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Abstract
We use weighted unfoldings of quivers to provide a categorification of mutations of quivers
of types I2(2n), thus extending the construction of categorifications of mutations of quivers
to all finite types.
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1 Introduction andMain Results

This is the second paper in a series started in [9]. In [9], we constructed a categorification of
mutations of non-integer quivers of finite types H4, H3 and I2(2n + 1). The main tool in the
construction is a weighted (un)folding of quivers of types E8, D6 and A2n , the application
of which follows the projection of root systems developed in [19, 20, 26]. The (un)foldings
induce projections of dimension vectors of objects in module categories of integer quivers
to the roots associated to folded quivers; they also induce semiring actions on categories
associated to integer quivers. We also define the tropical seed patterns of folded quivers and
show that our definition is consistent with both the folding and the categorical definition of
g-vectors.

In this paper, we extend the results of [9] to the last remaining finite type of quivers,
I2(2n), thus completing the construction of categorifications of mutations for quivers of all
finite types. Unlike the settings of [9], there is more than one possible folding that could be
considered for every quiver of type I2(2n). More precisely, a quiver of type I2(2n) admits
an unfolding to a quiver of type A2n−1 and to a quiver of type Dn+1. Moreover, there are
three exceptional foldings E6 → I2(12), E7 → I2(18), and E8 → I2(30). We consider all
of these different possible foldings to construct categorifications via semiring actions on the
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categories associated to different integer quivers, and we see that aside from the semiring
action itself, the theory between these different foldings is very much the same. The key
upshot of this is that the module, bounded derived, and cluster categories associated to any
bipartite Dynkin quiver has a non-crystallographic interpretation via a semiring action and
the associated non-integer quiver. This includes the ability to associate non-integer g-vectors
and mutation to the categories of any bipartite Dynkin quiver.

Another difference to the setting of [9] is that for the foldings considered in this paper, it is
more natural to consider the root system of I2(2n) in such a way that it contains roots of two
different lengths. We therefore use non-trivial rescaling throughout the paper. This approach
to the root system generalises how one classically considers the crystallographic root systems
I2(4) = B2 and I2(6) = G2 to higher n. It is entirely possible to categorify the root system of
I2(2n) via an unfolding with a trivial rescaling (and thus with all roots of I2(2n) of the same
length) and a projection map from the categories associated to the unfolding. However, when
it comes to considering the semiring action on the cluster category of an unfolded Dynkin
quiver, the g-vectors one obtains are precisely those that are associated to the non-trivial
rescaling, and thus we consider this approach to be the most fitting.

We recall all necessary definitions and details of the construction from [9] in Section 2.
Our first main result is Theorem 3.5 (see also Corollaries 3.7 and 3.8), in which we

prove that, given a weighted folding F : Q� → QI2(2n), there is a weighting on the rows of
the Auslander-Reiten quiver of mod K Q� and Db(mod K Q�) consistent with F , with the
projection of the dimension vectors of objects, and with the projection of the corresponding
root systems. Objects in the rows of weight 1 in the Auslander-Reiten quiver map precisely
to the roots of I2(2n), thus generalising Gabriel’s Theorem for quivers of type I2(2n). In
fact, Theorem 3.5 says much more than this. The folding F has a strong relationship with the
structure of the Auslander-Reiten quiver. For example, objects that reside in the same column
of the Auslander-Reiten quiver project onto a multiple of the same root, and these multiples
are determined by the weights of the rows. Moreover, Auslander-Reiten translation acts by
rotation with respect to the projection.

The projection map induced by the folding gives rise to a semiring action on the module
and bounded derived categories of the integer quivers, where the semiring (we denote it
by R+) is defined separately for each folding (Section 2.4) using Chebyshev polynomials.
The main results here (Theorem 4.7 and Corollary 4.8) state that mod K Q� has an action
of the corresponding semiring, and there exists a collection of indecomposable objects of
mod K Q� that are in bijection with the positive roots of I2(2n), and these objects generate
the whole category under the action of the semiring. These results naturally extend to the
bounded derived category Db(mod K Q�).

The semiring action also applies to the cluster category of Q�, and this allows us to extend
the results of [4] to categorify mutations of folded quivers by considering distinguished
objects with respect to the action, which we call R+-tilting objects (Section 5). We prove
(Theorem 5.2 and Corollary 5.3) that for a folding F : Q� → QI2(2n), the following hold for
the cluster category C� of Q�: every basic R+-tilting object T ∈ C� (injectively) corresponds
to a basic tilting object ̂T ∈ C�; every basic R+-tilting object has precisely 2 indecomposable
direct summands; every almost complete R+-tilting object has exactly two complements, and
changing the complement corresponds to a single mutation; if T is a basic R+-tilting object,
and AT is the cluster-tilted algebra corresponding to ̂T , then there exists an R+-action on
mod AT .

Finally, we define the tropical seed patterns of folded quivers. We define c-vectors and
C-matrices as in the integer case, and we show that c-vectors of QI2(2n) are roots of I2(2n)
and are thus sign-coherent (Corollary 6.12). Going along the results of [23], this allows us
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to define G-matrices as the inverse of transposed C-matrices, and we define g-vectors as the
column vectors of G-matrices. We then prove (see Section 6 and Theorem 6.15 for details)
that these definitions are compatible with both rescaling and the projection of C-matrices
and G-matrices with respect to the folding. We note that these results provide a categorical
interpretation of g-vectors and G-matrices of QI2(2n) (Corollary 6.17).

The paper is organised as follows. In Section 2 we recall all essential definitions and
details from [9] about mutations, unfoldings, and semirings. In Section 3, we describe the
projections ofmodule and bounded derived categories induced by the (un)foldings of quivers.
Section 4 is devoted to the description of the semiring action on the module and bounded
derived categories. In Section 5, we extend the semiring action to the cluster categories of
the unfolded quivers, thus providing a categorification of mutations of the folded quivers.
Section 6 is devoted to the construction of the tropical seed pattern, and to the compatibility of
the projections and mutations. Finally, Appendix A provides two detailed worked examples
(one for unfoldings of type A2n−1 and one for unfoldings of type Dn+1) that showcases the
entire theory of the paper for the benefit of the reader.

2 Preliminaries

For the benefit of the reader, we will briefly recall some notation and definitions from [9]
that we will use throughout the paper. Further details can be found in the aforementioned
reference.

2.1 General Setup and Notation

Throughout the paper, K is an algebraically closed field and Q� is a quiver of Dynkin type
�. The vertex set of Q� is denoted by Q�0 and the arrow set is denoted by Q�1 . We denote
by K Q� the path algebra of Q� over the field K . All K Q�-modules in this paper are right
modules, and thus we read paths in the quiver from left to right. We denote by mod K Q� the
category of finitely generated right K Q� modules and by Db(K Q�) the bounded derived
category.

Each vertex i ∈ Q�0 simultaneously corresponds to a simple, indecomposable projective,
and indecomposable injective K Q�-module, which we will denote by S(i), P(i) and I (i)
respectively. The shift functor ofDb(K Q�) shall bewritten as� : Db(K Q�)→ Db(K Q�),
and where appropriate, we will adopt the abuse of notation where for each object M ∈
mod K Q�, the object M ∈ Db(K Q�) is the corresponding object concentrated in degree 0.
Additionally, we denote by τA the Auslander-Reiten translate in the category A, where A is
either a module, bounded derived, or cluster category of the appropriate type. Whenever the
context is clear, we will omit this subscript and simply write τ .

2.2 ExchangeMatrices Over a Ring, R-quivers, and the I2(2n) Root System

Let R be a totally ordered ring throughout. Eventually, R will be an integral domain and
torsion-free, though one need not make this assumption for the initial setup. By an exchange
matrix over R, we mean a square skew-symmetrisable matrix with entries in R whose rows
and columns are indexed by a set QB

0 . The R-quiver associated to a skew-symmetric exchange
matrix B = (bi j ) over R is the R-arrow-weighted quiver QB with vertex set QB

0 , arrow set
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QB
1 , and arrow weighting function ξ : QB

1 → R>0 determined such that bi j > 0 if and only
if there exists an arrow a : i → j in QB

1 with weight ξ(a) = bi j .
This paper will be working with a particular family of R-quivers and exchange matrices

over R. Namely, we will be working with exchange matrices of type I2(2n) over the ring
R = Z[2 cos π2n ]whose ordering is induced byR.Wewill denote the corresponding R-quiver
of I2(2n) by

QI2(2n) : [0] 2 cos π2n [1]

where the weight of the unique arrow is given by its label.
The quiver QI2(2n) is associated to a non-crystallographic root system that is related to

the Coxeter group I2(2n) in the sense of [6]. The non-crystallographic root system of type
I2(2n) has 2n positive roots, two of which are simple. Being non-crystallographic, the root
system can appear in various forms which depends on the relative lengths of the simple roots.
This paper will work with two versions of the root system.

Version 1: The standard form. In this version, the positive roots may be partitioned into
two equally sized classes, called short and long positive roots. In particular, one of the simple
positive roots will be longer than the other. The short roots of I2(2n) will be of length λ and
the long roots of I2(2n) will be of length 2λ cos π2n . For the quiver Q

I2(2n) above, we will
choose the convention that the short positive roots correspond to the points λexp( kπ in ) and

the long positive roots correspond to the points (2λ cos π2n )exp(
(2k+1)π i

2n ) for 0 ≤ k ≤ n − 1.
For the opposite quiver (QI2(2n))op, this convention is reversed. See Fig. 1 for an example.
Throughout the paper, we will denote the set of short roots (resp. short positive roots) of
I2(2n) by�s

2n (resp.�
s,+
2n ) and we will denote the set of long roots (resp. long positive roots)

of I2(2n) by �l
2n (resp. �

l,+
2n ).

We call this version of the root system of I2(2n) standard, as it agrees with the root
systems B2 = I2(4) and G2 = I2(6), and is the one that is most compatible with the theory
of semiring actions on module categories that we will develop.

Version 2: The rescaled form. In this version the positive roots all have the same length,
which by convention, we choose to be 1. The positive roots thus correspond to the points
λexp( kπ i2n ) with 0 ≤ k ≤ 2n − 1. We call this the rescaled root system of I2(2n). We only
use the rescaled root system in Section 6.

To make precise which version of the root system we are using when considering the
R-quiver QI2(2n), we will define a valuation on the quiver.

Definition 2.1 Let S be a totally ordered ring. An S-valuation of an R-quiver is a positive
S-vertex-weighting ς : QB

0 → S>0.

Fig. 1 The root systems of type
I2(8) corresponding to the quiver
QI2(2n), with simple positive
roots labelled by α0 and α1. Left:
The standard root system. Right:
The rescaled root system
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The standard form of the root system of type I2(2n) is associated to the R-valuation of
QI2(2n) given by ς([0]) = λ and ς([1]) = 2λ cos π2n . The rescaled version of I2(2n) is
instead given by the R-valuation ς([0]) = ς([1]) = λ. In all but one case in this paper,
λ = 1 (where λ = 2 in the other case).

Henceforth, whenever we refer to the root system of I2(2n) and its roots, we mean the
standard form (version 1) and its elements. We will always refer to version 2 of I2(2n) as the
rescaled root system and its elements as rescaled roots.

2.3 Weighted (un)foldings

Here we will recall the definition of a weighted (un)folding from [9]. The definition is a
generalisation of the classical definition of unfolding due to Zelevinsky (see [11, 12] for
details) and makes use of rescaling introduced by Reading in [25].

Definition 2.2 Let B = (bi j ) be an exchangematrix overZ and B ′ = (b′[i][ j]) be an exchange
matrix over R. Suppose there exists a disjoint collection of index sets {E[i] : [i] ∈ QB′

0 } such
that

⋃

[i]∈QB′
0

E[i] = QB
0 . Then B has the structure of a block matrix (B[i][ j]) with blocks

indexed by QB′
0 . In this case, we call a pair (B, B ′) of exchange matrices an origami pair if

the following hold:

(O1) For each [i], [ j] ∈ QB′
0 , the sum of entries in each column of B[i][ j] is b′[i][ j].

(O2) If b′[i][ j] > 0 then the B[i][ j] has all entries non-negative.
Suppose R is an integral domain and let Frac(R) be the field of fractions of R. An exchange

matrix B over Z is said to be a weighted unfolding of an exchange matrix B ′ over R if the
following hold.

(U1) There exist diagonal matrices W = (wi ) and P = (p[i]) with positive entries in
R ⊆ Frac(R) such that (WBW−1, PB ′P−1) is an origami pair with blocks indexed
by the collection {E[i] : [i] ∈ QB′

0 }. Here, multiplication occurs over Frac(R).
(U2) For any sequence of iterated mutations μ[k1] . . . μ[kl ] of B ′, the pair

(W μ̂[k1] . . . μ̂[kl ](B)W−1, Pμ[k1] . . . μ[kl ](B ′)P−1)

is origami, where each μ̂[ j] is the composite mutation of B given by

μ̂[ j] =
∏

i∈E[ j]
μi .

The composite mutations of B in the above definition are well-defined because the muta-
tions indexed by each block are pairwise commutative. We call the matrix W the weight
matrix of the unfolding (whose entries wi we call weights), and we call P the rescaling
matrix of the unfolding. We also call the exchange matrix B ′ the folded exchange matrix of
B, and we call B the unfolded exchange matrix of B ′.

A weighted unfolding associated to an origami pair (WBW−1, PB ′P−1) equips both the
associated Z-quiver QB and the R-quiver QB′

with an R-valuation. For the Z-quiver, we
denote the valuation with the function κ : QB

0 → R>0 defined by κ(i) = wi for each i ∈ QB
0 .

For the R-quiver QB′
, we denote the valuation with the function ς : QB′

0 → R>0 defined
by ς([i]) = p[i]. To each weighted unfolding B of B ′, we define a weighted folding of
quivers F : QB → QB′

. That is, F is a surjective morphism of quivers such that F(i) = [ j]
whenever i ∈ E[ j]. Given such a folding F , we call QB the unfolded quiver and QB′

the
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folded quiver. In any given folding, the quivers QB and QB′
are implicitly assumed to have

the aforementioned structure of R-valued quivers (with weight function κ for QB and ς for
QB′

).
This paper is concerned with three families of foldings onto R-quivers of type I2(2n).

We call these families foldings of type A, D and E , respectively. The foldings of type A in
particular are consistent with similar constructions in [21, 26].

Remark 2.3 Each of the foldings F� (with � ∈ {A2n−1, Dn+1, E6, E7, E8}) described in
the remainder of this section induces a projection of the roots of � onto the roots of I2(2n).
In fact, this projection is precisely the projection onto the Coxeter plane (studied in detail in
[27]). As such, the Coxeter number of� agrees with the Coxeter number of I2(2n) for each
folding F�.

2.3.1 Foldings of Type A

The first family to consider is the folding from a bipartite quiver of type A2n−1, which we
denote by QA2n−1 . Specifically, we have F A2n−1 : QA2n−1 → QI2(2n), where QA2n−1 is given
by

0 1 2 · · · 2n − 4 2n − 3 2n − 2

with vertex weights such that κ(i) = Ui (cos π2n ), whereUi is the i-th Chebyshev polynomial
of the second kind. Furthermore, each vertex i is such that F A2n−1(i) = [0] if i is even
and F A2n−1(i) = [1] if i is odd. The valuation of QI2(2n) is such that ς([0]) = 1 and
ς([1]) = 2 cos π2n . It is not difficult to verify that on the level of unfoldings, this class of
unfoldings factors through an unfolding of an exchangematrix of Dynkin typeCn . The above
quiver has Z2-symmetry via the action that maps i ∈ QA2n−1

0 to 2n − 2 − i ∈ QA2n−1
0 . This

action also respects the vertex-weights in the sense that Ui (cos π2n ) = U2n−2−i (cos π2n ). In
light of this group action, it is sometimes convenient to work with the alternative labelling

0+ 1+ · · · (n − 2)+ n − 1 (n − 2)− · · · 1− 0− .

2.3.2 Foldings of Type D

The second family of foldings we consider are from bipartite quivers of type Dn+1, which
we denote by QDn+1 . Specifically, we have FDn+1 : QDn+1 → QI2(2n), where QDn+1 is given
by

(n − 1)+

0 1 2 · · · n − 2

(n − 1)−

with vertex weights such that κ(i) = 2Ui (cos π2n ) for 0 ≤ i ≤ n − 2 and κ((n − 1)±) =
Un−1(cos π2n ). Furthermore, each vertex i is such that FDn+1(i) = [0] if i is even and
FDn+1(i) = [1] if i is odd (the same rule applies to the vertices (n − 1)± with the integer
n − 1). The valuation of QI2(2n) is such that ς([0]) = 2 and ς([1]) = 4 cos π2n . It is not
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difficult to verify that on the level of unfoldings, this class of unfoldings factors through an
unfolding of an exchange matrix of Dynkin type Bn . This quiver also has Z2-symmetry via
the action that fixes each i ∈ QDn+1

0 and maps (n − 1)± ∈ QDn+1
0 to (n − 1)∓ ∈ QDn+1

0 .

2.3.3 Foldings of Type E

There are three exceptional foldings of type E . Namely we have foldings

FE6 : QE6 → QI2(12),

FE7 : QE7 → QI2(18),

FE8 : QE8 → QI2(30),

where QE6 , QE7 and QE8 are bipartite R-valued quivers of type E6, E7 and E8, respectively.
Throughout, the valuation of QI2(2n) is such that ς([0]) = 1 and ς([1]) = 2 cos π2n .

The quiver QE6 is given by

v6

0+ 1+ 2 1− 0−

with weighting such that κ(i±) = Ui (cos π12 ), κ(2) = U2(cos π12 ) and

κ(v6) = U3(cos π12 )−U1(cos π12 ) = U3(cos π12 )−U5(cos π12 )+U1(cos π12 ) = √
2.

Moreover, we have FE6(0±) = FE6(2) = [0] and FE6(1±) = FE6(v6) = [1]. This
unfolding can be shown to factor through an unfolding of an exchange matrix of Dynkin type
F4.

The quiver QE7 is given by

˜1

0 1 2 3 ˜2 v7

with weighting such that κ(i) = Ui (cos π18 ), κ(
˜i) = Ui (cos π9 ) and

κ(v7) = U5(cos π18 )−U3(cos π18 ) = 2 cos 5π
18 .

It worth noting that U0(cos π9 ) = U0(cos π18 ), U1(cos π9 ) = U4(
π
18 )−U6(

π
18 )+U2(

π
18 ),

U2(cos π9 ) = U6(cos π18 )−U2(
π
18 ), and that U3(cos π9 ) = U2(cos π18 ). It is therefore conve-

nient to occasionally adopt the labelling˜0 = 0 and˜3 = 2. Moreover, FE7 maps the source
vertices to [0] and sink vertices to [1].

The quiver QE8 is given by

v8

0 1 2 3 4 φ1 φ0
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with weighting such that κ(i) = Ui (cos π30 ), κ(φi ) = ϕUi (cos π30 ) and κ(v8) =
ϕ−1U3(cos π30 ), where ϕ = 2 cos π5 is the golden ratio and ϕ−1 = ϕ − 1 = 2 cos 2π

5 is
its inverse. It is also worth noting that ϕ = U6(cos π30 )−U4(cos π30 ). Similar to above, FE8

maps the source vertices to [0] and sink vertices to [1].

