
exactly such that they preserve the conditions in (3.16).

A. Finite supergravity transformation
of a chiral superfield

We now introduce finite field-dependent supergravity
transformations of a chiral superfield. A chiral superfield,
such as Λ defined in (3.13), transforms5 under a combined
infinitesimal active diffeomorphism and local supersym-
metry transformation as

ΛðZÞ → Λ̃ðZÞ ¼ ΛðZÞ þ δξΛðZÞ ¼ ΛðZÞ − ΞM
∂MΛðZÞ;

ð3:17Þ

with ZM ¼ ðxμ;ΘαÞ as the chiral superspace coordinates,
ΞM defined in (3.6), and the relation between ΞM and ξ
given in (3.7). Note that ΞM depends not only on the
diffeomorphism and SUSY parameters ξμ, ϵα, and ϵ̄α̇, but
also on the fields in the supergravity multiplet, which we
now denote collectively by

φsg ¼ ðeaμ;ψα
μ; bμ;MÞ: ð3:18Þ

The infinitesimal passive transformation corresponding to
(3.17), i.e.,

ZM → Z̃M ¼ ZM − δξZM ¼ ZM þ ΞM; ð3:19Þ

is contractible.6 Therefore, its finite version can be obtained
via exponentiation,

ZM → Z0M ¼ e−δξZM: ð3:20Þ

On taking this finite passive transformation, identity (B6)
gives us the finite active supergravity transformation of the
chiral superfield ΛðZÞ as

ΛðZÞ → Λ0ðZÞ ¼ eδξΛðZÞ: ð3:21Þ

The composition of two finite transformations follows the
Baker-Campbell-Hausdorff formula

eδξ1eδξ2 ¼ eδξ1þδξ2þ1
2
½δξ1 ;δξ2 �þ 1

12
½δξ1 ½δξ1 ;δξ2 ��− 1

12
½δξ2 ½δξ1 ;δξ2 ��þ…;

ð3:22Þ

where the … denote higher-order commutators. The group
structure of supergravity transformations implies that the
commutator of two infinitesimal transformations should
give another infinitesimal transformation, i.e.,

½δξ1 ; δξ2 � ¼ δξ3ðξ1;ξ2Þ ¼ −ΞM
3 ∂M: ð3:23Þ

Acting on a chiral superfield, we have

δξ1δξ2Λ ¼ −δξ1ðΞM
2 ∂MΛÞ

¼ −ðδξ1ΞM
2 Þ∂MΛ − ΞM

2 ∂Mδξ1Λ

¼ −
	Z

d6Y
δΞM

2 ½φsgðZÞ�
δφsgðYÞ

δξ1φsgðYÞ


∂MΛ

þ ΞN
2 ∂NðΞM

1 ∂MΛÞ

¼ −
∂ΞM

2

∂φsg
δξ1φsg∂MΛþ ðΞN

2 ∂NΞM
1 Þ∂MΛ

þ ΞN
2 ΞM

1 ∂M∂NΛ; ð3:24Þ

where in the third line the integral is over the chiral
superspace, with YM ¼ ðxμ;ΘαÞ. Crucially, unlike, for
example, pure diffeomorphism transformations, we must
take into account the variations of the supergravity fields
appearing in the transformation rules. The expressions for
δξφsg are given in Appendix A. On computing the
commutator in Eq. (3.23) using result (3.24), we get

ΞM
3 ¼ ΞN

1 ∂NΞM
2 − ΞN

2 ∂NΞM
1 þ ∂ΞM

2

∂φsg
δξ1φsg −

∂ΞM
1

∂φsg
δξ2φsg

¼ ½Ξ1;Ξ2�SL þ δξ1Ξ
M
2 − δξ2Ξ

M
1 ; ð3:25Þ

where we introduced ½; �SL, which can be seen as the
superspace generalization of the standard Lie bracket for
vector fields. This is a natural generalization of the
corresponding case in general relativity. The additional
terms are a consequence of the fact that, unlike in general
relativity, our transformation parameters now depend on
supergravity fields. We remark that (3.25) is just the
supergravity version of deformed brackets for field-depen-
dent parameters, which have appeared in [30–32,57–60].

IV. SUPER-STÜCKELBERG PROCEDURE
TO ALL ORDERS

In [29,38], the super-Stückelberg trick was performed up
to the second order in the SUSY and diffeomorphism
transformation parameters—both via active and passive

5The transformation of a supersmooth scalar function in
superspace is analogous to the transformation of a scalar field
in curved spacetime.

