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We advance the study of pure de Sitter supergravity by introducing a finite formulation of uni-

modular supergravity via the super-Stiickelberg mechanism. Building on previous works, we construct a

complete four-dimensional action of spontaneously broken A = 1 supergravity to all orders in the
Stiickelberg fields, which allows for de Sitter solutions. The introduction of finite supergravity trans-
formations extends the super-Stiickelberg procedure beyond the second order, offering a recursive solution
to all orders in the Goldstino sector. This work bridges the earlier perturbative approaches and the complete
finite theory, opening new possibilities for de Sitter vacua in supergravity models and eventually string

theory.
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I. INTRODUCTION

One of the most pressing challenges in fundamental
physics today is the discrepancy between theoretical predi-
ctions and observations concerning the vacuum energy’s
size, known as the “cosmological constant problem” [1-4].
In the standard model of cosmology—the ACDM model
(Lambda cold dark matter)—the accelerated expansion of
the Universe is attributed to a tiny but constant energy
density, A. This implies that our Universe is asymptotically
de Sitter (dS), with a small vacuum energy. Although recent
observations [5,6] suggest the possibility of a “dynamical
vacuum energy” rather than a constant one [7], the core
question remains: why is the cosmological constant so
small or zero, especially when theoretical models predict
much larger values?

The discovery of the Universe’s accelerated expansion in
1998 triggered intense theoretical efforts to construct dS
vacua within string theory and supergravity. The seminal
work of Kachru-Kallosh-Linde-Trivedi (KKLT) in 2003 [8]
proposed how to obtain dS vacua via an “uplifting”
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procedure. This method involves uplifting a supersymmet-
ric anti—de Sitter (AdS) vacuum to a dS one by introducing
an anti-D3 brane. The mechanism behind this uplift was
later reinterpreted in a manifestly supersymmetric formal-
ism, specifically through the use of a Volkov-Akulov (VA)
Goldstino theory [9,10], which implements nonlinearly
realized global supersymmetry, coupled to a supergravity
background. This suggested the existence of a scalar-
independent de Sitter supergravity. This work led to the
development of a four-dimensional supergravity theory
with spontaneously broken supersymmetry that admits
dS vacua, commonly referred to as de Sitter supergravity.
The first approach to construct this theory was under-
taken in [11-13], where the key idea was the use of
nilpotent constrained superfields, which eliminate the
scalar component of the chiral multiplet and enforce
nonlinear supersymmetry. A complete local supergravity
action incorporating constrained superfields and nonlinear
supersymmetry was later formulated in a series of
works [14—19], which allowed for the construction of pure
N =1 supergravity models admitting dS solutions. An
alternative approach was proposed in [20,21], where a
Goldstino brane—a 3-brane object in superspace carrying
the VA Goldstino—was coupled to minimal N =1
off-shell supergravity. This method was shown to lead to
the same four-dimensional action as the constrained
superfield approach in [15], up to second order in the
Goldstino.

In a different direction, inspired by classical unimodular
gravity [22-28], a novel approach was introduced in [29]
by three of us, where unimodular gravity was extended to
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supergravity using a super-Stiickelberg mechanism.'? We
demonstrated in [38] that this super-Stiickelberg approach
yields the same four-dimensional action as the construc-
tions in [20] (and thus [15]), again to second order in the
Goldstino. In these previous works [29,38], we constructed
the four-dimensional action perturbatively up to the second
order in the Stiickelberg fields. In the present paper, we take
a significant step forward by constructing the super-
Stiickelberg action to all orders, providing the complete
unimodular supergravity action. This represents a substan-
tial advance in the development of a complete and con-
sistent framework for de Sitter vacua in supergravity.

This new approach to pure de Sitter supergravity has the
potential to offer a new pathway to finding de Sitter vacua
in perturbative string theory, being qualitatively different to
traditional nilpotent superfield methods. For example, the
Stiickelberg fermion may be the Goldstino associated with
broken superspace symmetries due to branes, as in [20],
or else a proxy for higher form fields. Indeed, to the latter
point, this work is an important step in generalizing
Henneaux and Teitelboim’s version of unimodular gravity
[25] to the supersymmetric case. Such a theory would have
potential application to the cosmological constant problem
by inspiring a supersymmetric version of vacuum energy
sequestering (VES) [39-45].

To introduce our construction strategy, we begin in Sec. II
by discussing the case of unimodular gravity. Although our
approach may appear unconventional compared to the
standard treatment in the unimodular gravity literature,
we present it as a gradual introduction to the more complex
case of supergravity. Following this, in Sec. III, we move on
to construct the full unimodular supergravity theory. In
Sec. IIT A, we first introduce the finite supergravity trans-
formations of a chiral superfield, which, to our knowledge,
have not been presented previously. These transformations
are essential for the subsequent section, where in Sec. IV, we
develop the super-Stiickelberg procedure to all orders.
Finally, we conclude in Sec. V, while in Appendix A we
give the combined infinitesimal diffeomorphism and local
supersymmetry transformations of the supergravity fields.
In Appendix B we summarize important identities and
proofs used throughout the main text. Additionally, in
Appendix C, we outline an alternative approach to our
construction for further consideration.

II. UNIMODULAR GRAVITY AND THE
STUCKELBERG PROCEDURE

As awarm-up, let us consider standard unimodular gravity,
a restricted version of Einstein-Hilbert gravity for which the
determinant of the metric is taken to be a constant [28,46-52].