2.4 Chebyshev Polynomials and Associated (semi)rings

As previously mentioned, we denote throughout the paper the i-th Chebyshev polynomial of
the second kind by Ui . That is, Ui satisfies the identity

Ui (cos θ) sin θ = sin((i + 1)θ).

Chebyshev polynomials of the second kind satisfy many identities that are useful and
which appear within the theory of this paper. Many of these useful identities are highlighted
in [9, Lemma 4.1], which we restate (and adapt to our specific context) here for the benefit
of the reader.

Lemma 2.4 ([9], Lemma 4.1) Define a sequence (θi )i∈Z≥0 by θi = Ui (cos π2n ). Then

(a) θ1 = 2 cos π2n ,
(b) θ2n−1 = 0,
(c) θn−1−i = θn−1+i

(d) θ2n−1+i = −θ2n−1−i for i ≤ 2n − 1
(e) θiθ j = ∑ j

k=0 θi− j+2k for j ≤ i ,
(f) θi > 1 for 0 < i < 2n − 2.

In [9], we defined a family of rings related to Chebyshev polynomials of the second
kind that would later be used to define a semiring action on the module, derived and cluster
categories of unfolded quivers. We will do the same here, except the (semi)rings we consider
in this paper will be slightly different.

Throughout the paper, denote χ(2n) = Z[2 cos π2n ] for each n ≥ 2. Now consider the ring

Z2n = Z[x]/(Un(
x
2 )−Un−2(

x
2 ))

Since Chebyshev polynomials of the second kind satisfy the product rule given in
Lemma 2.4(e), it is not hard to verify that U2n−1(

x
2 ) = 0, Un−1−i (

x
2 ) = Un−1+i (

x
2 ) and

U2n−1+i (
x
2 ) = −U2n−1−i (

x
2 ) in the ring Z2n . In particular, this can be obtained inductively

from the relation Un(
x
2 )− Un−2(

x
2 ) by multiplying by x = U1(

x
2 ) (c.f. [9, Remark 4.3]). It

therefore follows from Lemma 2.4 that there exists a ring epimorphism ζ2n : Z2n → χ(2n)

defined by ζ2n(x) = 2 cos π2n . In fact, it follows from the results of [28] that ζ2n is actu-
ally an isomorphism whenever n is even. On the other hand, when n is odd, we have
χ(2n) ∼= Z[x]/(p2n − q2n), where xp2n = Un(

x
2 ) and xq2n = Un−2(

x
2 ). Most of the

(semi)rings that we consider are given by modifying the ring Z2n in some way.

2.4.1 (Semi)rings of Type A

The following (semi)rings will be used in foldings of type A, which are known to be Verlinde
fusion rings (c.f. [10, Example 4.10.6]).

Definition 2.5 For each n ≥ 2, define the families of commutative rings

χ A2n−1 = Z[ψ2, ψ4, . . . , ψ2n−2] ⊂ χ̂ A2n−1 = Z[ψ1, ψ2, ψ3, . . . , ψ2n−2],
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subject to the following product rule for any 1 ≤ j ≤ i ≤ 2n − 2:

ψiψ j = ψ jψi =
j

∑

k=0

ψi− j+2k,

where any elementψk with k /∈ {1, . . . , 2n−2} resulting from the above product is such that
ψ0 = 1, ψ2n−1 = 0 and ψ2n+k = −ψ2n−2−k . It is easy to check that, after cancellation, the
above product will always produce a sum of elements ψk with positive coefficients. Thus, it
makes sense to define the corresponding semirings:

χ
A2n−1+ = Z≥0[ψ2, ψ4, . . . , ψ2n−2] ⊂ χ̂

A2n−1+ = Z≥0[ψ1, ψ2, ψ3, . . . , ψ2n−2],
which are subsemirings of χ A2n−1 and χ̂ A2n−1 respectively.

The ring χ̂ A2n−1 is related to the ring Z2n by forgetting the relations Un−1+i (
x
2 ) −

Un−1−i (
x
2 ) for i ≤ n − 1 and preserving the relation U2n−1(

x
2 ). In particular, we have

χ̂ A2n−1 ∼= Z[x]/(U2n−1(
x
2 )),

where each elementψi corresponds toUi (
x
2 ) (and 1 = ψ0 corresponds to 1 = U0(

x
2 )). From

this isomorphism, we can deduce the following.

Lemma 2.6 The set BA2n−1 = {ψ0, ψ1, . . . , ψ2n−2} is a Z-basis of χ̂ A2n−1 .

Proof Since χ̂ A2n−1 ∼= Z[x]/(U2n−1(
x
2 )), one can deduce by iterative products by x that the

elements of the set {Ui (
x
2 ) : i ≥ 2n − 1} are Z-linearly dependent to the elements in the set

{Ui (
x
2 ) : 0 ≤ i ≤ 2n − 2}. Specifically, U(2n−1)i+ j = −U(2n−1)i− j for any i, j ≥ 0. Since

Chebyshev polynomials of the second kind are Z-linearly independent within the ring Z[x],
it is clear that the elements of {Ui (

x
2 ) : 0 ≤ i ≤ 2n − 2} are Z-linearly independent within

the ring Z[x]/(U2n−1(
x
2 )). The result then follows from the isomorphism. �

The element ψ2n−2 ∈ χ̂ A2n−1 (or equivalently, U2n−2(
x
2 ) ∈ Z[x]/(U2n−1(

x
2 ))) is repre-

sentative of the group symmetry of A2n−1. In particular, ψ2n−2ψi = ψ2n−2−i . We can thus
also write

χ̂ A2n−1 ∼= Z[x, y]/(Un(
x
2 )− yUn−2(

x
2 ), yUn−1(

x
2 )−Un−1(

x
2 ), y

2 − 1),

where each ψi corresponds toUi (
x
2 ) and y corresponds to ψ2n−2. This second isomorphism

is useful for the next family of (semi)rings.

2.4.2 (Semi)rings of Type D

In the next family of (semi)rings, we use a signed notation on the elements. Here, elements
ψ+
i andψ−

i are distinct, but in some statements we collectively refer to them asψ±
i . We also

have statements dependent on elements which either have the same sign or opposite signs.
For example, by ψ±

i ψ
±
j , we mean either ψ+

i ψ
+
j or ψ−

i ψ
−
j . On the other hand, by ψ±

i ψ
∓
j ,

we mean ψ+
i ψ

−
j or ψ−

i ψ
+
j .

Definition 2.7 Define commutative (semi)rings of type D4 by

χD4 = Z[g] ⊂ χ̂D4 = Z[g, ψ1],
χ
D4+ = Z≥0[g] ⊂ χ̂

D4+ = Z≥0[g, ψ1],
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satisfying the relations g3 = 1, gψ1 = ψ1 and ψ2
1 = 1 + g + g2. For n > 3, define further

families of commutative (semi)rings of type Dn+1 by

χDn+1 = Z

[

ψ−
0 , ψ

±
2 , . . . , ψ

±
2
⌊

n−1
2

⌋

]

⊂ χ̂Dn+1 = Z[ψ−
0 , ψ

±
1 , ψ

±
2 , ψ

±
3 , . . . , ψ

±
n−1],

χ
Dn+1+ = Z≥0

[

ψ−
0 , ψ

±
2 , . . . , ψ

±
2
⌊

n−1
2

⌋

]

⊂ χ̂
Dn+1+ = Z≥0[ψ−

0 , ψ
±
1 , ψ

±
2 , ψ

±
3 , . . . , ψ

±
n−1],

subject to the following product rules for any 1 ≤ j ≤ i ≤ n − 1:

ψ±
i ψ

±
j =

j
∑

k=0

ωi− j+2k, ψ−
0 ψ

±
j = ψ∓

j , (ψ−
0 )

2 = ψ+
0 = 1,

where each element ωk resulting from the above product is such that

ωk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ψ+
k if k < n − 1,

ψ+
n−1 if k = n − 1 and i + j − n + 1 ≡ 0 (mod 4),

ψ−
n−1 if k = n − 1 and i + j − n + 1 ≡ 2 (mod 4),

ψ−
2n−2−k if k > n − 1.

The ring χ̂D4 is an exceptional case that exploits theZ3 group symmetry of D4, along with
the relation U2(cos π6 ) = 2. Here the element ψ1 is represents U1(cos π6 ) = √

3, and 1, g
and g2 representU0(cos π6 ) = 1. Consequently, ψ2

1 representsU0(cos π6 )+U2(cos π6 ) = 3,
which is given by the element 1 + g + g2. One can show that this is actually the fusion
ring of Tambara-Yamagami type associated to the cyclic group of order 3 (c.f. [10, Example
4.10.5]). It is not difficult to see from this that we have the following.

Remark 2.8 The set BD4 = {ψ0, ψ1, g, g2} is a Z-basis of χ̂D4 , where for later convenience,
we have adopted the notation ψ0 = 1.

For n > 3, the ring χ̂Dn+1 is related to the ring Z2n by adding a generator that represents
the Z2 group symmetry of Dn+1, and by modifying the relations with respect to this group
action. Specifically, we have

χ̂Dn+1 ∼= Z[x, y]/(Un(
x
2 )− yUn−2(

x
2 ), y

2 − 1),

where ψ+
i corresponds to Ui (

x
2 ) and ψ

−
i corresponds to yUi (

x
2 ). One can also see that

χ̂Dn+1 is related to the second isomorphism of the ring χ̂ A2n−1 by forgetting the relation
yUn−1(

x
2 )−Un−1(

x
2 ). An interesting consequence of this is that χ

Dn+1 ∼= χ A2n−1 whenever
n is even. We also have the following.

Lemma 2.9 For n > 3, the set BDn+1 = {ψ±
0 , ψ

±
1 , . . . , ψ

±
n−1} is a Z-basis for χ̂Dn+1 .

Proof Let n > 3 be fixed. We will consider the ring Z[x, y]/(Un(
x
2 )− yUn−2(

x
2 ), y

2 − 1).
It is not difficult to show that, for each 0 ≤ l < 1

2 (n− 1), we can inductively obtain relations

Un+2l(
x
2 ) = yUn−2−2l(

x
2 )

from the relation Un(
x
2 ) = yUn−2(

x
2 ) by iteratively multiplying by U2(

x
2 ). By multiplying

each of these relations by U1(
x
2 ), we obtain further relations

Un+2l−1(
x
2 )+Un+2l+1(

x
2 ) = yUn−3−2l(

x
2 )+ yUn−1−2l(

x
2 ). (†)
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If n is even, then one can further deduce that

yU2l+1(
x
2 ) = U2n−2l−3(

x
2 )+ (−1)lU2n−1(

x
2 ).

On the other hand, if n is odd, then one can deduce thatU2n−1(
x
2 ) = 0, which implies that

the set {Ui (
x
2 ) : i ≥ 2n − 1} is Z-linearly dependent to the set {Ui (

x
2 ) : 0 ≤ i ≤ 2n − 2}.

One can also deduce that y is Z-linearly independent to the set {Ui (
x
2 ) : 0 ≤ i ≤ 2n − 2} in

this case. In addition, for each l > 0, one can deduce the following relations when n is odd.

yU2l(
x
2 ) = U2(n−l−1)(

x
2 )+ (−1)l(U2(n−l)(

x
2 )− y).

Consequently, in both the odd and even cases, the elements of the set {Ui (
x
2 ), yUi (

x
2 ) : 0 ≤

i ≤ n − 1} are Z-linearly independent. These correspond to the elements of the set BDn+1

under the previously stated isomorphism, and thus the elements of BDn+1 are Z-linearly
independent in χ̂Dn+1 . Moreover, the product of any two elements in χ̂Dn+1 is a Z-linear
combination of elements in BDn+1 . Thus, BDn+1 is a Z-basis of χ̂Dn+1 , as required. �

It is also worth noting how the alternating behaviour (of the sign superscript) of the term
ωn−1 in the product rule for χ̂Dn+1 arises from the relations. If i + j − n + 1 ≡ 0 (mod 4)
in a product ψ±

i ψ
±
j which contains a term ωn−1, then there are an even number of terms ωk

with k > n − 1. In this case, we can use the relations (†) with l > 0 to obtain ωn−1 = ψ+
n−1

in the product. On the other hand, if i + j − n + 1 ≡ 2 (mod 4) in a product ψ±
i ψ

±
j which

contains a term ωn−1, then there are an odd number of terms ωk with k > n− 1. In this case,
we must use the relation (†) with l = 0 along with the other relations (†) with l > 0 to obtain
ωn−1 = ψ−

n−1 in the product.

2.4.3 (Semi)rings of Type E

The exceptional (semi)rings of types E6, E7 and E8 largely result from exploiting special
relations that arise from Chebyshev polynomials of the second kind when they are evaluated
at cos π12 , cos

π
18 and cos π30 respectively. We will begin by defining these (semi)rings, and

then provide some additional explanation.

Definition 2.10 Define the following exceptional rings of type E .

χ E6 = Z[ψ−
0 , ψ2]/(S6) ⊆ χ̂ E6 = Z[ψ−

0 , ψ
+
1 , ψ

−
1 , ψ2, ψv6 ]/(̂S6),

χ E7 = Z[ψ2, ˜ψ2]/(S7) ⊆ χ̂ E7 = Z[ψ1, ˜ψ1, ψ2, ˜ψ2, ψ3, ψv7 ]/(̂S7),
χ E8 = Z[ϕ,ψ2]/(S8) ⊆ χ̂ E8 = Z[ψ1, ψ2, ψv8 , ϕ]/(̂S8),

where each (̂Si ) is the ideal generated by a set of relations ̂Si = Si ∪ S′
i with

S6 = {(ψ−
0 )

2 − 1, (ψ2)
2 − 1 − 2ψ2 − ψ−

0 , ψ
−
0 ψ2 − ψ2},

S′
6 = {ψ−

0 ψ
+
1 − ψ−

1 , (ψ
+
1 )

2 − 1 − ψ2, ψ
+
1 ψ2 − ψ+

1 − ψ−
1 − ψv6 , ψ+

1 ψv6 − ψ2},
S7 = {ψ2

2 − 1 − ψ2˜ψ2, ˜ψ
2
2 − 1 − ˜ψ2 − ψ2},

S′
7 = {ψ2

1 − 1 − ψ2, ˜ψ1 − ψ2˜ψ2 + ψ2 + ˜ψ2, ψ1ψ2 − ψ3 − ψ1, ψ1˜ψ1 − ψ3, ψ1˜ψ2 − ψ3 − ψv7 },
S8 = {ϕ2 − ϕ − 1, ψ2

2 − ϕψ2 − ψ2 − 1},
S′
8 = {ψ2

1 − 1 − ψ2, ψ1ψ2 − ψ1 − ϕψv8 , ψ1ψv8 − ϕψ2}.
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Since the product of any two elements with only positive coefficients in the rings χ E6 ,
χ E7 and χ E8 will produce an element which again has only positive coefficients, it is natural
to define semirings χ E6+ , χ E7+ and χ E8+ by restricting the coefficient ring from Z to Z≥0. Later
in the paper, it will be convenient to denote the multiplicative identity in these (semi)rings
by ψ+

0 = 1 ∈ χ̂ E6 and ψ0 = 1 ∈ χ̂ E7 , χ̂ E8 .

Remark 2.11 Note that we could also define semirings χ̂ E6+ and χ̂ E8+ similarly, but we do
not need this in our construction. Moreover, the ring χ̂ E7 is somewhat unusual in that the
product of any two elements with only positive coefficients in this ring will not necessarily
produce an element which has only positive coefficients (see Table 1 for details). It is thus not
possible to define a semiring χ̂ E7+ , and hence it is preferable to avoid working with the notion

of semirings of the form χ̂ Ei+ in this paper. This may be related to the lack of a fusion ring of
type E7, whereas χ̂ E6 and χ̂ E8 can be shown to be the E6 and E8 fusion rings respectively
(see [18] for details).

We can equivalently write the rings χ̂ E6 , χ̂ E7 and χ̂ E8 as the following quotients of
polynomial rings, which makes the connection with Chebyshev polynomials of the second
kind clearer. We leave the reader to check these isomorphisms.

χ̂ E6 ∼= Z[x, y, z]/(S′′
6 ),

χ̂ E7 ∼= Z[x, y, z]/(S′′
7 ),

χ̂ E8 ∼= Z[x, y, z]/(S′′
8 ),

where

S′′
6 = {xz −U2(

x
2 ), yz − z, y2 − 1, z2 − 1 − y}

S′′
7 = {U4(

x
2 )− y −U2(

y
2 ),U5(

x
2 )−U3(

x
2 )− z,U6(

x
2 )−U2(

x
2 )−U2(

y
2 ),

U7(
x
2 )− x −U3(

x
2 ),U8(

x
2 )− 1 − y −U2(

x
2 )}

S′′
8 = {U3(

x
2 )− yz,U4(

x
2 )− yU2(

x
2 ), xz − yU2(

x
2 ), y

2 − y − 1}.
Specifically, each Ui (

x
2 ) corresponds to ψi , and each z corresponds to ψvi (where i ∈

{6, 7, 8} as appropriate). For χ̂ E6 , y corresponds to ψ−
0 . For χ̂ E7 , each Ui (

y
2 ) corresponds

to ˜ψi . For χ̂ E8 , y corresponds to ϕ.
One can also check that we have relations U6(

x
2 ) = yU4(

x
2 ) and U5(

x
2 ) = yU5(

x
2 ) in the

ring Z[x, y, z]/(S′′
6 ). We also have the relations U9(

x
2 ) = U7(

x
2 ) and U3(

y
2 ) = U4(

y
2 ) in the

ringZ[x, y, z]/(S′′
7 ), and the relationU15(

x
2 ) = U13(

x
2 ) in the ringZ[x, y, z]/(S′′

8 ). The rings
χ(12), χ(18) and χ(30) can therefore be considered as quotients of the rings χ̂ E6 , χ̂ E7 and
χ̂ E8 via the map which takes x to 2 cos π2n (with n = 6, 9, 15 for E6, E7, E8 respectively), y
to 1 (for E6) or 2 cos π9 (for E7) or ϕ = 2 cos π5 (for E8), and z to κ(vi ).

