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Abstract

We use weighted unfoldings of quivers to provide a categorification of mutations of quivers
of types I>(2n), thus extending the construction of categorifications of mutations of quivers
to all finite types.
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1 Introduction and Main Results

This is the second paper in a series started in [9]. In [9], we constructed a categorification of
mutations of non-integer quivers of finite types Hs, H3 and I>(2n + 1). The main tool in the
construction is a weighted (un)folding of quivers of types Eg, D¢ and Aj,, the application
of which follows the projection of root systems developed in [19, 20, 26]. The (un)foldings
induce projections of dimension vectors of objects in module categories of integer quivers
to the roots associated to folded quivers; they also induce semiring actions on categories
associated to integer quivers. We also define the tropical seed patterns of folded quivers and
show that our definition is consistent with both the folding and the categorical definition of
g-vectors.

In this paper, we extend the results of [9] to the last remaining finite type of quivers,
I>,(2n), thus completing the construction of categorifications of mutations for quivers of all
finite types. Unlike the settings of [9], there is more than one possible folding that could be
considered for every quiver of type I>(2n). More precisely, a quiver of type I>(2n) admits
an unfolding to a quiver of type Ay,—1 and to a quiver of type D,|. Moreover, there are
three exceptional foldings Eq — I>(12), E7 — [(18), and Eg — 1,(30). We consider all
of these different possible foldings to construct categorifications via semiring actions on the
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categories associated to different integer quivers, and we see that aside from the semiring
action itself, the theory between these different foldings is very much the same. The key
upshot of this is that the module, bounded derived, and cluster categories associated to any
bipartite Dynkin quiver has a non-crystallographic interpretation via a semiring action and
the associated non-integer quiver. This includes the ability to associate non-integer g-vectors
and mutation to the categories of any bipartite Dynkin quiver.

Another difference to the setting of [9] is that for the foldings considered in this paper, it is
more natural to consider the root system of />(2n) in such a way that it contains roots of two
different lengths. We therefore use non-trivial rescaling throughout the paper. This approach
to the root system generalises how one classically considers the crystallographic root systems
I,(4) = By and I>(6) = G to higher n. It is entirely possible to categorify the root system of
I>(2n) via an unfolding with a trivial rescaling (and thus with all roots of I5(2n) of the same
length) and a projection map from the categories associated to the unfolding. However, when
it comes to considering the semiring action on the cluster category of an unfolded Dynkin
quiver, the g-vectors one obtains are precisely those that are associated to the non-trivial
rescaling, and thus we consider this approach to be the most fitting.

We recall all necessary definitions and details of the construction from [9] in Section 2.

Our first main result is Theorem 3.5 (see also Corollaries 3.7 and 3.8), in which we
prove that, given a weighted folding F: Q% — Q22" there is a weighting on the rows of
the Auslander-Reiten quiver of mod K 0* and D?(mod K Q%) consistent with F, with the
projection of the dimension vectors of objects, and with the projection of the corresponding
root systems. Objects in the rows of weight 1 in the Auslander-Reiten quiver map precisely
to the roots of I>(2n), thus generalising Gabriel’s Theorem for quivers of type Io(2n). In
fact, Theorem 3.5 says much more than this. The folding F has a strong relationship with the
structure of the Auslander-Reiten quiver. For example, objects that reside in the same column
of the Auslander-Reiten quiver project onto a multiple of the same root, and these multiples
are determined by the weights of the rows. Moreover, Auslander-Reiten translation acts by
rotation with respect to the projection.

The projection map induced by the folding gives rise to a semiring action on the module
and bounded derived categories of the integer quivers, where the semiring (we denote it
by R ) is defined separately for each folding (Section 2.4) using Chebyshev polynomials.
The main results here (Theorem 4.7 and Corollary 4.8) state that mod K 02 has an action
of the corresponding semiring, and there exists a collection of indecomposable objects of
mod K Q2 that are in bijection with the positive roots of I>(2n), and these objects generate
the whole category under the action of the semiring. These results naturally extend to the
bounded derived category D’ (mod K 02).

The semiring action also applies to the cluster category of O, and this allows us to extend
the results of [4] to categorify mutations of folded quivers by considering distinguished
objects with respect to the action, which we call R -tilting objects (Section 5). We prove
(Theorem 5.2 and Corollary 5.3) that for a folding F: Q% — Q% @ the following hold for
the cluster category Ca of Q2 : every basic R -tilting object T € Cx (injectively) corresponds
to a basic tilting object Tec A; every basic R -tilting object has precisely 2 indecomposable
direct summands; every almost complete R -tilting object has exactly two complements, and
changing the complement corresponds to a single mutation; if 7 is a basic R -tilting object,
and A7 is the cluster-tilted algebra corresponding to ?, then there exists an R4 -action on
mod A7.

Finally, we define the tropical seed patterns of folded quivers. We define c-vectors and
C-matrices as in the integer case, and we show that c-vectors of 02@ are roots of I>(2n)
and are thus sign-coherent (Corollary 6.12). Going along the results of [23], this allows us
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to define G-matrices as the inverse of transposed C-matrices, and we define g-vectors as the
column vectors of G-matrices. We then prove (see Section 6 and Theorem 6.15 for details)
that these definitions are compatible with both rescaling and the projection of C-matrices
and G-matrices with respect to the folding. We note that these results provide a categorical
interpretation of g-vectors and G-matrices of oh@n (Corollary 6.17).

The paper is organised as follows. In Section 2 we recall all essential definitions and
details from [9] about mutations, unfoldings, and semirings. In Section 3, we describe the
projections of module and bounded derived categories induced by the (un)foldings of quivers.
Section 4 is devoted to the description of the semiring action on the module and bounded
derived categories. In Section 5, we extend the semiring action to the cluster categories of
the unfolded quivers, thus providing a categorification of mutations of the folded quivers.
Section 6 is devoted to the construction of the tropical seed pattern, and to the compatibility of
the projections and mutations. Finally, Appendix A provides two detailed worked examples
(one for unfoldings of type A2, and one for unfoldings of type D,,+1) that showcases the
entire theory of the paper for the benefit of the reader.

2 Preliminaries

For the benefit of the reader, we will briefly recall some notation and definitions from [9]
that we will use throughout the paper. Further details can be found in the aforementioned
reference.

2.1 General Setup and Notation

Throughout the paper, K is an algebraically closed field and Q2 is a quiver of Dynkin type
A. The vertex set of O is denoted by QOA and the arrow set is denoted by QIA. We denote
by K Q* the path algebra of Q* over the field K. All K Q®-modules in this paper are right
modules, and thus we read paths in the quiver from left to right. We denote by mod K O the
category of finitely generated right K Q® modules and by D?(K Q?) the bounded derived
category.

Each vertex i € QOA simultaneously corresponds to a simple, indecomposable projective,
and indecomposable injective K 02-module, which we will denote by S(i), P(i) and I(7)
respectively. The shift functor of D? (K Q) shall be writtenas = : D?(K Q%) — D (K 02),
and where appropriate, we will adopt the abuse of notation where for each object M
mod K Q2, the object M € DP(K Q2) is the corresponding object concentrated in degree 0.
Additionally, we denote by 7.4 the Auslander-Reiten translate in the category A, where A is
either a module, bounded derived, or cluster category of the appropriate type. Whenever the
context is clear, we will omit this subscript and simply write 7.

2.2 Exchange Matrices Over a Ring, R-quivers, and the /;(2n) Root System

Let R be a totally ordered ring throughout. Eventually, R will be an integral domain and
torsion-free, though one need not make this assumption for the initial setup. By an exchange
matrix over R, we mean a square skew-symmetrisable matrix with entries in R whose rows
and columns are indexed by a set Qg . The R-quiver associated to a skew-symmetric exchange
matrix B = (b;;) over R is the R-arrow-weighted quiver Q¥ with vertex set OF, arrow set
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038, and arrow weighting function & : Qf — R determined such that b;; > 0 if and only
if there exists an arrow a: i — j in Qfg with weight &(a) = b;;.

This paper will be working with a particular family of R-quivers and exchange matrices
over R. Namely, we will be working with exchange matrices of type I(2n) over the ring
R = Z[2 cos 5, ] whose ordering is induced by R. We will denote the corresponding R-quiver
of I;(2n) by

b1
2cos 37

QLM [0]——— (1]

where the weight of the unique arrow is given by its label.

The quiver Q22" is associated to a non-crystallographic root system that is related to
the Coxeter group I>(2n) in the sense of [6]. The non-crystallographic root system of type
I>(2n) has 2n positive roots, two of which are simple. Being non-crystallographic, the root
system can appear in various forms which depends on the relative lengths of the simple roots.
This paper will work with two versions of the root system.

Version 1: The standard form. In this version, the positive roots may be partitioned into
two equally sized classes, called short and long positive roots. In particular, one of the simple
positive roots will be longer than the other. The short roots of /;(2r) will be of length A and
the long roots of I>(2n) will be of length 2\ cos ;—n For the quiver 022" above, we will
choose the convention that the short positive roots correspond to the points Aexp(%) and
the long positive roots correspond to the points (2 cos %)exp(%ﬂl)”i) forO<k<n-—1.
For the opposite quiver (Q2@")°P this convention is reversed. See Fig. 1 for an example.
Throughout the paper, we will denote the set of short roots (resp. short positive roots) of
I, (2n) by &3, (resp. <I>32;1+) and we will denote the set of long roots (resp. long positive roots)
of I;(2n) by d>12n (resp. Cblz’;).

We call this version of the root system of I>(2n) standard, as it agrees with the root
systems By = I>(4) and G, = 1>(6), and is the one that is most compatible with the theory
of semiring actions on module categories that we will develop.

Version 2: The rescaled form. In this version the positive roots all have the same length,
which by convention, we choose to be 1. The positive roots thus correspond to the points
kexp(%) with 0 < k < 2n — 1. We call this the rescaled root system of I,(2n). We only
use the rescaled root system in Section 6.

To make precise which version of the root system we are using when considering the
R-quiver Q2" we will define a valuation on the quiver.

Definition 2.1 Let S be a totally ordered ring. An S-valuation of an R-quiver is a positive
S-vertex-weighting ¢: OF — S.¢.

Fig.1 The root systems of type
I>(8) corresponding to the quiver
02" with simple positive
roots labelled by «g and «. Left:
The standard root system. Right: a1

The rescaled root system Qo Qp

aq
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The standard form of the root system of type I(2n) is associated to the R-valuation of
Q1@m given by ¢([0]) = A and ¢([1]) = 2Xcos 2”—” The rescaled version of I,(2n) is
instead given by the R-valuation ¢([0]) = ¢([1]) = X. In all but one case in this paper,
A = 1 (where A = 2 in the other case).

Henceforth, whenever we refer to the root system of />(2n) and its roots, we mean the
standard form (version 1) and its elements. We will always refer to version 2 of I (2n) as the
rescaled root system and its elements as rescaled roots.

2.3 Weighted (un)foldings

Here we will recall the definition of a weighted (un)folding from [9]. The definition is a

generalisation of the classical definition of unfolding due to Zelevinsky (see [11, 12] for

details) and makes use of rescaling introduced by Reading in [25].

Definition 2.2 Let B = (b;;) be an exchange matrix over Z and B’ = (b/i][ ;

matrix over R. Suppose there exists a disjoint collection of index sets {E[;} : [i] € Qg/} such

that U[i]e 0¥ Ei = Qg. Then B has the structure of a block matrix (By;;1) with blocks
0

) be an exchange

indexed by Qg/. In this case, we call a pair (B, B’) of exchange matrices an origami pair if
the following hold:

(O1) Foreach [i], [j] € Qg/, the sum of entries in each column of By is bfi"j].
(02) If by j1 > 0 then the By;jj;) has all entries non-negative.

Suppose R is an integral domain and let Frac(R) be the field of fractions of R. An exchange
matrix B over Z is said to be a weighted unfolding of an exchange matrix B’ over R if the
following hold.

(Ul) There exist diagonal matrices W = (w;) and P = (p;}) with positive entries in
R C Frac(R) such that (WBW~!, PB’P~!) is an origami pair with blocks indexed
by the collection {E|;; : [i] € Qg /}. Here, multiplication occurs over Frac(R).

(U2) For any sequence of iterated mutations fi(g,] - - . i, of B’, the pair

Wi,y - - Bg(BYW ™", Py - .. gy (BHP ™)

is origami, where each | ) is the composite mutation of B given by

= 1_[ Wi

iGE[jI

The composite mutations of B in the above definition are well-defined because the muta-
tions indexed by each block are pairwise commutative. We call the matrix W the weight
matrix of the unfolding (whose entries w; we call weights), and we call P the rescaling
matrix of the unfolding. We also call the exchange matrix B’ the folded exchange matrix of
B, and we call B the unfolded exchange matrix of B’.

A weighted unfolding associated to an origami pair (WBW~!, P B’ P~!) equips both the
associated Z-quiver Q% and the R-quiver 0?8 with an R-valuation. For the Z-quiver, we
denote the valuation with the function « : Qg — R-defined by « (i) = w; foreachi € Qg.
For the R-quiver QB/, we denote the valuation with the function ¢ : Qg/ — R- defined
by ¢([i1) = pyi)- To each weighted unfolding B of B’, we define a weighted folding of
quivers F: Q8 — QB Thatis, F is a surjective morphism of quivers such that F(i) = [}]
whenever i € Ep;). Given such a folding F, we call 058 the unfolded quiver and QB/ the
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folded quiver. In any given folding, the quivers 08 and QB/ are implicitly assumed to have
the aforementioned structure of R-valued quivers (with weight function « for 08 and ¢ for
0%).

This paper is concerned with three families of foldings onto R-quivers of type I>(2n).
We call these families foldings of type A, D and E, respectively. The foldings of type A in
particular are consistent with similar constructions in [21, 26].

Remark 2.3 Each of the foldings F2 (with A € {Ay_1, D, 11, Es, E7, Eg}) described in
the remainder of this section induces a projection of the roots of A onto the roots of I;(2n).
In fact, this projection is precisely the projection onto the Coxeter plane (studied in detail in
[27]). As such, the Coxeter number of A agrees with the Coxeter number of I5(2n) for each
folding F2.

2.3.1 Foldings of Type A

The first family to consider is the folding from a bipartite quiver of type Az,_1, which we
denote by Q421 Specifically, we have FA2-1: QAm-1 . QLCm where QA1 is given
by

0 1 2 2n —4 2n -3 2n -2

with vertex weights such that « (i) = U (cos 3.), where Uj is the i-th Chebyshev polynomial
of the second kind. Furthermore, each vertex i is such that FA2-1(;) = [0] if i is even
and FA2-1(;) = [1] if i is odd. The valuation of Q2" is such that ¢([0]) = 1 and
¢([1]) = 2cos 2”—" It is not difficult to verify that on the level of unfoldings, this class of
unfoldings factors through an unfolding of an exchange matrix of Dynkin type C,,. The above
quiver has Z,-symmetry via the action that maps i € Qg to2n—2—i¢ Qg =1 This
action also respects the vertex-weights in the sense that U; (cos %) = Upp—2—i(cos 2”—”). In
light of this group action, it is sometimes convenient to work with the alternative labelling

0F —1tT<~—... — -2t —n-1—m-2)7 — - —>1"=<—0".
2.3.2 Foldings of Type D
The second family of foldings we consider are from bipartite quivers of type Dj,|, which

we denote by QPn+1, Specifically, we have FPnt1: @QPntt — 91221 \where QP+ is given
by

(n—1*
0 1 2 n—2
(n—1)"

with vertex weights such that « (i) = 2U;(cos 7-) for 0 < i < n —2 and «((n — DE) =
U,—1(cos 2”—"). Furthermore, each vertex i is such that FPr+1(j) = [0] if i is even and

FDnt1(j) = [1]if i is odd (the same rule applies to the vertices (n — ¥ with the integer
n — 1). The valuation of Q22" is such that ¢([0]) = 2 and ¢([1]) = 4cos ;—n It is not
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difficult to verify that on the level of unfoldings, this class of unfoldings factors through an
unfolding of an exchange matrix of Dynkin type B,. This quiver also has Z;-symmetry via

the action that fixes each i € QOD"+1 and maps (n — 1)* € Qé)"“ to(n— DT e QOD”“.