'In recent years, the Stiickelberg mechanism has been further
extended to asymptotic symmetries [30-33].

*For other supersymmetric extensions of the unimodular
theory, see [34-37].

Locally, the theory is equivalent to general relativity (GR),
owing to the fact that the determinant of the metric can be set
to any constant by a suitable choice of gauge in a neighbor-
hood of any pointin spacetime. The difference manifests itself
globally, with the cosmological constant entering as an
integration constant in unimodular gravity, rather than a fixed
coupling constant, as in GR. The action for unimodular
gravity can be written as follows:

Sov =T | FHIVIIR-200) (VT -a)). (21

where € is a constant (often set to unity) and the Lagrange
multiplier, A(x), imposes the constraint on the determinant of
the metric. This Lagrange multiplier transforms as a scalar
under diffeomorphisms. This means that the last term in the
action breaks diffeomorphisms explicitly. Indeed, the action is
only invariant under transverse diffeomorphisms that preserve
the determinant of the metric.

The full set of diffeomorphisms can be restored using a
Stiickelberg trick. This is done by introducing four new
Stiickelberg fields, y#(x), as if we were carrying out a passive
coordinate transformation, ¥ — y¥(x). The action becomes

Somc = 16;GN / d*x[\/=gR = 2A(x)(v/=g — €| det J])],

(2.2)

where the Jacobian J#, = dy*/ox*. The action is now
manifestly invariant under diffeomorphisms x* — x'#(x),
as long as the Stiickelberg fields transform as scalars,
Y (x) = ¥#(x) = y*(x). Variation of the action with respect
to the Stiickelberg fields now forces the Lagrange
multiplier to be a constant, d,A = 0. As such, it plays the
role of a cosmological constant in the effective gravity
equations. The system is equivalent to plain vanilla GR with
a cosmological constant whose value is just an inte-
gration constant, presumably set by boundary conditions.

In order to align our discussion with what is to come for
supergravity, let us redefine the Stiickelberg fields using an
exponential map,

Y(x) = e ¥ xr, (2.3)

When there is an exponential coordinate transformation
y* = e Kx*, we have detJ = 1-e7X, with the operator
K= Kﬂéﬂ = (—1)”5”1(” + (=1)#9,K* acting to the left
[cf. (B7)]. Setting K* = —¢*, the detJ appearing in action
(2.2) is = 1.e?. After repeatedly integrating by parts, we
can rewrite the action as

1
Sumc = d*x[\/=g(R = 2A\) — ege~? % A].
UMG 1677.'GN/ x[ g( ) €p€ ]

(2.4)
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This form of the action might have been anticipated by
introducing the Stiickelberg fields through an active, as
opposed to a passive, transformation. This is because the
scalar Lagrange multiplier transforms as
A = e WupN (2.5)
under an active coordinate transformation, where the
transformation ~ parameter is identified with the
Stiickelberg fields, ¢*(x). The action (2.4) is now readily
obtained from the original unimodular action (2.2) by
performing this active transformation on all fields.
The transformation law for the ¢* is nontrivial. Consider
a general coordinate transformation, which, in the passive
form, corresponds to x# — x’#* = ¢ % x*. If we express this
as an active transformation on the various terms in the
action (2.4), we see, for example, that A(x) - A'(x) =
e ¥ M%A(x) and ¢*(x) — ¢ (x), where ¢ is to be
determined. Of course, the GR part of the action is
automatically invariant under a general coordinate trans-
formation. Focusing on the Stiickelberg part of the
Lagrangian, invariance requires that
—P(%A(x) = WA (x) = e~ WAA(x).  (2.6)
Using the fact that A(x) = e %A/(x), we immediately
infer that
e~ ()0, — o=¢"(x)9, p&(x), (2.7)
We now make use of the integral form of the Baker-
Campbell-Hausdorff formula,® and work to linear order in &
to obtain

adjye ()9,
¢’”<x>ay=¢”<x)ay—%év(x>ab
© B (-1) ad" 1]
x)0,+ ¢'(x)a,, (2.8)
k=0
where B} are the Bernoulli numbers,
1 1 1
Ba—zl, BTZE, B;—:g, 0 BI —%,
(2.9)
and ady(Y) = [X,Y]. It is relatively easy to show that
[ad g (x),]°€" (x)0, = [L};€"]0,, where L, denotes the Lie

3Namely, given e? = eXe?, the integral formula for Z is given
by Z =X + (¢ B(e*xe™r)dr)Y, where B(x) = Xlog( ). Taking
X = ¢"(x)9, and Y = £(x)d, in (2.7) and worklng to linear
order in 5”( ), (2.7) leads to (2.8), upon using also that

B(e¥) = =>%, k, . See, e.g., [53] or [54] for details.

derivative with respect to ¢*. The (active) transformation
law for ¢* can now readily be expressed as

Ly

¢/M<x) - 1— éL‘f’f”(—x) .

P (x) - (2.10)

Although standard unimodular gravity is a useful frame-
work in which to develop the tools we will use in the
coming sections, its direct applications are limited. This is
because it is equivalent to GR with a cosmological
constant, at least at the classical level. The extension of
these ideas to supergravity is more interesting, however, as
it allows us to describe a supersymmetric action with de
Sitter solutions that only break supersymmetry spontane-
ously. In the coming sections, we will see how this can be
done consistently with a supergravity action, including
Stiickelberg fields at all orders.