Lemma 2.12 The sets

BE6 = {ψ+
0 , ψ

−
0 , ψ

+
1 , ψ

−
1 , ψ2, ψv6},

BE7 = {ψ0, ψ1, ˜ψ1, ψ2, ˜ψ2, ψ3, ψv7},
BE8 = {ψ0, ϕ, ψ1, ϕψ1, ψ2, ϕψ2, ψv8 , ϕψv8}

are Z-bases of the rings χ̂ E6 , χ̂ E7 and χ̂ E8 respectively.
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Proof It is not difficult to verify that the product of any two elements in χ̂ Ei is a Z-linear
combination of elements in BEi — we leave this for the reader to check. It thus remains
to show that the elements in BEi are Z-linearly independent. This largely follows from the
linear independence Chebyshev polynomials of the second kind. Specifically for χ̂ E6 , this
follows from the fact that

y = U4(
x
2 )−U2(

x
2 ),

xy = U5(
x
2 )−U1(

x
2 ),

z = U3(
x
2 )−U5(

x
2 )+U1(

x
2 )

in the ring Z[x, y, z]/(S′′
6 ). For χ̂

E7 , this follows from the fact that

y = U4(
x
2 )−U6(

x
2 )+U2(

x
2 ),

U2(
y
2 ) = U6(

x
2 )−U2(

x
2 ),

z = U5(
x
2 )−U3(

x
2 )

in the ring Z[x, y, z]/(S′′
7 ). For χ̂

E8 , this follows from the fact that

y = U6(
x
2 )−U4(

x
2 ),

z = U5(
x
2 )−U7(

x
2 )+U3(

x
2 ),

xy = U7(
x
2 )−U3(

x
2 ),

U2(
x
2 )y = U4(

x
2 ),

yz = U3(
x
2 ).

in the ring Z[x, y, z]/(S′′
8 ). All of these relations can be obtained by computing Chebyshev

polynomials of the second kind via the identity Ui+1(
x
2 ) = xUi (

x
2 )− Ui−1(

x
2 ) and then by

considering the relations in S′′
6 , S

′′
7 or S′′

8 . �

2.4.4 Partial Orderings on the (semi)rings

The relationship between the above (semi)rings and Chebyshev polynomials of the second
kind is further highlighted by the existence of ring homomorphisms

σ� : χ� → χ(2n)

σ̂� : χ̂� → χ(2n)

ψ•
i �→ Ui

(

cos
π

2n

)

(� ∈ {A2n−1, Dn+1, E6, E7, E8}),
g �→ 1 (� = D4),

˜ψi �→ Ui

(

cos
π

9

)

(� = E7),

ϕ �→ 2 cos
π

5
(� = E8),

ψvi �→ κ(vi ) (� ∈ {E6, E7, E8}),
where n = 6, 9, 15 for � = E6, E7, E8 respectively. In particular, the homomorphisms σ̂�

are epimorphisms (since, in each case, χ(2n) is a quotient of χ�), and σ� is given by pre-
composing σ̂� by the inclusion χ� → χ̂�. These homomorphisms along with the following
will be used at various points in the paper.
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Definition 2.13 Let� ∈ {A2n−1, Dn+1, E6, E7, E8} and let σ (2n) : χ(2n) → R be the canon-
ical embedding. Then χ� has a partial ordering given by

r ≤ s ⇔ r = s or σ (2n)σ�(r) < σ (2n)σ�(s).

This endows χ�+ with a partial ordering in the natural way via the embedding σ�+ : χ�+ →
χ�.

3 The Folding Projections of theModule and Bounded Derived
Categories

In [9], it is shown that a folding onto a quiver of type H3, H4 or I2(2n + 1) induces a map
that projects the dimension vectors of objects in the module and derived categories of the
unfolded quiver to certain multiples of the roots of the folded quiver. Additionally, the folding
induces a weighting on the rows of the Auslander-Reiten quiver of the module and derived
categories associated to the unfolded quiver such that the dimension vectors of the objects
in the rows with weight 1 are projected to the roots of the folded quiver — providing an
analogue of Gabriel’s Theorem (c.f. [8, 14]) for R-quivers. On the other hand, the dimension
vectors of the objects in the rowswith weightw aremapped to thew-multiple of the projected
dimension vector of an object in a corresponding row with weight 1. We will show that the
same is true for all possible foldings onto quivers of type I2(2n). Throughout this section,
we denote by Frac(R) to be the field of fractions of an integral domain R. First let us make
precise the notion of the weighting of the rows of the Auslander-Reiten quiver.

Definition 3.1 Throughout, let F : Q� → QI2(2n) be a folding of quivers from Section 2.3
(so � ∈ {A2n−1, Dn+1, E6, E7, E8}) and let A be either the module or bounded derived
category of the path algebra K Q�. For each i ∈ Q�, we denote by PA

i the row of the
Auslander-Reiten quiver of A containing the module P(i). That is,

PA
i = {[τm P(i)] : m ∈ Z}

where [M] denotes the iso-class of an object M ∈ A. We define the weight of the row PA
i to

be the value εi = κ(i)
ς(F(i)) ∈ Frac(χ(2n)).

Remark 3.2 One may note that since K Q� is representation-finite, we could equivalently
define rows of the Auslander-Reiten quiver by sets

IA
i = {[τm I (i)] : m ∈ Z}.

For the foldings with � ∈ {D2m, E7, E8}, we have PA
i = IA

i . For foldings with
� = A2n−1, we note that PA

i = IA
2n−2−i , which mirrors the relation Ui (cos π2n ) =

U2n−2−i (cos π2n ). We also note in this case that F(i) = F(2n − 2− i). For the foldings with
� = Dn+1 with n even, we have PA

i = IA
i for all i �= (n−1)± and PA

(n−1)± = IA
(n−1)∓ . For

foldings with � = E6, we note that PA
i± = IA

i∓ for i = 0, 1, that PA
i = IA

i for i = 2, v6,
and that F(i±) = F(i∓). It is then easy to see that in all cases, we could equivalently define
the weight of a row containing both P(i) and I ( j) as εi = ε j .

Now we will recall the definition from [9] of the projection map that will be central to this
paper, which we modify slightly to account for the non-trivial R-valuation of QI2(2n).
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Definition 3.3 Given an arbitrary weighted folding F : Q → QI2(2n), define a map
dF : Z

|Q0| → (Frac(χ(2n)))2 by the weighted sum

(ui )i∈Q0 �→
⎛

⎝

∑

F(i)=[0]

κ(i)

ς([0])ui ,
∑

F(i)=[1]

κ(i)

ς([1])ui
⎞

⎠ .

For each object M ∈ mod K Q, we define

δ
mod KQ
F (M) = dF dim(M).

In addition, for each object X = ⊕

j∈Z� j M j ∈ Db(mod K Q), we define

δ
Db(mod KQ)
F (X) =

∑

j even

δ
mod KQ
F (Mj )−

∑

j odd

δ
mod KQ
F (Mj ).

Given any object X ∈ A, whereA is either mod K Q or Db(mod K Q), we call the vector
δAF (X) the F-projected (dimension) vector of X .

Remark 3.4 It is easy to see that δAF (X ⊕ X ′) = δAF (X)+ δAF (X ′) for any object X , X ′ ∈ A.
This fact will be useful in several proofs.

We will now state the main theorem of this section.

Theorem 3.5 Let F : Q� → QI2(2n) be a weighted folding and let A be either mod K Q�

or Db(mod K Q�). Then the following hold:

(a) For any i ∈ Q�0 such that F(i) = [0], we have
δAF (τ

m I (i)) = εiαm,
where αm is the short root corresponding to the point ς([0])exp(mπ in ).

(b) For any i ∈ Q�0 such that F(i) = [1], we have
δAF (τ

m I (i)) = εiβm,
where βm is the long root corresponding to the point ς([1])exp( (2m+1)π i

2n ).

Essentially, the theorem above says that the map δAF maps an indecomposable object in
the categoryA to a specific multiple of a root of the standard root system of I2(2n). In fact, it
says much more than this: objects in the same rowmap to vectors of the same length/multiple
and that the Auslander-Reiten translation of an object corresponds to a rotation of the corre-
sponding vector.

Remark 3.6 As previously mentioned in Remark 2.3, the projection of roots induced by the
folding F : Q� → QI2(2n) is precisely the projection onto the Coxeter plane considered by
Steinberg in [27]. It follows from the work of Steinberg, that a bipartite Coxeter element is
a rotation on the Coxeter plane of order given by the Coxeter number. In our setting, the
Coxeter number is 2n and the Auslander-Reiten translation is a bipartite Coxeter functor ([1,
2]). This offers an explanation as to why the Auslander-Reiten translation of an object X ∈ A
corresponds to a rotation of the vector δAF (X). An example of this is illustrated in Fig. 2.

Before we begin the proof of Theorem 3.5, we will highlight some immediate corollaries
for the benefit of the reader. The first Corollarymay be viewed as a generalisation of Gabriel’s
Theorem to quivers of type I2(2n).
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Fig. 2 The folding F A7 : QA7 → QI2(8). Top: The Auslander-Reiten quiver of mod KQA7 . The category
has Z2-symmetry determined by reflection in the dashed line. Bottom: The non-crystallographic projection
of the Auslander-Reiten quiver of A = Db(mod KQA7 ) under the map δAF , with irreducible morphisms
superimposed. Objects in the same Z2-orbit map to the same point. Objects concentrated in odd (resp. even)
degree map to the points labelled with (resp. without)�. One of the sectors of morphisms is dashed to indicate
that they are not morphisms between objects of degrees k and k − 1, but rather between objects of degrees k
and k + 1. Rays in the Auslander-Reiten quiver map to octagonal arcs in the projection (eg. the blue arrows)
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Corollary 3.7 The map δAF induces a bijection from each row of the Auslander-Reiten quiver
of A to a subset of roots of I2(2n). In particular,

δAF (PA
i ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�
s,+
2n if εi = 1, F(i) = [0] and A = mod K Q�,

�s
2n if εi = 1, F(i) = [0] and A = Db(mod K Q�),

�
l,+
2n if εi = 1, F(i) = [1] and A = mod K Q�,

�l
2n if εi = 1, F(i) = [1] and A = Db(mod K Q�).

Corollary 3.8 For any i ∈ Q�0 and m ∈ Z, the length of the vector δAF (τ
m P(i)) with respect

to the standard basis of R
2 is

�(δAF (τ
m P(i))) = κ(i).

The proof of these results follows the same reasoning as that used for the foldings onto
I2(2n+1) featuring in [9]. The proofworks along these lines:Wefirst show that the the relative
length of the F-projected vectors of any two indecomposable projective (resp. injective)
modules that correspond to the same folded vertex is determined by the R-weights of the
unfolded vertices. Next, we show that theAuslander-Reiten translate of an object corresponds
to an anticlockwise rotation of its F-projected vector by an angle of πn about the origin. The
proof is then finalised with the calculation of the F-projected vectors of two objects (one
corresponding to a short root and the other a long root).

Lemma 3.9 For any i, j ∈ Q�0 such that F(i) = F( j), we have

κ(i)δmod KQ�

F (P( j)) = κ( j)δmod KQ�

F (P(i))

κ(i)δmod KQ�

F (I ( j)) = κ( j)δmod KQ�

F (I (i)).

Proof One can see from the multiplication rule for Chebyshev polynomials of the second
kind that

δ
mod KQ�

F (P(i)) =
{

(0, εi ) if P(i) is simple,

(εi , εi ) if P(i) is non-simple.

δ
mod KQ�

F (I (i)) =
{

(εi , 0) if I (i) is simple,

(4εi cos2 π
2n , εi ) if I (i) is non-simple.

Thus, the result follows from the commutativity of χ(2n). �
Remark 3.10 Recall that �((1, 0)) = ς([0]) = λ and �((0, 1)) = ς([1]) = 2λ cos π2n , where
λ = 1 if � �= Dn+1 and λ = 2 if � = Dn+1. Thus by the law of cosines, the length of the
vector (1, 1) is λ. From this, the proof of the above lemma, and the definition of the foldings,
we can conclude that �(δAF (P(i))) = κ(i). Likewise, we have �(δAF (I (i))) = κ(i).
Lemma 3.11 Let M ∈ A. Then δAF (τM) is obtained from δ

A
F (M) by an anticlockwise rotation

of πn about the origin.

Proof Suppose M ∈ mod K Q� is a non-projective indecomposable. Let

0 → P1 →P0 → M → 0,

0 → τM → I1 →I0 → 0
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be the minimal projective resolution of M and the corresponding injective resolution of τM
given by applying the Nakayama functor ν. Since K Q� is radical square zero, P1 and I0 are
semisimple modules. Consequently, we have

δAF (P1) = (0, r ′), δAF (P0) = (r , r),
δAF (I1) = (4s′ cos2 π

2n , s
′), δAF (I0) = (s, 0).

for some r , r ′, s, s′ ∈ Frac(χ(2n)). But since νP(i) = I (i) for each i ∈ Q�0 , we in fact have
r = s and r ′ = s′. This, along with Remark 3.10, implies that

�(δAF (P0)) = �(δAF (I0)) and �(δAF (P1)) = �(δAF (I1)).
Now note that the vector−δAF (I0) is obtained from δAF (P0) by an anticlockwise rotation of

π
n about the origin. Likewise, δAF (I1) is obtained from−δAF (P1) by an anticlockwise rotation
of πn about the origin. But such a rotation is a linear transformation, and we have

δAF (M) = δAF (P0)− δAF (P1),
δAF (τM) = δAF (I1)− δAF (I0)

by dimension counting the above projective/injective resolutions. Thus, δAF (τM) is an anti-
clockwise rotation of the vector δAF (M) by an angle of πn about the origin.

Now suppose instead that M ∈ Db(mod K Q�) corresponds to an indecomposable
projective module concentrated in some degree k. Then τM ∼= �k+1 I for some indecom-
posable injective module I whose corresponding vertex has the same weight as with M . So
δAF (τM) = −δAF (�k I ), which we have already shown to be the appropriate rotated vector.
By Remark 3.4, we therefore conclude that for any object M ∈ A, the vector δAF (τM) is
obtained from δAF (M) by an anticlockwise rotation of πn about the origin. �

We can now prove Theorem 3.5.

Proof of Theorem 3.5 (a) If F(i) = [0] then I (i) is simple. So δAF (I (i)) = (εi , 0). The result
then follows from Lemma 3.11.

(b) If F(i) = [1] then I (i) is non-simple. As shown in the proof of Lemma 3.11, δAF (I (i))
is given by an anticlockwise rotation of the vector −δAF (P(i)) = (0,−εi ) by π

n about
the origin. Thus, δAF (I (i)) = εiβ0, where β0 is the long root corresponding to the point
ς([1])exp( π i2n ). The result then follows from Lemma 3.11. �
Remark 3.12 The results of this section can be viewed as an ‘unfolded categorification’ of
the root system of type I2(2n). Equivalently, this can be approached from the perspective of
a ‘folded categorification’, as presented in [15]. In particular, Theorem 4.11 of [15] in the
I2(2n) case is related to our Theorem 3.5 with � = A2n−1 and A = mod K QA2n−1 . Note,
however, that Heng uses a two-copy version of the quiver QA2n−1 . Essentially, this means
that Heng’s construction considers the rescaled root system of I2(2n) rather than the standard
root system that we consider in our theorem.

4 The Semiring Actions on theModule and Bounded Derived
Categories

Each folding F : Q� → QI2(2n) and the non-crystallographic projection it induces gives
rise to a semiring action of R+ = χ�+ on mod K Q� and Db(mod K Q�) in the sense of
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[9, Definition 6.1], where χ�+ is as defined in Section 2.4. As in [9, Definition 6.1], we call
the appropriate category an R+-coefficient category when it is equipped with a semiring
action of R+. Whilst the semiring actions are slightly different for each folding, the general
principle underlying each action is the same. We will first define the semiring actions for
A = mod K Q�, as the semiring action on Db(mod K Q�) is a straightforward extension of
this action.

4.1 The Action on Iso-classes of Objects

For each positive root α of I2(2n), define a set of iso-classes

Mα = {[M] : M ∈ A indecomposable and r ′δAF (M) = rα for some r , r ′ ∈ χ(2n)}.
Since Q� is bipartite, it follows from Theorem 3.5 that the iso-classes in Mα bijec-

tively correspond to objects in the same column of the Auslander-Reiten quiver. That is,
Mα = {[τm I (i)] : F(i) = j}, where j = [0] if α ∈ �s,+

2n and corresponds to the point

ς([0])exp(mπ in ), and j = [1] if α ∈ �l,+
2n and corresponds to the point ς([1])exp( (2m+1)π i

2n ).
In both cases, define Mi,α = τm I (i). Hence [Mi,α] ∈ IA

i and ς(F(i))δAF (Mi,α) = κ(i)α.
Consequently, we have

Mα =
{

{[Mi,α] : F(i) = [0]} if α ∈ �s,+
2n

{[Mi,α] : F(i) = [1]} if α ∈ �l,+
2n .

The semiring R+ will act on mod K Q� in such a way that for any positive root α, for
any [M] ∈ Mα and for any r ∈ R+, the object rM will be isomorphic to an object whose
indecomposable direct summands belong to iso-classes inMα .Wewill describe this precisely
for each folding.

4.1.1 Isomorphism Conditions of Type A2n−1

Wewill adopt the unsigned labelling of the vertices for QA2n−1 (the first quiver in Section 2.3).
For any positive root α, we have a function ωα : Mα → χ̂

A2n−1+ defined by ωα([Mi,α]) = ψi

for each [Mi,α] ∈ Mα . Now recall the product rule for the semiring χ̂ A2n−1+ , which gives

ψ jωα([Mi,α]) =
∑

k∈Vji

ψk

for each ψ j ∈ χ A2n−1+ and for some index set Vji ⊂ {0, 1, . . . , 2n − 2}. Since the index j is
even, note that the set Vji consists of indices that are either all odd if i is odd, or all even if i is
even. In particular, this implies that there exists [Mk,α] ∈ Mα for each k ∈ Vji . We will thus

define the semiring action of χ A2n−1+ on mod K QA2n−1 such that the following isomorphism

holds for each positive root α, each [Mi,α] ∈ Mα and each ψ j ∈ χ A2n−1+ .

ψ j Mi,α ∼=
⊕

k∈Vji

Mk,α. (A1)

An example demonstrating the action of χ A2n−1+ on mod K QA2n−1 is given in Section A.1.
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4.1.2 Isomorphism Conditions of Type D4

The semiring action of χD4+ on mod K QD4 is a minor extension of the classical Z3-group
action on mod K QD4 . That is we define for any positive root α

gM0,α ∼= M2+,α, gM2+,α ∼= M2−,α, gM2−,α ∼= M0,α,

gM1,α ∼= M1,α.

The action of χD4+ is only different from the action of Z3 in that we have (r + r ′)M ∼=
rM ⊕ r ′M for any r , r ′ ∈ χD4+ and M ∈ mod K QD4 .

4.1.3 Isomorphism Conditions of Type Dn+1

We assume n ≥ 4, since D3 = A3 and D4 is covered separately. For any positive root α, we
define a map ωα : Mα → χ̂

Dn+1+ by

ωα([Mi,α]) =
{

ψ+
i + ψ−

i if 0 ≤ i < n − 1

ψ±
n−1 if i = (n − 1)±.

For each [Mi,α] ∈ Mα with i �= (n − 1)±, for each 0 ≤ j ≤ n − 1, and for each
0 ≤ k ≤ n − 1, there exist constants qi jk ∈ {0, 1, 2} such that

ψ±
j ωα([Mi,α]) =

n−1
∑

k=0

qi jk(ψ
+
k + ψ−

k )

=
n−2
∑

k=0

qi jkωα([Mk,α])+ qi j(n−1)(ωα([M(n−1)+,α])+ ωα([M(n−1)−,α])).

In particular, qi jk = 0 for all even k if i is odd and qi jk = 0 for all odd k if i is even. We

will thus define the semiring action of χDn+1+ on mod K QDn+1 to be such that the following
isomorphism holds for each positive root α, each [Mi,α] ∈ Mα with i �= (n − 1)± and each

ψ±
j ∈ χDn+1+ .

ψ±
j Mi,α ∼=

n−2
⊕

k=0

M
⊕qi jk
k,α ⊕ (M(n−1)+,α ⊕ M(n−1)−,α)

⊕qi j(n−1) , (D1)

where X⊕m = ⊕m
l=1 X and X⊕0 = 0 for any X ∈ A. This is a slight abuse of notation, as

Mk,α might not exist if qi jk = 0. However, this is not a problem, as we define M⊕0
k,α = 0.