2.3.3 Foldings of Type E

There are three exceptional foldings of type E. Namely we have foldings
Es. gFs _, oh(12)
E7. QE7 — Q12(18)7
Eg . QEg - Q12(30)5
where QF6, 07 and Q® are bipartite R-valued quivers of type Eg, E7 and Eg, respectively.

Throughout, the valuation of 0@ 5 such that ¢([0]) =1 and ¢([1]) = 2cos g—n
The quiver Q¢ is given by

V6

T

0t 1" 2 1~ 0~

with weighting such that « (i) = U; (cos 1), k(2) = Ua(cos {5) and
K (vg) = Us(cos {5) — Ui (cos {5) = Us(cos {5) — Us(cos {5) + Ui (cos {5) = V2.

Moreover, we have FE6(0F) = FE6(2) = [0] and FE6(1F) = FE6(vg) = [1]. This
unfolding can be shown to factor through an unfolding of an exchange matrix of Dynkin type
Fy.

The quiver QF7 is given by

—

0 1 2 3 2 v7

with weighting such that « (i) = U;(cos {g), « (i) = U;(cos 7) and
K (v7) = Us(cos {g) — Us(cos {g) = 2cos 2 I5-

It worth noting that Up(cos §) = Up(cos {5), Ui (cos §) = Us({g) — Us({g) + Ua(5),
Us(cos 9) = Ug(cos 18) U2(18) and that Us(cos 9) = Us(cos 18) It is therefore conve-
nient to occasionally adopt the labelling 0 = 0and 3 = 2. Moreover, FE maps the source
vertices to [0] and sink vertices to [1].

The quiver Q% is given by
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with weighting such that k(i) = Ui(cos 55), k(¢i) = ¢@Ui(cos 35) and k(vs) =

o~ U3 (cos 30)» Where ¢ = 2cos % is the golden ratio and el =¢—1=2cos %” is
its inverse. It is also worth noting that ¢ = Ug(cos ;T—O) — Uy (cos ;—0). Similar to above, FEs

maps the source vertices to [0] and sink vertices to [1].

2.4 Chebyshev Polynomials and Associated (semi)rings

As previously mentioned, we denote throughout the paper the i-th Chebyshev polynomial of
the second kind by U;. That is, U; satisfies the identity

U;(cos@)sinf = sin((i + 1)60).

Chebyshev polynomials of the second kind satisfy many identities that are useful and
which appear within the theory of this paper. Many of these useful identities are highlighted
in [9, Lemma 4.1], which we restate (and adapt to our specific context) here for the benefit
of the reader.

Lemma 2.4 ([9], Lemma 4.1) Define a sequence (6;)iez., by 6; = U;(cos g—n). Then
(a) 61 =2cos 7,

(b) 621 =0,

(¢) On—1—i = Op—1+i

(d) Op—14i = —bp—1-i fori <2n—1

() 0;0; =1 _obi—jsax for j <i,

(f) 6; > 1for0<i <2n—2.

In [9], we defined a family of rings related to Chebyshev polynomials of the second
kind that would later be used to define a semiring action on the module, derived and cluster
categories of unfolded quivers. We will do the same here, except the (semi)rings we consider
in this paper will be slightly different.

Throughout the paper, denote x ?") = Z[2 cos ;—n] for each n > 2. Now consider the ring

Zop = ZIx1/(Un(3) — Up-2(3))

Since Chebyshev polynomials of the second kind satisfy the product rule given in
Lemma 2.4(e), it is not hard to verify that Uz,—1(5) = 0, Uy—1-i(3) = Un—1+i(3) and
Uzn—1+i(3) = —Uzp—1-i(3) in the ring Zy,. In particular, this can be obtained inductively
from the relation U, (3) — U,—2(5) by multiplying by x = U;(5) (c.f. [9, Remark 4.3]). It
therefore follows from Lemma 2.4 that there exists a ring epimorphism &2, : Za, — x
defined by ¢2,(x) = 2cos 5. In fact, it follows from the results of [28] that ¢y, is actu-
ally an isomorphism whenever n is even. On the other hand, when n is odd, we have
x® = ZIx1/(p2n — qan), Where xpa, = Un(3) and xqa, = Uy,—2(3). Most of the
(semi)rings that we consider are given by modifying the ring Z5, in some way.

2.4.1 (Semi)rings of Type A

The following (semi)rings will be used in foldings of type A, which are known to be Verlinde
fusion rings (c.f. [10, Example 4.10.6]).

Definition 2.5 For each n > 2, define the families of commutative rings

x A = 2y, Y, . Yona] C XM =ZW Y, s, Y2l
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subject to the following product rule forany 1 < j <i <2n — 2:

J
ViV =it =) ik
k=0

where any element v, withk ¢ {1, ..., 2n — 2} resulting from the above product is such that
Yo =1, Y2,—1 = 0 and Y24k = —¥2n—2—k. [t is easy to check that, after cancellation, the
above product will always produce a sum of elements ¥ with positive coefficients. Thus, it
makes sense to define the corresponding semirings:

sz"_l =Z>ol¥2, V4, ..., Y2m—2] C Yfz”_l = Z>ol¥1, Y2, ¥3, ..., Yon-2l,

which are subsemirings of x42=1 and x42-1 respectively.

The ring )’(‘AZ"-I is related to the ring Zj, by forgetting the relations U,,_1+i(%) —
U,,_l_,-(§) fori < n — 1 and preserving the relation Up, (%). In particular, we have

XA = ZUx ]/ (Un—1(3)),

where each element y/; corresponds to U; (%) (and 1 = g corresponds to 1 = Uo(g)). From
this isomorphism, we can deduce the following.

Lemma 2.6 The set BA>—1 = (Y0, V1, ..., You—2} is a Z-basis of x4-1.

Proof Since )’(\A”f*‘ = ZIx]/(Uap—1 (%)), one can deduce by iterative products by x that the

elements of the set {U,'(%) 1 i > 2n — 1} are Z-linearly dependent to the elements in the set
{U,-(%) :0 <i < 2n - 2}. Specifically, Uign—1)i+j = —U@n—1)i—j forany i, j > 0. Since
Chebyshev polynomials of the second kind are Z-linearly independent within the ring Z[x],
it is clear that the elements of {Ui(%) 10 <i < 2n — 2} are Z-linearly independent within
the ring Z[x]/(Uz,-1 (%)). The result then follows from the isomorphism. ]

The element Y2, _» € XA2-1 (or equivalently, Ux—2(3) € Z[x]/(Uan—1(5))) is repre-
sentative of the group symmetry of A,,_;. In particular, ¥r2,_2V; = ¥2,—2—;. We can thus
also write

XA Z 2, 31/ Un(3) = YUn—2(3). yUn—1(3) = Unc1(3). 57 = .

where each ; corresponds to U; (%) and y corresponds to Y2, —>. This second isomorphism
is useful for the next family of (semi)rings.

2.4.2 (Semi)rings of Type D

In the next family of (semi)rings, we use a signed notation on the elements. Here, elements
l/f;“ and ;" are distinct, but in some statements we collectively refer to them as 1//?. We also
have statements dependent on elements which either have the same sign or opposite signs.
For example, by wii 1//;:, we mean either 1/fi+ w;r or ¥, w;. On the other hand, by W,'i w;F,

we mean 1//l.+ I/fj_ or 1//;“.

Definition 2.7 Define commutative (semi)rings of type D4 by

XDt =17Zlg] C 1 =7Zlg, ynl,
X2 = Zolgl C XV = Zolg. 1,
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satisfying the relations g3 = 1, gy = ¥ and 1//12 =14 g+ g% Forn > 3, define further
families of commutative (semi)rings of type D,y by

xPrt =17 [wo—, Vi, .., ﬁ{“‘J} C X0 =Zyy T v ),
2

D, - =Dy -
i “:Z”[%’ﬁ"”’wl‘i{"‘J} C R = ol T UL YT v,

2

subject to the following product rules forany 1 < j <i <n — 1:

J
VYT =) o Yo v =vT, W) =g =1,
k=0
where each element wy resulting from the above product is such that
v ifk<n-—1,
/e ifk=n—1landi+ j—n+1=0(mod4),

wp =
“Tlu,  ifk=n—landi+j—n+1=2(mod4),

Yooy iTk>n—1

The ring ¥P* is an exceptional case that exploits the Z3 group symmetry of D, along with
the relation U, (cos %) = 2. Here the element | is represents Uj(cos %) = /3, and 1, g
and g2 represent Ug(cos %) = 1. Consequently, wlz represents Up(cos g) + Uz(cos &) = 3,
which is given by the element 1 + g 4+ g2. One can show that this is actually the fusion
ring of Tambara-Yamagami type associated to the cyclic group of order 3 (c.f. [10, Example
4.10.5]). It is not difficult to see from this that we have the following.

Remark 2.8 The set BP4 = {¥o, V1, g, gz} is a Z-basis of YD“, where for later convenience,
we have adopted the notation ¥ = 1.

For n > 3, the ring ¥ P+! is related to the ring Z», by adding a generator that represents
the Z, group symmetry of D, 1, and by modifying the relations with respect to this group
action. Specifically, we have

RO 2= 2, 31/ (Un(3) = yUn—2(3), 3% = ),

where \/fl-+ corresponds to U,-(%) and ;" corresponds to yU,-(%). One can also see that
7 Pr+1 s related to the second isomorphism of the ring 3¥42-! by forgetting the relation

~

yUn—1 (%) —U,—1 (%). An interesting consequence of this is that x Pr+1 = ¥ A21=1 whenever
n is even. We also have the following.

Lemma2.9 Forn > 3, the set BPr+l = {wét, wli, e wf_l} is a Z-basis for X Pn+1.

Proof Letn > 3 be fixed. We will consider the ring Z[x, y]/(Un(3) — yUn_z(%‘), y2—1).
It is not difficult to show that, foreach0 </ < %(n — 1), we can inductively obtain relations

Unt21(5) = yUn—2-21(5)

from the relation Uy, (3) = yU,—2(3) by iteratively multiplying by U>(3). By multiplying
each of these relations by U (%‘), we obtain further relations

Unt21-1(3) + Unt2141(3) = yUn—3-21(3) + yUn—1-21(5). ()
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If n is even, then one can further deduce that
YU2u41(3) = Uzneai—3(3) + (=D U2n1 ().

On the other hand, if 7 is odd, then one can deduce that Uj,,_ (%) = 0, which implies that
the set {U;(3) : i > 2n — 1} is Z-linearly dependent to the set {U;(3) : 0 < i < 2n —2}.
One can also deduce that y is Z-linearly independent to the set {U,'(%) :0<i<2n—-2}in
this case. In addition, for each / > 0, one can deduce the following relations when # is odd.

YUu(E) = Uanai-1y(3) + (=D Uau—y(3) — ¥).

Consequently, in both the odd and even cases, the elements of the set {U; (%), yU; (%) :0<
i < n — 1} are Z-linearly independent. These correspond to the elements of the set BPn+1
under the previously stated isomorphism, and thus the elements of BPr+! are Z-linearly
independent in xP#+!1. Moreover, the product of any two elements in X¥»+! is a Z-linear
combination of elements in BP#+1. Thus, BP+1 is a Z-basis of ¥ X Dut1 | g9 required. O

It is also worth noting how the alternating behaviour (of the sign superscript) of the term
wy—1 in the product rule for % Pnt1 arises from the relations. If i + j—n+1=0(mod4)
in a product 1//1.ﬂE wjt which contains a term w;,_1, then there are an even number of terms wy

with £ > n — 1. In this case, we can use the relations () with [ > 0 to obtain w,,_; = 1,[/;__]
in the product. On the other hand, ifi + j —n + 1 = 2 (mod 4) in a product wiiwji which
contains a term w,_1, then there are an odd number of terms wy, with k > n — 1. In this case,
we must use the relation (1) with [ = 0 along with the other relations (§) with / > 0 to obtain

wp—1 = V¥, _, in the product.
2.4.3 (Semi)rings of Type E

The exceptional (semi)rings of types Eg, E7 and Eg largely result from exploiting special
relations that arise from Chebyshev polynomials of the second kind when they are evaluated
at cos {5, cos 7g and cos 35 respectively. We will begin by defining these (semi)rings, and
then provide some additional explanation.

Definition 2.10 Define the following exceptional rings of type E.

xEe = ZIyy  ¥21/(Se) c E = Zlyy v Uy V2, Ve 1/ (Se),
xE7 = 2Ly, ¥21/(S7) c XE = Zly1. 1. v, Y U3, Wv7]/(§7),
xE* = Zlp, ¥21/(Sg) c X5 = 21, ¥2, Vg, 91/ (Ss),

where each (3,-) is the ideal generated by a set of relations gl =5 U Slf with

Se = {(Wg)? — 1. (¥2)* — 1 =29 — iy, W V2 — V2,
Se={Wo v — v W = 1=y, v — o — Y7 — Vg, ¥ Ve — Y2l
= (W3 —1— oy, Y3 — 1 — o — Yol
Sh= Ay — 1=y, Y1 — Va2t + Y2 + Vo, Y1 — Y3 — Ui, Y — U3, Vv — 3 — V),
Sy ={¢> =9 —1,y5 —pyn — ¥ — 1},
Sg={Uf = 1 = v, Y12 — Y1 — @Y. V1 Vug — @Y}
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Since the product of any two elements with only positive coefficients in the rings x 6,
x E7 and x £ will produce an element which again has only positive coefficients, it is natural
to define semirings Xfé , xf7 and st by restricting the coefficient ring from Z to Zx(. Later
in the paper, it will be convenient to denote the multiplicative identity in these (semi)rings
by ¥ =1 € xEand yo = 1 € x7, x5s.

6 8

Remark 2.11 Note that we could also define semirings X\f and if similarly, but we do
not need this in our construction. Moreover, the ring B(\E7 is somewhat unusual in that the
product of any two elements with only positive coefficients in this ring will not necessarily
produce an element which has only positive coefficients (see Table 1 for details). It is thus not
possible to define a semiring 5(\57 , and hence it is preferable to avoid working with the notion

of semirings of the form X\f’ in this paper. This may be related to the lack of a fusion ring of
type E7, whereas X6 and x8 can be shown to be the Eg and Eg fusion rings respectively
(see [18] for details).

We can equivalently write the rings %6, 7 and % as the following quotients of

polynomial rings, which makes the connection with Chebyshev polynomials of the second
kind clearer. We leave the reader to check these isomorphisms.

X5 = Zx, y, 21/(5).

X5 = Zlx, y, 21/(S)),

X5 = Zlx, y. 20/(S%).

where

S¢ ={xz— (X)), yz—z,y* = 1,22 =1 -y}

S§ = {Us(3) =y = U2(3), Us(3) = Us(3) — 2. Us(3) = Ua(3) = Ua(3),
Ur(3) —x = Us(3), Us(3) — 1 —y — Ua(3)}

S¢ = (U3(3) = yz. Us(3) — yU2(3), 22 = yU2(3). »* — y — 1).

Specifically, each U,-(%) corresponds to v;, and each z corresponds to v, (where i €
{6, 7, 8} as appropriate). For 5(\E°, y corresponds to v, . For S(\E7, each U,-(%) corresponds
to %. For 8, y corresponds to ¢.

One can also check that we have relations Us(5) = yUs(5) and Us(3) = yUs(3) in the
ring Z[x, y, z]/(S¢). We also have the relations Ug(%) = U7(%) and U3 (%) = Us(3) in the
ring Z[x, y, z]/(S7), and the relation Uy5(3) = U13(3) inthe ring Z[x, y, z]/(Sg). The rings
112 58 and ¥ 30 can therefore be considered as quotients of the rings ¥*¢, ¥£7 and

XES via the map which takes x to 2 cos f—n (withn = 6,9, 15 for Eg, E7, Eg respectively), y
to 1 (for Eg) or 2 cos § (for E7) or ¢ = 2cos & (for Eg), and z to « (v;).