III. UNIMODULAR SUPERGRAVITY

We now turn our attention to supergravity and begin by
reviewing the construction of unimodular supergravity via
the super-Stiickelberg procedure discussed in [29,38].
We start with the chiral superspace action for old
minimal N = 1 supergravity, working in the conventions
of [55]

S=- 0 /d4xd2®€R+H.c.,

87[GN

(3.1)

where the components of the chiral supergravity superfield
‘R are given by

1 _ e
R = ~g {M + O(c*6"y,, — ic"yr, + iy, b")

2
MM+ L

©% =R + iy
+ [ +ll[/61//,w+3 3

1 1 _
leaD b +2l//l//M Ewﬂoﬂy/yb

1 _ _
+ g enre (Wﬂaul//pa + l//po-vl//pa):| } (32)

Further, £ is a chiral density superfield, generalizing the
scalar density ,/—¢g in GR whose components are

1
f(] - 565
iv2
1 T _ _ _
Fo=—geM —gep, (30" — 50" )i, (3.3)
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where the determinant of the vielbein, e = dete}, y,(x) is ~ where
the gravitino, and b#(x) and M are the auxiliary fields in the
old minimal supergravity model.

Under an infinitesimal and combined diffeomorphism 1 M—

. . . £ - /"7

and local supersymmetry transformation, which we will (—1)M = { (3_5)
henceforth refer to as an infinitesimal supergravity trans-
formation, £ transforms as

€ = —oy[(-1)MEME]. (3.4) and the superfield Z¥ is given by

Bf = & 4 2i@0tE + Oy, 5V 0vE,

1 1 1
B = ¢ — i@ ey + O | ~iwy! (o'€); + 3 M e = Sy (71,5°0"8) + £ b, (e0"E)" . (3.6)

|
where € is the parameter of local supersymmetry (SUSY)  and the components of the matrix O™ 5 are given by
transformations and & is the diffeomorphism parameter.
It is now convenient to introduce the following notation:

=M
=k

oM €V, (3.7) OMU:{(%’ M:/,l’ OMﬁ:{O’ - M=pu
. _ o 55 +30°M* 65, M=a
where the index N runs over (u,a,q), E¥ is a vector
containing the diffeomorphism and supersymmetry trans- (3.9)
formation parameters

&
_ and
E=| e |, (3.8)
E,d
j . 200 6"6Y) -
= [0 R, n (3.10)
i@ﬂwl‘fal’;ﬁ +©? [—ia)ﬂ"‘ﬁagﬁ LAV —&—%bﬂe"ya’;ﬂ], M= a.
|
It is important to note that the ® dependence of Z¥ is  and the constant superﬁeld4
entirely contained in OMy. For future use, let us also
introduce the notation s
Eo = €0 + ~m@?, (3.14)

M M M N & ’
§" =E"o=0 = 0"5lo=0f" = ( s > (3.11) with €, and m real constants. Action (3.12) has two chiral
superfields R and A. We will show the supergravity
Following [29,38], we define the action for unimodular transformation of a chiral superfield in Sec. Il A. Varying

supergravity as action (3.12) with respect to A, we arrive at the constraint
6 4D 1

S=- d*xd*® | ER+-A(E-&y)| +H.c., (3.12) &= &, (3.15)
87 GN 6

where we have introduced the Lagrange multiplier chiral ~ which is the SUSY analog of the unimodularity condition in

superfield GR. In components, (3.15) reads
_ 2 —
A=A+ \/561\1 + A0 (3.13) *We take the spinor component of &£, to vanish for simplicity.
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1

—e = €,

) 0
iewﬂ_o

1 1 _ _ _ i
——eM* — gel//”(a"a’“ — Vo), = .

5 (3.16)

The action (3.12) is invariant under a restricted set of SUSY
and diffeomorphism transformations, 6 = 0 [see Eq. (3.4)],
exactly such that they preserve the conditions in (3.16).

A. Finite supergravity transformation
of a chiral superfield

We now introduce finite field-dependent supergravity
transformations of a chiral superfield. A chiral superfield,
such as A defined in (3.13), transforms> under a combined
infinitesimal active diffeomorphism and local supersym-
metry transformation as

AZ) = AN(Z) = AN(Z) + 6:A(Z) = N(Z) —EMoyA(Z),
(3.17)
with ZM = (x#,@%) as the chiral superspace coordinates,

EM defined in (3.6), and the relation between ZM and &
given in (3.7). Note that Z¥ depends not only on the
diffeomorphism and SUSY parameters &, %, and &%, but
also on the fields in the supergravity multiplet, which we
now denote collectively by

@5 = (e Wi, by, M). (3.18)
The infinitesimal passive transformation corresponding to
(3.17), i.e.,

M 5 ZM = ZM —OZM =7 +EM . (3.19)
is contractible.® Therefore, its finite version can be obtained
via exponentiation,

ZM — ZM — =% ZM, (3.20)
On taking this finite passive transformation, identity (B6)
gives us the finite active supergravity transformation of the
chiral superfield A(Z) as

AZ) = N(Z) = %A (Z). (3.21)

The transformation of a supersmooth scalar function in
superspace is analogous to the transformation of a scalar field
in curved spacetime.

A coordinate transformation is called “contractible” if it can
be deformed continuously to the identity transformation
(see [56]).