On the other hand, if i = (n − 1)± then

ψ±
j ωα([M(n−1)±,α]) =

{
∑

k∈Vji
(ψ+

k + ψ−
k )+ ψ+

n−1 if j
2 even,

∑

k∈Vji
(ψ+

k + ψ−
k )+ ψ−

n−1 if j
2 odd,

ψ∓
j ωα([M(n−1)±,α]) =

{
∑

k∈Vji
(ψ+

k + ψ−
k )+ ψ−

n−1 if j
2 even,

∑

k∈Vji
(ψ+

k + ψ−
k )+ ψ+

n−1 if j
2 odd.
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for some index set Vji ⊂ {0, . . . , n − 1} whose elements are odd if n − 1 is odd, or even if

n − 1 is even. Thus, we will define the action of χDn+1+ on mod K QDn+1 to be such that

ψ±
j Mi,α ∼=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⊕

k∈Vji
Mk,α ⊕ M(n−1)+,α if i = (n − 1)± and j

2 even

or if i = (n − 1)∓ and j
2 odd,

⊕

k∈Vji
Mk,α ⊕ M(n−1)−,α if i = (n − 1)∓ and j

2 even

or if i = (n − 1)± and j
2 odd.

(D2)

An example demonstrating the action of χDn+1+ on mod K QDn+1 is given in Section A.2.

4.1.4 Isomorphism Conditions of Type E6

Let α be a positive root of I2(12) and letMα be as before. Define a map ωα : Mα → χ̂
E6+ by

ωα([Mi,α]) =
{

ψ±
i if i ∈ {0±, 1±},
ψi if i ∈ {2, v6}.

Then for each i ∈ {0±, 2}, the products ψ−
0 ωα([Mi,α]) and ψ2ωα([Mi,α]) will each be

linear combinations of elements from the set

{ψ+
0 , ψ

−
0 , ψ2} = {ωα([Mi,α]) : F(i) = [0]}.

On the other hand, for each i ∈ {1±, v6}, the products ψ−
0 ωα([Mi,α]) and ψ2ωα([Mi,α])

will each be linear combinations of elements from the set

{ψ+
1 , ψ

−
1 , ψv6} = {ωα([Mi,α]) : F(i) = [1]}.

We will thus define the action of R+ on mod K QE6 to be such that the following isomor-
phisms hold.

ψ−
0 Mi,α ∼=

{

Mj∓,α if i = j± with j ∈ {0, 1},
Mi,α otherwise,

(E6.1)

ψ2Mi,α ∼=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M2,α if i = 0±,
M1+,α ⊕ Mv6,α ⊕ M1−,α if i = 1±,
M0+,α ⊕ M2,α ⊕ M2,α ⊕ M0−,α if i = 2,

M1+,α ⊕ M1−,α if i = v6,
(E6.2)

In particular, this corresponds to the following products in χ̂ E6 .

ψ−
0 ψ

±
0 = ψ∓

0 , ψ−
0 ψ

±
1 = ψ∓

1 , ψ−
0 ψ2 = ψ2, ψ−

0 ψv6 = ψv6 ,
ψ2ψ

±
0 = ψ2, ψ2ψ

±
1 = ψ+

1 + ψv6 + ψ−
1 , ψ2ψ2 = ψ+

0 + ψ2 + ψ2 + ψ−
0 , ψ2ψv6 = ψ+

1 + ψ−
1 .

4.1.5 Isomorphism Conditions of Type E7

For each positive root α of I2(18), define ωα : Mα → χ̂
E7+ by

ωα([Mi,α]) =
{

ψi if i ∈ {0, 1, 2, 3, v7},
˜ψi if i ∈ {˜1,˜2}.
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We can see from Table 1 that we again have that, for each i such that F(i) = [ j], the
productsψ2ωα([Mi,α]) and ˜ψ2ωα([Mi,α]) are both given by linear combinations of elements
from the set {ωα([Mi,α]) : F(i) = [ j]}. Thus, the isomorphism conditions for the folding
FE7 are such that for any positive root α, we have the following.

ψ2Mi,α ∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M2,α if i = 0,

M1,α ⊕ M3,α if i = 1,

M0,α ⊕ M
˜1,α ⊕ M

˜2,α ⊕ M2,α if i = 2,

M1,α ⊕ M3,α ⊕ M3,α ⊕ Mv7,α if i = 3,

M
˜2,α ⊕ M2,α if i =˜1,

M
˜1,α ⊕ M

˜2,α ⊕ M2,α if i =˜2,

M3,α if i = v7,

(E7.1)

˜ψ2Mi,α ∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M
˜2,α if i = 0,

M3,α ⊕ Mv7,α if i = 1,

M
˜1,α ⊕ M

˜2,α ⊕ M2,α if i = 2,

M1,α ⊕ M3,α ⊕ M3,α if i = 3,

M
˜1,α ⊕ M2,α if i =˜1,

M0,α ⊕ M
˜2,α ⊕ M2,α if i =˜2,

M1,α ⊕ Mv7,α if i = v7,

(E7.2)

It is easy to verify that the above is compatible with the relations ˜ψ2
2 = 1 + ˜ψ2 + ψ2

and ψ2
2 = 1 + ψ2˜ψ2. It is also straightforward to check that these actions correspond to the

products ψ2ωα([Mi,α]) and ˜ψ2ωα([Mi,α]) in Table 1.

4.1.6 Isomorphism Conditions of Type E8

For any positive root α of I2(30), we define a map ωα : Mα → χ̂
E8+ by

ωα([Mi,α]) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ψi if i ∈ {0, 1, 2, v8},
ϕψv8 if i = 3,

ϕψ2 if i = 4,

ϕψ j if i = φ j .

Once again, for each i such that F(i) = [ j], the productsψ2ωα([Mi,α]) and ϕωα([Mi,α])
are given by linear combinations of elements in the set {ωα([Mi,α]) : F(i) = [ j]}. Thus, the
isomorphism conditions for this folding are such that for any positive root α, we have the
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following.

ψ2Mi,α ∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M2,α if i = 0,

M1,α ⊕ M3,α if i = 1,

M0,α ⊕ M2,α ⊕ M4,α if i = 2,

M1,α ⊕ M3,α ⊕ Mv8,α ⊕ Mφ1,α if i = 3,

M2,α ⊕ M4,α ⊕ M4,α ⊕ Mφ0,α if i = 4,

M3,α ⊕ Mφ1,α if i = v8,
M3,α ⊕ Mv8,α ⊕ Mφ1,α if i = φ1,
M4,α if i = φ0,

(E8.1)

ϕMi,α ∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Mφ0,α if i = 0,

Mφ1,α if i = 1,

M4,α if i = 2,

M3,α ⊕ Mv8,α if i = 3,

M2,α ⊕ M4,α if i = 4,

M3,α if i = v8,
M1,α ⊕ Mφ1,α if i = φ1,
M0,α ⊕ Mφ0,α if i = φ0,

(E8.2)

We leave it as an exercise to the reader to check that these actions are consistent with the
products in χ̂ E8 .

4.2 The Action onMorphisms

The action of R+ on morphisms in mod K Q� is best described by adopting a particular basis
for the modules. Under this basis, the semiring can be seen to act diagonally on morphisms.
This requires us to establish additional notation for an explicit explanation. As in [9, Section
6], let {ηi : i ∈ Q�0 } be a complete set of primitive orthogonal idempotents of K Q� and
let N be a K Q�-module. Let Ni, j : Ni → N j be the restriction of the linear action of the
unique arrow ai, j : i → j ∈ Q�1 on N to the vector subspace Ni = Nηi , composed with
the canonical surjection onto N j = Nη j . The data given by all vector subspaces Ni and all
linear maps Ni, j entirely determine the structure of N — this is equivalently the module N
expressed as a K -representation of Q�, which in this setting, is more convenient to work
with. For any L ∈ MF andmorphism f ∈ HomMF (N , L), we then recall by Schur’s lemma
that f can be written diagonally as ( fi )i∈Q�0 with fi = f |Ni : Ni → Li .

To define the appropriate basis of ψ j N , first let [Mi,α] ∈ Mα for some positive root α of
I2(2n) and write

ψ j Mi,α ∼=
⊕

k∈Q�0

qi jk
⊕

l=1

Mk,α

for some non-negative integers qi jk determined by the relevant isomorphism conditions. Then
we define the vector subspace (ψ j N )i of ψ j N to be the vector space

(ψ j N )i =
⊕

k∈Q�0

qi jk
⊕

l=1

N (l)k ,
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where each N (l)k is a copy of the vector subspace Nk ⊆ N . For each arrow a : i → i ′ in Q�,
the linear map (ψ j N )i,i ′ : (ψ j N )i → (ψ j N )i ′ is defined blockwise by linear maps

N (l)k → N (l
′)

k′ : v �→ ζ
(l,l ′)
a,k,k′Nk,k′(v)

for some constants ζ (l,l
′)

a,k,k′ ∈ K determined such that the isomorphism conditions hold. Under
such a basis, one can define the action of ψ j on a morphism f = ( fi )i∈Q�0 : N → L by the
morphism ψ j f : ψ j N → ψ j L given by

(ψ j f )i =
⊕

k∈Q�0

qi jk
⊕

l=1

fl .

Finally, we define

(r + r ′) f : (r + r ′)N → (r + r ′)L = r f ⊕ r ′ f : r N ⊕ r ′N → r L ⊕ r ′L

for any r , r ′ ∈ R+, and we define ψ0 = 1 ∈ R+ to act by the identity functor.

Remark 4.1 For the case where � = A2n−1, the semiring action on the category mod K Q�

can also be described via the equivalence given in Theorem 3.1 (and Section 6.3) of [15].

4.3 Basic Properties and Actions on the Bounded Derived Category

Let F : Q� → QI2(2n) be a weighted folding. Since the action of R+ on mod K Q� has been
defined such that certain isomorphism conditions are met and that the actions on morphisms
are diagonalisable with respect to a given basis, it is easy to see that M� = mod K Q�

has the structure of an R+-coefficient category. In particular, the action of any r ∈ R+ is
exact, faithful, and induces an injective map Ext1M�

(M, N ) → Ext1M�
(rM, r N ). As is

the case in [9], it is straightforward to extend this action to the bounded derived category
Db
� = Db(M�). Since r acts by an exact functor on M�, we can define r�M = �rM for

each object M . One then notes that the faithful action of R+ on Ext1M�
-spaces ensures that

the R+-action onDb
� is faithful. One can then see thatDb

� is also an R+-coefficient category.
Throughout, we let A be either of the R+-coefficient categoriesM� or Db

�. We have the
following basic properties.

Remark 4.2 Let M ∈ A be indecomposable and r ∈ R+. Write rM ∼= M1 ⊕ . . . ⊕ Mm ,
where each Mi is indecomposable.

(a) M1, . . . ,Mm reside in the same column of the Auslander-Reiten quiver. In particular, r
commutes with the Auslander-Reiten translate τ .

(b) The Auslander-Reiten quiver starting (resp. ending) in M is mapped under r to the direct
sum of each Auslander-Reiten sequence starting (resp. ending) in Mi .

In [9], the notion of basic and minimal R+-generators was defined. We will briefly recall
those here.

Definition 4.3 SupposeA is an abelian R+-coefficient category and let R be the ring obtained
from R+ by applying the Grothendieck group construction on the additive commutative
monoid structure of R+. We say that an object N ∈ A is R+-generated by M ∈ A if for
some r , r ′ ∈ R+, there exists a split exact sequence

0 → r ′M → rM → N → 0.
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Similarly for a triangulated R+-coefficient category A, we say an object N ∈ A is R+-
generated by M ∈ A if for some r , r ′ ∈ R+, there exists a split triangle

r ′M → rM → N → �r ′M

with monic first morphism. In both the abelian and triangulated settings, we can equivalently
say that N is R+-generated by M ∈ A if rM ∼= r ′M ⊕ N . We call the pair (r , r ′) the
R+-generating pair of N by M and call the value r − r ′ ∈ R the R-index of N with respect
to M . We denote the class of all objects R+-generated by M in a category A by GM .

Given a set � of objects ofA, we denote byA(�) the full subcategory ofAwhose objects
are R+-generated by the objects in �. The objects of A(�) may be endowed with a partial
ordering by defining N1 ≤ N2 if and only if N1 ∼= N2 or there exists M ∈ � such that N1 is
R+-generated by M with the pair (r1, r ′

1) and N2 is R+-generated by M with the pair (r2, r ′
2)

and r1 + r ′
2 < r2 + r ′

1.
We say� is a set of R+-generators forA ifA(�) � A.We say� is basic if the elements of

� are pairwise non-isomorphic indecomposable objects. We say a basic set of R+-generators
� is minimal if for any other basic set of R+-generators �′, there exists an injective map of
sets θ : � → �′ and inclusions ι : � → �∪�′ and ι′ : �′ → �∪�′ such that ι(M) ≤ ι′θ(M)
for each M ∈ �. We say � is τ -closed if for any (non-projective if A is abelian) M ∈ �, we
have τM ∈ �.

For the foldings outlined in this paper, there is a close relationship between the projection
map δAF and R+-generated objects. The proof of the following remarks is identical to [9,
Section 6].

Remark 4.4 Recall that for each folding F� we have R+ = χ�+ . Let σ�+ : χ�+ → χ� be the
canonical embedding and let σ� : χ� → χ(2n) be the homomorphism from Section 2.4. Let
�(v) denote the length of the vector v ∈ R

2 with respect to the standard basis of R
2

(a) For any M ∈ A and any r ∈ χ�+ , we have �(δAF (rM)) = σ�σ�+ (r)�(δAF (M)) and
δAF (rM) is collinear to δ

A
F (M).

(b) SupposeA has a set of R+-generators and that N1, N2 ∈ A are indecomposable. Suppose
further that A = M�. Then N1 and N2 have a common χ�+ -generator if and only if
δAF (N1) and δAF (N2) are collinear. Furthermore, N1 < N2 if and only if δAF (N1) and
δAF (N2) are collinear, and �(δAF (N1)) < �(δ

A
F (N2)).

On the other hand, ifA = Db
�, then N1 and N2 have a common χ�+ -generator if and only

if N1 and N2 are concentrated in the same degree and δAF (N1) and δAF (N2) are collinear.
Furthermore, N1 < N2 if and only if N1 and N2 are concentrated in the same degree,
δAF (N1) and δAF (N2) are collinear, and �(δAF (N1)) < �(δ

A
F (N2)).

One of the main results of [9] is that the R+-coefficient categories that arise from fold-
ings onto quivers of type H4, H3 and I2(2n + 1) all have basic, minimal, τ -closed sets of
R+-generators that are unique up to isomorphic elements. The same is not always true for
R+-coefficient categories that arise from foldings onto quivers of type I2(2n) (except for
the foldings FE7 and FE8 ). One always has sets of basic, τ -closed R+-generators, but the
condition that is lost is the minimality condition. The problem in this setting is, in effect,
the category is too big. One has non-isomorphic indecomposable objects that map to the
same (multiple of a) root, which leads to some objects being incomparable under the partial
ordering. This happens precisely when there is a Z2-action on the category and when an
object is not stable under this action. So to fix this, we need a weaker notion of minimality
that takes into account the group action.
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Lemma 4.5 Let G ⊆ U (R+) be a subgroup of the group U (R+) of multiplicative units of
R+. Suppose that there exists a set � of R+-generators for A. Then for each g ∈ G and
M ∈ �, the set

�gM = (� \ {M}) ∪ {gM}
is a set of R+-generators for A
Proof Since G is a multiplicative group embedded in the semiring R+, it follows that M is
R+-generated by gM by the pair (g−1, 0). This recovers the original set�. Hence,A(�gM ) �
A(�) � A, as required. �

The above lemma implies that we have an equivalence relation ∼G on sets of R+-
generators whenever there is a group embedded in R+. That is, we say that � ∼G �′ if
and only if for each M ∈ �, there exists gM ∈ G such that �′ = {gMM : M ∈ �}.
Definition 4.6 Let G ⊆ U (R+) be a subgroup of the group U (R+) of multiplicative units
of R+. We say that a basic set of R+-generators � is G-minimal if for any basic set of
R+-generators �′

�G �, there exists an injective map of sets θ : � → �′ and inclusions
ι : � → � ∪ �′ and ι′ : �′ → � ∪ �′ such that ι(M) ≤ ι′θ(M) for each M ∈ �.

From the above definition, we could equivalently define a minimal set of R+-generators �
to be one that is Z1-minimal, where Z1 is the trivial subgroup of U (R+). For each semiring
χ�+ , we will fix a subgroup G� ⊆ U (χ�+ ). In particular, we will define

G� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{1, ψ2n−2} ∼= Z2 if � = A2n−1,

{1, g, g2} ∼= Z3 if � = D4,

{1, ψ−
0 } ∼= Z2 if � ∈ {Dn+1, E6},

{1} ∼= Z1 if � ∈ {E6, E7}.
It is not difficult to see from Lemma 2.4(f) and the homomorphism σ�σ�+ that we actually

have G� = U (χ�+ ) in each case. Moreover, there exists no non-trivial proper subgroup
G ′ ⊂ G� in each case..

Theorem 4.7 Let F� : Q� → QI2(2n) be the weighted folding of type �. Then there exists
a basic, τ -closed set of R+-generators of A, where R+ = χ�+ . In particular, we have the
following.

(a) If � = A2n−1, then there exist four distinct (up to isomorphic elements) such sets of
χ

A2n−1+ -generators that are Z2-minimal. Namely,

�i, j = {M ∈ A : [M] ∈ PA
i ∪ PA

j }
with i ∈ {0, 2n − 2} and j ∈ {1, 2n − 3}. These are pairwise equivalent under ∼Z2 .

(b) If � = D4, then there exist three distinct (up to isomorphic elements) such sets of
χ
D4+ -generators that are Z3-minimal. Namely,

�i = {M ∈ A : [M] ∈ PA
i ∪ PA

1 },
with i �= 1. In addition, �i ∼Z3 � j for any distinct i, j �= 1.

(c) If � = Dn+1, then there exist two distinct (up to isomorphic elements) such sets of
χ
Dn+1+ -generators that are Z2-minimal. Namely,

�± = {M ∈ A : [M] ∈ PA
i ∪ PA

(n−1)±},
where i = 0 if n is even and i = 1 if n is odd. In addition, �+ ∼Z2 �

−.
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(d) If � = E6, then there exist four distinct (up to isomorphic elements) such sets of χ E6+ -
generators that are Z2-minimal. Namely,

�(±,±) = {M ∈ A : [M] ∈ PA
0± ∪ PA

1±},
�(±,∓) = {M ∈ A : [M] ∈ PA

0± ∪ PA
1∓}.

These are pairwise equivalent under ∼Z2 .
(e) If� = E7, then there exists a unique minimal such set of χ

E7+ -generators (up to isomor-
phic elements). Namely,

� = {M ∈ A : [M] ∈ PA
0 ∪ PA

v7
}.

(f) If� = E8, then there exists a unique minimal such set of χ
E8+ -generators (up to isomor-

phic elements). Namely,

� = {M ∈ A : [M] ∈ PA
0 ∪ PA

1 }.
Proof (a) We will first show that �0,1 is a set of R+-generators. We have

Mα = {[M0,α], [M2,α], . . . , [M2n−2,α]} (α ∈ �s,+
2n ),

Mβ = {[M1,β ], [M3,β ], . . . , [M2n−3,β ]} (β ∈ �l,+
2n ).