6A coordinate transformation is called “contractible” if it can
be deformed continuously to the identity transformation
(see [56]).
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transformations—by promoting them to Stückelberg fields,
ξ → ϕ, namely,

ξN̄ ¼

0
B@ ξμ

ϵα

ϵ̄α̇

1
CA ⟶ ϕN̄ ¼

0
B@ϕμ

ζα

ζ̄α̇

1
CA: ð4:1Þ

In analogy with (3.7) and (3.11), we can also define the
objects

ΦM ≡OM
N̄ϕ

N̄ ð4:2Þ

and

ϕM ¼ ΦMjΘ¼0 ¼ OM
N̄ jΘ¼0ϕ

N̄ ¼
	
ϕμ

ζα



: ð4:3Þ

It was then shown that the resulting action admits a
maximally symmetric solution, with the cosmological
constant given by

Λeff ¼ Λ2 −
1

3
m2; ð4:4Þ

where Λ2 is the boundary condition for the Λ2 component
of the Lagrange multiplier superfield Λ introduced in
Eq. (3.13). Similar to the constrained superfield literature
[13,14,16–18,20,21], the value of Λeff can have either sign.
In particular, we can have Λeff > 0 corresponding to a de
Sitter solution that spontaneously breaks the underlying
supersymmetry. Furthermore, in [38], the action to cubic
order was obtained and compared with that in [20], giving
matching results.
In this section, we generalize the results of [29,38] to

show how to perform the super-Stückelberg procedure
described above to all orders, such that the solutions
with Λeff above can be obtained from an action that has the
full diffeomorphism and local SUSY symmetries. We
take an all-order active transformation, as given in
Eq. (3.21). It can be seen that the last term of action
(3.12) does not remain invariant under the above trans-
formation. In order to restore the broken supergravity
symmetries, we now perform the Stückelberg procedure
by sending

eδξΛðZÞ → eδϕΛðZÞ; ð4:5Þ

where the δ used on the lhs is the standard variation that
acts on all fields, whereas the δ used on the rhs does not
act on Stückelberg fields. The need for two different
versions of the variation arises because of the Stückelberg

procedure, as follows. We know that eδξ ¼ P∞
n¼0

ðδξÞn
n! .

Before the introduction of the Stückelberg field ϕ, there is
no ϕ for δξ to act on. After ξ is promoted to ϕ, a general

variation δ is supposed to act on ϕ as well.7 However, due
to the Stückelberg procedure, eδϕ in Eq. (4.5) is eδϕ ¼P∞

n¼0

ðδξÞn
n! jξ¼ϕ ≠

P∞
n¼0

ðδϕÞn
n! ¼ eδϕ .

In the end, we arrive at the final form of the Stückelberg
action,

S¼−
6

8πGN

Z
d6Z

	
ERþ1

6
ΛE−

1

6
E0eδϕΛ



þH:c: ð4:6Þ

Under a suitable transformation law for the Stücklelberg
fields, this action is invariant under full diffeomorphisms
and local SUSY transformations. We now derive the form
of that transformation law explicitly.

A. Supergravity transformation of Stückelberg fields

We now require action (4.6) to be invariant under
supergravity transformations, which will provide us with
the transformation rules for the Stückelberg fields ϕμ, ζα,
and ζ̄α̇ to all orders in the fields. The first two terms of
action (4.6) are already invariant by construction. Let us
denote the final term by

Sϕ ¼
Z

d6ZLϕðZÞ; ð4:7Þ

where

LϕðZÞ ¼
1

8πGN
eδϕΛðZÞE0: ð4:8Þ

We now take the (passive) finite supercoordinate trans-
formation

ZM → Z0M ¼ e−δξZM; ð4:9Þ

so that the action transforms as

Sϕ→S0ϕ¼
Z

d6Z0L0
ϕðZ0Þ¼

Z
d6Z jBerJjL0

ϕðZ0Þ; ð4:10Þ

where

BerJ ¼ 1·e−δ⃖ξ ; ð4:11Þ

and we refer the reader to (B7) for more details. Performing
integration by parts [cf. (B8)], we can rewrite S0ϕ as

S0ϕ ¼
Z

d6Z eδξ L0
ϕðZ0Þ: ð4:12Þ

7The Stückelberg procedure requires that δϕ acts on exactly the
same fields that δξ acts on before the introduction of the
Stückelberg fields. Therefore, the δ shown on the rhs does not
act on Stückelberg fields ϕ.
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Using the identity (B5), we find that

L0
ϕðZ0Þ ¼ e−δξL0

ϕðZÞ; ð4:13Þ

which gives S0ϕ ¼ R
d6ZL0

ϕðZÞ. For the action to remain
invariant, we therefore require that

L0
ϕðZÞ ¼ LϕðZÞ: ð4:14Þ

In view of (4.8), this translates to

eδ
0
ϕΛ0ðZÞ ¼ eδϕΛðZÞ

⇒ eδ
0
ϕeδξΛðZÞ ¼ eδϕΛðZÞ ¼ eδϕe−δξeδξΛðZÞ; ð4:15Þ

where we used the fact that Λ transforms as a chiral
superfield [see (3.21)]. Finally, we read off

eδ
0
ϕ ¼ eδϕe−δξ ; ð4:16Þ

which is strongly reminiscent of the corresponding formula
given by Eq. (2.7) in the pure gravity case. Using the
integral Baker-Campbell-Hausdorff formula (see foot-
note 3), we obtain the following transformation law for
the Stückleberg fields:

δ0ϕ ¼ δϕ −
�Z

1

0

Bðeadδϕe−tadδξ Þdt
�
δξ; ð4:17Þ

with

BðxÞ ¼ x logðxÞ
x − 1

: ð4:18Þ

To get an explicit form for the transformation law to leading
order, we truncate (4.17) beyond the linear order in trans-
formation parameters, which gives

δ0ϕ ¼ δϕ − Bðeadδϕ Þδξ: ð4:19Þ

Using the fact that

BðeyÞ ¼ y
1 − e−y

¼
X∞
k¼0

Bþ
k y

k

k!
; ð4:20Þ

where Bþ
k are the Bernoulli numbers given in Eq. (2.9), we

arrive at the following expression:

δ0ϕ ¼ δϕ −
X∞
k¼0

Bþ
k

k!
adkδϕδξ: ð4:21Þ

As a sanity check, we can compare this expression with
Eq. (2.8) in the case of GR, where we would identify δϕ
with −ϕν

∂ν when acting on a scalar field. Furthermore,

since

adkδϕδξ ¼ ½δϕ;…½δϕ; ½δϕ; δξ ��…�|ffl{zffl}
k times

; ð4:22Þ

where δϕ appears k times, the value of k in a given term in
Eq. (4.21) represents the order of the Stückelberg field ϕ in
it, as will be seen explicitly in the next section.
In Eq. (4.21), δ0ϕ is obtained on demanding the invariance

of our Stückelberg supergravity action (4.6) under general
supercoordinate transformation. Now, we derive the
expression for δ0ϕ explicitly by performing the supergravity
transformation δξ of δϕ. For this, we first need the
expression for δϕ. Recall that when δϕ acts on a chiral
superfield, it is written as [as can also be seen by perform-
ing the Stückelberg procedure on Eq. (3.17)]

δϕ ¼ −ΦM
∂M: ð4:23Þ

Plugging the expression for ΦM from Eq. (4.2) into the
above equation, we get the expression for δϕ,

δϕ ¼ −OM
N̄ϕ

N̄
∂M: ð4:24Þ

Under the supergravity transformation δξ, δϕ becomes δ0ϕ,
as follows8:

δϕ → δ0ϕ ¼ −ðO0ÞMN̄ðϕ0ÞN̄∂0M
¼ δϕ þ δξðδϕÞ
¼ δϕ þ δξðδϕÞ −OM

N̄δξϕ
N̄
∂M

¼ δϕ þ ½δξ; δϕ� −OM
N̄δξϕ

N̄
∂M

¼ δϕ − adδϕδξ −OM
N̄δξϕ

N̄
∂M; ð4:25Þ

where in the second-last line we have used identity (B1).
Comparing this result (4.25) with (4.21), we find that

OM
N̄δξϕ

N̄
∂M ¼ −adδϕδξ þ

X∞
k¼0

Bþ
k

k!
adkδϕδξ

¼ −2Bþ
1 adδϕδξ þ

X∞
k¼0

Bþ
k

k!
adkδϕδξ

¼
X∞
k¼0

Bþ
k

k!
ð1 − 2δk;1Þadkδϕδξ

¼
X∞
k¼0

B−
k

k!
adkδϕδξ; ð4:26Þ

where B−
k differ from Bþ

k only for k ¼ 1∶B−
k ¼ −1=2 and

Bþ
k ¼ 1=2. Using the well-known formula

8Recall the distinction between δ and δ introduced in (4.5).
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X∞
k¼0

B−
k y

k

k!
¼ y

ey − 1
; ð4:27Þ

we also find a closed form for (4.26), given by

OM
N̄δξϕ

N̄
∂M ¼ adδϕ

eadδϕ − 1
δξ: ð4:28Þ

The crucial point is that the rhs of the above is a sum of
nested commutators or transformations (where the
Stückelberg field is not transformed, i.e., it acts like a
parameter). Our goal is to find the explicit expressions for
the supergravity transformations of the Stückelberg fields,
viz. δξϕμ; δξζα, and δξζ

α̇. Simply taking the Θ ¼ 0 com-
ponent of the lhs of (4.28) gives us these expressions, as
explained below. Using Eqs. (3.9), (3.10), and (4.3), we
find that