Lemma 2.12 The sets

B = (yd vy Ui U v, )
BE7 = {‘(//07 I)[/.la J]v wZa &27 ¢3a 1/’1;7},
BES = {y0, @, Y1, oV1, Y2, 0¥2, Vg, 9V}

are Z-bases of the rings X6, XE7 and X8 respectively.
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Proof 1t is not difficult to verify that the product of any two elements in X% is a Z-linear
combination of elements in BE — we leave this for the reader to check. It thus remains
to show that the elements in B are Z-linearly independent. This largely follows from the
linear independence Chebyshev polynomials of the second kind. Specifically for X6, this
follows from the fact that

y =Us(3) - U2(3),
xy = Us(%) = Ui (3),
e = Us() — Us(H) + Ui (3)

in the ring Z[x, y, z1/(S{). For X7, this follows from the fact that

y =Us(3) — Us(3) + U2(3),
Ua(3) = Us(3) — Ua(3),
e =Us(3) - Us(3)

in the ring Z[x, y, z1/(S4). For X3, this follows from the fact that

y = Us(%) = Ua(3),
z=Us(3) — U1(3) + Us(3),
xy =Us(3) — Us(3),
Ur(3)y = Us(D),
vz =Us(3).
in the ring Z[x, y, z]/(Sg). All of these relations can be obtained by computing Chebyshev

polynomials of the second kind via the identity U; 11(3) = xU;(3) — U;—1(3) and then by
considering the relations in S¢, S or Sy . O

2.4.4 Partial Orderings on the (semi)rings

The relationship between the above (semi)rings and Chebyshev polynomials of the second
kind is further highlighted by the existence of ring homomorphisms

ol XA s X(2n)
54 ')ZA N X(2n)
T
¥ = U (COS %) (A € {A2—1, Dy, Ee, E7, Es}),
~ T
Yi = U; (cos 6) (A = E7),
T
@ > 2cos 5 (A = Ey),
Yy, > Kk (v;) (A € {Eg, E7, Es}),

where n = 6,9, 15 for A = E¢, E7, Eg respectively. In particular, the homomorphisms oA

are epimorphisms (since, in each case, x®" is a quotient of x*), and o2 is given by pre-
composing @2 by the inclusion 2 — ¥“. These homomorphisms along with the following
will be used at various points in the paper.
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Definition 2.13 Let A € {A2,_1, Dui1, Es, E7, Eg}andleto®: x " — Rbe the canon-
ical embedding. Then x 2 has a partial ordering given by

r<sor=soroc®™s?r) <ol (s).

This endows x f with a partial ordering in the natural way via the embedding o f Y f —
A
x°.

3 The Folding Projections of the Module and Bounded Derived
Categories

In [9], it is shown that a folding onto a quiver of type H3z, Hs or Io(2n + 1) induces a map
that projects the dimension vectors of objects in the module and derived categories of the
unfolded quiver to certain multiples of the roots of the folded quiver. Additionally, the folding
induces a weighting on the rows of the Auslander-Reiten quiver of the module and derived
categories associated to the unfolded quiver such that the dimension vectors of the objects
in the rows with weight 1 are projected to the roots of the folded quiver — providing an
analogue of Gabriel’s Theorem (c.f. [8, 14]) for R-quivers. On the other hand, the dimension
vectors of the objects in the rows with weight w are mapped to the w-multiple of the projected
dimension vector of an object in a corresponding row with weight 1. We will show that the
same is true for all possible foldings onto quivers of type I(2n). Throughout this section,
we denote by Frac(R) to be the field of fractions of an integral domain R. First let us make
precise the notion of the weighting of the rows of the Auslander-Reiten quiver.

Definition 3.1 Throughout, let F: Q% — Q2" be a folding of quivers from Section 2.3
(so A € {Azy—1, Du+1, Ee, E7, Eg}) and let A be either the module or bounded derived
category of the path algebra K Q2. For each i € Q%, we denote by ’PiA the row of the
Auslander-Reiten quiver of A containing the module P (7). That is,

PA={[t"P@)]:m e L}

1

where [M] denotes the iso-class of an object M € A. We define the weight of the row 77;4 to

be the value &; = g(";i&)) € Frac(x ).

Remark 3.2 One may note that since K O is representation-finite, we could equivalently
define rows of the Auslander-Reiten quiver by sets

TA ={[«"1()] : m € Z}.

1

For the foldings with A € {Dau, E7, Eg}, we have P4 = TA. For foldings with
A = Ajp,_1, we note that PiA = IZAn—Z—i’ which mirrors the relation U;(cos 2”—”) =
Usp—o—i(cos %). We also note in this case that F'(i) = F(2n — 2 —i). For the foldings with
A = Dy41 with n even, we have P4 = ZA foralli # (n — 1)* and 73(3_1)1 = I(le—l)? For
foldings with A = E¢, we note that 73[.“4 = Il.é fori = 0, 1, that 73;4 = IiA fori = 2, vg,
and that F(i*) = F(iF). It is then easy to see that in all cases, we could equivalently define
the weight of a row containing both P (i) and I(j) as &; = ¢;.

Now we will recall the definition from [9] of the projection map that will be central to this
paper, which we modify slightly to account for the non-trivial R-valuation of Q2.
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Definition 3.3 Given an arbitrary weighted folding F: Q — Q%@ define a map
dp: 7120 — (Frac()((z")))2 by the weighted sum

N k() k@
Wiego = | D cqop™” 2 (™

F()=[0] F@)=[1]

For each object M € mod K Q, we define
8MNKC (M) = d dim(M).
In addition, for each object X = @jeZ EfMj e pb (mod K Q), we define

b
5? (modKQ)(X) — Z 5;10dKQ(Mj) _ Z 5l;~deQ(Mj).
J even Jj odd

Given any object X € A, where A is either mod K Q or Db (mod K Q), we call the vector
Sﬁ(X) the F-projected (dimension) vector of X.

Remark 3.4 Itis easy to see that 87 (X & X') = 874(X) + 87 (X) for any object X, X' € A.
This fact will be useful in several proofs.

We will now state the main theorem of this section.

Theorem 3.5 Ler F: Q2 — Q2C" pe q weighted folding and let A be either mod K Q2
or D?(mod K Q2). Then the following hold:

(a) Foranyi € Qg such that F (i) = [0], we have
7 (™ 1(0)) = ittm,

where oy, is the short root corresponding to the point g([O])eXp(mT”i)‘
(b) Foranyi € Q§ such that F (i) = [1], we have

SF(@"1() = €1
where B, is the long root corresponding to the point g([l])exp(%ﬂl)”i).

Essentially, the theorem above says that the map 8;“ maps an indecomposable object in
the category .A to a specific multiple of a root of the standard root system of I5(2n). In fact, it
says much more than this: objects in the same row map to vectors of the same length/multiple
and that the Auslander-Reiten translation of an object corresponds to a rotation of the corre-
sponding vector.

Remark 3.6 As previously mentioned in Remark 2.3, the projection of roots induced by the
folding F: 0® — Q2" is precisely the projection onto the Coxeter plane considered by
Steinberg in [27]. It follows from the work of Steinberg, that a bipartite Coxeter element is
a rotation on the Coxeter plane of order given by the Coxeter number. In our setting, the
Coxeter number is 2n and the Auslander-Reiten translation is a bipartite Coxeter functor ([1,
2]). This offers an explanation as to why the Auslander-Reiten translation of an object X € A
corresponds to a rotation of the vector Sﬁ(X ). An example of this is illustrated in Fig. 2.

Before we begin the proof of Theorem 3.5, we will highlight some immediate corollaries
for the benefit of the reader. The first Corollary may be viewed as a generalisation of Gabriel’s
Theorem to quivers of type I(2n).
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0t o+ 2- _
1t 3 1- 0

—_—
1£3 1F 1= 3 1F 1* 3 1F

+ gt + g% +
E(ﬁl%zg 1*0 - 133:32 1i0 o 1%¥321i

Fig. 2 The folding FA7: 0471  gh®), Top: The Auslander-Reiten quiver of mod K 047, The category
has Zj-symmetry determined by reflection in the dashed line. Bottom: The non-crystallographic projection
of the Auslander-Reiten quiver of A = D’ (mod K 047) under the map 8;74, with irreducible morphisms
superimposed. Objects in the same Z;-orbit map to the same point. Objects concentrated in odd (resp. even)
degree map to the points labelled with (resp. without) X. One of the sectors of morphisms is dashed to indicate
that they are not morphisms between objects of degrees k and k — 1, but rather between objects of degrees k
and k + 1. Rays in the Auslander-Reiten quiver map to octagonal arcs in the projection (eg. the blue arrows)
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Corollary 3.7 The map 8“F4 induces a bijection from each row of the Auslander-Reiten quiver
of A to a subset of roots of I (2n). In particular,

@ ife; =1, F(i) = [0] and A = mod K 02,
@3, ife; =1, F(i) = [0] and A = D’ (mod K Q™),
oLt ife; =1, F(i) = [1] and A = mod K 0,
@, ifei =1, F(i) =[1] and A = D(mod K Q%).

S7 (P =

Corollary 3.8 Foranyi € Q§ and m € 7, the length of the vector 8;4(1:’" P(i)) with respect
to the standard basis of R? is
LEAE™P(0)) = k().

The proof of these results follows the same reasoning as that used for the foldings onto
I>(2n+1) featuring in [9]. The proof works along these lines: We first show that the the relative
length of the F-projected vectors of any two indecomposable projective (resp. injective)
modules that correspond to the same folded vertex is determined by the R-weights of the
unfolded vertices. Next, we show that the Auslander-Reiten translate of an object corresponds
to an anticlockwise rotation of its F-projected vector by an angle of % about the origin. The
proof is then finalised with the calculation of the F-projected vectors of two objects (one
corresponding to a short root and the other a long root).

Lemma3.9 Foranyi,j € Qé such that F (i) = F(j), we have

k(8K CE (p(j)) = k(s K O (P (i))
k(8™ KC (1)) = k(6™ KC (1 3.

Proof One can see from the multiplication rule for Chebyshev polynomials of the second
kind that

0, &) if P(i) is simple,

8modKQA Pi)) =
F (PE) (&i, &) if P(i) is non-simple.

mod K Q2 , . (&i,0) if 1(i) is simple,
s (I1(0) = s )
(4e; cos” 7, &;) if I(i) is non-simple.
Thus, the result follows from the commutativity of x @ |

Remark 3.10 Recall that £((1, 0)) = ¢([0]) = A and £((0, 1)) = ¢([1]) = 2A cos 2”—” where
A=1if A # Dyy1and L =2 if A = D,41. Thus by the law of cosines, the length of the
vector (1, 1) is A. From this, the proof of the above lemma, and the definition of the foldings,
we can conclude that K(Bﬁ(P(i))) = k (i). Likewise, we have K(B“F“(I(i))) =k (i).

Lemma3.11 LetM € A. Then 61{3 (T M) is obtained from 81{5(M) by an anticlockwise rotation
of % about the origin.

Proof Suppose M € mod K Q* is a non-projective indecomposable. Let

00— PL—>Py— M — 0,
0O—->tM—> 1 —>1H)—0
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be the minimal projective resolution of M and the corresponding injective resolution of T M
given by applying the Nakayama functor v. Since K Q* is radical square zero, P; and Iy are
semisimple modules. Consequently, we have

SR(P) = (0, 7)), 57 (Po) = (r, 1),
8114(11) = (45’ cos? 7.8, 8114(10) = (s,0).

for some r, ', s, s' € Frac(x®"). But since vP (i) = I (i) foreach i € Q@, we in fact have
r = s and r’ = s’. This, along with Remark 3.10, implies that

LA (PY) = LGAUp))  and  LGBA(P)) = LA ).

Now note that the vector —§ ;4(10) is obtained from § “F“(Po) by an anticlockwise rotation of
% about the origin. Likewise, § %4 (1) is obtained from —4§ I“ﬁ‘(Pl) by an anticlockwise rotation
of % about the origin. But such a rotation is a linear transformation, and we have

S7 (M) = 57 (Po) — 87 (Py),
S (M) = 87 (1) — 87 (To)

by dimension counting the above projective/injective resolutions. Thus, 8;4(1 M) is an anti-
clockwise rotation of the vector 8?(M ) by an angle of Z- about the origin.

Now suppose instead that M € DP(mod K Q?) corresponds to an indecomposable
projective module concentrated in some degree k. Then tM = Z**+!] for some indecom-
posable injective module / whose corresponding vertex has the same weight as with M. So
8;4(1 M) = —5;4( *I), which we have already shown to be the appropriate rotated vector.
By Remark 3.4, we therefore conclude that for any object M € A, the vector S;f‘(rM ) is
obtained from Bﬁ(M ) by an anticlockwise rotation of % about the origin. O

We can now prove Theorem 3.5.

Proof of Theorem 3.5 (a) If F (i) = [0] then I (7) is simple. So 8;4(1(1')) = (&, 0). The result
then follows from Lemma 3.11.

(b) If F (i) = [1] then I (i) is non-simple. As shown in the proof of Lemma 3.11, 8;4(1(1'))
is given by an anticlockwise rotation of the vector —S“F“(P(i )) = (0, —¢;) by % about
the origin. Thus, 8;4(1 (1)) = &iBo, where fy is the long root corresponding to the point

g([l])exp(%). The result then follows from Lemma 3.11. O

Remark 3.12 The results of this section can be viewed as an ‘unfolded categorification’ of
the root system of type I(2n). Equivalently, this can be approached from the perspective of
a ‘folded categorification’, as presented in [15]. In particular, Theorem 4.11 of [15] in the
I (2n) case is related to our Theorem 3.5 with A = Ay,_; and A = mod K Q421 Note,
however, that Heng uses a two-copy version of the quiver Q42-1. Essentially, this means
that Heng’s construction considers the rescaled root system of I (2n) rather than the standard
root system that we consider in our theorem.

4 The Semiring Actions on the Module and Bounded Derived
Categories

Each folding F: Q® — 023" and the non-crystallographic projection it induces gives
rise to a semiring action of Ry = X.f on mod K 02 and D?(mod K 02) in the sense of
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[9, Definition 6.1], where Xf is as defined in Section 2.4. As in [9, Definition 6.1], we call
the appropriate category an R -coefficient category when it is equipped with a semiring
action of R. Whilst the semiring actions are slightly different for each folding, the general
principle underlying each action is the same. We will first define the semiring actions for
A = mod K Q2, as the semiring action on DP(mod K 02)isa straightforward extension of
this action.

4.1 The Action on Iso-classes of Objects

For each positive root « of I(2n), define a set of iso-classes
= {[M] : M € A indecomposable and r/rSﬁ(M) =ra forsomer, r € X(Z”)}.

Since Q2 is bipartite, it follows from Theorem 3.5 that the iso-classes in My bijec-
tively correspond to objects in the same column of the Auslander-Reiten quiver. That is,

o« = {[tT™1@()] : F(@) = j}, where j = [0] if @ € @S’Jr and corresponds to the point
g([O])exp(”’T’“), and j =[1]ifa € ¢12,+ and corresponds to the point g([]])exp(m).
In both cases, define M; , = t™I(i). Hence [M; o] € T and ¢ (F(i))871(M; o) = K (i)ar.
Consequently, we have

_ M1 FG) = (01 ifa € @5
“T IMial: FG) = [11) ifa € @5

The semiring R, will act on mod K Q2 in such a way that for any positive root «, for
any [M] € M, and for any r € R, the object r M will be isomorphic to an object whose
indecomposable direct summands belong to iso-classes in M. We will describe this precisely
for each folding.

4.1.1 Isomorphism Conditions of Type Az,_1

We will adopt the unsigned labelling of the vertices for Q42! (the first quiver in Section 2.3).