It is easy to see from (A1) that ψ2i M0,α ∼= M2i,α . Thus the iso-classes of Mα are R+-
generated by M0,α . To see that the iso-classes ofMβ are R+-generated by M1,β , first define
r1 = ψ2 and r ′

1 = 1. It then follows from (A1) thatM2i+1,β is R+-generated by (r2i+1, r ′
2i+1),

where r2i+1 = ψ2i + r ′
2i−1 and r

′
2i+1 = r2i−1. Thus by Theorem 3.5 and Remark 4.2, �0,1

is a set of R+-generators for A, which is clearly also basic and τ -closed.
It remains to show that �0,1 is Z2-minimal. By (A1), we have Z2 ∼= {1, ψ2n−2} = GA2n−1

as ψ2n−2Mi,γ ∼= M2n−1−i,γ for any i and positive root γ . From this and Lemma 4.5, we
can see that �0,1 ∼Z2 �2n−2,1 ∼Z2 �0,2n−3 ∼Z2 �2n−2,2n−3. Moreover, �(δA

F�
(M0,α)) <

�(δA
F�
(M2i,α)) for all i �= n − 1 and �(δA

F�
(M1,β)) < �(δ

A
F�
(M2i+1,β)) for all i �= n − 2.

So each �i, j is Z2-minimal by Remark 4.4, as required.
(b) Here, we have Z3 ∼= {1, g, g2} = GD4 . This is thus a consequence of the sole

generating element g ∈ χD4+ being the Z3-group action on the category, along with the fact
that �(δA

F�
(M0,α)) = �(δA

F�
(M2+,α)) = �(δA

F�
(M2−,α)) for each short positive root α.

(c) We will first show that in both the odd and even cases, the sets �± are both basic,
τ -closed sets of R+-generators that are equivalent under the group action Z2 ∼= {1, ψ−

0 } =
GDn+1 . Suppose n is even. In this case we have

Mα = {[M0,α], [M2,α], . . . , [Mn−2,α]} (α ∈ �s,+
2n ),

Mβ = {[M1,β ], [M3,β ], . . . , [M(n−1)+,β ], [M(n−1)−,β ]} (β ∈ �l,+
2n ).

It is straightforward to see from (D1) that M0,α R+-generates the iso-classes inMα – the
argument is identical to that used in type A. We can also see that M(n−1)±,β both R+-generate
the iso-classes inMβ . This follows from (D2), where we can see that each Mn−1−2i,β is R+-
generated fromM(n−1)±,β by the pair (ψ

+
2i , ψ

−
2(i−1)). Thus�

± are both sets of R+-generators
of A.

Now suppose n is odd. In this case we have

Mα = {[M0,α], [M2,α], . . . , [M(n−1)+,α], [M(n−1)−,α]} (α ∈ �s,+
2n ),

Mβ = {[M1,β ], [M3,β ], . . . , [Mn−2,β ]} (β ∈ �l,+
2n ).
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By (D2), M(n−1)±,α R+-generates the iso-classes in Mα in the same way as M(n−1)±,β
does forMβ in the even case. By (D1), M1,β R+-generates the iso-classes inMβ in a similar
way to how M1,β does forMβ in type A— the pairs are the same except with± superscripts.
Thus, �± are again both sets of R+-generators of A.

It now remains to show that these sets of R+-generators satisfy the required properties.
That they are basic and τ -closed follows trivially by construction. The equivalence under∼Z2

is also obvious, as ψ−
0 Mi,γ = Mi,γ for any γ and any i �= (n − 1)±, and ψ−

0 M(n−1)±,γ =
M(n−1)∓,γ . Thus, it remains to show that these sets are Z2-minimal. Here, it is important to
note the following: if [M(n−1)±,γ ] ∈ Mγ for some γ , then every Mi,γ (with i �= (n − 1)±)
does not R+-generate M(n−1)±,γ . This follows from (D1), where we can see that for any
object N that is R+-generated by Mi,γ , M(n−1)+,γ is isomorphic to direct summand of N if
and only if M(n−1)−,γ is isomorphic to direct summand of N . That is, it may be possible to
R+-generateM(n−1)+,γ ⊕M(n−1)−,γ fromMi,γ , but not one of these summands individually.
So even though we may have Mi,γ < M(n−1)±,γ , this is irrelevant, as any set that does not
contain one of M(n−1)±,γ is not a set of R+-generators. As for the set of iso-classes such that
[M(n−1)±,γ ] /∈ Mγ , the Z2-minimality of M0,γ or M1,γ is obvious from Remark 4.4. Hence,
�± are both Z2-minimal.

(d) Let α be a short positive root and β be a long positive root of I2(12). Then we can see
�(i, j) (with i, j ∈ {±,∓}) is a set of R+-generators by the following table of R+-generating
pairs (where columns are R+-generated by rows with pairs in the given cell).

M0±,α M0∓,α M2,α M1±,β M1∓,β Mv6,β
M0±,α (1, 0) (ψ−

0 , 0) (ψ2, 0)
M1±,β (1, 0) (ψ−

0 , 0) (ψ2, 1 + ψ−
0 )

By Theorem 3.5 and Remark 4.2, this is basic and τ -closed, as required. The group is
Z2 ∼= {1, ψ−

0 } = GE6 , and thus it is clear from the table that these sets of R+-generators are
pairwise equivalent under ∼Z2 . To see that these are Z2-minimal, we note that

�(δAF�(M0+,α)) = �(δAF�(M0−,α)) < �(δ
A
F�(M2,α)),

�(δAF�(Mv6,β)) < �(δ
A
F�(M1+,β)) = �(δAF�(M1−,β)),

but also that Mv6,β does not R+-generate either M1±,β (the best we can do is R+-generate
M1+,β ⊕ M1−,β , which is insufficient). Hence, each �

(i, j) is Z2-minimal by Remark 4.4, as
required.

(e) Let α be a short positive root and β be a long positive root of I2(18). Then we can see
� is a set of R+-generators by the following table of R+-generating pairs.

M0,α M
˜1,α M

˜2,α M2,α Mv7,β M1,β M3,β

M0,α (1, 0) (ψ2˜ψ2, ψ2 + ˜ψ2) (˜ψ2, 0) (ψ2, 0)

Mv7,β (1, 0) (˜ψ2, 1) (ψ2, 0)

By Theorem 3.5 and Remark 4.2, � is basic and τ -closed, as required. It also follows from
Remark 4.4 that � is minimal, since

�(δAF�(M0,α)) < �(δ
A
F�(M˜1,α)) < �(δ

A
F�(M˜2,α)) < �(δ

A
F�(M2,α)),

�(δAF�(Mv7,β)) < �(δ
A
F�(M1,β)) < �(δ

A
F�(M3,β)),

as required.
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(f) Let α be a short positive root and β be a long positive root of I2(30). Then we can see
� is a set of R+-generators by the following table of R+-generating pairs.

M0,α M2,α M4,α Mφ0,α M1,β M3,β Mφ1,β Mv8,β
M0,α (1, 0) (ψ2, 0) (ϕψ2, 0) (ϕ, 0)
M1,β (1, 0) (ψ2, 1) (ϕ, 0) (ϕψ2 + 1, ψ2 + ϕ)

By Theorem 3.5 and Remark 4.2, � is basic and τ -closed, as required. It also follows from
Remark 4.4 that � is minimal, since

�(δAF�(M0,α)) < �(δ
A
F�(Mφ0,α)) < �(δ

A
F�(M2,α)) < �(δ

A
F�(M4,α)),

�(δAF�(M1,β)) < �(δ
A
F�(Mv8,β)) < �(δ

A
F�(Mφ1,β)) < �(δ

A
F�(M3,β)),

as required. �
Corollary 4.8 Let F� be a folding onto I2(2n) and let � be a basic, τ -closed set of minimal
(or G�-minimal) set of R+-generators of M�. Then the elements of � are in bijective
correspondence with the positive roots of I2(2n).

Proof We have by construction (and Theorem 3.5) that the setsMα (with α ∈ �+
2n) partition

the iso-classes of indecomposable objects of M�. By Theorem 4.7, � = {Nα : α ∈ �+
2n},

where each [Nα] ∈ Mα . Thus, the elements of � are in bijective correspondence with the
roots in �+

2n , as required. �
An interesting consequence of the above Theorem is the following.

Remark 4.9 Let R+ ⊂ R, where R is the ring obtained by performing theGrothendieck group
construction on the additive commutative monoid structure of R+. Then the Grothendieck
group K0(M�) of the category M� has the structure of an R-module. For each iso-class
[M] ∈ K0(M�), mulitplication by r − r ′ ∈ R (where r , r ′ ∈ R+) is given by (r − r ′)[M] =
[rM] − [r ′M]. Note, however, that unlike the situation in [9], the R-module K0(M�) is not
free.

5 Cluster-R+-tilting Theory for Foldings onto I2(2n)

Cluster algebras and mutations of Dynkin Z-quivers have previously been categorified via
the cluster category (constructed in [4], see [3] for further details). The semiring action on
the category Db

� naturally extends to the cluster category C� = Db
�/〈τDb

�
�−1〉 of Q�. In

particular, we have a canonical triangulated quotient functor E : Db
� → C� (due to [16])

and we define the action of R+ on C� by r E = Er for each r ∈ R+. Given any set of
R+-generators �Db

�
of Db

�, we obtain a set of R+-generators

�C� = {E(M) : M ∈ �Db
�
}

of C�. Moreover, �C� is basic if �Db
�
is basic and �C� is G-minimal if �Db

�
is G-minimal.

For worked examples of the theory that follows, see Section A.

Definition 5.1 Let H be a finite-dimensional hereditary algebra such that mod H is has the
structure of an R+-coefficient category. Let CH be the cluster category of H , and suppose
that � is a set of R+-generators of CH . We say an object T ∈ CH is (cluster)-R+-tilting with
respect to � if the following hold.
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(T1) T ∼= ⊕|T |
i=1 Ti with each Ti ∈ �.

(T2) T is R+-rigid: Ext1C�(T
′, T ′′) = 0 for any T ′, T ′′ ∈ GT .

(T3) T is maximal: If there exists X ∈ � such that T ⊕ X is R+-rigid, then X is isomorphic
to a direct summand of T .

In addition, we say an R+-tilting object T ∈ CH is basic if the direct summands of T are
pairwise non-isomorphic and T is with respect to a basic, G-minimal set of R+-generators,
where G is some (possibly trivial) group embedded in U (R+).

Henceforth, we will assume that � is a basic, τ -closed, G�-minimal set of χ�+ -generators
of C� that corresponds to a basic, τ -closed, G�-minimal set of χ�+ -generators �′ of Db

�

under the quotient functor E : Db
� → C�.

Theorem 5.2 Let T ∼= X1 ⊕ . . .⊕ Xm ∈ C� with each Xi ∈ �. For each i , denote by IXi the
set of all iso-classes of indecomposable objects in C� that are χ�+ -generated by Xi . Then the
following are equivalent.

(a) T is basic χ�+ -tilting with respect to �.
(b) T ∼= X1⊕ X2, where X1, X2 ∈ � reside in (distinct) adjacent columns of the Auslander-

Reiten quiver of C�.
(c) The object

̂T ∼=
m

⊕

i=1

⊕

[Yi ]∈IXi
Yi ∈ C�

is basic tilting.

Proof (c) ⇒ (b): Since ̂T is basic, the direct summands of ̂T are pairwise non-isomorphic.
By construction, this is true only if we have Xi � X j for all i �= j . By Remark 4.2, the
iso-classes in IXi are precisely the iso-classes of indecomposable objects that reside in the
same column as Xi in the Auslander-Reiten quiver of C�. Thus we conclude that ̂T is basic
only if each Xi resides in a distinct column of the Auslander-Reiten quiver of Q�0 . To see
that m = 2, we note that if m �= 2, then |̂T | �= |Q�0 |, and thus cannot be tilting by the results
of [4]. Thus, T ∼= X1 ⊕ X2.

It remains to show that X1 and X2 reside in adjacent columns. Suppose for a contrapositive
argument that this is not the case. Then at least one of X1 and X2 is represented by an object
M1 ∈ Db

� concentrated in degree 0—for convenience,wewill say (without loss of generality)
that this is a representative of X1. Then by assumption, X2 is represented either by another
object M2 concentrated in degree 0, or by an object �P(i) ∈ Db

� for some i ∈ Q�0 .
In the latter case, if P(i) is simple (or equivalently, i is a sink vertex), then M1 � S( j) for

any source vertex j ∈ Q�0 (otherwise, X1 and X2 are adjacent). Thus we must have S(k) ⊆
M1 for some sink vertex k ∈ Q�0 andhenceExt1Db

�

(�S(k),M1) = HomDb
�
(�S(k),�M1) �=

0. But each�S(k) (k a source vertex) is a representative of some object Y2 ∈ C� in the same
column of the Auslander-Reiten quiver as X2 (that is, [Y2] ∈ IX2 ). So Ext1Db

�

(̂T ,̂T ) �= 0,

which implies Ext1C�(
̂T ,̂T ) �= 0, and hence ̂T is not tilting, as required. On the other hand,

if P(i) is not simple (or equivalently, i is a source vertex), then M1 � S( j) for any sink
vertex j ∈ Q�0 (otherwise, X1 and X2 are again adjacent). In this subcase, we trivially
have Ext1Db

�

(�P,M1) = HomDb
�
(�P, �M1) �= 0 for some indecomposable object P in

the same column as P(i), as this occurs as a component of a projective cover of M1 in the
category M�. Thus we again have Ext1C�(

̂T ,̂T ) �= 0, which implies ̂T is not tilting.
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Nowwe consider the former case where we have representatives M1 and M2 both concen-
trated in degree 0. Suppose without loss of generality that M2 resides in a column strictly to
the right of M1 (that is, in the direction of the irreducible morphisms in the Auslander-Reiten
quiver). Then M1 does not correspond to a injective object inM and M2 does not correspond
to a projective object inM (otherwise we are forced to have X1 and X2 in adjacent columns).
Thus by the Auslander-Reiten formula,

dimK Ext1Db
�

(M ′
2,M

′
1) = dimK HomDb

�
(M ′

2, �M ′
1) = dimK Hom1

M�
(M ′

1, τM
′
2),

where each M ′
i is some object in the same column of the Auslander-Reiten quiver as Mi .

This quantity must be non-zero for some choice of M ′
1 and M ′

2, since τM
′
2 is not injective

and thus has a simple projective subobject P such that the inclusion of P into τM ′
2 factors

through M ′
1. This implies that we must have Ext1C�(

̂T ,̂T ) �= 0 in this case, which implies ̂T
is not tilting, as required. This was the final case to consider, and hence we conclude that X1

and X2 must reside in (distinct) adjacent columns of the Aulsander-Reiten quiver.
(b) ⇒ (a): Let Y1 ∈ GX1 and Y2 ∈ GX2 be indecomposable and let M1,M2 ∈ Db

� be
representatives of Y1 and Y2 respectively. Note that by Remark 4.2 that Y1 resides in the same
column as X1 and Y2 resides in the same column as X2 in the Auslander-Reiten quiver of
C�.

If M1 and M2 are concentrated in the same degree, then they also reside in adjacent
columns of the Auslander-Reiten quiver of Db

�, and clearly we have

Ext1Db
�

(M1,M2) = Ext1Db
�

(M2,M1) = 0

So assume M1 and M2 are concentrated in the degrees k and k + 1 (where we
assume without loss of generality that M1 is concentrated in degree k), then clearly we
have Ext1Db

�

(M1,M2) = HomDb
�
(M1, �M2) = 0, since Db

� is hereditary. To compute

Ext1Db
�

(M2,M1) = HomDb
�
(M2, �M1), we note that M2 and �M1 are concentrated in

the same degree. By construction, there are two possibilities: either M2 and �M1 are non-
isomorphic simple objects (which occurs only if M1 and M2 reside in adjacent columns of
Db
�) or�M1 necessarily resides in a column to the left of M2 in the Auslander-Reiten quiver

ofDb
� (since Y1 and Y2 reside in adjacent columns in the Auslander-Reiten quiver of C� and

� � τ in C�). In both cases, we trivially have Ext1Db
�

(Y2, Y1) = 0.

Now assume M1 and M2 are concentrated in the degrees k and k + l with l ≥ 2 respec-
tively. Again we have Ext1Db

�

(M1,M2) = 0 from the fact that Db
� is hereditary and that

Ext1Db
�

(M2,M1) = 0 since �M1 resides in a column to the left of M2 in the Auslander-

Reiten quiver of Db
�.

Since� is a set ofχ�+ -generators, and every objectχ�+ -generated by Xi resides in the same
column as Xi , and we have made an argument based on arbitrary indecomposables in each
column, we have ExtC�(X ′

1, X
′
2) = ExtC�(X ′

2, X
′
1) = 0 for any X ′

1 ∈ GX1 and X ′
2 ∈ GX2 .

By similar arguments to the above, one also has ExtC�(X ′
1, X

′
1) = ExtC�(X ′

2, X
′
2) = 0 for

any X ′
1 ∈ GX1 and X ′

2 ∈ GX2 . Thus, T must be χ�+ -rigid. It is also basic, since X1 and X2

are non-isomorphic by assumption. That T is maximal follows from the fact that there exists
an element r ∈ χ�+ such that every indecomposable object residing in the columns of both
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X1 and X2 belong as subobjects of rT . Namely,

r =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑n−1
j=0 ψ2 j if � = A2n−1,

∑
2
⌊

n−1
2

⌋

j=0 ψ+
2 j + ψ−

2 j if � = Dn+1,

1 + ψ−
0 + ψ2 if � = E6,

1 + ψ2 + ˜ψ2 + ψ2˜ψ2 if � = E7,

1 + ψ2 + ϕ + ϕψ2 if � = E8.

In particular, |rT | = |Q�0 |, where |rT | denotes the number of distinct (up to isomorphism)
indecomposable direct summands of rT . Thus, rT is a rigid object that contains a basic cluster
tilting object as a direct summand. But then if X3 is distinct from X1 and X2 (which since �
is G�-minimal, implies it resides in a distinct column), we must then have direct summands
Z1, Z2 ⊆ r(T ⊕ X3) such that ExtC�(Z1, Z2) �= 0. Hence, T must be maximal and hence
basic χ�+ -tilting with respect to �, as required.

(a) ⇒ (c): This is immediate from the last part of the proof of (b) ⇒ (a). �
Recall from [9] that we call an object T in the cluster category C an almost complete basic

R+-tilting object (with respect to �) if T is R+-rigid and there exists X ∈ � such that T ⊕ X
is basic R+-tilting. We call such an object X a complement to T . The following is a trivial
consequence of the above theorem.

Corollary 5.3 Let T ∈ C�.
(a) If T is basic χ�+ -tilting with respect to �, then T has precisely |QI2(2n)

0 | = 2 direct
summands.

(b) If T is almost complete basic χ�+ -tilting with respect to �, then T is indecomposable
and has precisely two complements.

Also recall from [9] that given a basic R+-tilting object T ∈ C, we call the algebra
EndC(̂T )op the cluster-R+-tilted algebra, where ̂T is the cluster-tilting object given in The-
orem 5.2(c).