The composition of two finite transformations follows the
Baker-Campbell-Hausdorff formula

% % — Bt 06200, I, 1 +1510¢, [0, O, |—15ld%, (3, B, 1+
(3.22)

where the ... denote higher-order commutators. The group
structure of supergravity transformations implies that the
commutator of two infinitesimal transformations should
give another infinitesimal transformation, i.e.,

[651 ’ 552]

Acting on a chiral superfield, we have

—EMg,,. (3.23)

=066 =

661652/\ — —651 (EM()MA)

—(églEy)aMA - :M()Mﬁg]/\
02 [¢yy(Z)]
- </d6Y27(gy)651 Sg( )>6MA
+ By oy (EY ouA)

=

M
=—-—25 oy \ Yo
a(ﬂg §1(psg M +(

+ EYEM 900 A,

NEM)OyA
(3.24)

where in the third line the integral is over the chiral
superspace, with Y™ = (x#,©%). Crucially, unlike, for
example, pure diffeomorphism transformations, we must
take into account the variations of the supergravity fields
appearing in the transformation rules. The expressions for
O¢ps, are given in Appendix A. On computing the
commutator in Eq. (3.23) using result (3.24), we get

o=}

1
O, ¢,
Ay 2

0=y
=M _ mNjy =M _ =N =
By = B oyEY — EYoyEY +a(p‘96€1(pfg
= [E1. By +5§,~2 6§2~1 ’ (3.25)
where we introduced [,]g-, which can be seen as the
superspace generalization of the standard Lie bracket for
vector fields. This is a natural generalization of the
corresponding case in general relativity. The additional
terms are a consequence of the fact that, unlike in general
relativity, our transformation parameters now depend on
supergravity fields. We remark that (3.25) is just the
supergravity version of deformed brackets for field-depen-
dent parameters, which have appeared in [30-32,57-60].

IV. SUPER-STUCKELBERG PROCEDURE
TO ALL ORDERS

In [29,38], the super-Stiickelberg trick was performed up
to the second order in the SUSY and diffeomorphism
transformation parameters—both via active and passive

125004-5
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transformations—by promoting them to Stiickelberg fields,
& - ¢, namely,

& P
=] | — V=] (4.1)
éd zd

In analogy with (3.7) and (3.11), we can also define the
objects

oM = oMy (4.2)

and

) H
¢M = q)M|®:o = 0MN|®:0¢N = (?a ) (4.3)

It was then shown that the resulting action admits a
maximally symmetric solution, with the cosmological
constant given by

Aeff = A2 — %mz, (44)
where A, is the boundary condition for the A, component
of the Lagrange multiplier superfield A introduced in
Eq. (3.13). Similar to the constrained superfield literature
[13,14,16-18,20,21], the value of A can have either sign.
In particular, we can have Ay > 0 corresponding to a de
Sitter solution that spontaneously breaks the underlying
supersymmetry. Furthermore, in [38], the action to cubic
order was obtained and compared with that in [20], giving
matching results.

In this section, we generalize the results of [29,38] to
show how to perform the super-Stiickelberg procedure
described above to all orders, such that the solutions
with A, above can be obtained from an action that has the
full diffeomorphism and local SUSY symmetries. We
take an all-order active transformation, as given in
Eq. (3.21). It can be seen that the last term of action
(3.12) does not remain invariant under the above trans-
formation. In order to restore the broken supergravity
symmetries, we now perform the Stiickelberg procedure
by sending

% N(Z) — e\ (Z), (4.5)
where the é used on the lhs is the standard variation that
acts on all fields, whereas the § used on the rhs does not
act on Stiickelberg fields. The need for two different
versions of the variation arises because of the Stiickelberg
procedure, as follows. We know that e% =" (5%
Before the introduction of the Stiickelberg field ¢, there is
no ¢ for d to act on. After & is promoted to ¢, a general

variation 4 is supposed to act on ¢ as well.” However, due
to the Stiickelberg procedure, ¢% in Eq. (4.5) is €% =

o (0" o (By)"

n=0 (}15') |§=¢ ;é ZHZO ( Z)! = 66¢'

In the end, we arrive at the final form of the Stiickelberg
action,

6

S=—
SJTGN

/ d6Z<8R+éA€—é€0e5¢A> +He. (4.6)

Under a suitable transformation law for the Stiicklelberg
fields, this action is invariant under full diffeomorphisms
and local SUSY transformations. We now derive the form
of that transformation law explicitly.

A. Supergravity transformation of Stiickelberg fields

We now require action (4.6) to be invariant under
supergravity transformations, which will provide us with
the transformation rules for the Stiickelberg fields ¢*, (%,
and £% to all orders in the fields. The first two terms of
action (4.6) are already invariant by construction. Let us
denote the final term by

where
_ 1 5,
£¢(Z) = 8”GNe v A(Z)E,. (4.8)

We now take the (passive) finite supercoordinate trans-
formation
M _, 7iM _ 6_65ZM,

(4.9)
so that the action transforms as
Sy 8, = / &7 L(7) = / &7 [Berd|L(Z),  (4.10)
where

BerJ = 1.¢7%,

(4.11)

and we refer the reader to (B7) for more details. Performing
integration by parts [cf. (B8)], we can rewrite Sfﬁ as

Sy = / d°Z &% L, (Z'). (4.12)