For any positive root o, we have a function w, : My, — XAZ" ! defined by w, (M; o) =i

Agn—1

for each [M; o] € M. Now recall the product rule for the semiring . 27"7", which gives

Voo ((Migl) = ) i
kEV/','
foreach ; € Xf% ! and for some index set Vi € {0,1,...,2n — 2}. Since the index j is
even, note that the set V;; consists of indices that are either all odd if i is odd, or all evenif i is

even. In particular, this implies that there exists [My o] € My, for each k € V;;. We will thus

2n—1

define the semiring action of Xf on mod K Q421 such that the following isomorphism

holds for each positive root «, each [M; ] € M, and each ; € XAz" :
l o = @ Mk o- (Al)
keVji

An example demonstrating the action of sz”" on mod K Q421 is given in Section A.1.
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4.1.2 Isomorphism Conditions of Type D4

The semiring action of Xf“ on mod K QP* is a minor extension of the classical Z3-group
action on mod K Q4. That is we define for any positive root o

gMoo = M+ o, gMyo+ o = M-, gMr_ oy = My,
ng,Ot = Ml,ct-

The action of X+D4 is only different from the action of Z3 in that we have (r + r')M =
rM @ r'Mforanyr,r’ € Xf“ and M € mod K QP+,

4.1.3 Isomorphism Conditions of Type D, 11

We assume n > 4, since D3 = A3 and Dj is covered separately. For any positive root o, we
define a map wy : My — j(\f”“ by

Uy if0<i<n—1
o ([M; o]) = ! !
@e([MiaD {wfl ifi = (n— )=

For each [M; ,] € M, withi # (n — )%, for each 0 < j < n — 1, and for each
0 < k < n — 1, there exist constants g;jx € {0, 1, 2} such that

n—1
Vioa((Mia)) =) qin@Wd +¥7)
k=0
n—2
= Z Gijk 0o ([Mi,o]) + Gijn—1)(@a ([(M—1)+ o]) + 0o (M —1)- o])-
k=0

In particular, g;jx = 0 for all even k if i is odd and g;j; = O for all odd k if i is even. We

will thus define the semiring action of Xf"“ on mod K QP! to be such that the following
isomorphism holds for each positive root «, each [M; o] € My with i # (n — 1)* and each

+ Dy1
viexy -

(S8

.
~ Dqij y

ViMia =@M " & M1yt o ® M1y~ o) 2000, (D1)

k

Il
o

where X®" = @/, X and X®° = 0 for any X € .A. This is a slight abuse of notation, as
M. might not exist if g;jx = 0. However, this is not a problem, as we define Mlg?g =0.
On the other hand, if i = (n — 1)* then

Sev, W+ VO Y,k if ] even,
Srev, W+ V0 + v,y if 4 odd,

Zkevj,- W+ + v, if% even,
Skev, W+ YO v,k if £ odd.

Vi ou (M1t o) = {

Vioa((Mp-1tql) = {
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for some index set V;; C {0, ..., n — 1} whose elements are odd if » — 1 is odd, or even if
n — 1is even. Thus, we will define the action of Xf"“ on mod K QP+ to be such that

Brev, Mo ® M1yt o ifi = (n— * and § even
orifi = (n — )T and £ odd,

Brev; Mia ® My_1)- o ifi = (1 = 1)¥ and § even
orifi = (n — 1)* and £ odd.

VM, o = (D2)

An example demonstrating the action of Xf”“ on mod K QP+ is given in Section A.2.
4.1.4 Isomorphism Conditions of Type Eg

Let o be a positive root of 1>(12) and let My, be as before. Define a map wy : My — ff(’ by
yE ifi e (0F, 1%),
v ifi € {2, vg}.

Then for each i € {0%, 2}, the products ¥/, we([M; «]) and Vo0 ([M; «]) will each be
linear combinations of elements from the set

Wi ¥y s ¥2) = {wa((Mi o)) : F(i) = [0]}.

On the other hand, for each i € {li, v6}, the products ¥y wy ([M; «]) and Yowq ([M; o ])
will each be linear combinations of elements from the set

Wi U7 e} = {wa (M g]) : FG) = [1]}.

We will thus define the action of R on mod K Q¢ to be such that the following isomor-
phisms hold.

oo ([M;o]) =

~ M ifi = j* with j € {0, 1},

Yo Mig =177 ’ ! ®o-h
M;, otherwise,
Mo ifi = 0%,
v M M- ifi = 1%,

VoM; ~ 1+.a D Myga ® M- o ' l (E6.2)
Mo+ o @ M2 o ® My o ® My-, ifi =2,
M+ o, ®& M- 4 ifi = ve,

In particular, this corresponds to the following products in 36,

Vo UE =vg. v Uit = vt Yo V2 = Y, Yo Vs = Yugs
v =v2, YT = vt v+ Y. Yo =Yg H t e Yy, v = v Y

4.1.5 Isomorphism Conditions of Type E;

For each positive root « of 1;(18), define wy: My — 257 by

¥ ifi €{0,1,2,3, v},

wo([M; o]) = Ji ific {T,Z}
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We can see from Table 1 that we again have that, for each i such that F (i) = [j], the
products Y wy ([M; «]) and 17}260(1 ([M; ]) are both given by linear combinations of elements
from the set {wy ([M; o]) : F (i) = [j]}. Thus, the isomorphism conditions for the folding
FE7 are such that for any positive root «, we have the following.

M o ifi =0,
Ml,a @b M3,a ifi = l,
Moo ® My, ® M5, ® My ifi =2,
YoM = N\ Mg ® M3 ®Mzg® My, ifi =3, (E7.1)
M5, & Mag ifi =1,
My, ®M;, &M, ifi =2,
M3 o if i = vy,
Ms, ifi =0,
Mz o ® My, o ifi =1,
My, @M, ® My ifi=2,
VaMio = { Mio ® M3 o & M3 ifi =3, (E7.2)
My, @& Ma g ifi =1,
Moo ® M3 o ® Moy ifi =2,
Ml,a@Mw,a ifi = vy,

It is easy to verify that the above is compatible with the relations 1%22 =149+
and 1//22 = 1+ Ynyp. Itis also straightforward to check that these actions correspond to the
products Y2wq ([M; 1) and Yrwy ([M; «]) in Table 1.

4.1.6 Isomorphism Conditions of Type Eg

For any positive root a of 15(30), we define a map w,: My, — Yf* by

v ifi €{0,1,2,vg},

ve 1fi =3,
oa((Mial) = {7V 1
oY ifi =4,
gﬂlﬁj ifi =¢j.

Once again, for each i such that F' (i) = [], the products Yrwy ([M; «]) and pwy ([M; 1)
are given by linear combinations of elements in the set {wy ([M; o]) : F (i) = [j]}. Thus, the
isomorphism conditions for this folding are such that for any positive root o, we have the
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following.

M2,oz ifi = O,
Ml,a@MS,a ifi = 1,
MO,E( © M2,a D M4,o¢ ifi = 2,
Miog®Mso®M My, o ifi =3,

VoM g 2= | Ve @ Moo @ Muga & Mo 110 (E8.1)
Myo ® Myoy ® Mao ® Mgy ifi =4,
MS,a S M¢1,oc ifi = Vg,
M3,a @Mvg,a ®M¢laﬂt if { :(f)l,
M4,01 ifi = ¢0,
Mgy« ifi =0,
My, o ifi=1,
My ifi =2,
Mag ® Myg o ifi =3,

oM o = | V3o © Muge 1T (E8.2)

Mo ® My, ifi=4,

M; ifi = vg,
Mo ® My, o ifi =¢y,
Moo ® My, o ifi = ¢o,

We leave it as an exercise to the reader to check that these actions are consistent with the
products in XZs.

4.2 The Action on Morphisms

The action of R, on morphisms in mod K Q* is best described by adopting a particular basis
for the modules. Under this basis, the semiring can be seen to act diagonally on morphisms.
This requires us to establish additional notation for an explicit explanation. As in [9, Section
6], let {n; : i € Q(?} be a complete set of primitive orthogonal idempotents of K Q* and
let N be a K Q®-module. Let Nj,j: Ni — N; be the restriction of the linear action of the
unique arrow a; j: i — j € QlA on N to the vector subspace N; = N1;, composed with
the canonical surjection onto N; = Nn;. The data given by all vector subspaces N; and all
linear maps N; ; entirely determine the structure of N — this is equivalently the module N
expressed as a K -representation of O, which in this setting, is more convenient to work
with. Forany L € Mg and morphism f € Hom a4, (N, L), we thenrecall by Schur’s lemma
that f can be written diagonally as (f[)iEQ€ with f; = fln;: Ni = L;.

To define the appropriate basis of ¥; N, first let [M; ] € M, for some positive root ¢ of

I,(2n) and write
dijk

WjMi,a = @ @M]{,Ol

kEQOA =1

for some non-negative integers g, jx determined by the relevant isomorphism conditions. Then
we define the vector subspace (y; N); of ;N to be the vector space

qijk

wiNi = P P

keQf =1
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where each N,El) is a copy of the vector subspace Ny € N. For each arrow a: i — i’ in Q2,
the linear map (jN); i (WjN); — (¥;jN); is defined blockwise by linear maps

! ! Ll
N,S) — N,E,): V> ;a(,k,]z’Nk’k/(v)

for some constants Cé’}f/i/ € K determined such that the isomorphism conditions hold. Under
such a basis, one can define the action of ; on a morphism f = (fi)ieQ@ : N — L by the
morphism ¢ f: ¥;N — ;L given by

Gijk

WiHi=P P

ke =1
Finally, we define
+rf: G+ )N—>GF+r)L=rf®r'f:rN®r'N —>rL&®r'L
for any r, r’ € R4, and we define ¥ = 1 € R to act by the identity functor.

Remark 4.1 For the case where A = Aj,_1, the semiring action on the category mod K QA
can also be described via the equivalence given in Theorem 3.1 (and Section 6.3) of [15].

4.3 Basic Properties and Actions on the Bounded Derived Category

Let F: Q2 — Q22" pe a weighted folding. Since the action of R4 on mod K Q2 has been
defined such that certain isomorphism conditions are met and that the actions on morphisms
are diagonalisable with respect to a given basis, it is easy to see that M = mod K 0
has the structure of an R, -coefficient category. In particular, the action of any r € Ry is
exact, faithful, and induces an injective map Extly, (M, N) — Extj, (rM,rN). As is
the case in [9], it is straightforward to extend this action to the bounded derived category
DZ =pP (Ma). Since r acts by an exact functor on M, we can define r XM = ¥XrM for
each object M. One then notes that the faithful action of R4 on Ext}vlA -spaces ensures that
the R -action on DZ is faithful. One can then see that DZ is also an R -coefficient category.

Throughout, we let A be either of the R -coefficient categories Ma or DZ. We have the
following basic properties.

Remark 4.2 Let M € A be indecomposable and r € Ry. Write rM = M| @ ... & My,
where each M; is indecomposable.

(a) My, ..., M, reside in the same column of the Auslander-Reiten quiver. In particular, r
commutes with the Auslander-Reiten translate t.

(b) The Auslander-Reiten quiver starting (resp. ending) in M is mapped under r to the direct
sum of each Auslander-Reiten sequence starting (resp. ending) in M;.

In [9], the notion of basic and minimal R, -generators was defined. We will briefly recall
those here.

Definition 4.3 Suppose A is an abelian R, -coefficient category and let R be the ring obtained
from R4 by applying the Grothendieck group construction on the additive commutative
monoid structure of Ry. We say that an object N € A is Ry -generated by M € A if for
some r, ' € Ry, there exists a split exact sequence

0—-r'M—-rM— N—O.

@ Springer



D. D. Duffield and P. Tumarkin

Similarly for a triangulated R -coefficient category .4, we say an object N € A is Ry-
generated by M € A if for some r, r’ € R, there exists a split triangle

"M —->rM— N — Xr'M

with monic first morphism. In both the abelian and triangulated settings, we can equivalently
say that N is Ry-generated by M € Aif rM = r'M & N. We call the pair (r, r’) the
R -generating pair of N by M and call the value r — v’ € R the R-index of N with respect
to M. We denote the class of all objects R-generated by M in a category A by Gyy.

Given a set I" of objects of A, we denote by A(I") the full subcategory of A whose objects
are R,-generated by the objects in I". The objects of A(I") may be endowed with a partial
ordering by defining N1 < N; if and only if N; = N or there exists M € I such that N is
R -generated by M with the pair (rq, r}) and N; is R -generated by M with the pair (r3, 75)
andry +71) <r2+rj.

We say I' is a set of R.-generators for Aif A(I') >~ A. We say I' is basic if the elements of
I' are pairwise non-isomorphic indecomposable objects. We say a basic set of R,.-generators
I" is minimal if for any other basic set of R, -generators I", there exists an injective map of
sets@: ' — I'"andinclusions ¢: I' — T'UIMand/: TV — T'UTI" such that (M) < /6(M)
foreach M € I'. We say I is t-closed if for any (non-projective if A is abelian) M € ', we
have tM € T.

For the foldings outlined in this paper, there is a close relationship between the projection
map 81{-‘ and Ry -generated objects. The proof of the following remarks is identical to [9,
Section 6].

Remark 4.4 Recall that for each folding F* we have R = x£.Letof: x& — x* be the
canonical embedding and let 62 : x2 — x " be the homomorphism from Section 2.4. Let
£(v) denote the length of the vector v € R? with respect to the standard basis of R?

(a) Forany M € Aand any r € x2, we have {(87 (rM)) = 020 2(r)€(87(M)) and
Sf(rM) is collinear to 8;;4(M).

(b) Suppose A has a set of R -generators and that N1, N> € A are indecomposable. Suppose

further that A = M. Then N; and N, have a common yx _ﬁ—generator if and only if
S“F“(Nl) and 5;;4(1\/2) are collinear. Furthermore, N1 < N, if and only if 8;?‘(N1) and
87 (Ny) are collinear, and (87 (N1)) < (87 (N2)).
On the other hand, if A = DZ, then N1 and N, have a common x _f -generator if and only
if N1 and N, are concentrated in the same degree and 81“5(N 1) and Sﬁ(Ng) are collinear.
Furthermore, N1 < N, if and only if Nj and N; are concentrated in the same degree,
87 (N1) and 87 (N2) are collinear, and (87 (N1)) < (87 (N2)).

One of the main results of [9] is that the R -coefficient categories that arise from fold-
ings onto quivers of type Hs, H3 and I(2n + 1) all have basic, minimal, t-closed sets of
R -generators that are unique up to isomorphic elements. The same is not always true for
R -coefficient categories that arise from foldings onto quivers of type I(2n) (except for
the foldings F£7 and FF8). One always has sets of basic, t-closed R -generators, but the
condition that is lost is the minimality condition. The problem in this setting is, in effect,
the category is too big. One has non-isomorphic indecomposable objects that map to the
same (multiple of a) root, which leads to some objects being incomparable under the partial
ordering. This happens precisely when there is a Zy-action on the category and when an
object is not stable under this action. So to fix this, we need a weaker notion of minimality
that takes into account the group action.
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Lemma4.5 Let G € U(Ry) be a subgroup of the group U (R4.) of multiplicative units of
R.. Suppose that there exists a set I' of Ry-generators for A. Then for each g € G and
M €T, the set

P = (0 \ (M) U {gM}

is a set of R4-generators for A

Proof Since G is a multiplicative group embedded in the semiring R, it follows that M is
R -generated by g M by the pair (¢!, 0). This recovers the original set I". Hence, A(I'8M) ~
A() >~ A, as required. m]

The above lemma implies that we have an equivalence relation ~g on sets of R,-
generators whenever there is a group embedded in R.. That is, we say that I' ~g I if
and only if for each M € T, there exists gy € G such that " = {gyM : M € T}.

Definition 4.6 Let G € U (R, ) be a subgroup of the group U (Ry) of multiplicative units
of Ri. We say that a basic set of Ri-generators I' is G-minimal if for any basic set of
R -generators IV »g T, there exists an injective map of sets 6: I' — '/ and inclusions
t:I'=>TUIland/: TV — T UT” such that «(M) < /(M) foreach M € T.

From the above definition, we could equivalently define a minimal set of R -generators I
to be one that is Z-minimal, where Z; is the trivial subgroup of U (R..). For each semiring
Xf, we will fix a subgroup Ga € U(Xf). In particular, we will define

{17 1/f2n—2} = ZZ if A= AZn—h
{1.g. g%} =Z3 if A =Dy,
{(Lyy} =2y  if A € {Dpy1, Es},
{1} = 72, if A € {Eg, E7}.

It is not difficult to see from Lemma 2.4(f) and the homomorphism o2& ﬁ that we actually
have Gao = U(x ﬁ) in each case. Moreover, there exists no non-trivial proper subgroup
G’ C G ineach case..