ðOM
N̄δξϕ

N̄
∂MÞjΘ¼0

¼ ðOM
νδξϕν

∂M þOM
βδξϕβ

∂M þOM
β̇δξϕ

β̇
∂MÞjΘ¼0

¼ ðδμνδξϕν
∂μ þ δαβδξϕβ

∂α þ 0ÞjΘ¼0

¼ δξϕM
∂M: ð4:29Þ

The above relation represents the supergravity trans-
formation of ϕM, which consists of ϕμ and ζα. Since
δξζα̇∂α̇ ¼ ðδξζα∂αÞ†, from the above relation we can
determine the transformation δξ of all three Stückelberg
fields—ϕμ; ζα, and ζα̇. On equating Eq. (4.29) with the
Θ ¼ 0 component of the rhs of Eq. (4.26), we have the final
expression for the infinitesimal supergravity transformation
of the Stückelberg fields,

δξϕM
∂M ¼

X∞
k¼0

B−
k

k!
adkδϕδξjΘ¼0: ð4:30Þ

In the rhs above, a kth-order term is a nested commutator of
the kth order [cf. Eq. (4.22)], which can be a long and bulky
expression to evaluate and simplify. We are interested in
finding concise and explicit expressions for the kth-order
terms. This can be done recursively. We do so in the next
section.

B. Recursive transformation of Stückelberg fields
order-by-order

We can now use relation (4.30) to find the explicit
expressions for the infinitesimal supergravity transforma-
tion of the Stückelberg fields at all orders in ϕM̄. Besides
the series expression in Eq. (4.30), δξϕM

∂M can be
expressed order-by-order in k, as follows:

δξϕM
∂M¼δð0Þξ ϕM

∂Mþδð1Þξ ϕM
∂Mþ���þδðkÞξ ϕM

∂Mþ…;

ð4:31Þ

where δðkÞ denotes the supergravity transformation ofϕM at
the kth order in Stückelberg fields and linear in ξM̄. It will
be convenient to define a kth-order transformation param-
eter ξðkÞðϕ; ξÞ via the following action on a chiral super-
field: δξðkÞðϕ;ξÞ

9¼ −ΞðkÞM
∂M ¼ adkδϕδξ [cf. (3.17)], where

ΞðkÞM ¼ OM
N̄ξ

ðkÞN̄ [cf. (3.7)]. From Eq. (4.30), it follows

that δðkÞξ ϕM ¼ − B−
k
k! Ξ

ðkÞMjΘ¼0.
From the zeroth order of Eq. (4.30), i.e., for k ¼ 0, we

have

δð0Þξ ϕM
∂M ¼ δξjΘ¼0 ¼ δξð0Þðϕ;ξÞjΘ¼0 ¼ −Ξð0ÞM

∂MjΘ¼0

¼ −OM
N̄ξ

ð0ÞN̄
∂MjΘ¼0 ¼ −ξð0ÞM∂M: ð4:32Þ

Note that Ξð0ÞM ¼ ΞM and ξð0ÞM ¼ ξM, which implies that

δð0Þξ ϕM ¼ −ΞMjΘ¼0 ¼ −ξM: ð4:33Þ

Referring to Eq. (3.11), the above equation can be written
in components, as follows:

	
δð0Þϕμ

δð0Þζα



¼

	−ξμ

−ϵα



¼ −Ξð0ÞMjΘ¼0 ¼ −ξð0ÞM: ð4:34Þ

This equation shows that the leading-order transformation
of the Stückelberg fields is a shift by the parameters −ξð0ÞM,
which is characteristic of how Goldstone fields transform at
the linear order. At linear order, k ¼ 1, we have

δð1Þξ ϕM
∂M¼B−

1 adδϕδξjΘ¼0¼B−
1 ½δϕ;δξ�jΘ¼0

¼B−
1 δξð1Þðϕ;ξÞjΘ¼0¼−B−

1Ξð1ÞM
∂MjΘ¼0

¼−B−
1O

M
N̄ξ

ð1ÞN̄
∂MjΘ¼0¼−B−

1 ξ
ð1ÞM

∂M: ð4:35Þ

We compute the commutator ½δϕ; δξ� by looking at
Eq. (3.25) and setting ΞM

1 to ΦM and ΞN
2 to ΞNð0Þ ¼ ΞN

in it. We get

δð1Þξ ϕM ¼ 1

2
ðΦN

∂NΞM − ΞN
∂NΦMÞjΘ¼0: ð4:36Þ

Note that the terms corresponding to the last two terms in
Eq. (3.25) will vanish here at Θ ¼ 0, due to which they do
not contribute here. The above expression can be written
explicitly by substituting the expressions for Ξ andΦ given
in (3.6) and (4.2), respectively. Omitting the partial deriv-
atives, we get