"The Stiickelberg procedure requires that Oy acts on exactly the
same fields that & acts on before the introduction of the
Stiickelberg fields. Therefore, the 6 shown on the rhs does not
act on Stiickelberg fields ¢.
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Using the identity (B5), we find that
L:ﬁ(Z’) = e“sﬁﬁfﬁ(Z), (4.13)

which gives Sy = [d°ZLy(Z). For the action to remain
invariant, we therefore require that

E;,(Z) = Ly(Z). (4.14)
In view of (4.8), this translates to
N (Z) = e N(Z)
= ee%N(Z) = eN(Z) = e % e N(Z),  (4.15)

where we used the fact that A transforms as a chiral
superfield [see (3.21)]. Finally, we read off

35:/) = e‘srﬁe_{sﬁ, (4.16)
which is strongly reminiscent of the corresponding formula
given by Eq. (2.7) in the pure gravity case. Using the
integral Baker-Campbell-Hausdorff formula (see foot-

note 3), we obtain the following transformation law for
the Stiickleberg fields:

1
8y = 8y — [ / B(e* e ™ )dt| 5, (4.17)
0

with

xlog(x)
x—1"

B(x) = (4.18)

To get an explicit form for the transformation law to leading
order, we truncate (4.17) beyond the linear order in trans-
formation parameters, which gives

8y = 85 — B(e" ). (4.19)
Using the fact that
Be¥) = ff (4.20)
1 —e™ k!

k=

where B} are the Bernoulli numbers given in Eq. (2.9), we
arrive at the following expression:

+

8y =y — ;Fadgaﬁ. (4.21)

As a sanity check, we can compare this expression with
Eg. (2.8) in the case of GR, where we would identify J,
with —¢*d, when acting on a scalar field. Furthermore,

since

adj 5 = (34, -..[54. (5. 55&;._]/, (4.22)

k times

where &4 appears k times, the value of k in a given term in
Eq. (4.21) represents the order of the Stiickelberg field ¢ in
it, as will be seen explicitly in the next section.

InEq. (4.21), 5;,] is obtained on demanding the invariance
of our Stiickelberg supergravity action (4.6) under general
supercoordinate transformation. Now, we derive the
expression for 5;5 explicitly by performing the supergravity
transformation 6§ of 54,. For this, we first need the
expression for J4. Recall that when 6y acts on a chiral
superfield, it is written as [as can also be seen by perform-
ing the Stiickelberg procedure on Eq. (3.17)]

5p = —D®Moy,. (4.23)

Plugging the expression for ®¥ from Eq. (4.2) into the

above equation, we get the expression for dy,

55 = —OM 3" oy. (4.24)

Under the supergravity transformation Jg, 5,4 becomes 5;,,,
as follows®:

= 0y +6¢(5p)

= 5y + 8¢(84) — OM 5 Bep™ oy

= 8y + [0¢, 5] — OM 36" 0y

= 8y — ad;, 0 — OM y8ep™ ). (4.25)

where in the second-last line we have used identity (B1).
Comparing this result (4.25) with (4.21), we find that

+

OM 3 5ep" 0y = —ads, 6 + Z - ads, o

+
k
| ad5¢ 5§

_ + k

= —ZB] ad5¢5§ + Z?
k=0

—(1 —25k1)ad 55

(4.26)

where B; differ from B, only for k = 1:B; = —1/2 and
B}’ =1/2. Using the well-known formula

8Recall the distinction between & and § introduced in 4.5).
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Byt
=—, (4.27)
; k! e’ —1
we also find a closed form for (4.26), given by
_ ad,;
OMN6§¢NaM = ﬁég (428)

The crucial point is that the rhs of the above is a sum of
nested commutators or transformations (where the
Stiickelberg field is not transformed, i.e., it acts like a
parameter). Our goal is to find the explicit expressions for
the supergravity transformations of the Stiickelberg fields,
viz. S, 8L, and 6¢{”. Simply taking the ® = 0 com-
ponent of the lhs of (4.28) gives us these expressions, as
explained below. Using Egs. (3.9), (3.10), and (4.3), we
find that

(OM 566" 0r1) oo
= (O™, 5¢p* 0y + OM ySepP 0y + OM;@5§¢/30M)|®:0
= (85" 0, + 5" 36¢p”0, + 0)|o—o
= 8:p" 0.

The above relation represents the supergravity trans-
formation of ¢, which consists of ¢* and ¢% Since
8e0%0, = (8¢£70,)", from the above relation we can
determine the transformation §¢ of all three Stiickelberg
fields—¢*, {%, and {%. On equating Eq. (4.29) with the
® = 0 component of the rhs of Eq. (4.26), we have the final
expression for the infinitesimal supergravity transformation
of the Stiickelberg fields,

(4.29)

o0 B_
SepM oy = Zk—’;ad§¢5§|®=0. (4.30)
k=0 "°

In the rhs above, a kth-order term is a nested commutator of
the kth order [cf. Eq. (4.22)], which can be a long and bulky
expression to evaluate and simplify. We are interested in
finding concise and explicit expressions for the kth-order
terms. This can be done recursively. We do so in the next
section.