Theorem 4.7 Let F2: Q® — Q12 pe the weighted folding of type A. Then there exists
a basic, t-closed set of R4-generators of A, where Ry = x f. In particular, we have the
following.

(a) If A = Agy,_1, then there exist four distinct (up to isomorphic elements) such sets of

Az .
x4 """ -generators that are Zy-minimal. Namely,

ij={MeA:[M]ePtUP

withi € {0,2n — 2} and j € {1, 2n — 3}. These are pairwise equivalent under ~z,,.
(b) If A = Dy, then there exist three distinct (up to isomorphic elements) such sets of
Xf4 -generators that are Z3-minimal. Namely,

T, ={MeA:[M]ePUPH,

with i # 1. In addition, I'; ~z, T'; for any distinct i, j # 1.
(c) If A = D,y1, then there exist two distinct (up to isomorphic elements) such sets of

D, -
Xy "M _generators that are Zo-minimal. Namely,

M ={MeA: M ePrUPL_ ).

where i = 0 ifnisevenandi = 1 ifn is odd. In addition, U™ ~z, T'~.
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(d) If A = Eg, then there exist four distinct (up to isomorphic elements) such sets of Xf()'
generators that are Zy-minimal. Namely,

M5 = (M e A: [M] e Pt UPHL
FEF = (M e A: [M]e Pt UPAL

These are pairwise equivalent under ~7z,.
(e) If A = E7, then there exists a unique minimal such set of Xf7 -generators (up to isomor-
phic elements). Namely,

I'={MeA:[MePUPAL

(f) If A = Eg, then there exists a unique minimal such set of st -generators (up to isomor-
phic elements). Namely,

F={MeA:[M]ePlUP).
Proof (a) We will first show that I'g 1 is a set of R-generators. We have
My = {[Mo], [M2,], ..., [M2n-21} (@ € @3,1),
Mg = ([M1 4], [M34], ..., [May 3 ) (B € @50,

It is easy to see from (A1) that yrp; Mo o = Ma; o. Thus the iso-classes of My are R -
generated by M . To see that the iso-classes of Mg are R -generated by M| g, first define
r1 = yrp and ri = 1. It then follows from (A1) that Mp; 1 g is R-generated by (r2i41, ’ﬁi+1)’
where r2;+1 = ¥ +ry;_; and r; | = ra;—1. Thus by Theorem 3.5 and Remark 4.2, I'¢ |
is a set of R-generators for A, which is clearly also basic and t-closed.

It remains to show that I'¢g 1 is Z-minimal. By (A1), we have Zy = {1, ¥2,-2} = Ga,,_,
as Y2, 2M; , = Mp,_1_; , for any i and positive root y. From this and Lemma 4.5, we
can see that I'g 1 ~z, ['24—2.1 ~z, T0,20—3 ~2z, T'21—2,21—3. Moreover, 5(5?A(Mo,a)) <
£(8A\ (My; o)) forall i # n — 1 and £(87, (M1,5)) < €87 (Maiy1,8)) forall i # n —2.
So each I'; j is Z>-minimal by Remark 4.4, as required.

(b) Here, we have Z3 = {1, g, gz} = Gp,. This is thus a consequence of the sole
generating element g € X+D4 being the Z3-group action on the category, along with the fact
that K(S;“A (Mo o)) = 6(8;“A (My+ o)) = 6(8;;‘A (M»- ) for each short positive root «.

(c) We will first show that in both the odd and even cases, the sets I'T are both basic,
t-closed sets of R -generators that are equivalent under the group action Zy = {1, y; } =
Gp,,,- Suppose n is even. In this case we have

M, = {[Moal, Moy, ..., [My_2.41} (@ € ®31),
Mg = {[{M1 ], IM3 ], ..., [IM@u_1)+ gl, IMu—1)- g} (B e ‘Dlz',j)

It is straightforward to see from (D1) that Mo , R.-generates the iso-classes in My — the
argument is identical to that used in type A. We can also see that M, _1)= g both R -generate
the iso-classes in Mg. This follows from (D2), where we can see that each M, _|_2; g is R -
generated from M, _1)= g by the pair (1//;. , Wzi(,-,l))- Thus I'* are both sets of R -generators
of A.

Now suppose # is odd. In this case we have

M, = {[Moo], [Mag], ..., [IMgu_1yt ol IMu_1)- o} (@ € ®355),
Mg = {[M1 ], M3 g], ..., [Mn_2p]} (B e d5H).
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By (D2), M,_1)* o Ry-generates the iso-classes in My in the same way as M(,_)* g
does for Mg in the even case. By (D1), M| g R -generates the iso-classes in Mg in a similar
way to how M g does for Mg in type A — the pairs are the same except with & superscripts.
Thus, I'* are again both sets of R -generators of A.

It now remains to show that these sets of R-generators satisfy the required properties.
That they are basic and t-closed follows trivially by construction. The equivalence under ~7,
is also obvious, as ¥, M; , = M, , forany y and any i # (n — D, and Yo M_1yx,y =
M=, Thus, it remains to show that these sets are Z,-minimal. Here, it is important to
note the following: if [M(,_1)* , ] € M,, for some y, then every M; , (with i # (n — D)
does not R -generate M,_yy+ ,,. This follows from (D1), where we can see that for any
object N thatis R -generated by M; ,, M(,_1)+ , is isomorphic to direct summand of N if
and only if M(,_yy- ,, is isomorphic to direct summand of N. That is, it may be possible to
R -generate M(,_1)+ ,, ® M(,_1)- , from M; ,,, but not one of these summands individually.
So even though we may have M; ,, < M(,_y+ ,, this is irrelevant, as any set that does not
contain one of M(,_py+ ,, is not a set of R -generators. As for the set of iso-classes such that
[M,—1)£,,] ¢ M, the Z>-minimality of My, , or My, is obvious from Remark 4.4. Hence,
I'* are both Z,-minimal.

(d) Let o be a short positive root and B be a long positive root of 7(12). Then we can see
@0 (withi, j € {£, F})is a set of R -generators by the following table of R -generating
pairs (where columns are R -generated by rows with pairs in the given cell).

Moo | Moz o Myo | Mizg | Mizg My, g
Myt | (1,0) | (¥g,0) | (¥2,0)
M+ g (1L,O) | (g,0) | (W, 1 +145)

By Theorem 3.5 and Remark 4.2, this is basic and t-closed, as required. The group is
Zo = {1,V } = G, and thus it is clear from the table that these sets of R, -generators are
pairwise equivalent under ~z,. To see that these are Z,-minimal, we note that

LB7a (Mo+ 0)) = LB7a (Mo-0)) < £ 7a (Ma,)),
CB7a (Mg p)) < L7 (My+ ) = (874 (M- p)),
but also that My, g does not R -generate either M1+ g (the best we can do is R -generate
M+ g @ M- g, which is insufficient). Hence, each '/ is Z,-minimal by Remark 4.4, as
required.

(e) Let « be a short positive root and B be a long positive root of 7>(18). Then we can see
I" is a set of R -generators by the following table of R -generating pairs.

Moo M, Myo | My | Migp M3 g

T,

Moo | (1,0) | (Yo, 2 +¥2) | (2,0) | (¥2,0)
My, 5 (1,0) | W2, 1) | (42,0

By Theorem 3.5 and Remark 4.2, T" is basic and 7-closed, as required. It also follows from
Remark 4.4 that I" is minimal, since

EBPA(Moa)) < L7 (M7 o)) < L8718 (M5 ) < (87 (Maq)),
COPA (M, 8)) < L8714 (M1,8)) < L(87 (M3,p)),

as required.
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(f) Let « be a short positive root and 8 be a long positive root of >(30). Then we can see
I' is a set of R-generators by the following table of R, -generating pairs.

Mo, o M o My o M¢0,0t Ml,ﬁ M3s13 M¢1,ﬁ M”Svﬁ
Moo | (1,0O) | (¥2,0) | (¢¥2,0) | (¢,0)
Mg (1,0) | (b2, 1) | (0,0) | (p¥2+1,92+¢)

By Theorem 3.5 and Remark 4.2, I is basic and 7-closed, as required. It also follows from
Remark 4.4 that I" is minimal, since

L7 (Mo.)) < €07 (Mgy0)) < L8 pa (M2,0)) < £(87a (Mya)),
L7 (M1 ) < L7 (Myg ) < L7 (Mg, p)) < L(Spa(M35)),

as required. O

Corollary 4.8 Let F2 be a folding onto I,(2n) and let T' be a basic, T-closed set of minimal
(or G a-minimal) set of Ry-generators of M. Then the elements of T are in bijective
correspondence with the positive roots of I>(2n).

Proof We have by construction (and Theorem 3.5) that the sets M, (with o € <I>§Ln) partition
the iso-classes of indecomposable objects of M. By Theorem 4.7, ' = {N, : a € Q;rn},
where each [Ny] € M. Thus, the elements of I' are in bijective correspondence with the
roots in @;rn, as required. m]

An interesting consequence of the above Theorem is the following.

Remark 4.9 Let R. C R, where R is the ring obtained by performing the Grothendieck group
construction on the additive commutative monoid structure of R.. Then the Grothendieck
group Ko(Mp) of the category M has the structure of an R-module. For each iso-class
[M] € Ko(Mp), mulitplication by r —r’ € R (where r, ¥’ € Ry)is givenby (r —r")[M] =
[rM] — [r' M]. Note, however, that unlike the situation in [9], the R-module K((M ) is not
free.

5 Cluster-R,-tilting Theory for Foldings onto /5(2n)

Cluster algebras and mutations of Dynkin Z-quivers have previously been categorified via
the cluster category (constructed in [4], see [3] for further details). The semiring action on
the category DZ naturally extends to the cluster category Cao = Dg / (‘CD;i 1 of 0. In

particular, we have a canonical triangulated quotient functor E : DZ — Ca (due to [16])
and we define the action of Ry on Cp by rE = Er for each r € Ry. Given any set of
R -generators I"pp of DZ, we obtain a set of R -generators

A

Fey = (E(M): M €Ty )

of Ca. Moreover, I'c,, is basic if FDb is basic and I'c,, is G-minimal if FDb is G-minimal.
For worked examples of the theory that follows, see Section A.

Definition 5.1 Let H be a finite-dimensional hereditary algebra such that mod H is has the
structure of an R4 -coefficient category. Let Cy be the cluster category of H, and suppose
that I" is a set of R -generators of C. We say an object T € Cg is (cluster)- R -tilting with
respect to [ if the following hold.
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(1) T =@ 7; witheach T; € T.

(T2) T is Ry-rigid: EXtéA(T/, T"y=0forany T', T" € Gr.

(T3) T is maximal: If there exists X € I" such that T @ X is Ry -rigid, then X is isomorphic
to a direct summand of 7'.

In addition, we say an R -tilting object T € Cg is basic if the direct summands of T are
pairwise non-isomorphic and 7 is with respect to a basic, G-minimal set of R -generators,
where G is some (possibly trivial) group embedded in U (R.).

Henceforth, we will assume that I' is a basic, t-closed, G o-minimal set of x _f -generators
of Ca that corresponds to a basic, t-closed, G A-minimal set of x f-generators I’ of DZ
under the quotient functor E: DZ — Ca.

Theorem5.2 LetT = X1 ®...® X, € Ca witheach X; € T'. For each i, denote by Ix, the
set of all iso-classes of indecomposable objects in Ca that are x f-generated by X;. Then the
following are equivalent.

(a) T is basic Xf-tilting with respect to T.

(b) T = X1 ® X», where X1, X3 € T reside in (distinct) adjacent columns of the Auslander-
Reiten quiver of Ca.

(c) The object

is basic tilting.

Proof (c) = (b): Since T is basic, the direct summands of T are pairwise non-isomorphic.
By construction, this is true only if we have X; 2 X; for all i # j. By Remark 4.2, the
iso-classes in Iy, are precisely the iso-classes of indecomposable objects that reside in the
same column as X; in the Auslander-Reiten quiver of Ca. Thus we conclude that T is basic
only if each X; resides in a distinct column of the Auslander-Reiten quiver of Q0 To see
that m = 2, we note that if m # 2, then |T| # | Q€| and thus cannot be tilting by the results
of [4]. Thus, T = X & X».

It remains to show that X; and X reside in adjacent columns. Suppose for a contrapositive
argument that this is not the case. Then at least one of X and X is represented by an object
M € DZ concentrated in degree 0 — for convenience, we will say (without loss of generality)
that this is a representative of X . Then by assumption, X, is represented either by another
object M, concentrated in degree 0, or by an object Z P (i) € DZ for some i € Qé

In the latter case, if P (i) is simple (or equivalently, i is a sink vertex), then M 22 S(j) for
any source vertex j € Q@ (otherwise, X1 and X are adjacent). Thus we must have S(k) C
M for some sink vertex k € Qé and hence EX%Z (ZS(k), My) = Hong (ZS(k), ¥M,y) #

0. But each X S(k) (k a source vertex) is a representative of some object Y> € Ca in the same

column of the Auslander-Reiten quiver as X (that is, [Y2] € Ix,). So Extél, (T,T) # 0,
o~ o~ _~ A

which implies ExtlcA (T, T) # 0, and hence T is not tilting, as required. On the other hand,

if P (i) is not simple (or equivalently, i is a source vertex), then M| 2 S(j) for any sink

vertex j € QA (otherwise, X; and X, are again adjacent). In this subcase, we trivially
have Ext1 (EP M) = Home (XP,XM;) # 0 for some indecomposable object P in

the same Column as P (i), as this occurs as a component of a pI‘OJeCthe cover of My in the
category M. Thus we again have ExtcA (T, T) # 0, which implies T is not tilting.
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Now we consider the former case where we have representatives M and M» both concen-
trated in degree 0. Suppose without loss of generality that M, resides in a column strictly to
the right of M (that is, in the direction of the irreducible morphisms in the Auslander-Reiten
quiver). Then M does not correspond to a injective object in M and M, does not correspond
to a projective object in M (otherwise we are forced to have X and X» in adjacent columns).
Thus by the Auslander-Reiten formula,

dimg EXtIDZ (M), M) = dimg Hong(Mé, X M}) = dimg Homly,, (M{, TM}),

where each M/ is some object in the same column of the Auslander-Reiten quiver as M;.
This quantity must be non-zero for some choice of M| and M}, since T M} is not injective
and thus has a simple projective subobject P such that the inclusion of P into M} factors
through M. This implies that we must have Extc (T T) # 0 1in this case, which implies T
is not tlltmg, as required. This was the final case to consider, and hence we conclude that X
and X, must reside in (distinct) adjacent columns of the Aulsander-Reiten quiver.

(b) = (a): Let Y1 € Gx, and Y» € Gy, be indecomposable and let My, M € DZ be
representatives of Y1 and Y, respectively. Note that by Remark 4.2 that Y; resides in the same
column as X and Y resides in the same column as X, in the Auslander-Reiten quiver of
Ca.

If M| and M, are concentrated in the same degree, then they also reside in adjacent
columns of the Auslander-Reiten quiver of Db, and clearly we have

Exty, (M1, M2) = Ext}, (M2, My) =0
A A

So assume M; and M, are concentrated in the degrees k and k + 1 (where we
assume without loss of generality that M is concentrated in degree k), then clearly we
have Ext! D (M, M) = Home (M, M) = 0, since Db is hereditary. To compute

Ext! D" (Mz, M) = Home (M3, ¥My), we note that M, and XM, are concentrated in

the same degree. By construction, there are two possibilities: either M> and ¥ M are non-
isomorphic simple objects (which occurs only if M and M; reside in adjacent columns of
DZ) or ¥ M necessarily resides in a column to the left of M, in the Auslander-Reiten quiver
of Db (since Y7 and Y> reside in adjacent columns in the Auslander-Reiten quiver of CA and
¥ >~ 7 in Cp). In both cases, we trivially have Ext! Dt (Y2, Y1) =0.

Now assume M| and M, are concentrated in the degrees k and k + [ with [ > 2 respec-
tively. Again we have Ext]Db (M1, M) = 0 from the fact that D is hereditary and that
A

ExtID,, (My, M) = 0 since X M resides in a column to the left of M, in the Auslander-
A

Reiten quiver of DbA.