9δξðkÞðϕ;ξÞ is not to be confused with δðkÞξ ϕM. δðkÞξ ϕM
∂M ¼

− B−
k
k! δξðkÞðϕ;ξÞjΘ¼0.
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δð1Þϕν

δð1Þζα



¼

	 1
2
ðϕμ

∂μξ
ν − ξμ∂μϕ

νÞ þ iðζσμϵ̄ − ϵσμζ̄Þ
1
2
ðϕμ

∂μϵ
α − ξμ∂μζ

αÞ þ i
2
ðϵσμζ̄ − ζσμϵ̄Þψα

μ




¼ 1

2
Ξð1ÞMjΘ¼0 ¼

1

2
ξð1ÞM: ð4:37Þ

This agrees with the results in [29].10 At the next order in
the Stückelberg fields, i.e., at k ¼ 2, we have

δð2Þξ ϕM
∂M ¼ B−

2

2
ad2δϕδξ

���
Θ¼0

¼ B−
2

2
½δϕ; δξð1Þðϕ;ξÞ�

���
Θ¼0

¼ B−
2

2
δξð2Þðϕ;ξÞ

���
Θ¼0

¼ −
B−
2

2
Ξð2ÞM

∂M

���
Θ¼0

¼ −
B−
2

2
OM

N̄ξ
ð2ÞN̄

∂M

���
Θ¼0

¼ −
B−
2

2
ξð2ÞM∂M:

ð4:38Þ

Now we compute the commutator appearing above by
setting ΞM

1 in Eq. (3.25) to ΦM and ΞN
2 to Ξð1ÞN . It gives us

δð2Þξ ϕM ¼ 1

12
ðΦN

∂NΞð1ÞM − Ξð1ÞN
∂NΦMÞ

���
Θ¼0

þ 1

12

∂Ξð1ÞM

∂φsg

����
Θ¼0

δϕφsg: ð4:39Þ

The last term above is nonzero since Ξð1ÞMjΘ¼0 ¼ ξð1ÞM
depends on the supergravity fields, as can be seen
from Eq. (4.37). However, since ΦMjΘ¼0 is independent
of φsg [cf. Eq. (4.3)], ð∂ΦM=∂φsgÞjΘ¼0 is 0. Then,
ð∂ΦM=∂φsgÞjΘ¼0 corresponds to the last term in (3.25)
and does not contribute here. Similarly, it does not

contribute to δðkÞξ ϕM for any k.
Thus, we can set up a recursion procedure that allows us

to compute the supergravity transformation of the
Stückelberg fields at any order k in ϕM̄ and linearized in
ξM̄. Recall that

δðkÞξ ϕM ¼ −
B−
k

k!
ΞðkÞMjΘ¼0; ð4:40Þ

with

ΞðkÞM ¼ Ξðk−1ÞN
∂NΦM −ΦN

∂NΞðk−1ÞM −
∂Ξðk−1ÞM

∂φsg
δϕφsg:

ð4:41Þ

Note that B−
k ¼ 0 for all odd k except k ¼ 1. So,

δξϕM ¼ δð0Þξ ϕM þ δð1Þξ ϕM þ � � � þ δðkÞξ ϕM þ…; ð4:42Þ

where k is always even when k > 1.
Thus, we have shown the complete N ¼ 1 supergravity

action that allows for de Sitter solutions, obtained via the
Stückelberg procedure [Eq. (4.6)], along with the super-
gravity transformation rules of all the fields appearing in
the action [cf. (3.4), (3.21), Appendix A, and (4.30)].

V. DISCUSSION

In this work, we continued our program of constructing
the superspace version of unimodular gravity via a super-
Stückelberg mechanism, which we started in [29,38]. In
this construction, the unimodularity condition requires that
the chiral density superfield is constrained via a chiral
superfield Lagrange multiplier. General coordinate invari-
ance and local supersymmetry are then restored using
the super-Stückelberg trick that we introduced perturba-
tively in [29]. In the present work, we demonstrated the
process of restoring general coordinate invariance and local
supersymmetry through the super-Stückelberg mechanism
to all orders in the Stückelberg fields. To do this, we first
introduced finite supergravity transformation in Sec. III A.
We used this tool to find the expressions for the super-
gravity transformation of the Stückelberg fields, given by
Eq. (4.30). With this result in hand, we found recursive
expressions for the transformation of the Stückelberg fields
to all orders in ϕM̄, given by Eq. (4.40). We used this result
to compute the zeroth and first-order transformations, to
show that they are consistent with our previous perturbative
result in [29], as expected.
This work opens up several new directions in which we

can extend the ideas. The first is, once again, inspired by
standard unimodular gravity, in which the Stückelberg
formulation is more elegantly presented in terms
of a three-form field and the corresponding four-form
field strength, as originally proposed by Heneaux and
Teitelboim [49]. The extension to supergravity is nontrivial,
not least because three-form multiplets are usually intro-
duced by placing the corresponding field strength in the F-
term of a chiral superfield [61].
With our present construction to all orders now at hand, it

would be interesting to compare with the brane and
constrained superfield constructions of Bandos et al. [20]
and those of [14–18], respectively. We have already shown
that the two formulations agree up to cubic order in the
Stückelberg fields in our previous work [38]. If they agree
to all orders, it could point to a more natural construction at
higher energies, or with more supersymmetry. If they
disagree, it would be interesting to explore the phenom-
enological differences, particularly with a view to describ-
ing the late time dynamics of our Universe. Such
comparisons could provide insights into the formulation’s