B. Recursive transformation of Stiickelberg fields
order-by-order

We can now use relation (4.30) to find the explicit
expressions for the infinitesimal supergravity transforma-
tion of the Stiickelberg fields at all orders in ¢p*. Besides
the series expression in Eq. (4.30), 6§¢M dy can be
expressed order-by-order in k, as follows:

Sep™ 0y =8, M 0y + 85 MOy + -+ 8 PM 0y + ..,
(4.31)

where 6%) denotes the supergravity transformation of ¢p™ at
the kth order in Stiickelberg fields and linear in . It will
be convenient to define a kth-order transformation param-
eter €X) (¢, €) via the following action on a chiral super-
field: Sy g = ~EXM0y = adjy6; [ef. (3.17)], where
2M — oM gRN [cf. (3.7)]. From Eq. (4.30), it follows
k B} —

From the zeroth order of Eq. (4.30), i.e., for k = 0, we

have

0 =
5é )¢M0M = Oglo—o = 5§<O>(¢,§)|®=0 = _‘:‘(0>M0M|®=0

= —OMNf(O)NaMb:o = —§<O)M6M- (4-32)

Note that 2OM = 2M and EOM — M which implies that

0 -
O M = ~EMoo = —§".

(4.33)
Referring to Eq. (3.11), the above equation can be written
in components, as follows:

5(0)¢ﬂ —&m _

This equation shows that the leading-order transformation
of the Stiickelberg fields is a shift by the parameters —€©M
which is characteristic of how Goldstone fields transform at
the linear order. At linear order, kK = 1, we have

1 _ -
5é )¢M5M = Byad;, O¢lo—o = BT [04- O] lo—o
:Bl_5§(‘)(¢,§)|®:0:_BI_E‘<1)M0M|®:O
= =By OM €N oy |o_o=—BrEMoy. (4.35)

We compute the commutator [5y,8] by looking at
Eq. (3.25) and setting EY to ®” and EY to ENO) = EN
in it. We get

6(1)¢M —

: (DVONEM — EN oy D).

1
5 (4.36)
Note that the terms corresponding to the last two terms in
Eq. (3.25) will vanish here at ® = 0, due to which they do
not contribute here. The above expression can be written
explicitly by substituting the expressions for Z and ® given
in (3.6) and (4.2), respectively. Omitting the partial deriv-
atives, we get

:755(@@,5) is not to be confused with 6ék)¢M . 6ék)¢M Oy =
~ % 0w ) lo—o-
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<6<1)¢D> B < 1 (@#0,E — &0,¢") + i((otE — ec"f) )
8¢ ) \1(g#a,e* — £9,0%) + L (ot — Co'ENy”
= JEOM]y_y =g, (4.37)

This agrees with the results in [29].10 At the next order in
the Stiickelberg fields, i.e., at k = 2, we have

@ _B _B
6BV oy = a2 b| = 2[5y 600 4|

By By _ o
- 755(2)(‘/’*5)‘@:0 - _7“( : aM‘@:o

B5 X B5
T 72 O 5E 0 ‘@:o T TZ‘S(Z)M&M‘

0=0

(4.38)

Now we compute the commutator appearing above by
setting Z in Eq. (3.25) to ®" and ) to E(WV. Tt gives us

1
s pM = — (@9 EMM — (N5, M
£ 12( N Vo) 0=0

1 o=(UM
12 9d¢y, |e-o

S5pPsg- (4.39)

The last term above is nonzero since E(VM|g_, = M
depends on the supergravity fields, as can be seen
from Eq. (4.37). However, since ®¥|y_, is independent
of ¢y, [cf. Eq. (4.3)], (0®"/d¢,,)le—o is 0. Then,
(00 /0p,,)|e—o corresponds to the last term in (3.25)
and does not contribute here. Similarly, it does not
contribute to 6ék)¢M for any k.

Thus, we can set up a recursion procedure that allows us
to compute the supergravity transformation of the
Stiickelberg fields at any order k in ¢ and linearized in

EM . Recall that

By

5ék)¢M — _FE(MM‘@:O, (4.40)
with
g (k=1)M
=M _ E(k—l)NaNq)M _ (I)NaNE(k—I)M _ Twé‘/’%g'
(4.41)

Note that B, = 0 for all odd k except k = 1. So,

'%The additional terms in (4.37), relative to [29], arise from the
fact that we are considering the complete Lagrangian here,
whereas in [29] we truncated to the second order in the fermions.

Sep™ = 8 M + 8 M + -+ 810 + .. (442)

where k is always even when k > 1.

Thus, we have shown the complete N/ = 1 supergravity
action that allows for de Sitter solutions, obtained via the
Stiickelberg procedure [Eq. (4.6)], along with the super-
gravity transformation rules of all the fields appearing in
the action [cf. (3.4), (3.21), Appendix A, and (4.30)].

V. DISCUSSION

In this work, we continued our program of constructing
the superspace version of unimodular gravity via a super-
Stiickelberg mechanism, which we started in [29,38]. In
this construction, the unimodularity condition requires that
the chiral density superfield is constrained via a chiral
superfield Lagrange multiplier. General coordinate invari-
ance and local supersymmetry are then restored using
the super-Stiickelberg trick that we introduced perturba-
tively in [29]. In the present work, we demonstrated the
process of restoring general coordinate invariance and local
supersymmetry through the super-Stiickelberg mechanism
to all orders in the Stiickelberg fields. To do this, we first
introduced finite supergravity transformation in Sec. IIT A.
We used this tool to find the expressions for the super-
gravity transformation of the Stiickelberg fields, given by
Eq. (4.30). With this result in hand, we found recursive
expressions for the transformation of the Stiickelberg fields
to all orders in ¢pM, given by Eq. (4.40). We used this result
to compute the zeroth and first-order transformations, to
show that they are consistent with our previous perturbative
result in [29], as expected.