Since I isa set of x f -generators, and every object x f-generated by X, resides in the same
column as X;, and we have made an argument based on arbitrary indecomposables in each
column, we have Extc, (X}, X}) = Extc, (X5, X}) = 0 for any X| € Gx, and X}, € Gx,.
By similar arguments to the above, one also has Extc, (X, X}) = Extc, (X}, X}) = 0 for
any X| € Gx, and X}, € Gx,. Thus, T must be Xf-rigid. It is also basic, since X; and X»
are non-isomorphic by assumption. That 7" is maximal follows from the fact that there exists
an element r € x f such that every indecomposable object residing in the columns of both
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X1 and X belong as subobjects of »T'. Namely,

Z';Tl) 1//sz if A=As_1,

zn—l

Yk U +va; i A=Dy,

"Y1+ vy if A = E,
L+Y2+ 92 +Ynyn if A= Ey,
l+y2+o+oeyr if A=Eg.

In particular, [rT| = | Q@ |, where |r T | denotes the number of distinct (up to isomorphism)
indecomposable direct summands of # 7. Thus, r T is arigid object that contains a basic cluster
tilting object as a direct summand. But then if X3 is distinct from X and X» (which since "
is G A-minimal, implies it resides in a distinct column), we must then have direct summands
Z1,7Z> € r(T ® X3) such that Extc, (Z1, Z») # 0. Hence, T must be maximal and hence
basic x f -tilting with respect to I', as required.

(a) = (c): This is immediate from the last part of the proof of (b) = (a). O

Recall from [9] that we call an object T in the cluster category C an almost complete basic
R -tilting object (with respect to I") if T is R -rigid and there exists X € I" suchthat T @ X
is basic R -tilting. We call such an object X a complement to T. The following is a trivial
consequence of the above theorem.

Corollary 5.3 Let T € Ca.

(a) If T is basic x4 Atilting with respect to T, then T has precisely |Q12(2")| = 2 direct
summands.

(b) If T is almost complete basic x ﬁ—tilting with respect to T', then T is indecomposable
and has precisely two complements.

Also recall from [9] that given a basic R4- tlltmg object T € C, we call the algebra
End¢ (T)°P the cluster- R -tilted algebra, where T is the cluster-tilting object given in The-
orem 5.2(c).

Remark 5.4 For any basic Xﬁ-tilting objects T = X® X1, T» = X® X, € Ca, therespective
cluster-x _f -tilted algebras A7, and Az, are Morita equivalent to either K 02 or (K Q2)°P.
In particular, Ay, ~ K Q2 if and only if A, ~ (K 0?)°P, and thus changing complement
corresponds to mutation of the folded quiver Q’2 (@n)  Furthermore, the associated module,
bounded derived and cluster categories of the cluster-x f -tilted algebras have the structure
of x ﬁ -coefficient categories in the natural way.

6 The c- and g-vectors of Exchange Matrices of Type /5(2n)
The c- and g-vectors of an integer exchange matrix were introduced in [13]. In [9], we defined

c- and g-vectors for quivers of type Hs, H3 and I5(2n + 1). We will do the same now for
quivers of type I>(2n) using similar methods.

6.1 Representations of }A

The first step in defining c- and g-vectors for /> (2n) is to realise the exchange matrix of the
unfolded quiver O as a block matrix with blocks given (in some way) by representations
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of an associated ring. The situation is slightly more complicated in the I5(2n) case, as on
the one hand we have a subring x C ¥ whose role is to act on the larger ring, and on the
other hand, the exchange matrix of />(2n) has a rescaling due to the simple roots being of
different size.

It is helpful to bypass the problems caused by the embedding of rings and different root

sizes by instead considering the doubled quiver 0% = 02 LU (Q?)°P with vertex weights
given as before. Thatis, O has the same R-valuation as given in the folding F#, and (Q*)°P
is a copy of this quiver with the same R-valuation, but with the orientation of the arrows
reversed. B

Part of the idea here is that the exchange matrix of Q® has nicer properties (which
we will later demonstrate), however it is also the most canonical setting when considering
unfoldings of the rescaled/skew-symmetric form of /5(2n) (where roots are considered to be
of the same length). That is, the doubled-quiver Q% allows us to consider a folding onto the
‘rescaled’ quiver Q2™ which is the same as Q2" except we now have an R-valuation
of ¢([0]) = ¢([1]) = X, where we define

1 if A 7& Dn—H,
2 if A= Dyyy.

We thus have a corresponding weighted (double-)folding FA: éA — QIZ 2n) such that

F2 maps source vertices in Q2 to the source vertex [0] € Q(I)Z(zn), and likewise maps sink

vertices to the sink vertex [1] € Qé2(2") .

We will recall the definition of the regular representation of a ring R from [9].

Definition 6.1 Suppose R has a finite Z-basis B. Define a ring homomorphism
p: R— ZBXIBl. s h(r),

where the j-th column of o (r) (with j € B) is the vector (a;j);ep given by jr = Y ;g aiji.
We call the map p the regular representation of R with respect to B.

For A € {Ay,—1, D4, E¢, E7, Eg}, we will later see that the regular representation of

32 is sufficient to describe the blocks of the exchange matrix of Q2. This motivates the

following definition.

Definition 6.2 Let A € {As,_1, Da, Eg, E7, Es} and consider the Z-bases B2 from Sec-
tion 2.4 (and in particular, from Lemmata 2.6 and 2.12 and Remark 2.8). We call the regular

representation p2 of X2 with respect to B2 the representation of X* corresponding to F*.

The situation for type D41 with n > 3 is slightly more complicated. In this case,
Lemma 2.9 indicates that the ring ¥ P»+! has a positive Z-basis

BP = (s Y, v )

that is useful to us, but is too big to describe the blocks of the exchange matrix of éD"“.
Instead, we have the following.

Definition 6.3 Let n > 3 and consider the ideal (and proper submodule) of 3P+

W+ v v+ Y ) © xP,
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whose integral basis BPr+1 s given by its listed set of generators. From this, define a ring
homomorphism

Dyt . oDyt N Zn+1><n+l

X e pPr (),

0
where the j-th column of pPr+1(r) (j € BPr+1) is the vector (aij);cgbasr given by jr =
ZiEgD"+] a;ji. We call the map pPrt1 the representation of ¥Pn+1 corresponding to FPn+1

The bases for the above representations have been deliberately chosen such that one has
a bijective map

94 B — Qf (A € {A2n-1, D4, E¢, E7, Eg})
B - 0} (A= Dpi1,n>3)
Yi > (A € {A2q-1, E6, E7, E3})

g 2" (A = Dy)
g2 (A = Dy)

A (A= Dyt1,n>3)

vE (- 1DF (A = Dyi1,n > 3)
Y i (A = Ee)

oY > @i (A =Eg,i€{0,1})
QYo > 3 (A = Eg)
oY > 4 (A = Es)

which satisfies k2 () = 62 (e) for each e.

Remark 6.4 Consider the element s € X with

_J¥1 A e{Ax-1, Da, Eq, Es},
¥ A €{Dnt1, Eo).

Then we have the following that result from the structure of 2.

(a) Foreache e B2, the product se = ) ,.pa ap€’ is such that each a, € {0, 1}.

(b) There exists an arrow 92 (¢) — 92 (') or an arrow 92 (¢') — 2 (e) in Q2 if and only
if ¢’ is a summand of the product se. B

(c) Let < be a total ordering of the set Q@ satisfying vg < vj for any vertices vg, v; € Q@

such that F2 (v) = [0] and F2 (v1) = [1]. Then the exchange matrix of O with rows
and columns ordered with respect to < is given by the block matrix

A 0 p2(s)
B _<—pA(s) 0 )

(d) Let < be a total ordering of the set Q@. Then the exchange matrix of Q2 is
BA = A*B2GA,

where ©2 is the matrix corresponding to the canonical inclusion 08 — Q¢ and A% is

the matrix corresponding to the canonical surjection QO — QF of Z-bases/index sets
with respect to the order <.
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(e) Since Qa = Q*LI(Q2)P, the exchange matrix B2 @ (B*)T is indexed by the set O,
where @ is the direct sum of linear maps and (B®)” is the matrix transpose of B2. In
particular,

B = V(B @ (BMT)v-!

where V is the orthogonal permutation matrix that orders the Z-basis/index set for the
rows of B2 @ (B2)T with respect to < from (c). It therefore follows that, the operation
AR (-)O% isleftinverse to V(—@®—T)V~!, where —is a placeholder fora | Q5| x | Q']
integer matrix with respect to the ordering <, and —’ is a placeholder for a | Q@I X | QOAI
integer matrix with respect to the ordering <.

Remark 6.5 Let e, ¢’ € B2,

(a) If A # E7, then ee’ is a sum of positive multiples of elements of B2. Thus the entries
of the matrix p2 (e) are all positive.

(b) If A=FE;ande ¢ {%, Y, }, then ee’ is also sum of positive multiples of elements of
BE7 and hence the entries of the matrix p£7(b) are all positive. On the other hand, we
have

| —
-

pE () = and  pF(Y,) =

cococoo—o
cocoo—o—
coo~o—o
coo——o0o
o—ococooo
—_——oooo
| —ococococo
—ocoocooo
—ocoo oo
—o—cooo
o—ococooo
cococo—oco
coo~o~—o
cooco—

with respect to the ordering 9 < 1;1 < fﬁg <Y <Y1 < Y3 < Yy,

6.2 C-matrices and c-vectors

We shall recall the following general definitions for C-matrices and c-vectors of R-quivers
from [9].

Definition 6.6 Let J be an index set and let T; be the |J|-regular tree, where any pair of
distinct edges incident to a common vertex in T ; are respectively labelled by distinct indices
in J. Choose a distinguished vertex #p € T; and consider an exchange matrix B over a ring
R with rows and columns indexed by J. We define the extended exchange matrix of B over
R to be the 2|J| x |J| matrix

t' in T, one then defines

where By, = B and Cy, is the identity matrix. For any edge ¢

matrices
5 B, B Bt’
B; = <Ct> and By = <Ct’>

such that E,/ is obtained from g, by mutation at k € J. We thus define the mutation of C; at
k € J as ux(Cy) = Cy.

With this in mind, we define a tropical y-seed pattern by assigning to each vertex t € T
a tropical y-seed {By; ¢, j : j € J}, where each ¢, ; is the j-th column of the matrix C;.
We call the tropical y-seed at the vertex tq the initial tropical y-seed. We call the matrices
C; (where t € T;) C-matrices, and we call the vectors ¢, j c-vectors. The c-vectors ¢, j in
particular are called the initial c-vectors.
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The folded quivers Q2" arise from skew-symmetrisable exchange matrices B2 =

b j])[ Ll Q12(2n) that have been rescaled to a skew-symmetric exchange matrix

ph@2n) _ LQ2n) p=1 _ (..
B = PB P = (b[lJ[]J)[l_][j]EQ(I)z(Zn).

The relationship between these exchange matrices, their respective C-matrices and muta-
tion can be summarised by the following due to [25].

Lemma 6.7 Consider the initial extended exchange matrices

1 (2n) =1>(2n)
B B

t?z (2n) and *t?z @2n)
C P C P

of B2@" gpd BRCm), respectively. Mutation of B2?" and its C-matrices commutes with

rescaling. In particular, for any vertext € T ghtn we have
0

((1) Blz(Zn) PBlz(Zn)P 1
(b) C12(2n) PC12(2n)P 1

Proof (a) The effect of rescaling by the diagonal matrix P = ( p[i])[i]e 0l is such that
0

Pli] b
P

Since the rescaling matrix has positive entries, it is clear from the above and the mutation
formula for exchange matrices that rescaling commutes with mutation. That is,

by = [i11-

iy (B2 = Py (B2 p!

for each [k] € QIZ(Z") and thus 312(2”) PB 12(2”)P as required.
(b) Since initial C-matrices are identity matrices, the extension of the initial rescaled
exchange matrix of type Q2" is such that

ét{f(z”) _ PB[{)ZQ") P*l PBIZ(Z”)P
cleen cleen Pclz(Zn) p-

(k]

Also recall the mutation formula for C-matrices corresponding to an edge r———¢':
—Clik.e if [j] = [k],
[ = .
i et + sgnlerw,Olene, b+ - otherwise,

where for any value a, sgn(a) denotes the sign of a and [a]+ = max(0, @). From this, it is
clear that mutation of C-matrices also commutes with rescaling. Thus,

C12(2") PC’z(Zﬂ)P—
for each vertex t' € T PYCOR O
0

Since we have weighted foldings F2: QA Q12(2”) and F2: 0% — Q2@ each
vertext € T 12(211) is associated to vertices 7 € TQA andr €T = 4o obtamed via the unfolding

procedure. That is, if ¢ is obtained from #¢ by traversing edges kl, . kyinT PRICOR then
0
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7 is obtained from the initial vertex 7y € T 0p by traversing sequences of edges Kty km
inT b where k; corresponds to the composite mutation Lz, = [ FA()=[k] i - Similarly,
7 is obtained from the initial vertex 7y € T = 4o by traversing sequences of edges k Iye-- km

inT = b where kl corresponds to the composite mutation M[kl] =11z Faiy=r M- The only
Vertlces of T 0 and T = o0 that we will consider in this paper are those assoc1ated to the vertices

teT o2 by unfoldlng Thus for the purposes of readability, we will abuse notation and

write ¢ and 7 as 1. Likewise, if the context is clear, we will write Hp and e as pk)-

The relationship between the C-matrices of the double-unfolded quiver Q* and the C-
matrices of the single-unfolded quiver Q2 is similar to what happens with rescaling. In
particular, we have the following commutativity properties with the operations A®(—)®%
and V(— @ —T)V~! defined in Remark 6.4(d) and (e).

Lemma 6.8 Consider the initial extended exchange matrices

B,A) BA
and =fo
(& (c,ﬁ

of B® and B2, respectively. Composite mutation (with respect to unfolding) of B® and its
C-matrices commutes with the operation A®(—)O?. Similarly, composite mutation of B®
and its C-matrices commutes with the operation V(— & —T)V =L In particular, for any
vertext € TQéz(zn) we have

(a) BA = A*B2O% and BA = V(B2 @ (BMHTH)V,
(b) CA = AACPO and CH =V (CA® (CHTHVL

Proof Similar to the previous lemma, we have

( g) AABAOA
Cy AACA®A
Since 02 is a disjoint union of Q2 and (Q™)°P, the result follows from the unfolding

procedure and mutation formulae. The commutativity of V(— @ —7)V~! with mutation
follows by the same argument. O

In what follows, we will utilise the block matrix structure of unfolded exchange matri-
ces and C-matrices. In particular, for the double-folding FA , we will denote by B ULt
and C[z][;] , the ([i], [j])-th block of BA and CtA, respectively. Here, we note that B[zlm ¢
corresponds to the ([i], [j])-th entry of B; under the unfolding procedure.

Proposition 6.9 Lert € 'H‘an) and let A € {A,—1, Dp+1, Ee, E7, Eg}.

1 (2n)

(a) Forany[i],[jl € Qy 7, there exists rjjjj),: € X2 such that
101,

ZA A
Ciiyjne = P~ (i)

In particular, rjjyj),; = ZeEBA aee, where each a, € 7 is such that sgn(a,) = sgn(a,’)
foranye, e € B>,
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(b) C:',A is block-sign-coherent. That is for any [i], [j] € Q(I)2(2"), the entries of é[?][j],r are
either all positive or all negative.

(c) Lett

t' be an edge OfTQIZ(Zn). Then the matrix C:'ﬁ = ;t[k](C:',A) is such that
0

- A o s
Ciit _{ Cl]k]t vy
iy —

C[l]m,+sgn(c[l][k] BlleIN: [klmz]+ O’h‘”’W’S"

where sgn(C:‘[%][k],t) is the sign of the ([i], [k])-th block of C:‘A, and for any matrix A =
(ajj), we define Al as the matrix whose entries are given by [a;;]; = max(0, a;;).

(d) The blocks of (:‘,A commute. That is,

A A _ AA A
Ciitne Cimne = Cirne Clitrgne

for any [i1, [j1, [k], [1] € Q2.