10The additional terms in (4.37), relative to [29], arise from the
fact that we are considering the complete Lagrangian here,
whereas in [29] we truncated to the second order in the fermions.
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robustness and potential unification implications for theo-
ries incorporating supersymmetry at higher scales.
Finally, we note that one of the original motivations for

this program, at least for two of us, was the desire to build
the model of vacuum energy sequestering [39–45] into a
supersymmetric framework. VES is a low-energy effective
theory describing general relativity with global constraints.
These global constraints ensure that radiative corrections to
the vacuum energy are kept under control, presenting a
possible solution to the cosmological constant problem.
The theory is an extension of Henneaux-Teitelboim’s
formulation of unimodular gravity, where the Planck mass
also behaves as a Lagrange multiplier, directly coupling to a
second species of three-form. To extend this to a theory of
supergravity, perhaps it is enough to promote the Planck
mass to a chiral superfield like we have for the cosmo-
logical constant, coupling it to another set of Stückelberg
fields in the same way. A supersymmetric theory of VES
could be a route toward building the model into a more
fundamental theory. The resulting theory may yield inter-
esting phenomenological consequences, offering new tests
of the VES mechanism.
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APPENDIX A: INFINITESIMAL SUPERGRAVITY
TRANSFORMATION OF SUPERGRAVITY

FIELDS

The fields belonging to the minimal supergravity multiplet
are φsg ¼ ðeaμ;ψα

μ; bμ;MÞ. They transform under infinitesi-
mal diffeomorphismþ local supersymmetry transformation
as follows:

φsg → φsg þ δξφsg ¼ φsg þ δξφsg þ δðϵ;ϵ̄Þφsg; ðA1Þ

where

δξeaμ ¼ −ξν∂νeaμ − ð∂μξνÞeaν ;
δξψα

μ ¼ −ξν∂νψα
μ − ð∂μξνÞψα

ν ;

δξbμ ¼ −ξν∂νbμ − ð∂μξνÞbμ;
δξM ¼ −ξμ∂μM; ðA2Þ

and

δðϵ;ϵ̄Þeaμ ¼ iðψμσ
aϵ̄ − ϵσaψ̄μÞ;

δðϵ;ϵ̄Þe
μ
a ¼ iðϵσμψ̄a − ψaσ

μϵ̄Þ;

δðϵ;ϵ̄Þψα
μ ¼ −2Dμϵ

α þ i
3
Mðεσμϵ̄Þα þ ibμϵα þ

i
3
bνðϵσνσ̄μÞα;

δðϵ;ϵ̄Þψ̄μα̇ ¼ −2Dμϵ̄α̇ −
i
3
M�ðϵσμÞα̇ − ibμϵ̄α̇ −

i
3
bνϵ̄β̇ðσ̄νσμÞβ̇ α̇;

δðϵ;ϵ̄ÞM ¼ −ϵðσμσ̄νψμν þ ibμψμ − iσμψ̄μMÞ;
δðϵ;ϵ̄ÞM� ¼ ϵ̄ð−σ̄μσνψ̄μν þ ibμψ̄μ þ iσ̄μψμM�Þ;
δðϵ;ϵ̄Þbαα̇ ¼ ϵF ðψ ;M; bÞ

¼ ϵδ
�
3

4
ψ̄α

γ̇
δγ̇ α̇ þ

1

4
εδαψ̄

γγ̇
γα̇ γ̇ −

i
2
M�ψαα̇δ þ

i
4
ðψ̄αρ̇

ρ̇bδα̇ þ ψ̄ δρ̇
ρ̇bαα̇ − ψ̄ δ

ρ̇
α̇bαρ̇Þ

�

− ϵ̄δ̇
�
3

4
ψγ

δ̇γα̇α þ
1

4
εδ̇ α̇ψα

γ̇γ
γ̇γ þ

i
2
Mψ̄αα̇ δ̇ −

i
4
ðψρα̇

ρbαδ̇ þ ψρδ̇
ρbαα̇ − ψρ

δ̇αbρα̇Þ
�
: ðA3Þ

APPENDIX B: USEFUL IDENTITIES WITH PROOFS

In this appendix, we collect a series of identities, and their proofs, which we use throughout the main text. These identities
can be found in [56], while some of the proofs are expanded or added here. Throughout this appendix, ZM ¼ ðxμ;ΘαÞ is the
chiral superspace coordinate.