This work opens up several new directions in which we
can extend the ideas. The first is, once again, inspired by
standard unimodular gravity, in which the Stiickelberg
formulation is more elegantly presented in terms
of a three-form field and the corresponding four-form
field strength, as originally proposed by Heneaux and
Teitelboim [49]. The extension to supergravity is nontrivial,
not least because three-form multiplets are usually intro-
duced by placing the corresponding field strength in the F-
term of a chiral superfield [61].

With our present construction to all orders now at hand, it
would be interesting to compare with the brane and
constrained superfield constructions of Bandos et al. [20]
and those of [14—18], respectively. We have already shown
that the two formulations agree up to cubic order in the
Stiickelberg fields in our previous work [38]. If they agree
to all orders, it could point to a more natural construction at
higher energies, or with more supersymmetry. If they
disagree, it would be interesting to explore the phenom-
enological differences, particularly with a view to describ-
ing the late time dynamics of our Universe. Such
comparisons could provide insights into the formulation’s
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robustness and potential unification implications for theo-
ries incorporating supersymmetry at higher scales.

Finally, we note that one of the original motivations for
this program, at least for two of us, was the desire to build
the model of vacuum energy sequestering [39-45] into a
supersymmetric framework. VES is a low-energy effective
theory describing general relativity with global constraints.
These global constraints ensure that radiative corrections to
the vacuum energy are kept under control, presenting a
possible solution to the cosmological constant problem.
The theory is an extension of Henneaux-Teitelboim’s
formulation of unimodular gravity, where the Planck mass
also behaves as a Lagrange multiplier, directly coupling to a
second species of three-form. To extend this to a theory of
supergravity, perhaps it is enough to promote the Planck
mass to a chiral superfield like we have for the cosmo-
logical constant, coupling it to another set of Stiickelberg
fields in the same way. A supersymmetric theory of VES
could be a route toward building the model into a more
fundamental theory. The resulting theory may yield inter-
esting phenomenological consequences, offering new tests
of the VES mechanism.
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APPENDIX A: INFINITESIMAL SUPERGRAVITY
TRANSFORMATION OF SUPERGRAVITY
FIELDS

The fields belonging to the minimal supergravity multiplet
are ¢, = (eg.wi, b,,M). They transform under infinitesi-
mal diffeomorphism + local supersymmetry transformation
as follows:

i i
O = 22,6 + gM(eaﬂé)“ +ib,e* + gb”(ea,ﬁﬂ)“,

_ N T
O(eoWus = —29,€; — §M (€0,) — ib,€; — gb”eﬁ(aya”)ﬂa,
0eM = —e(c"6"y,, + ib'y, — ic"y,M),
OeaM* = &(=6"0"p,, + ib"y, + i6ty,M"),

5(6,E)bao'z = 6-7:(1//§M’ b)

3.1 i i o -
= [— Vo sia+ 5 €al yay = 5 M Waas + 5 Way”bsa + Wsp" baa — U/apabap)]

4 4 2

Psg = Psg =+ 6§(psg = QPsyq =+ 6§(psg + 6(€.é)§0sg’ (Al)
where
6§eZ = _gbauez - (aﬂfy)eg7
651///4 = _gbaul//z - (aﬂfy)l//g’
Ogb, = —=&"0,b, — (aﬂ?j’“)bﬂ,
8eM = —E49,M, (A2)
and
|
4
_ i ,
) Yoas — Z (l//p(}zpba3 + l//pispb(lfl - l/// 5ab/1(}t):| . (AS)

53 y 1 7 i
—e |y 57(2(1+_€5(il//(l 7}’+_M

4 4

APPENDIX B: USEFUL IDENTITIES WITH PROOFS

In this appendix, we collect a series of identities, and their proofs, which we use throughout the main text. These identities
can be found in [56], while some of the proofs are expanded or added here. Throughout this appendix, Z¥ = (x#, ©%) is the

chiral superspace coordinate.
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Identity Bl. For an arbitrary superfunction z(Z), the operator

[K,7(2)] = K(z(2)),

where K = K" (Z)0y, = K™ (x,©)d,, + K*(x,©)d,.

Proof. We take a test function y(Z) of supercoordinate Z". We have

K(2(2)x(2)) = KMoy (z(2)x(2))

= (KMye)y + (—1) (KM )
= KMoy (ty) — t(KMoyy) = (KMoyt)y

= K(zy) —7(Ky) = (Kz)yx
= [K,7(Z)]- = K(2(2))

Identity B2. For an arbitrary superfunction z(Z),

e K2(Z)ek = e K(2(2)). (B2)

Proof. From Proposition 3.35 in [53], we know that
e Ke(Z2)ek = e 1(2Z),

where adg7(Z) = [K,7(Z)]. Plugging the alternate expres-

sion for [K,7(Z)] from identity (Bl) into the above

equation, we prove identity (B2). [
Identity B3. For a superanalytic function p(Z),

p(eXKZeK) = e Kp(Z)eX. (B3)

Proof. Since a superanalytic function can always be
expressed as a Taylor series around any point Z)/ in its
domain, p(Z) being a superanalytic function can be
expressed as the following Taylor series expanded
around O:

k=00
_ M, 7M M
/)(Z)— aMle__kaZ ]Z 2Z k,
k=0
Then,
ple*ZeX)
k=00
= aMle_”Mke_KZMleKe_KZMZeK...e_KZMkeK
k=0
k=00
= aMlekae_KZMIZMZ_“ZMkeK
k=0
_ K K
— K p(Z)e .