Proof The proof of (a)-(d) is completed by induction on composite mutation. The initial
C-matrix of Q2 is
&a (pA(l) pA(O))
0 \p2(0) p(1))”

which clearly satisfies (a), (b) and (d). For the induction argument, we note that the blocks
of any C-matrix C2 that satisfies (a) are just representations of the commutative ring x *

Thus, (a) clearly implies (d). Moreover, any C-matrix C:‘tA that satisfies both (a) and (b) also
satisfies (¢) — the proof of this is identical to the proof of [9, Proposition 8.7(b)]. Thus, the
induction argument is completed if we can show that given C_‘,A satisfying (a)-(d), any matrix

C_'ﬁ that arises from applying (c) satisfies both (a) and (b). The proof is very similar to that
used in [9, Proposition 8.7], except in this paper, we cannot take for granted that (a) implies
(b) — see Remark 6.5(b).

So suppose C satisfies (a)-(d) and let Ct, = [k (CA) Clearly we have
C_‘ﬁ”kl,t/ = —p" (i) = P2 (=11

This shows that the particular blocks Cz‘ A , are express1ble as in (a). Moreover, the

1,t

block-sign-coherence of C A then implies that each block C[l][k] . 1s sign-coherent, so (b) is
satisfied for these blocks too.
For the blocks with [j] # [k], we have

Citine = P2 i) £ [p™ i) p® (£9) 1+
= p2 (e £ s+,
where s is as in Remark 6.4. To see that r(; 1,/ = ()1, £ [E57(i1(k),¢ ]+ 15 as in (a), we note

that since C G
coherent (c.f. [7, 13, 22]). In particular, if rjjjij1,» = D ,epa dee With sgn(a,) # sgn(a,) for

is the C-matrix of a direct product of Dynkin quivers, its columns are sign-
some e, ¢’ € B2, then the column of C[l e = pA(r[i][j]y,/) that is indexed by 1 € ¥
not sign-coherent — a contradiction. So we must have sgn(a,) = sgn(a,) foralle, ¢’ € BA

instead.
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If A # E7, then Remark 6.5 automatically implies that C:‘[?][ i satisfies (b). Otherwise
if A = E7, we note that (b) fails only if ag,, ay,, # 0. But by Remark 6.5, the columns
of pE7 (%) and pE7(1/fU7) are not sign-coherent. In particular, the columns indexed by Jl
and/or v, in the matrices pE7 (1) and pF7 (¥1,) have both positive and negative entries. But
since C:‘[?”j”, must be column-sign-coherent, this implies that there exist some ey, ..., e, €

BE7\ {41, ¥, } such that

m
p"7 (%1 Y1+ ay, Yo, + Y e ei)
i=1
is column-sign-coherent (where each a, is as determined from (a) of the proposition). But
since (a) is satisfied, all entries of such a matrix must have the same sign. So C_‘[%][./‘], . satisfies
(b), as required.
We have thus shown that any C-matrix produced by composite mutation from some other
C-matrix satisfying (a)-(d) also satisfies (a)-(d). Since the initial C-matrix satisfies (a)-(d),
the induction argument is complete. O

The connection between C-matrices of type A and type I(2n) is formalised by the
following.

Definition 6.10 Let R = x*” and Frac(R) be its field of fractions. Given a weighted folding
F: Q — Q/, where Q' is a quiver of type I2(2n), let dr be the map from Definition 3.3.
Suppose there exist ig, i1 € Qo such that ¢([0]) = «(ip) and ¢([1]) = «(i1). Then define
the matrix F-projection map with respect to (ig, i1) to be the map

drioiy: 2/ (Frac(R))>*2
Wkegy = (dr(uiy) dr(u;))

where each uy is a column vector. Similarly, define the matrix transpose F-projection map
with respect to (ip, i1) to be the map

R (Frac(R))**?

dr(u;,)
ke, — (#(w?))

where each uy, is a row vector.

We will henceforth adopt the following notation. For each vertex i € Qé - éA, we
will label the corresponding vertex of the opposite quiver by i’ € Qg P = Q”. The matrix

projection maps of primary importance are then the maps
) dﬁA,o,o' anddpa o if A # Eg,
(i1) dﬁA’OJr,(Oﬂ, and dpa o+ 1+ if A = Eg.
The only reason to distinguish between the A # E¢ and A = E¢ cases here is because,

technically, there are no vertices labelled by 0, 0’ or 1in Q6 or Q6. For readability purposes,
we will thus write without any ambiguity d Fa and da to represent these maps respectively.

Remark 6.11 1t is not difficult to verify that since the vertices of Q’z(z”) have the same
R-valuation, we have d=, = dZ . However, the same is not true for d za and d” , .
FA FA F FA
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Our next set of results follow naturally from the previous proposition. In particular, we
show an analogue of [9, Corollaries 8.8, 8.10].

Corollary 6.12 Lert € ’]I‘le(zn). Then we have the following.
o

(@) dj,(CA) = 2.

(b) dpa(CR) =M

(c) The c-vectors of 1212(2”) and B2 gre sign-coherent.

(d) The c-vectors of B2 are rescaled roots of I(2n) and the c-vectors of B2 are
roots of I, (2n).

Proof For clarity, we will denote the x @ _yaluation of QIZQ") and Q2@ by the func-

tions ¢ and ¢ respectively. In particular, we note that ¢ ([0]) = ¢([0]) = A and ¢([1]) =

25 ([1]) cos(3;;) = 21 cos(3,;), where A = 2 if A = Dy, 41 withn > 3 and A = 1 otherwise.
(a) By Proposition 6.9(a), we have

cA = (C[O][O]zC[O][l] z) :<,0 (riojo1.0) 2 (rio) 1],z)>’
Chore Cipe P2 (o) 0 (raypan.e)

where rijj1,: = Y_penb de.filfj1€ With each ae i1 € Z. It then follows from the definitions
that we have

= 1 a k92 (se) ae o116 02 (se)
d- (68 =2 e.[01[0] efo11]
FA( ! ) A §A (ae,m[o]xﬁA(se) aey[l][l]/cﬁA(se)
e

_1 (3A(M[0][0],z) ZfA(”[O][l].z))
o2 (rpor) 2 i)
_ e (nonon)g (rio,e)
A (rior,e) 02 Gra,e)

where s = war + ¥, if A = Dyyy withn > 3 and s = 1 otherwise. In particular, for the
initial C-matrix, we have

_ (32 TR0 _ znen
FA (C ) (EA(O) EA(])) - Cl‘()2

The proof of statement d : A(C Ay = 12(2”) foreacht € T sz(zn) is then given by an

induction argument on composite mutation, which is identical to the proof of [9, Corollary
8.8].
(b) We will first show that

dpa(ARCRO%) = P7ld:, (CHP, (%)

where the operations A®(—)©®% and P~!(=)P are as in Remark 6.4(d) and Lemma 6.7. We
begin by noting that

ADEAGA _ (A@in(r[ol[m,t)(@@] A@in(r[onu,z)@ﬁ])
! Apye° (rion,0) Oy Ay (i, ) Oy

where @A is the matrix corresponding to the canonical inclusion {j € Qo FA(j) =

[[]} — Q0 and Am is the matrix corresponding to the canonical surjection Qo — {j e
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QOA : FA(j) = [i]} of Z-bases/index sets. That is, A[Ai]pA(r[,-][j],,)@[Aj] is obtained from
,oA(r[,'][j],,) by removing the rows indexed by {k € QOA s FAk) # [i]} and removing the
columns indexed by {k € Qf : F2(k) # [j1}. Thus,

. _1 A 1 =A
dpa(AACRO%) = (g([m)" (s1017101101.1) Z707 0 (S[”’W"”vf)>

1 =~A 1 =~A
Zam @ Gl zam @ S

A (s0) ~A GAGHD ~A
zop 0 (101010 ~op -0 (o)

52 (sp01) ~ A1) ~
TII]O)IGA(V[I][O]J) TH)]UA(VH]U],:)
1~ ~ A
_ <§([0]) 0 ) <0A(V[OJ[OJ,z) 0A(ﬂou11,r)> <0A(S[OJ) 0 )
0 <([1D G2 (ruone) T2 o) 0 T2

where

Vo + ¥, if A= D,q withn > 3,
S[0] = )

1 otherwise,

1/f1+ + 1y if A= D,qy withn > 3,
sy = ¥y if A = E,

/3 otherwise.

But then ¢4 (sri1) = ¢([i]) for both i € {0, 1}, and hence the rightmost matrix in the
above product is precisely the rescaling matrix P. Thus, the required commutativity relation
() holds. The result then follows from (a) alongside Lemmas 6.7(b) and 6.8(b) and the fact
that the operations A2 (—)®2 and P~!(—) P are invertible.

(c) This follows from (a), (b), and Proposition 6.9(a), as all morphisms involved respect
positivity/negativity. )

(d) We note that the module category of K Q* is equivalent to the category mod K Q2 x
mod K Q?°P. The category mod K QP also satisfies an analogue of Theorem 3.5, where
the rows of the Auslander-Reiten quiver corresponding to sink vertices now correspond to
short roots and vice versa. Since the c-vectors of Q2 are +1-multiples of dimension vectors of
indecomposable K 02 -modules, (a), (b) and the definition of d Pa imply that for a C-matrix

=Ly _ (€ono) oy 5o
C =|- > = (€[] €1
! (Cmm] Cmm) (€01 &)
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A, 0]
we have €] = SmOdKQ (M) and €[y = 5?2(,105Q p(M’) for some M € mod K Q2 and

M’ € mod K Q* OP that reside in rows of weight 1, where
FAop. QA,op N le(Zﬂ)

is the folding of the opposite quiver defined in the natural way by mapping sources vertices
to sources and sinks to sinks. It is then clear from Theorem 3.5 that the columns of the
C-matrix CtI 2(@2n) given by the inverse rescaling of 6‘! 2Cm are roots of I,(2n), as described
in Section 2.2. O

6.3 G-matrices and g-vectors

Since c-vectors of exchange matrices of type I>(2n) are sign-coherent, we are permitted (by
the results of [23] on the tropical duality of c- and g-vectors) to use the following definition
of G-matrices and g-vectors.

Definition 6.13 Let J be an index set and let B be a |J| x |J| exchange matrix over R
whose c-vectors are sign-coherent. For any r € T, we define for each C-matrix C; the
corresponding G-matrix
=@cH™".
We call the collection {G; : t € T;} the G-matrices of B and call each column of each
G; a g-vector of B. We define the mutation of a G-matrix G; at index k to be the G-matrix

uik(Gy) = Gy, where ¢

t isanedgein T;.

Remark 6.14 The results of [23] show that the mutations of G-matrices defined above are
given by the explicit formula provided in [13, (6.12)—(6.13)].

The next theorem shows that all of the definitions of this section are compatible with each
other.

k
Theorem 6.15 Let ¢t il

' eT 0l Then the diagram of Fig. 3 commutes.
0

Proof We begin by considering the front and back cubes of Fig. 3:

CA ;—> GA C’Z(zn) N G’Z(Q")
)()/\T )() T -)P l/
T\—
(— ) GA 12(271) - "12(2n)
k] k]
Kk k]
k] k]
Mk _ _Ty-1 2 Ak —
w =a [ @A " C’2(2n)( D L ghoen
t t
/A\A(—)e)A /AA(—)@A p-l(o)p _ p(—yp]

CH ——— Gh chem G12(2n)
(~TH)-1 t (—T)-1

Firstly, the left faces commute as a consequence of Lemmas 6.8 and 6.7. Secondly, the
commutativity of the top/bottom squares of both cubes are a trivial exercise in linear algebra
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oA (_T)% AA I>(2n) D7 (2n)
A A Gt -1 Ctz 71G i
A ()/T —)e5 PH(-)P, o 1:(—)13 L
GA CIQ(ZTL) —_ G12(2n
1 k) ’ t K]
(K] (%]
jun Hik]
Hik) s G BN Kkl Cl2(2n) =" L gl
4 t/ t
/\A ()A /A ()A . 2\/[,)71(7)}) . 24)(7)})71
C 7T)—1 G Ct’Z( ") (7T)—1 Gt’Q( "
Ty—1
I2(2n) | ) I5(2
Ct i( n) Gt2( n)

Fig. 3 The relationship between the different notions of C- and G-matrices for foldings onto 75 (2n) can be
described by the above commutative diagram, which forms a tesseract. Arrows have been given different
colours for clarity, where two arrows (and their corresponding operations) pointing in the same ‘dimension’
have the same colour. Notation is derived from Remark 6.4(e), Section 6.2 and Definition 6.10

— for the front cube it is perhaps easier to see with the inverse map V (— @ —7)V ~!. Thirdly,
the front and back faces of both cubes follow by definition, and this is compatible with the
classical notion of G-matrix mutation due to the fact that all c-vectors in this paper are sign-
coherent (c.f. [13, 23]). Finally, the fact that (=Ty~1 is (self-)invertible and all other squares
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of both cubes commute imply that the rightmost squares of both cubes commute. Thus the
front and back cubes commute, as required.
We now turn our attention to the central cube of Fig. 3. Namely, the following.

T\—1
& S Glhen
d-
-
/ T(—Tr . e
— G}
k]
ikl

L I ! -
CZI/Z(ZH) N th/z (2n)

d- d-
V (=11 *F/

CA+—>GA

The left square commutes by Corollary 6.12. The front/back squares again follow by
definition. If in addition to this, the top and bottom squares commute, then the right square
commutes due to the fact that (—7)~! is self-inverse. Thus this is the next step of the proof.

Note that for an arbitrary exchange matrix over a ring R (and indexed over a set J)
whose C-matrices are sign-coherent, it follows that for each ¢t € T, the determinant of C;
is |C;| = %1. This follows from the fact that C, is the identity matrix, and that C-matrix
mutation involves changing the sign of a column and/or (when sign-coherence is satisfied)
adding a multiple of one column to another — an operation that preserves determinant up to
sign. Now write

ghen _ (C[O][O] croit ]) and GO — CO] 0] CO] [ (,0 (roro1) P A(roy) )) .
' crro) € ! Cuo Criy P2 (o) 2 ()

Since the blocks of C tA commute and the determinant of all C-matrices is %1, a simple
computation shows that we have

, —2 = A A
Ghen _ 4 (om —fuo) g Ga =+ ( A trmm) P Crimo)
—Coin ool p=(=roin) P= (rogo)-

From this, we can see that d Fa (G,A) = étA, as required. Thus, the top and bottom squares
commute, and hence, the entire central cube commutes.
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Next comes the left and right cubes of Fig. 3:

P~l(—)p - P(—)P~!
C]2(2n) %‘ C’ZO”) : Gt]2(2n) ‘ﬁ GtIZ(z")
dpa dia FA dra
\/ TA A0t 5 4 - 4 TAAH(-)“ A\/
1 CA GPp ———— G
k] k]
Kik] KLk]
k] k]
Mk] r—lop Mk] N p(—)p—!
chen i ghen Ghom | > Ghen
/d[.A /d;A : ‘/‘d[f-A \/‘d,T:A
Cﬁ — CA GtA, — GtA/
AR (-4 AP (B2

The commutativity of the left cube is a consequence of Corollary 6.12 and the relation
() in its proof. For the right cube, we have already proven that the left, front and back faces
commute. The proof of the commutativity of the top and bottom faces of the right cube
follows a similar argument to the proof of Corollary 6.12(b). Namely, we note that

1 _=A
a7, (ALGRON) = + @GAA(S[O]"[HU]) ;([1])0 A (storron)
F —Zzqop @ Grrron) g([IJ)U A(styronon)
2 (spo) ~
Ug([i)llof 8y — §([1]) CRGBO)

-0 (S[l])AA a (S[l])AA
(0D (o) ~zqap @~ (rronon)

=i(3A(S[0]) 0 )(5[1][1] —0[11[0]) (g([O]) 0 )1
0 %)) \~Com ool 0 (1D

_(%Gp 0 L EA -1

B ( 0 3A(S[11)> dpaGOF

where each sy is as in the proof of Corollary 6.12(b). But then UA(S 1 = < ([i] for both
i € {0, 1}, and hence the leftmost matrix in the above product is precisely the rescaling matrix
P. Thus, the top and bottom squares commute. Since A2 (—)®? is invertible, the right face
of the right cube is also commutative, as required. Thus, we have just shown that both the
left and right cubes commute.