Remark 5.4 For any basicχ�+ -tilting objects T1 = X⊕X1, T2 = X⊕X2 ∈ C�, the respective
cluster-χ�+ -tilted algebras AT1 and AT2 are Morita equivalent to either K Q� or (K Q�)op.
In particular, AT1 � K Q� if and only if AT2 � (K Q�)op, and thus changing complement
corresponds to mutation of the folded quiver QI2(2n). Furthermore, the associated module,
bounded derived and cluster categories of the cluster-χ�+ -tilted algebras have the structure
of χ�+ -coefficient categories in the natural way.

6 The c- and g-vectors of ExchangeMatrices of Type I2(2n)

The c- and g-vectors of an integer exchangematrix were introduced in [13]. In [9], we defined
c- and g-vectors for quivers of type H4, H3 and I2(2n + 1). We will do the same now for
quivers of type I2(2n) using similar methods.

6.1 Representations of̂�1

The first step in defining c- and g-vectors for I2(2n) is to realise the exchange matrix of the
unfolded quiver Q� as a block matrix with blocks given (in some way) by representations
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of an associated ring. The situation is slightly more complicated in the I2(2n) case, as on
the one hand we have a subring χ� ⊂ χ̂� whose role is to act on the larger ring, and on the
other hand, the exchange matrix of I2(2n) has a rescaling due to the simple roots being of
different size.

It is helpful to bypass the problems caused by the embedding of rings and different root

sizes by instead considering the doubled quiver ¯̄Q� = Q�  (Q�)op with vertex weights
given as before. That is, Q� has the same R-valuation as given in the folding F�, and (Q�)op

is a copy of this quiver with the same R-valuation, but with the orientation of the arrows
reversed.

Part of the idea here is that the exchange matrix of ¯̄Q� has nicer properties (which
we will later demonstrate), however it is also the most canonical setting when considering
unfoldings of the rescaled/skew-symmetric form of I2(2n) (where roots are considered to be

of the same length). That is, the doubled-quiver ¯̄Q� allows us to consider a folding onto the
‘rescaled’ quiver �QI2(2n), which is the same as QI2(2n), except we now have an R-valuation
of ς([0]) = ς([1]) = λ, where we define

λ =
{

1 if � �= Dn+1,

2 if � = Dn+1.

We thus have a corresponding weighted (double-)folding ¯̄F� : ¯̄Q� → �QI2(2n) such that
¯̄F� maps source vertices in ¯̄Q� to the source vertex [0] ∈ QI2(2n)

0 , and likewise maps sink

vertices to the sink vertex [1] ∈ QI2(2n)
0 .

We will recall the definition of the regular representation of a ring R from [9].

Definition 6.1 Suppose R has a finite Z-basis B. Define a ring homomorphism

ρ : R → Z
|B|×|B| : r �→ ρ(r),

where the j-th column of ρ(r) (with j ∈ B) is the vector (ai j )i∈B given by jr = ∑

i∈B ai j i .
We call the map ρ the regular representation of R with respect to B.

For � ∈ {A2n−1, D4, E6, E7, E8}, we will later see that the regular representation of

χ̂� is sufficient to describe the blocks of the exchange matrix of ¯̄Q�. This motivates the
following definition.

Definition 6.2 Let � ∈ {A2n−1, D4, E6, E7, E8} and consider the Z-bases B� from Sec-
tion 2.4 (and in particular, from Lemmata 2.6 and 2.12 and Remark 2.8). We call the regular

representation ρ� of χ̂� with respect to B� the representation of χ̂� corresponding to ¯̄F�.
The situation for type Dn+1 with n > 3 is slightly more complicated. In this case,

Lemma 2.9 indicates that the ring χ̂Dn+1 has a positive Z-basis

BDn+1 = {ψ±
0 , ψ

±
1 , . . . , ψ

±
n−1}

that is useful to us, but is too big to describe the blocks of the exchange matrix of ¯̄QDn+1 .
Instead, we have the following.

Definition 6.3 Let n > 3 and consider the ideal (and proper submodule) of χ̂Dn+1

〈ψ+
0 + ψ−

0 , ψ
+
1 + ψ−

1 , . . . , ψ
+
n−2 + ψ−

n−2, ψ
+
n−1, ψ

−
n−1〉 ⊂ χ̂Dn+1 ,
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whose integral basis ̂BDn+1 is given by its listed set of generators. From this, define a ring
homomorphism

ρDn+1 : χ̂Dn+1 → Z
n+1×n+1 : r �→ ρDn+1(r),

where the j-th column of ρDn+1(r) ( j ∈ ̂BDn+1 ) is the vector (ai j )i∈̂BDn+1 given by jr =
∑

i∈̂BDn+1 ai j i . We call the map ρDn+1 the representation of χ̂Dn+1 corresponding to ¯̄FDn+1 .

The bases for the above representations have been deliberately chosen such that one has
a bijective map

ϑ� : B� → Q�0 (� ∈ {A2n−1, D4, E6, E7, E8})
̂B� → Q�0 (� = Dn+1, n > 3)

ψi �→ i (� ∈ {A2n−1, E6, E7, E8})
g �→ 2+ (� = D4)

g2 �→ 2− (� = D4)

ψ+
i + ψ−

i �→ i (� = Dn+1, n > 3)

ψ±
n−1 �→ (n − 1)± (� = Dn+1, n > 3)

ψ±
i �→ i± (� = E6)

ϕψi �→ φi (� = E8, i ∈ {0, 1})
ϕψv8 �→ 3 (� = E8)

ϕψ2 �→ 4 (� = E8)

which satisfies κϑ�(e) = σ̂�(e) for each e.
Remark 6.4 Consider the element s ∈ χ̂� with

s =
{

ψ1 � ∈ {A2n−1, D4, E7, E8},
ψ+
1 � ∈ {Dn+1, E6}.

Then we have the following that result from the structure of χ̂�.

(a) For each e ∈ B�, the product se = ∑

e′∈B� ae′e′ is such that each ae ∈ {0, 1}.
(b) There exists an arrow ϑ�(e)→ ϑ�(e′) or an arrow ϑ�(e′)→ ϑ�(e) in Q� if and only

if e′ is a summand of the product se.

(c) Let � be a total ordering of the set ¯̄Q�0 satisfying v0 � v1 for any vertices v0, v1 ∈ ¯̄Q�0
such that ¯̄F�(v0) = [0] and ¯̄F�(v1) = [1]. Then the exchange matrix of ¯̄Q� with rows
and columns ordered with respect to � is given by the block matrix

¯̄B� =
(

0 ρ�(s)
−ρ�(s) 0

)

.

(d) Let < be a total ordering of the set Q�0 . Then the exchange matrix of Q� is

B� = �� ¯̄B� �,
where � is the matrix corresponding to the canonical inclusion Q�0 → ¯̄Q�0 and�� is

the matrix corresponding to the canonical surjection ¯̄Q�0 → Q�0 of Z-bases/index sets
with respect to the order <.
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(e) Since ¯̄Q� = Q�  (Q�)op, the exchange matrix B�⊕ (B�)T is indexed by the set ¯̄Q�0 ,
where ⊕ is the direct sum of linear maps and (B�)T is the matrix transpose of B�. In
particular,

¯̄B� = V (B� ⊕ (B�)T )V−1

where V is the orthogonal permutation matrix that orders the Z-basis/index set for the
rows of B�⊕ (B�)T with respect to � from (c). It therefore follows that, the operation
��(−′) � is left inverse to V (−⊕−T )V−1, where− is a placeholder for a |Q�0 |×|Q�0 |
integer matrix with respect to the ordering<, and −′ is a placeholder for a | ¯̄Q�0 | × | ¯̄Q�0 |
integer matrix with respect to the ordering �.

Remark 6.5 Let e, e′ ∈ B�.
(a) If � �= E7, then ee′ is a sum of positive multiples of elements of B�. Thus the entries

of the matrix ρ�(e) are all positive.
(b) If � = E7 and e /∈ {˜ψ1, ψv7}, then ee′ is also sum of positive multiples of elements of

BE7 and hence the entries of the matrix ρE7(b) are all positive. On the other hand, we
have

ρE7(˜ψ1) =
⎛

⎜

⎝

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 −1

⎞

⎟

⎠ and ρE7(ψv7) =
⎛

⎜

⎝

0 0 0 0 0 0 1
0 0 0 0 0 1 −1
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 −1 1 0 0 0 0

⎞

⎟

⎠

with respect to the ordering ψ0 < ˜ψ1 < ˜ψ2 < ψ2 < ψ1 < ψ3 < ψv7 .

6.2 C-matrices and c-vectors

We shall recall the following general definitions for C-matrices and c-vectors of R-quivers
from [9].

Definition 6.6 Let J be an index set and let TJ be the |J |-regular tree, where any pair of
distinct edges incident to a common vertex in TJ are respectively labelled by distinct indices
in J . Choose a distinguished vertex t0 ∈ TJ and consider an exchange matrix B over a ring
R with rows and columns indexed by J . We define the extended exchange matrix of B over
R to be the 2|J | × |J | matrix

˜Bt0 =
(

Bt0
Ct0

)

,

where Bt0 = B andCt0 is the identity matrix. For any edge t
k

t ′ in TJ , one then defines
matrices

˜Bt =
(

Bt

Ct

)

and ˜Bt ′ =
(

Bt ′
Ct ′

)

such that ˜Bt ′ is obtained from ˜Bt by mutation at k ∈ J . We thus define the mutation of Ct at
k ∈ J as μk(Ct ) = Ct ′ .

With this in mind, we define a tropical y-seed pattern by assigning to each vertex t ∈ TJ

a tropical y-seed {Bt ; ct, j : j ∈ J }, where each ct, j is the j-th column of the matrix Ct .
We call the tropical y-seed at the vertex t0 the initial tropical y-seed. We call the matrices
Ct (where t ∈ TJ ) C-matrices, and we call the vectors ct, j c-vectors. The c-vectors ct0, j in
particular are called the initial c-vectors.
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The folded quivers QI2(2n) arise from skew-symmetrisable exchange matrices BI2(2n) =
(b[i][ j])[i][ j]∈QI2(2n)

0
that have been rescaled to a skew-symmetric exchange matrix

�BI2(2n) = PBI2(2n)P−1 = (�b[i][ j])[i][ j]∈QI2(2n)
0

.

The relationship between these exchange matrices, their respective C-matrices and muta-
tion can be summarised by the following due to [25].

Lemma 6.7 Consider the initial extended exchange matrices
(

BI2(2n)
t0

C I2(2n)
t0

)

and

( �BI2(2n)
t0�C I2(2n)
t0

)

of B I2(2n) and �BI2(2n), respectively. Mutation of B I2(2n) and its C-matrices commutes with
rescaling. In particular, for any vertex t ∈ T

Q
I2(2n)
0

we have

(a) �BI2(2n)
t = PBI2(2n)

t P−1,

(b) �C I2(2n)
t = PC I2(2n)

t P−1.

Proof (a) The effect of rescaling by the diagonal matrix P = (p[i])[i]∈QI2(2n)
0

is such that

�b[i][ j] = p[i]
p[ j]

b[i][ j].

Since the rescaling matrix has positive entries, it is clear from the above and the mutation
formula for exchange matrices that rescaling commutes with mutation. That is,

μ[k]( �BI2(2n)) = Pμ[k](BI2(2n))P−1

for each [k] ∈ QI2(2n)
0 , and thus �BI2(2n)

t = PBI2(2n)
t P−1 as required.

(b) Since initial C-matrices are identity matrices, the extension of the initial rescaled
exchange matrix of type QI2(2n) is such that

( �BI2(2n)
t0�C I2(2n)
t0

)

=
(

PBI2(2n)
t0 P−1

�C I2(2n)
t0

)

=
(

PBI2(2n)
t0 P−1

PC I2(2n)
t0 P−1

)

.

Also recall the mutation formula for C-matrices corresponding to an edge t
[k]

t ′ :

c[i][ j],t ′ =
{

−c[i][k],t if [ j] = [k],
c[i][ j],t + sgn(c[i][k],t )[c[i][k],t b[k][ j],t ]+ otherwise,

where for any value a, sgn(a) denotes the sign of a and [a]+ = max(0, a). From this, it is
clear that mutation of C-matrices also commutes with rescaling. Thus,

�C I2(2n)
t ′ = PC I2(2n)

t ′ P−1,

for each vertex t ′ ∈ T
Q

I2(2n)
0

. �

Since we have weighted foldings F� : Q� → QI2(2n) and ¯̄F� : ¯̄Q� → QI2(2n), each
vertex t ∈ T

Q
I2(2n)
�

is associated to vertices t̂ ∈ TQ�0
and ¯̄t ∈ T ¯̄Q�0

obtained via the unfolding

procedure. That is, if t is obtained from t0 by traversing edges k1, . . . , km in T
Q

I2(2n)
0

, then
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t̂ is obtained from the initial vertex t̂0 ∈ TQ�0
by traversing sequences of edgeŝk1, . . . ,̂km

in TQ�0
, wherêkl corresponds to the composite mutation μ̂[kl ] = ∏

F�(i)=[kl ] μi . Similarly,

¯̄t is obtained from the initial vertex ¯̄t0 ∈ T ¯̄Q�0
by traversing sequences of edges ¯̄k1, . . . , ¯̄km

in T ¯̄Q�0
, where ¯̄kl corresponds to the composite mutation ¯̄μ[kl ] = ∏

¯̄F�(i)=[kl ] μi . The only

vertices ofTQ�0
andT ¯̄Q�0

that wewill consider in this paper are those associated to the vertices

t ∈ T
Q

I2(2n)
0

by unfolding. Thus for the purposes of readability, we will abuse notation and

write t̂ and ¯̄t as t . Likewise, if the context is clear, we will write μ̂[k] and ¯̄μ[k] as μ[k].
The relationship between the C-matrices of the double-unfolded quiver ¯̄Q� and the C-

matrices of the single-unfolded quiver Q� is similar to what happens with rescaling. In
particular, we have the following commutativity properties with the operations ��(−) �
and V (− ⊕ −T )V−1 defined in Remark 6.4(d) and (e).

Lemma 6.8 Consider the initial extended exchange matrices
(

B�t0
C�t0

)

and

( ¯̄B�t0¯̄C�t0

)

of B� and ¯̄B�, respectively. Composite mutation (with respect to unfolding) of ¯̄B� and its
C-matrices commutes with the operation ��(−) �. Similarly, composite mutation of B�

and its C-matrices commutes with the operation V (− ⊕ −T )V−1. In particular, for any
vertex t ∈ T

Q
I2(2n)
0

we have

(a) B�t = �� ¯̄B�t  � and ¯̄B�t = V (B�t ⊕ (B�t )T )V−1,

(b) C�t = �� ¯̄C�t  � and ¯̄C�t = V (C�t ⊕ (C�t )T )V−1.

Proof Similar to the previous lemma, we have
(

B�t0
C�t0

)

=
(

�� ¯̄B�t0 �
�� ¯̄C�t0 �

)

.

Since ¯̄Q� is a disjoint union of Q� and (Q�)op, the result follows from the unfolding
procedure and mutation formulae. The commutativity of V (− ⊕ −T )V−1 with mutation
follows by the same argument. �

In what follows, we will utilise the block matrix structure of unfolded exchange matri-

ces and C-matrices. In particular, for the double-folding ¯̄F�, we will denote by ¯̄B�[i][ j],t
and ¯̄C�[i][ j],t the ([i], [ j])-th block of ¯̄B�t and ¯̄C�t , respectively. Here, we note that ¯̄B[i][ j],t
corresponds to the ([i], [ j])-th entry of Bt under the unfolding procedure.

Proposition 6.9 Let t ∈ T
Q

I2(2n)
0

and let � ∈ {A2n−1, Dn+1, E6, E7, E8}.

(a) For any [i], [ j] ∈ QI2(2n)
0 , there exists r[i][ j],t ∈ χ̂� such that

¯̄C�[i][ j],t = ρ�(r[i][ j],t ).
In particular, r[i][ j],t = ∑

e∈B� aee, where each ae ∈ Z is such that sgn(ae) = sgn(ae′)
for any e, e′ ∈ B�.
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(b) ¯̄C�t is block-sign-coherent. That is for any [i], [ j] ∈ QI2(2n)
0 , the entries of ¯̄C�[i][ j],t are

either all positive or all negative.

(c) Let t
[k]

t ′ be an edge of T
Q

I2(2n)
0

. Then the matrix ¯̄C�t ′ = μ[k]( ¯̄C�t ) is such that

¯̄C�[i][ j],t ′ =
{

− ¯̄C�[i][k],t if [ j] = [k],
¯̄C�[i][ j],t + sgn( ¯̄C�[i][k],t )[ ¯̄C�[i][k],t ¯̄B�[k][ j],t ]+ otherwise,

where sgn( ¯̄C�[i][k],t ) is the sign of the ([i], [k])-th block of ¯̄C�t , and for any matrix A =
(ai j ), we define [A]+ as the matrix whose entries are given by [ai j ]+ = max(0, ai j ).

(d) The blocks of ¯̄C�t commute. That is,

¯̄C�[i][ j],t ¯̄C�[k][l],t = ¯̄C�[k][l],t ¯̄C�[i][ j],t
for any [i], [ j], [k], [l] ∈ QI2(2n)

0 .

Proof The proof of (a)-(d) is completed by induction on composite mutation. The initial

C-matrix of ¯̄Q� is
¯̄C�t0

(

ρ�(1) ρ�(0)
ρ�(0) ρ�(1)

)

,

which clearly satisfies (a), (b) and (d). For the induction argument, we note that the blocks

of any C-matrix ¯̄C�t that satisfies (a) are just representations of the commutative ring χ�.

Thus, (a) clearly implies (d). Moreover, any C-matrix ¯̄C�t that satisfies both (a) and (b) also
satisfies (c) — the proof of this is identical to the proof of [9, Proposition 8.7(b)]. Thus, the

induction argument is completed if we can show that given ¯̄C�t satisfying (a)-(d), any matrix
¯̄C�t ′ that arises from applying (c) satisfies both (a) and (b). The proof is very similar to that
used in [9, Proposition 8.7], except in this paper, we cannot take for granted that (a) implies
(b) — see Remark 6.5(b).

So suppose ¯̄C�t satisfies (a)-(d) and let ¯̄C�t ′ = μ[k]( ¯̄C�t ). Clearly we have

¯̄C�[i][k],t ′ = −ρ�(r[i][k],t ) = ρ�(−r[i][k],t ).

This shows that the particular blocks ¯̄C�[i][k],t ′ are expressible as in (a). Moreover, the

block-sign-coherence of ¯̄C�t then implies that each block ¯̄C�[i][k],t ′ is sign-coherent, so (b) is
satisfied for these blocks too.