BANSAL, NAGY, PADILLA, and ZAVALA PHYS. REV. D 111, 125004 (2025)

125004-10



Identity B1. For an arbitrary superfunction τðZÞ, the operator

½K; τðZÞ� ¼ KðτðZÞÞ; ðB1Þ

where K ¼ KMðZÞ∂M ¼ Kmðx;ΘÞ∂m þ Kμðx;ΘÞ∂μ.
Proof. We take a test function χðZÞ of supercoordinate ZM. We have

KðτðZÞχðZÞÞ ¼ KM
∂MðτðZÞχðZÞÞ

¼ ðKM
∂MτÞχ þ ð−1ÞετεMτðKM

∂MχÞ ðby Leibniz ruleÞ
⇒ KM

∂MðτχÞ − τðKM
∂MχÞ ¼ ðKM

∂MτÞχ
⇒ KðτχÞ − τðKχÞ ¼ ðKτÞχ

⇒ ½K; τðZÞ�· ¼ KðτðZÞÞ· ½∵χðZÞcan be any arbitrary function�:
▪

Identity B2. For an arbitrary superfunction τðZÞ,

e−KτðZÞeK ¼ e−KðτðZÞÞ: ðB2Þ

Proof. From Proposition 3.35 in [53], we know that

e−KτðZÞeK ¼ e−adKτðZÞ;

where adKτðZÞ ¼ ½K; τðZÞ�. Plugging the alternate expres-
sion for ½K; τðZÞ� from identity (B1) into the above
equation, we prove identity (B2). ▪
Identity B3. For a superanalytic function ρðZÞ,

ρðe−KZeKÞ ¼ e−KρðZÞeK: ðB3Þ

Proof. Since a superanalytic function can always be
expressed as a Taylor series around any point ZM

0 in its
domain, ρðZÞ being a superanalytic function can be
expressed as the following Taylor series expanded
around 0:

ρðZÞ ¼
Xk¼∞

k¼0

aM1M2…Mk
ZM1ZM2…ZMk:

Then,

ρðe−KZeKÞ

¼
Xk¼∞

k¼0

aM1M2…Mk
e−KZM1eKe−KZM2eK…e−KZMkeK

¼
Xk¼∞

k¼0

aM1M2…Mk
e−KZM1ZM2…ZMkeK

¼ e−KρðZÞeK: ▪

Identity B4. For a superanalytic function, ρðZÞ,

ρðe−KZeKÞ ¼ e−KðρðZÞÞ: ðB4Þ

Proof. Substituting identity (B3) into identity (B2), we
get identity (B4). ▪
Identity B5. Under the finite passive transformation

Z → Z0 ¼ e−KZ, a superanalytic function ρðZÞ transforms as

ρ0ðZ0Þ ¼ e−Kρ0ðZÞ: ðB5Þ

Proof. Under Z → Z0 ¼ e−KZ,

ρ0ðZ0Þ ¼ ρ0ðe−KZÞ
¼ ρ0ðe−KZeKÞ
¼ e−Kρ0ðZÞ;

where in the second line we took ρðZÞ ¼ Z in (B4). ▪
Identity B6. The finite passive transformation Z → Z0 ¼

e−KZ induces the following finite active transformation on
a superanalytic function ρðZÞ:

ρ0ðZÞ ¼ eKρðZÞ: ðB6Þ

Proof. We know that under the finite passive trans-
formation Z → Z0 ¼ e−KZ, a superanalytic function ρðZÞ
obeys [cf. Eq. (1.11.6) in [56] ]

ρðZÞ ¼ ρ0ðZ0Þ
¼ e−Kρ0ðZÞ;

where in the second line we used (B5). The above result
gives identity (B6).11 ▪

11Also proved in Eq. (1.11.8) in [56].
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Identity B7. When Z transforms as Z → Z0 ¼ e−KZ,

Ber

	
∂Z0M

∂ZN



¼ 1·e−K⃖; ðB7Þ

where K⃖ ¼ KM
∂⃖M ¼ ð−1ÞM∂⃖MKM þ ð−1ÞM∂MKM.