(B1)
(by Leibniz rule)
[x(Z)can be any arbitrary function]. .
|
Identity B4. For a superanalytic function, p(Z),
p(e7XZe") = e7¥(p(2)). (B4)

Proof. Substituting identity (B3) into identity (B2), we
get identity (B4). m
Identity B5. Under the finite passive transformation
Z — 7' = ¢7%Z, asuperanalytic function p(Z) transforms as

pI(Z) =e*p'(2). (B5)

Proof. Under Z — Z' = e XZ,

P(2) = p(e*2)
=p/(e7¥Ze")
=e*p'(2),
where in the second line we took p(Z) = Z in (B4). =
Identity B6. The finite passive transformation Z — Z' =

e~XZ induces the following finite active transformation on
a superanalytic function p(Z):

P(2) = e p(2). (B6)
Proof. We know that under the finite passive trans-

formation Z — Z' = ¢7XZ, a superanalytic function p(Z)
obeys [cf. Eq. (1.11.6) in [56] ]

p(2) =p'(2)
=e*p'(2).

where in the second line we used (B5). The above result
gives identity (B6)." m

""Also proved in Eq. (1.11.8) in [56].
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Identity B7. When Z transforms as Z — Z' = ¢ XZ,

oz .
Ber(aZ—N> = 1'6_K3

where K = KMoy, = (=1)M0y, KM + (=1)M0,, KM,
Proof. See Sec. 1.11.3 in [56]. ]
Identity BS. For arbitrary superfunctions 7(Z) and y(Z),

(B7)

/ d°Z1(Z)-eKy(7) = / d°Z1(Z)eKy(Z).  (BY)
Proof. We know that
/ D57 1(2)-eFy(2) = / dézf(z)-(‘j)" 2(Z).  (BY)

We evaluate every term on the rhs of the above equation
one-by-one. The first term is simplified as f d®Zzy. The
|

/ & Z+(2) 5 Kn(2) =

1 - -
/ d°Z (-KNoy)-KMoyy

second term is
- / &7 1(2)-Ky(2)
—/dGZT-KMgM)(
- / d°Z (tKM) -0y
—/d6Z(—1)M0M(1KM);(
/ dﬁzw

= / d°Z tKy.

YMzKM o),y

In the penultimate line, the total derivative term vanishes
after integration. The third term on the rhs of Eq. (BY) is

:E/dﬁz{(—l)NaN(rKN)}-KMng

(=D"

- / dZ {9y (cKV)KM )0y

2

_1\(N+M)
- % / d°Z oy {on (eK) KM}y

N+M

v /dﬁzW}

MON TKN)KMaM)(

(=)™ m m m
:f/dﬁz —(=1) W}H—l)( N 2KNoy KMoy

1
=3 / d°Z tK?y.

Thus, evaluating the nth-order term on the rhs of Eq. (B9),
we get

/ d°Z(Z)- (_i_f)n

n:

Kn
x(2) :/dGZT—')(.
n!

On summing up all these terms, we prove identity (B8). m

APPENDIX C: ALTERNATIVE DERIVATION OF
THE SUPERGRAVITY TRANSFORMATION OF
STUCKELBERG FIELDS

In this appendix, we give an alternative derivation for the
results in Sec. IV, and in particular Eq. (4.28), describing the
transformation rule for our Stiickelberg fields. This provides

|
a sanity check for our results. We start by generalizing the
following result from unimodular gravity: the Stiickelberg-
dressed coordinate (i.e., the object obtained by performing a
coordinate transformation, and then promoting the param-
eters to fields) should transform like a set of d scalars, with d
being the dimension of our spacetime. In our case, ford = 4
and N =1 supergravity in the chiral formulation, the
Stiickelberg-dressed supercoordinate should transform like
a set of 4 + 2 chiral superfields.

The finite transformation of the supercoordinates is
given in (4.9). After performing the Stiickelberg replace-
ment (4.1), we denote

YM =% zM,

(C1)
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At the linear level in §M , the above transforms, under an
active transformation, as

OYM = §(e™ZM) = ~O;, (5 — 5y)e M

=-0;,(6; — 5p) Y™, (C2)
where we used the variation of the exponential map
5(e™X) = -0 (6X)eX, (C3)
with
_mady o (_1Y)k
O =122 kz%dk (c4)
Using (4.25), we can rearrange (C2) as
8YM = O,, 0 365" 0pYM + O;,ad;, 5 Y™
. | — o™
= 0;,0"30gp" 0p Y™ +- Wad%égYM
= 0, 07 38V 0pYM + 5, YM — Ve g YM. (C5)

On the other hand, as we said, we need Y™ to transform like
a chiral superfield, which, in our notation, is just

oYM = 5.yM. (Co6)
Comparing (C5) with (C6), we get
05,07 eV 0pYM = e~V 5, Y. (C7)
We can invert O, to write
OF 38V opYM — 1 ai‘?ﬂ - e sy, (C8)

The above is true for any Y, so, after some rearrangement,
we have

_ ad5
OPN6§¢NaP - ai‘p
e

d% _ 165’ (Cg)

which matches with (4.28).
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