For the blocks with [ j] �= [k], we have
¯̄C�[i][ j],t ′ = ρ�(r[i][ j],t )± [ρ�(r[i][k],t )ρ�(±s)]+

= ρ�(r[i][ j],t ± [±sr[i][k],t ]+),
where s is as in Remark 6.4. To see that r[i][ j],t ′ = r[i][ j],t ±[±sr[i][k],t ]+ is as in (a), we note

that since ¯̄C�[i][ j],t ′ is theC-matrix of a direct product of Dynkin quivers, its columns are sign-
coherent (c.f. [7, 13, 22]). In particular, if r[i][ j],t ′ = ∑

e∈B� aee with sgn(ae) �= sgn(ae′) for

some e, e′ ∈ B�, then the column of ¯̄C�[i][ j],t ′ = ρ�(r[i][ j],t ′) that is indexed by 1 ∈ χ̂� is

not sign-coherent — a contradiction. So we must have sgn(ae) = sgn(ae′) for all e, e′ ∈ B�
instead.
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If � �= E7, then Remark 6.5 automatically implies that ¯̄C�[i][ j],t ′ satisfies (b). Otherwise
if � = E7, we note that (b) fails only if a

˜ψ1
, aψv7 �= 0. But by Remark 6.5, the columns

of ρE7(˜ψ1) and ρE7(ψv7) are not sign-coherent. In particular, the columns indexed by ˜ψ1

and/orψv7 in the matrices ρE7(˜ψ1) and ρE7(ψv7) have both positive and negative entries. But

since ¯̄C�[i][ j],t ′ must be column-sign-coherent, this implies that there exist some e1, . . . , em ∈
BE7 \ {˜ψ1, ψv7} such that

ρE7

(

a
˜ψ1

˜ψ1 + aψv7ψv7 +
m

∑

i=1

aei ei

)

is column-sign-coherent (where each ae is as determined from (a) of the proposition). But

since (a) is satisfied, all entries of such a matrix must have the same sign. So ¯̄C�[i][ j],t ′ satisfies
(b), as required.

We have thus shown that any C-matrix produced by composite mutation from some other
C-matrix satisfying (a)-(d) also satisfies (a)-(d). Since the initial C-matrix satisfies (a)-(d),
the induction argument is complete. �

The connection between C-matrices of type � and type I2(2n) is formalised by the
following.

Definition 6.10 Let R = χ(2n) and Frac(R) be its field of fractions. Given a weighted folding
F : Q → Q′, where Q′ is a quiver of type I2(2n), let dF be the map from Definition 3.3.
Suppose there exist i0, i1 ∈ Q0 such that ς([0]) = κ(i0) and ς([1]) = κ(i1). Then define
the matrix F-projection map with respect to (i0, i1) to be the map

dF,i0,i1 : Z
|Q0|×|Q0| → (Frac(R))2×2

(uk)k∈Q0 �→ (

dF (ui0) dF (ui1)
)

where each uk is a column vector. Similarly, define the matrix transpose F-projection map
with respect to (i0, i1) to be the map

dTF,i0,i1 : Z
|Q0|×|Q0| → (Frac(R))2×2

(uk)k∈Q0 �→
(

dF (ui0)
dF (ui1)

)

where each uk is a row vector.

We will henceforth adopt the following notation. For each vertex i ∈ Q�0 ⊂ ¯̄Q�, we
will label the corresponding vertex of the opposite quiver by i ′ ∈ Q�,op0 ⊂ ¯̄Q�. The matrix
projection maps of primary importance are then the maps

(i) d ¯̄F�,0,0′ and dF�,0,1 if � �= E6,
(ii) d ¯̄F�,0+,(0+)′ and dF�,0+,1+ if � = E6.

The only reason to distinguish between the � �= E6 and � = E6 cases here is because,

technically, there are no vertices labelled by 0, 0′ or 1 in QE6 or ¯̄QE6 . For readability purposes,
we will thus write without any ambiguity d ¯̄F� and dF� to represent these maps respectively.

Remark 6.11 It is not difficult to verify that since the vertices of �QI2(2n) have the same
R-valuation, we have d ¯̄F� = dT¯̄F� . However, the same is not true for dF� and dT

F�
.
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Our next set of results follow naturally from the previous proposition. In particular, we
show an analogue of [9, Corollaries 8.8, 8.10].

Corollary 6.12 Let t ∈ T
Q

I2(2n)
0

. Then we have the following.

(a) d ¯̄F�(
¯̄C�t ) = �C I2(2n)

t .

(b) dF�(C
�
t ) = C I2(2n)

t

(c) The c-vectors of �BI2(2n) and BI2(2n) are sign-coherent.
(d) The c-vectors of �BI2(2n) are rescaled roots of I2(2n) and the c-vectors of B I2(2n) are

roots of I2(2n).

Proof For clarity, we will denote the χ(2n)-valuation of �QI2(2n) and QI2(2n) by the func-
tions �ς and ς respectively. In particular, we note that ς([0]) = �ς([0]) = λ and ς([1]) =
2 �ς([1]) cos( π2n ) = 2λ cos( π2n ), where λ = 2 if � = Dn+1 with n > 3 and λ = 1 otherwise.

(a) By Proposition 6.9(a), we have

¯̄C�t =
( ¯̄C�[0][0],t ¯̄C�[0][1],t¯̄C�[1][0],t ¯̄C�[1][1],t

)

=
(

ρ�(r[0][0],t ) ρ�(r[0][1],t )
ρ�(r[1][0],t ) ρ�(r[1][1],t )

)

,

where r[i][ j],t = ∑

e∈B� ae,[i][ j]e with each ae,[i][ j] ∈ Z. It then follows from the definitions
that we have

d ¯̄F�(
¯̄C�t ) = 1

λ

∑

e∈B�

(

ae,[0][0]κϑ�(se) ae,[0][1]κϑ�(se)
ae,[1][0]κϑ�(se) ae,[1][1]κϑ�(se)

)

= 1

λ

(

σ̂�(λr[0][0],t ) σ̂�(λr[0][1],t )
σ̂�(λr[1][0],t ) σ̂�(λr[1][1],t )

)

=
(

σ̂�(r[0][0],t ) σ̂�(r[0][1],t )
σ̂�(r[1][0],t ) σ̂�(r[1][1],t )

)

,

where s = ψ+
0 + ψ−

0 if � = Dn+1 with n > 3 and s = 1 otherwise. In particular, for the
initial C-matrix, we have

d ¯̄F�(
¯̄C�t0 ) =

(

σ̂�(1) σ̂�(0)
σ̂�(0) σ̂�(1)

)

= �C I2(2n)
t0

The proof of statement d ¯̄F�(
¯̄C�t ) = �C I2(2n)

t for each t ∈ T
Q

I2(2n)
0

is then given by an

induction argument on composite mutation, which is identical to the proof of [9, Corollary
8.8].

(b) We will first show that

dF�(�
� ¯̄C�t  �) = P−1d ¯̄F�(

¯̄C�t )P, (∗)
where the operations��(−) � and P−1(−)P are as in Remark 6.4(d) and Lemma 6.7. We
begin by noting that

�� ¯̄C�t  � =
(

��[0]ρ�(r[0][0],t ) �[0] ��[0]ρ�(r[0][1],t ) �[1]
��[1]ρ�(r[1][0],t ) �[0] ��[1]ρ�(r[1][1],t ) �[1]

)

,

where  �[i] is the matrix corresponding to the canonical inclusion { j ∈ Q�0 : F�( j) =
[i]} → ¯̄Q�0 and ��[i] is the matrix corresponding to the canonical surjection ¯̄Q�0 → { j ∈
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Q�0 : F�( j) = [i]} of Z-bases/index sets. That is, ��[i]ρ�(r[i][ j],t ) �[ j] is obtained from

ρ�(r[i][ j],t ) by removing the rows indexed by {k ∈ ¯̄Q�0 : F�(k) �= [i]} and removing the

columns indexed by {k ∈ ¯̄Q�0 : F�(k) �= [ j]}. Thus,

dF�(�
� ¯̄C�t  �) =

(

1
ς([0]) σ̂

�(s[0]r[0][0],t ) 1
ς([0]) σ̂

�(s[1]r[0][1],t )
1

ς([1]) σ̂
�(s[0]r[1][0],t ) 1

ς([1]) σ̂
�(s[1]r[1][1],t )

)

=
⎛

⎝

σ̂�(s[0])
ς([0]) σ̂

�(r[0][0],t ) σ̂
�(s[1])
ς([0]) σ̂

�(r[0][1],t )
σ̂�(s[0])
ς([1]) σ̂

�(r[1][0],t ) σ̂
�(s[1])
ς([1]) σ̂

�(r[1][1],t )

⎞

⎠

=
(

ς([0]) 0
0 ς([1])

)−1 (

σ̂�(r[0][0],t ) σ̂�(r[0][1],t )
σ̂�(r[1][0],t ) σ̂�(r[1][1],t )

)(

σ̂�(s[0]) 0
0 σ̂�(s[1])

)

where

s[0] =
{

ψ+
0 + ψ−

0 if � = Dn+1 with n > 3,

1 otherwise,

s[1] =

⎧

⎪

⎨

⎪

⎩

ψ+
1 + ψ−

1 if � = Dn+1 with n > 3,

ψ+
1 if � = E6,

ψ1 otherwise.

But then σ̂�(s[i]) = ς([i]) for both i ∈ {0, 1}, and hence the rightmost matrix in the
above product is precisely the rescaling matrix P . Thus, the required commutativity relation
(∗) holds. The result then follows from (a) alongside Lemmas 6.7(b) and 6.8(b) and the fact
that the operations ��(−) � and P−1(−)P are invertible.

(c) This follows from (a), (b), and Proposition 6.9(a), as all morphisms involved respect
positivity/negativity.

(d) We note that the module category of K ¯̄Q� is equivalent to the category mod K Q� ×
mod K Q�,op. The category mod K Q�,op also satisfies an analogue of Theorem 3.5, where
the rows of the Auslander-Reiten quiver corresponding to sink vertices now correspond to

short roots and vice versa. Since the c-vectors of ¯̄Q� are±1-multiples of dimension vectors of

indecomposable K ¯̄Q�-modules, (a), (b) and the definition of d ¯̄F� imply that for a C-matrix

�C I2(2n)
t =

(�c[0][0] �c[0][1]
�c[1][0] �c[1][1]

)

= (�c[0] �c[1]
)
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we have �c[0] = δ
mod KQ�

F�
(M) and �c[1] = δ

mod KQ�,op

F�,op
(M ′) for some M ∈ mod K Q� and

M ′ ∈ mod K Q�,op that reside in rows of weight 1, where

F�,op : Q�,op → QI2(2n)

is the folding of the opposite quiver defined in the natural way by mapping sources vertices
to sources and sinks to sinks. It is then clear from Theorem 3.5 that the columns of the
C-matrix C I2(2n)

t given by the inverse rescaling of �C I2(2n)
t are roots of I2(2n), as described

in Section 2.2. �

6.3 G-matrices and g-vectors

Since c-vectors of exchange matrices of type I2(2n) are sign-coherent, we are permitted (by
the results of [23] on the tropical duality of c- and g-vectors) to use the following definition
of G-matrices and g-vectors.

Definition 6.13 Let J be an index set and let B be a |J | × |J | exchange matrix over R
whose c-vectors are sign-coherent. For any t ∈ TJ , we define for each C-matrix Ct the
corresponding G-matrix

Gt = (CT
t )

−1.

We call the collection {Gt : t ∈ TJ } the G-matrices of B and call each column of each
Gt a g-vector of B. We define the mutation of a G-matrix Gt at index k to be the G-matrix

μk(Gt ) = Gt ′ , where t
k

t ′ is an edge in TJ .

Remark 6.14 The results of [23] show that the mutations of G-matrices defined above are
given by the explicit formula provided in [13, (6.12)–(6.13)].

The next theorem shows that all of the definitions of this section are compatible with each
other.

Theorem 6.15 Let t
[k]

t ′ ∈ T
Q

I2(2n)
0

. Then the diagram of Fig. 3 commutes.

Proof We begin by considering the front and back cubes of Fig. 3:

¯̄C�t ¯̄G�t

¯̄C�t ′ ¯̄G�t ′

C�t G�t

C�t ′ G�t ′

(−T )−1

(−T )−1

(−T )−1

(−T )−1μ[k]

μ[k]
μ[k]

μ[k]

��(−) �

��(−) �

��(−) �

��(−) �

C I2(2n)
t G I2(2n)

t

C I2(2n)
t ′ GI2(2n)

t ′

�C I2(2n)
t

�GI2(2n)
t

�C I2(2n)
t ′

�GI2(2n)
t ′

(−T )−1

(−T )−1

(−T )−1

(−T )−1μ[k]

μ[k]
μ[k]

μ[k]

P−1(−)P

P−1(−)P

P(−)P−1

P(−)P−1

Firstly, the left faces commute as a consequence of Lemmas 6.8 and 6.7. Secondly, the
commutativity of the top/bottom squares of both cubes are a trivial exercise in linear algebra
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Fig. 3 The relationship between the different notions of C- and G-matrices for foldings onto I2(2n) can be
described by the above commutative diagram, which forms a tesseract. Arrows have been given different
colours for clarity, where two arrows (and their corresponding operations) pointing in the same ‘dimension’
have the same colour. Notation is derived from Remark 6.4(e), Section 6.2 and Definition 6.10

— for the front cube it is perhaps easier to see with the inverse map V (−⊕−T )V−1. Thirdly,
the front and back faces of both cubes follow by definition, and this is compatible with the
classical notion of G-matrix mutation due to the fact that all c-vectors in this paper are sign-
coherent (c.f. [13, 23]). Finally, the fact that (−T )−1 is (self-)invertible and all other squares
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of both cubes commute imply that the rightmost squares of both cubes commute. Thus the
front and back cubes commute, as required.

We now turn our attention to the central cube of Fig. 3. Namely, the following.

¯̄C�t ¯̄G�t

¯̄C�t ′ ¯̄G�t ′

�C I2(2n)
t

�GI2(2n)
t

�C I2(2n)
t ′

�GI2(2n)
t ′

(−T )−1

(−T )−1

(−T )−1

(−T )−1μ[k]

μ[k]
μ[k]

μ[k]

d ¯̄F

d ¯̄F

d ¯̄F

d ¯̄F

The left square commutes by Corollary 6.12. The front/back squares again follow by
definition. If in addition to this, the top and bottom squares commute, then the right square
commutes due to the fact that (−T )−1 is self-inverse. Thus this is the next step of the proof.

Note that for an arbitrary exchange matrix over a ring R (and indexed over a set J )
whose C-matrices are sign-coherent, it follows that for each t ∈ TJ , the determinant of Ct

is |Ct | = ±1. This follows from the fact that Ct0 is the identity matrix, and that C-matrix
mutation involves changing the sign of a column and/or (when sign-coherence is satisfied)
adding a multiple of one column to another — an operation that preserves determinant up to
sign. Now write

�C I2(2n)
t =

(�c[0][0] �c[0][1]
�c[1][0] �c[1][1]

)

and ¯̄C�t =
( ¯̄C[0][0] ¯̄C[0][1]¯̄C[1][0] ¯̄C[1][1]

)

=
(

ρ�(r[0][0]) ρ�(r[0][1])
ρ�(r[1][0]) ρ�(r[1][1])

)

.

Since the blocks of ¯̄C�t commute and the determinant of all C-matrices is ±1, a simple
computation shows that we have

�GI2(2n)
t = ±

( �c[1][1] −�c[1][0]
−�c[0][1] �c[0][0]

)

and ¯̄G�t = ±
(

ρ�(r[1][1]) ρ�(−r[1][0])
ρ�(−r[0][1]) ρ�(r[0][0]).

)

From this, we can see that d ¯̄F�(
¯̄G�t ) = �G�t , as required. Thus, the top and bottom squares

commute, and hence, the entire central cube commutes.
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Next comes the left and right cubes of Fig. 3:

C I2(2n)
t

�C I2(2n)
t

C I2(2n)
t ′

�C I2(2n)
t ′

C�t
¯̄C�t

C�t ′
¯̄C�t ′

��(−) �

P−1(−)P

��(−) �

P−1(−)Pμ[k]

μ[k]
μ[k]

μ[k]

dF�

dF�

d ¯̄F�

d ¯̄F�

GI2(2n)
t

�GI2(2n)
t

G I2(2n)
t ′

�GI2(2n)
t ′

G�t
¯̄G�t

G�t ′
¯̄G�t ′

��(−) �

P(−)P−1

��(−) �

P(−)P−1μ[k]

μ[k]
μ[k]

μ[k]

d ¯̄F�

d ¯̄F�

dT
F�

dT
F�

The commutativity of the left cube is a consequence of Corollary 6.12 and the relation
(∗) in its proof. For the right cube, we have already proven that the left, front and back faces
commute. The proof of the commutativity of the top and bottom faces of the right cube
follows a similar argument to the proof of Corollary 6.12(b). Namely, we note that

dTF�(�
� ¯̄G�t  �) = ±

(

1
ς([0]) σ̂

�(s[0]r[1][1]) − 1
ς([1]) σ̂

�(s[0]r[1][0])
− 1
ς([0]) σ̂

�(s[1]r[0][1]) 1
ς([1]) σ̂

�(s[1]r[0][0])

)

= ±
⎛

⎝

σ̂�(s[0])
ς([0]) σ̂

�(r[1][1]) −σ̂�(s[0])
ς([1]) σ̂

�(r[1][0])
−σ̂�(s[1])
ς([0]) σ̂

�(r[0][1]) σ̂�(s[1])
ς([1]) σ̂

�(r[0][0])

⎞

⎠

= ±
(

σ̂�(s[0]) 0
0 σ̂�(s[1])

)( �c[1][1] −�c[1][0]
−�c[0][1] �c[0][0]

)(

ς([0]) 0
0 ς([1])

)−1

=
(

σ̂�(s[0]) 0
0 σ̂�(s[1])

)

d ¯̄F�(
¯̄G�t )P−1

where each s[i] is as in the proof of Corollary 6.12(b). But then σ̂�(s[i]) = ς([i]) for both
i ∈ {0, 1}, and hence the leftmost matrix in the above product is precisely the rescalingmatrix
P . Thus, the top and bottom squares commute. Since ��(−) � is invertible, the right face
of the right cube is also commutative, as required. Thus, we have just shown that both the
left and right cubes commute.

The last thing to check are the top and bottom cubes. But for both of these remaining cubes,
we have proved the commutativity of all but the topmost and bottommost faces respectively.
Since all maps have an inverse, these squares are also commutative. Hence the entire tesseract
of Fig. 3 is commutative. �

Using Theorem 6.15 and the results of [5, 24], one can obtain g-vectors of I2(2n) directly
from the semiring action on the cluster categoryC� of Q�. LetP ⊂ C� be the full subcategory
whose objects are the classes that correspond to the complexes of projective objects of
mod K Q� concentrated in degree 0. Then for any object X ∈ C�, we know from [17] that
there exists a triangle

P ′ → P → X → �P ′

with P, P ′ ∈ P . In our setting, we are particularly interested in objects of C� that reside
in rows of the Auslander-Reiten quiver with weight 1. That is, rows that contain an object
corresponding to an indecomposable projective P(i) with κ(i) = ς(F�(i)). Given a choice
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of indecomposable objects P0 ∼= P(i0) and P1 ∼= P(i1) in P with F�(i j ) = [ j] and
κ(i j ) = ς([ j]), and given an indecomposable object X ∈ C� in a row of the Auslander-
Reiten quiver with weight 1, we have a triangle

r ′
0P0 ⊕ r ′

1P1 → r0P0 ⊕ r1P1 → X → �(r ′
0P0 ⊕ r ′

1P1)

for some r0, r ′
0, r1, r

′
1 ∈ χ�+ .

Definition 6.16 Let X ∈ C� be an indecomposable object in a row of the Auslander-Reiten
quiver with weight 1. We call the vector

gX = (σ�(r1 − r ′
1), σ

�(r0 − r ′
0))

the folded g-vector of X with respect to P0, P1 ∈ P , where P0, P1, r0, r ′
0, r1 and r ′

1 are as
above.