Proof. See Sec. 1.11.3 in [56]. ▪
Identity B8. For arbitrary superfunctions τðZÞ and χðZÞ,Z

d6Z τðZÞ·e−K⃖χðZÞ ¼
Z

d6Z τðZÞeKχðZÞ: ðB8Þ

Proof. We know that

Z
d6Z τðZÞ·e−K⃖χðZÞ ¼

Z
d6Z τðZÞ· ð−K⃖Þn

n!
χðZÞ: ðB9Þ

We evaluate every term on the rhs of the above equation
one-by-one. The first term is simplified as

R
d6Zτχ. The

second term is

−
Z

d6Z τðZÞ·K⃖χðZÞ

¼ −
Z

d6Z τ·KM
∂⃖Mχ

¼ −
Z

d6Z ðτKMÞ·∂⃖Mχ

¼ −
Z

d6Z ð−1ÞM∂MðτKMÞχ

¼ −ð−1ÞM
Z

d6Z =∂MðτKMχÞ − ð−1ÞMτKM
∂Mχ

¼
Z

d6Z τKχ:

In the penultimate line, the total derivative term vanishes
after integration. The third term on the rhs of Eq. (B9) is

Z
d6Z τðZÞ· 1

2!
K⃖2χðZÞ ¼ 1

2

Z
d6Z ðτ·KN

∂⃖NÞ·KM
∂⃖Mχ

¼ 1

2

Z
d6Z fð−1ÞN∂NðτKNÞg·KM

∂⃖Mχ

¼ ð−1ÞN
2

Z
d6Z f∂NðτKNÞKMg·∂⃖Mχ

¼ ð−1ÞðNþMÞ

2

Z
d6Z ∂Mf∂NðτKNÞKMgχ

¼ ð−1ÞðNþMÞ

2

Z
d6Z =∂Mf∂NðτKNÞKMχg − ð−1ÞM∂NðτKNÞKM

∂Mχ

¼ ð−1ÞðNþMÞ

2

Z
d6Z − ð−1ÞM =∂NfðτKNÞKM

∂Mχg þ ð−1ÞðMþNÞτKN
∂NKM

∂Mχ

¼ 1

2

Z
d6Z τK2χ:

Thus, evaluating the nth-order term on the rhs of Eq. (B9),
we get

Z
d6Z τðZÞ· ð−K⃖Þ

n

n!
χðZÞ ¼

Z
d6Z τ

Kn

n!
χ:

On summing up all these terms, we prove identity (B8). ▪

APPENDIX C: ALTERNATIVE DERIVATION OF
THE SUPERGRAVITY TRANSFORMATION OF

STÜCKELBERG FIELDS

In this appendix, we give an alternative derivation for the
results in Sec. IV, and in particular Eq. (4.28), describing the
transformation rule for our Stückelberg fields. This provides

a sanity check for our results. We start by generalizing the
following result from unimodular gravity: the Stückelberg-
dressed coordinate (i.e., the object obtained by performing a
coordinate transformation, and then promoting the param-
eters to fields) should transform like a set of d scalars, with d
being the dimension of our spacetime. In our case, for d ¼ 4

and N ¼ 1 supergravity in the chiral formulation, the
Stückelberg-dressed supercoordinate should transform like
a set of 4þ 2 chiral superfields.
The finite transformation of the supercoordinates is

given in (4.9). After performing the Stückelberg replace-
ment (4.1), we denote

YM ≡ e−δϕZM: ðC1Þ
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At the linear level in ξM̄, the above transforms, under an
active transformation, as

δYM ¼ δðe−δϕZMÞ ¼ −Oδϕðδ0ϕ − δϕÞe−δϕZM

¼ −Oδϕðδ0ϕ − δϕÞYM; ðC2Þ

where we used the variation of the exponential map

δðe−XÞ ¼ −OXðδXÞe−X; ðC3Þ

with

OX ¼ 1 − e−adX

adX
¼

X∞
k¼0

ð−1Þk
ðkþ 1Þ! ad

k
X: ðC4Þ

Using (4.25), we can rearrange (C2) as

δYM ¼ OδϕO
P
N̄δξϕ

N̄
∂PYM þOδϕadδϕδξY

M

¼ OδϕO
P
N̄δξϕ

N̄
∂PYM þ 1 − e−adδϕ

adδϕ
adδϕδξY

M

¼ OδϕO
P
N̄δξϕ

N̄
∂PYM þ δξYM − e−adδϕ δξYM: ðC5Þ

On the other hand, as we said, we need YM to transform like
a chiral superfield, which, in our notation, is just

δYM ¼ δξYM: ðC6Þ

Comparing (C5) with (C6), we get

OδϕO
P
N̄δξϕ

N̄
∂PYM ¼ e−adδϕ δξYM: ðC7Þ

We can invert Oδϕ to write

OP
N̄δξϕ

N̄
∂PYM ¼ adδϕ

1 − e−adδϕ
e−adδϕ δξYM: ðC8Þ

The above is true for any YM, so, after some rearrangement,
we have

OP
N̄δξϕ

N̄
∂P ¼ adδϕ

eadδϕ − 1
δξ; ðC9Þ

which matches with (4.28).
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