An immediate consequence of Theorem 6.15 and known results on the categorification of
g-vectors (c.f. [5, 24]) is the following.

Corollary 6.17 Let X be the collection of all indecomposable objects of C� that reside in
rows of the Auslander-Reiten quiver with weight 1.

(a) The folded g-vectors of the objects in X are precisely the g-vectors of QI2(2n).
(b) Basic χ�+ -tilting objects (with respect to a basic, G-minimal set of χ�+ -generators �)

correspond to G-matrices of QI2(2n). In particular, let T = Y0 ⊕ Y1 be basic χ�+ -tilting

with respect to � such that Yi resides in a row that corresponds to [i] ∈ QI2(2n)
0 . Then

we have the following.

(i) If X0, X1 ∈ X are respectively χ�+ -generated by Y0 and Y1, then

GX1,X0 = (gX1 , gX0)

is a G-matrix of QI2(2n).
(ii) Let T (1) = Y0 ⊕ Y ′

1 be given by changing complement and let X ′
1 ∈ X be an object

χ�+ -generated by Y ′
1. Then the G-matrix

GX ′
1,X0 = (gX ′

1 , gX0)

is obtained by mutating GX1,X0 with respect to the index [0] ∈ QI2(2n).
(iii) Let T (0) = Y ′

0 ⊕ Y1 be given by changing complement and let X ′
0 ∈ X be an object

χ�+ -generated by Y ′
0. Then the G-matrix

GX1,X ′
0 = (gX1 , gX

′
0)

is obtained by mutating GX1,X0 with respect to the index [1] ∈ QI2(2n).

Appendix A: Worked Examples

Many of the constructions in this paper are combinatorial and seemingly technical in nature.
However, it is not too difficult to construct examples of how the theory works in practice. We
will show two examples: One example highlights the theory for foldings of type A and the
other will highlight the theory for foldings of type D. The three exceptional foldings of type
E work along a similar principle to the other two examples.
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A.1 The Folding FA7

Consider the example given by F A7 : QA7 → QI2(8). We already have an example of the
projection maps δA

F A7
with A = mod K QA7 or A = Db(mod K QA7) with Fig. 2. From the

figure, it is straightforward to see the implications of Theorem 3.5 and Corollaries 3.7 and
3.8. In particular, we have δA

F A7
(0±) = (1, 0) and δA

F A7
(1±) = (0, 1), where the vectors are

given with respect to the standard root system of I2(2n). We will thus focus on the impact
of Sections 4-6 on this example.

The categoryA has an action of χ A7+ = Z≥0[ψ2, ψ4, ψ6]. Here, the elementψ6 represents
the Z2-symmetry on the quiver, and thus, ψ4 = ψ2ψ6. The isomorphism condition (A1) in
Section 4.1 shows that the Auslander-Reiten sequence/triangle

2+
1+ → 0+ 2+

1+ → 0+ →
maps to sequences/triangles that are isomorphic to the followingAuslander-Reiten sequences/
triangles under the following actions.

ψ2 : 0+ 2+ 2−
1+ 3

→ 0+ 2+
1+ ⊕ 2+ 2−

3 → 2+ →
ψ4 : 0− 2− 2+

1− 3
→ 0− 2−

1− ⊕ 2− 2+
3 → 2− →

ψ6 : 2−
1− → 0− 2−

1− → 0− →
The middle term in the first sequence reflects the relation ψ2ψ1 = ψ1 + ψ3 ∈ χ̂ A7+ and

the middle term in the second sequence reflects the relation ψ4ψ1 = ψ3 + ψ5 ∈ χ̂ A7+ . One
also notes from this that the original Auslander-Reiten sequence ends in an object whose
F A7 -projected dimension vector is of length 1, and that under the action of ψi , this maps to
an Auslander-Reiten sequence ending in an object whose F A7 -projected dimension vector
is of length σ̂ A7(ψi ). Similarly, the Auslander-Reiten sequence/triangle

2+ 2−
1+ 3

→ 2+
1+ ⊕ 0+ 2+ 2−

1+ 3
→ 0+ 2+

1+ →
maps to sequences/triangles that are isomorphic to the following direct sums of Auslander-
Reiten sequences/triangles under the following actions.

ψ2 : 2+ 2−
1+ 3

⊕ 0+ 2+ 2− 0−
1+ 3 1− →

(

2+
1+ ⊕ 0+ 2+ 2−

1+ 3

)

⊕
(

0+ 2+ 2−
1+ 3

⊕ 0− 2− 2+
1− 3

)

→ 0+ 2+
1+ ⊕ 2+ 2−

3

ψ4 : 2− 2+
1− 3

⊕ 0− 2− 2+ 0+
1− 3 1+ →

(

2−
1− ⊕ 0− 2− 2+

1− 3

)

⊕
(

0− 2− 2+
1− 3

⊕ 0+ 2+ 2−
1+ 3

)

→ 0− 2−
1− ⊕ 2− 2+

3

ψ6 : 2− 2+
1− 3

→ 2−
1− ⊕ 0− 2+ 2+

1− 3
→ 0− 2−

1− →

This highlights multiple relations at play simultaneously. For example, we have the rela-
tionsψ2(1+ψ2) = 1+2ψ2 +ψ4 andψ4(1+ψ2) = ψ2 +2ψ4 +ψ6 reflecting the action on
the objects of the middle terms of the first two sequences. Moreover, we have the relations
ψ2ψ1 = ψ1 +ψ3 and ψ4ψ1 = ψ3 +ψ5 reflecting the action on the starting/ending terms of
the first two sequences.

The action on the Auslander-Reiten translate of the above sequences is given in the natural
way by the fact that the action of r ∈ χ A7+ commutes with τ . A key upshot of this is that

every Auslander-Reiten sequence in A can be labelled by an element ψi ∈ χ̂ A7+ determined
by the starting or ending term (which in turn, can be determined by the row in the Auslander-
Reiten quiver that the starting/ending object resides in). If ψ jψi = ∑

k∈Vji
ψk for some

index set Vji , then ψ j maps an Auslander-Reiten sequence labelled by ψi to a sequence that
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is isomorphic to a direct sum of Auslander-Reiten sequences labelled by the summands ψk

(whose ending terms all reside in the same column).
To showcase the theory of χ A7+ -generators on categories, we will focus on mod K QA7 .

Consider the sets

�0± = {0±, 2±
1± , 2

∓
3 ,

0∓
1∓ } and �1± = { 0± 2±

1± , 2± 2∓
1± 3

, 2∓ 0∓
3 1∓ , 1∓}

By Theorem 4.7(a), any set �0s ,1s′ = �0s ∪ �1s′ is a basic, τ -closed, Z2-minimal set

of χ A7+ -generators of mod K QA7 , where s, s′ ∈ {+,−}. Note that the elements of �0s ,1s′
bijectively correspond to the columns of the Auslander-Reiten quiver, which in turn, bijec-
tively correspond to the positive roots of I2(8) (this is Corollary 4.8). The object 2+ 2−

3 , for

example, is χ A7+ -generated by the object 0+ 2+
1+ with χ A7 -index ψ2 − 1, or equivalently, with

the χ A7+ -generating pair (ψ2, 1) (this is Definition 4.3). That is, we have an isomorphism of
split exact sequences

0 0+ 2+
1+

f

∼

ψ2

(

0+ 2+
1+

)

∼

Coker f

∼

0

0 0+ 2+
1+ 0+ 2+

1+ ⊕ 2+ 2−
3

2+ 2−
3 0

By Remark 4.9, the Grothendieck group K0(mod K QA7) has the structure of a χ A7 -
module.

By Section 5, the action of χ A7+ naturally extends to the cluster category CA7 . We will

choose our basic, Z2 set of χ
A7+ -generators of CA7 to be

� = {� 0−
1− , 0

+, 2+
1+ , 2

−
3 ,

0−
1− } ∪ {�1−, 0+ 2+

1+ , 2+ 2−
1+ 3

, 2− 0−
3 1− , 1−}

With respect to �, the object 0−
1− is almost complete χ A7+ -tilting with complements 2− 0−

3 1−
and 1−. Note that these complements reside in adjacent columns of the Auslander-Reiten
quiver to 0−

1− , as per Theorem 5.2. Thus for example, the object T = 0−
1− ⊕ 1− is basic

χ
A7+ -tilting with respect to �, and the act of changing complement corresponds to mutating

the folded quiver I2(8) at a vertex. Note also that by Theorem 5.2, T corresponds to a
cluster-tilting object

̂T =
(

0−
1− ⊕ 2−

1− 3
⊕ 2+

1+ 3
⊕ 0+

1+
)

⊕ (

1− ⊕ 3 ⊕ 1+)

and mutation/changing complement in T corresponds to composite mutation/iteratively
changing complement for each object in a bracket in ̂T .

Now we shall compute the folded g-vectors in CA7 , as per Definition 6.16. The set �
consists of all objects in rows of weight 1 (up to the group action of ψ6), so we will focus on
computing the folded g-vectors of these objects — it is not difficult to check that the folded
g-vectors gX and gψ6X are in fact the same. We will compute the g-vectors with respect to
the projectives 0−

1− and 1−. We thus have the following triangles and corresponding folded
g-vectors, where for readability purposes, we have denoted the zero object by 0 and the
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identity element 1 ∈ χ A7+ byψ0 (or omitted it completely if the action on an object is trivial).

0 → 1− → 1− → 0 � g1
− = (1, 0),

0 → 0−
1− → 0−

1− → 0 � g
0−
1− = (0, 1),

1− → (ψ0 + ψ2)
0−
1− → 2− 0−

3 1− → �1− � g
2− 0−
3 1− = (−1, 2 + √

2),

1− → ψ2
0−
1− → 2−

3 → �1− � g
2−
3 = (−1, 1 + √

2),

ψ21
− → (ψ2 + ψ4)

0−
1− → 2+ 2−

1+ 3
→ �ψ21

− � g
2+ 2−

1+ 3 = (−1 − √
2, 2 + 2

√
2),

ψ21
− → 1− ⊕ ψ4

0−
1− → 2+

1+ → �ψ21
− � g

2+
1+ = (−√

2, 1 + √
2),

ψ41
− → (ψ4 + ψ6)

0−
1− → 0+ 2+

1+ → �ψ41
− � g

0+ 2+
1+ = (−1 − √

2, 2 + √
2),

ψ61
− → ψ6

0−
1− → 0+ → �ψ61

− � g0
+ = (−1, 1),

1− → 0 → �1− → �1− � g�1
− = (−1, 0),

0−
1− → 0 → � 0−

1− → � 0−
1− � g

� 0−
1− = (0,−1).

In the above, we have used the fact that σ A7(ψ2) = σ A7(ψ4) = U2(cos π8 ) = 1 + √
2

and σ A7(ψ0) = σ A7(ψ6) = 1. As per Corollary 6.17, these are g-vectors of the standard
root system of type I2(8), and for each basic χ A7+ -tilting object T = X0 ⊕ X1, we obtain a

G-matrix of I2(8) by GX1,X0 = (gX1 , gX0). For example, the χ A7+ -tilting object 0−
1− ⊕ 1−

corresponds to the initial G-matrix. Using Theorem 6.15, we can mutate the initial G-matrix

G
1−, 0−

1− at index [0] to obtain

(

1 0
0 1

)

(−T )−1

μ[0]

(

1 0
0 1

)

μ[0]

G
1−, 0−

1−

μ[0]

(−1 2 + √
2

0 1

)

(−T )−1
( −1 0
2 + √

2 1

)

G
2− 0−
3 1− , 0

−
1−

which corresponds to changing complement, as required.

A.2: The Folding FD5

Inevitably, combinatorics in the setting of foldings of type D is more complicated than in
the setting of type A. Since FD5 is also a folding onto QI2(8), we will focus on the aspects
of the theory that differ from the type A7 setting. To further simplify things, most of this
example will concern the category A = mod K QD5 , as the theory for Db(mod K QD5) is a
straightforward extension of this. The non-crystallographic projection of A is illustrated in
Fig. 4. We remind the reader that whilst the positive simple roots are of length 2 and 4 cos π8
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Fig. 4 The folding FD5 : QD5 → QI2(8). Top: The Auslander-Reiten quiver of mod KQD5 . Bottom: The

non-crystallographic projection of the Auslander-Reiten quiver under the map δmod KQD5

FD5
, with irreducible

morphisms superimposed. The radius of each half-octagon (from the centre outwards) is 2, U3(cos
π
8 ),

2U1(cos
π
8 ) and 2U2(cos

π
8 )

respectively (under the standard basis of R
2), the positive simple roots are written as (1, 0)

and (0, 1) with respect to the standard root system of I2(8).
The category A has an action of χD5+ = Z≥0[ψ−

0 , ψ
+
2 , ψ

−
2 ], where we will also write

1 = ψ+
0 ∈ χD5+ for clarity. Here, the element ψ−

0 represents the Z2-symmetry on the quiver.
Similar to the theory for type A, we can label the Auslander-Reiten sequences by elements
of χ̂D5+ , and this label is determined by the row that the starting/ending term resides in. In
particular, we can assign anAuslander-Reiten sequence a label ofψ+

i +ψ−
i (for i ∈ {0, 1, 2})

if the starting/ending term resides in the row IA
i , and a label of ψ±

3 if the starting/ending

term resides in the row IA
3± . The action of an element r ∈ χ

D5+ on an Auslander-Reiten

sequence labelled by s ∈ χD5+ is then such that the sequence is mapped to an exact sequence
isomorphic to a direct sum of Auslander-Reiten sequences whose labels are determined from
the product rs. That is, we can write rs = ∑2

i=0 ai (ψ
+
i + ψ−

i ) + a3+ψ+
3 + a3−ψ−

3 , and
thus the resulting sequence is isomorphic to a direct sum of ai Auslander-Reiten sequences
labelled by ψ+

i + ψ−
i and a3± Auslander-Reiten sequences labelled by ψ±

3 (all in the same

column). Likewise, we can also label individual indecomposable objects by elements of χ̂D5+ ,
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which is determined by the row the object resides in (as before). The action of χD5+ on an
object will also always respect this labelling (column-wise).

To demonstrate this, consider the Auslander-Reiten sequences

0 → 2
1 → 0 2

1 → 0 → 0 (S0)

0 → 2 2
1 3+ 3− → 2

1 ⊕ 0 2 2
1 3+ 3− → 0 2

1 → 0 (S1)

0 → 0 2 2
1 3+ 3− → 0 2

1 ⊕ 2
3+ ⊕ 2

3− → 2 → 0 (S2)

0 → 0 2
1 3− → 0 2 2

1 3+ 3− → 2
3+ → 0 (S3p)

0 → 0 2
1 3+ → 0 2 2

1 3+ 3− → 2
3− → 0 (S3m)

where for clarity, we have denoted the zero object by 0 to distinguish it from the simple
module 0. The above Auslander-Reiten sequences (and the starting and ending terms) may
be labelled by ψ+

0 + ψ−
0 , ψ+

1 + ψ−
1 , ψ+

2 + ψ−
2 , ψ+

3 and ψ−
3 , respectively. The objects in

the middle terms of each sequence therefore have labels ψ+
1 + ψ−

1 , ψ+
0 + ψ−

0 + ψ2 + ψ−
2 ,

ψ+
1 + ψ−

1 + ψ+
3 + ψ−

3 , ψ+
2 + ψ−

2 and ψ+
2 + ψ−

2 , respectively.
The action of ψ±

2 on the Auslander-Reiten sequence (S0) is a map to (a sequence isomor-
phic to) the Auslander-Reiten sequence (S2). This reflects the product ψ±

2 (ψ
+
0 + ψ−

0 ) =
ψ+
2 + ψ−

2 for the sequence itself, and simultaneously, the product ψ±
2 (ψ

+
1 + ψ−

1 ) =
ψ+
1 + ψ−

1 + ψ+
3 + ψ−

3 for the middle term. The action of ψ±
2 on (S2), or equivalently

the action of (ψ±
2 )

2 = ψ+
0 + ψ+

2 + ψ−
2 on (S0), is such that we obtain a sequence iso-

morphic to (S0) ⊕ (S2) ⊕ (S2). Both of these examples showcase isomorphism condition
(D1).

Another example is the action of ψ−
0 , which representing Z2-symmetry, maps (S3p) to

(S3m) and vice versa. On the other hand the action of ψ−
0 on any other sequence in the list

is trivial (up to isomorphism).
Finally, one needs to be careful of complicated sign changes with some of the products in

χ̂
D5+ . The effect of this is highlighted in isomorphism condition (D2). For example,ψ+

2 ψ
+
3 =

ψ+
1 + ψ−

1 + ψ−
3 . Thus, the action of ψ+

2 on (S3p) is such that we obtain (S1) ⊕ (S3m).
Now we define the following three sets.

�0 = {0, 21 , 2
3+ 3− , 01 } and �± = { 2

3∓ , 0 2
1 3± , 2

1 3∓ , 3±}
Theorem 4.7(c) then states that the sets �0 ∪�± are pairwise equivalent, basic, τ -closed,

Z2-minimal sets of χD5+ -generators of A. Extending this to the cluster category CD5 , we

obtain similar sets of basic, Z2-minimal χD5+ -generators

�± = {� 0
1 , 0,

2
1 ,

2
3+ 3− , 01 } ∪ {�3±, 2

3∓ , 0 2
1 3± , 2

1 3∓ , 3±}.

An example of a basic χD5+ -tilting object with respect to �+ is therefore 2
1 ⊕ 0 2

1 3+ and

the corresponding basic χD5+ -tilting object with respect to �− is 2
1 ⊕ 0 2

1 3− . The theory does
not depend on which set we choose, as long as we are consistent with our choice.

Similar to the situation in type A, we can compute the g-vectors of I2(8) from the category
CD5 . However this time, our choice of objects in the resolution do not always belong to a
set of χD5+ -generators of CD5 . For example, the row containing 3± does not have the correct
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weight, so we must instead choose the object 1. We therefore have the following triangles
and corresponding folded g-vectors.

0 → 1 → 1 → 0 � g1 = (1, 0),
0 → 0

1 → 0
1 → 0 � g

0
1 = (0, 1),

1 → (ψ+
0 + ψ+

2 )
0
1 → 0 2

1 3+3− → �1 � g
0 2
1 3+3− = (−1, 2 + √

2),

1 → ψ+
2

0
1 → 2

3+ 3− → �1 � g
2

3+ 3− = (−1, 1 + √
2),

ψ21 → (ψ+
2 + ψ−

2 )
0
1 → 2 2

1 3+ 3− → �ψ+
2 1 � g

2 2
1 3+ 3− = (−1 − √

2, 2 + 2
√
2),

ψ+
2 1 → 1 ⊕ ψ+

2
0
1 → 2

1 → �ψ+
2 1 � g

2
1 = (−√

2, 1 + √
2),

ψ+
2 1 → (ψ+

0 + ψ+
2 )

0
1 → 0 2

1 → �ψ+
2 1 � g

0 2
1 = (−1 − √

2, 2 + √
2),

1 → 0
1 → 0 → �1 � g0 = (−1, 1),

1 → 0 → �1 → �1 � g�1 = (−1, 0),

0
1 → 0 → � 0

1 → � 0
1 � g�

0
1 = (0,−1).

As we can see, these are identical to the folded g-vectors computed before.
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