The last thing to check are the top and bottom cubes. But for both of these remaining cubes,
we have proved the commutativity of all but the topmost and bottommost faces respectively.
Since all maps have an inverse, these squares are also commutative. Hence the entire tesseract
of Fig. 3 is commutative. O

==

Using Theorem 6.15 and the results of [5, 24], one can obtain g-vectors of I,(2n) directly
from the semiring action on the cluster category Ca of Q. Let P C Ca be the full subcategory
whose objects are the classes that correspond to the complexes of projective objects of
mod K Q2 concentrated in degree 0. Then for any object X € Ca, we know from [17] that
there exists a triangle

PP—>P—>X—>3XP

with P, P’ € P. In our setting, we are particularly interested in objects of Ca that reside
in rows of the Auslander-Reiten quiver with weight 1. That is, rows that contain an object
corresponding to an indecomposable projective P (i) with k(i) = ¢(F2(i)). Given a choice
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of indecomposable objects Py = P(ip) and P = P(i;) in P with FA(ij) = [j] and
k(ij) = ¢([j]), and given an indecomposable object X € Ca in a row of the Auslander-
Reiten quiver with weight 1, we have a triangle

roPo@®riPL = roPo®riPL —> X — S(ryPo ®ri P1)
for some ro, ), r1, 1| € Xf'

Definition 6.16 Let X € Ca be an indecomposable object in a row of the Auslander-Reiten
quiver with weight 1. We call the vector

g = (r1 =), 0™ (ro — 1))

the folded g-vector of X with respect to Py, P € P, where Py, Py, ro, r(’), r; and r{ are as
above.

An immediate consequence of Theorem 6.15 and known results on the categorification of
g-vectors (c.f. [5, 24]) is the following.

Corollary 6.17 Let X be the collection of all indecomposable objects of Ca that reside in
rows of the Auslander-Reiten quiver with weight 1.

(a) The folded g-vectors of the objects in X are precisely the g-vectors of Q22"

(b) Basic x f-tilting objects (with respect to a basic, G-minimal set of x ﬁ-genemtars r)
correspond to G-matrices of Q2#V_ In particular, let T = Yy & Y be basic Xf-tilting
with respect to T such that Y; resides in a row that corresponds to [i] € Q(I)Z(Z”). Then
we have the following.

(i) If Xo, X1 € X are respectively Xf-generated by Yo and Y, then
G0 = (g%1, %)

is a G-matrix of Q2.
(ii) Lee TY = Yy & Y| be given by changing complement and let X| € X be an object
X f—genemted by Y{. Then the G-matrix
GY1-¥0 = (g¥1, g%0)
is obtained by mutating GXX0 with respect to the index [0] € Q2"
(iii) Let T©® = Yy @ Y1 be given by changing complement and let X(, € X be an object
X f-generated by Y. Then the G-matrix
GX1¥o = (g%1, g¥0)

is obtained by mutating GX1-X0 with respect to the index [1] € Q2"

Appendix A: Worked Examples

Many of the constructions in this paper are combinatorial and seemingly technical in nature.
However, it is not too difficult to construct examples of how the theory works in practice. We
will show two examples: One example highlights the theory for foldings of type A and the
other will highlight the theory for foldings of type D. The three exceptional foldings of type
E work along a similar principle to the other two examples.
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A.1The Folding F*’

Consider the example given by FA7: 047 — 02®) We already have an example of the
projection maps 8?A7 with A4 = mod K Q47 or A = D”(mod K Q47) with Fig. 2. From the
figure, it is straightforward to see the implications of Theorem 3.5 and Corollaries 3.7 and
3.8. In particular, we have 8?A7 (Oi) = (1,0) and 8;4A7 (li) = (0, 1), where the vectors are
given with respect to the standard root system of />(2n). We will thus focus on the impact
of Sections 4-6 on this example.

The category A has an action of Xf = Z>ol¥2, V¥4, ¥el. Here, the element 1/ represents
the Z,-symmetry on the quiver, and thus, ¥4 = 2. The isomorphism condition (A1) in
Section 4.1 shows that the Auslander-Reiten sequence/triangle

+ + oot
%+—>01+2 - 0" >

maps to sequences/triangles that are isomorphic to the following Auslander-Reiten sequences/
triangles under the following actions.

: 0 2F 27 0% 2 g 2t 2- +
(o 1+ 3 - 1+ @ 2 32 — 27 —
Vs Y S 0T g2 50
Ve : 2502 50—

-

The middle term in the first sequence reflects the relation Yy = Y| + Y3 € S(\f and
the middle term in the second sequence reflects the relation ¥4y = Y3 + Y5 € ify. One
also notes from this that the original Auslander-Reiten sequence ends in an object whose
F47-projected dimension vector is of length 1, and that under the action of ;, this maps to
an Auslander-Reiten sequence ending in an object whose FA7-projected dimension vector
is of length 347 (v;). Similarly, the Auslander-Reiten sequence/triangle

e LR

maps to sequences/triangles that are isomorphic to the following direct sums of Auslander-
Reiten sequences/triangles under the following actions.

.2t 27 o0t 2t 2T 0 2t oot 2t 2~ ot 2t 2= 07272t ot 2t 4 2t 2
Y2 ® - ) ® " 27 )=V ey

1+ 3 131~ 1+ 1+ 3 173
. 272t 0272t ot (2* 0= 2~ 2+) (0* 272t 4o 02t 2*) 0727 g 2= 2t
: — —
Var 250 @0 S50 AR U= ® 7 s - @73
.27 2t 27 o 07 2T 2F 0~ 2~
Ve 250 2 -®@7 5 TS 2

This highlights multiple relations at play simultaneously. For example, we have the rela-
tions Y2 (1 +yr2) = 14 2v + 4 and Y4 (1 4+ v2) = Yrp + 2904 + 6 reflecting the action on
the objects of the middle terms of the first two sequences. Moreover, we have the relations
Yo = Y1 + ¥z and Ya) = Y3 + Y5 reflecting the action on the starting/ending terms of
the first two sequences.

The action on the Auslander-Reiten translate of the above sequences is given in the natural
way by the fact that the action of r € Xf commutes with 7. A key upshot of this is that
every Auslander-Reiten sequence in .A can be labelled by an element y; € ify determined
by the starting or ending term (which in turn, can be determined by the row in the Auslander-
Reiten quiver that the starting/ending object resides in). If ;i = ), ev;; Yk for some
index set V;, then v/; maps an Auslander-Reiten sequence labelled by v; to a sequence that
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is isomorphic to a direct sum of Auslander-Reiten sequences labelled by the summands
(whose ending terms all reside in the same column).

To showcase the theory of Xf7 -generators on categories, we will focus on mod K Q47.
Consider the sets

— (o 2% 2F oF _(0E2E  2E02F  2F 0F qF
Fo= ={0%, 1=, %, {z} and  T=={" 2, 2.7, 72 .17}

By Theorem 4.7(a), any set 'y |v = T'os U '}y is a basic, t-closed, Z-minimal set

05,15

of Xf -generators of mod K QA7, where s, s’ € {4+, —}. Note that the elements of Cos 150

bijectively correspond to the columns of the Auslander-Reiten quiver, which in turn, bijec-

tively correspond to the positive roots of 12(8) (this is Corollary 4.8). The object 2+327 , for

¢ OF 2F
1

example, is Xf -generated by the object 9" 2" with y47-index v/, — 1, or equivalently, with

the Xf—generating pair (2, 1) (this is Definition 4.3). That is, we have an isomorphism of
split exact sequences

0 o 2t L (0*13*) . Coker f ——=0
ot 2t ot 2+ + 92— + 92—
0 1+ £ @y 732 0

By Remark 4.9, the Grothendieck group Ko(mod K Q47) has the structure of a x47-
module.
By Section 5, the action of xf naturally extends to the cluster category C4,. We will

choose our basic, Z, set of Xf—generators of C4, to be

— 0~ ot 2t 20 0" - ot 2t 2t 2~ 2707 11—
F=(x9,0%, 2,4, Uz, 02", 777, 207 1)

With respect to T, the object 9~ is almost complete y\7-tilting with complements 5
and 17. Note that these complements reside in adjacent columns of the Auslander-Reiten

quiver to 9_, as per Theorem 5.2. Thus for example, the object T = (1): @ 17 is basic

Xf7 -tilting with respect to I', and the act of changing complement corresponds to mutating
the folded quiver I>(8) at a vertex. Note also that by Theorem 5.2, T corresponds to a
cluster-tilting object

T=(Ve 02,00 )e( @301

and mutation/changing complement in 7 corresponds to composite mutation/iteratively
changing complement for each object in a bracket in T.

Now we shall compute the folded g-vectors in Cy4,, as per Definition 6.16. The set I
consists of all objects in rows of weight 1 (up to the group action of ¥), so we will focus on
computing the folded g-vectors of these objects — it is not difficult to check that the folded
g-vectors g¥ and g¥6X are in fact the same. We will compute the g-vectors with respect to
the projectives ?: and 17. We thus have the following triangles and corresponding folded
g-vectors, where for readability purposes, we have denoted the zero object by 0 and the
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identity element 1 € Xf by ¥ (or omitted it completely if the action on an object is trivial).

0>1">1">0 ~ g =10,
o
09 > =0 ~  gI" =00,
_ . 27 0
"> W+ > 27 5217~ g3 =(-1,24V2),
— _ 2=
1_—>1//2?_—>23 S 21T o~ g3 =(=1,1+2),
_ _ 2+ 0-
al™ > (Yo + Y)Y — 1322 S TYnlT e g 173 = (=1 —+2,2+2V2),
2t
Palm > 17w > 1 > Sl™ ~ gl = (V2 14V,
- ot 2+
Yal™ > Wa+ve) V- > O 5 Byult g 1T =(=1-V2,24V2),
Y6l™ = Y- > 07 —> Zygl™  ~ & = (=1, 1),
IT>0—> %17 > 217~ ¢t =(=1,0),
0- 0 0 20
—-0->X7 - X ~ g 17 =(0,-1).

1- 1-

In the above, we have used the fact that 047 () = 047 (y4) = Ua(cos %) =1+42
and 047 (W) = 047 () = 1. As per Corollary 6.17, these are g-vectors of the standard
root system of type I>(8), and for each basic Xf—tilting object T = Xog & X, we obtain a
G-matrix of I>(8) by GX1-X0 = (gX1, gX0), For example, the Xf—tilting object (1): e 1
corresponds to the initial G-matrix. Using Theorem 6.15, we can mutate the initial G-matrix

- 0
G1 "1~ at index [0] to obtain

10 (=" 10 Gr,?i

01 01 T

T [
I/L[m | 1p0) 10

\ \

0

—124V2\ D! -1 0 2°0" 0"
B = 31 1
(0 1\/> (2+ﬁ1) ¢

which corresponds to changing complement, as required.

A.2: The Folding F°s

Inevitably, combinatorics in the setting of foldings of type D is more complicated than in
the setting of type A. Since FPs is also a folding onto Q2® we will focus on the aspects
of the theory that differ from the type A7 setting. To further simplify things, most of this
example will concern the category A = mod K QP5, as the theory for D”(mod K 05) is a
straightforward extension of this. The non-crystallographic projection of A is illustrated in
Fig. 4. We remind the reader that whilst the positive simple roots are of length 2 and 4 cos %
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Fig. 4 The folding FP5: D5 — oh®), Top: The Auslander-Reiten quiver of mod KQDS. Bottom: The

mod KQ

non-crystallographic projection of the Auslander-Reiten quiver under the map § , with irreducible

morphisms superimposed. The radius of each half-octagon (from the centre outwards) is 2, U3z (cos %),
2U| (cos ) and 2U3(cos §)

respectively (under the standard basis of R2), the positive simple roots are written as (1, 0)
and (0, 1) with respect to the standard root system of 5 (8).

The category A has an action of st = Z=olyy . 1//2+ , ¥, 1, where we will also write
1= woJr € st for clarity. Here, the element ;" represents the Z;-symmetry on the quiver.
Similar to the theory for type A, we can label the Auslander-Reiten sequences by elements
of X X > and this label is determined by the row that the starting/ending term resides in. In
particular, we can assign an Auslander-Reiten sequence a label of w+ +y; (fori € {0, 1,2})

if the starting/ending term resides in the row IA and a label of ¢3 if the starting/ending

Ds

term resides in the row I3i' The action of an element r € x> on an Auslander-Reiten

sequence labelled by s € st is then such that the sequence is mapped to an exact sequence

isomorphic to a direct sum of Auslander-Reiten sequences whose labels are determined from
. . 2 _ _

the product rs. That is, we can write rs = ) ;_, a,-(lﬁ;r + ;) +az+ 1/f3+ + a3V, and

thus the resulting sequence is isomorphic to a direct sum of a; Auslander-Reiten sequences

labelled by 1/fi+ + v, and az+ Auslander-Reiten sequences labelled by w;ﬁ (all in the same

column). Likewise, we can also label individual indecomposable objects by elements of ffi
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which is determined by the row the object resides in (as before). The action of XES on an
object will also always respect this labelling (column-wise).
To demonstrate this, consider the Auslander-Reiten sequences

0—>2-592-50-0 (S0)

0> 3P »> 1@ %32 > P >0 (ShH
0— 0123+23* - e 32+ ® 32* —2-0 (82)
0— 0123* g 012:#23* g 32+ -0 (S3p)
0— 0123+ g 012:#23* g 32* -0 (S3m)

where for clarity, we have denoted the zero object by 0 to distinguish it from the simple
module 0. The above Auslander-Reiten sequences (and the starting and ending terms) may
be labelled by 1//0+ + ¥ WIJF + Y, xﬁ; + v, 1//3+ and w; , respectively. The objects in
the middle terms of each sequence therefore have labels wl + Y, w0+ +y Y2+,
lpl +Y + 1#3 + w3 Wz + ¥, and wz + ¥, , respectively.

The action of wz on the Auslander-Reiten sequence (S0) is a map to (a sequence isomor-
pth to) the Auslander-Reiten sequence (S2). This reflects the product /2 (1/f0 +vy) =
Wz + ¥, for the sequence itself, and simultaneously, the product vs (1//1 + Y =
lpl + Y, + ¢3 + 5 for the middle term. The action of Wz on (S2), or equivalently
the action of (v, )2 1//0 + 1//2 + V¥, on (S0), is such that we obtain a sequence iso-
morphic to (S0) @ (S2) @ (S2). Both of these examples showcase isomorphism condition
D).

Another example is the action of v,", which representing Z5-symmetry, maps (S3p) to
(S3m) and vice versa. On the other hand the action of v/, on any other sequence in the list
is trivial (up to isomorphism).

Finally, one needs to be careful of complicated sign changes with some of the products in
5(\_65. The effect of this is highlighted in isomorphism condition (D2). For example, 1p2+ x//3+ =
¢1+ + ¥, + ¥5 . Thus, the action of w;r on (S3p) is such that we obtain (S1) @ (S3m).

Now we define the following three sets.

IﬂO = {0, %7 3+237 5 ?} and l—1:|: = { 32¥ s 0123i s 123¥ i 3i}

Theorem 4.7(c) then states that the sets "o U Iy are pairwise equivalent, basic, T-closed,

Z>-minimal sets of st -generators of 4. Extending this to the cluster category Cps, we

. .. . .. D
obtain similar sets of basic, Z,-minimal x +5 -generators

+ _ 0 2 2 + 2 02 2 +
F _{217071934»3 !1}U{E353¢7 13i7134:73 }'

An example of a basic XES -tilting object with respect to I'* is therefore 2 T 02 | 5+ and

the corresponding basic st -tilting object with respect to I' ™ is % @ 01 23, . The theory does
not depend on which set we choose, as long as we are consistent with our choice.

Similar to the situation in type A, we can compute the g-vectors of 15 (8) from the category
Cp,. However this time, our choice of objects in the resolution do not always belong to a

set of st -generators of Cp,. For example, the row containing 3% does not have the correct
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weight, so we must instead choose the object 1. We therefore have the following triangles
and corresponding folded g-vectors.

0>1—->1—->0 ~~ ¢l =(1,0),
0
0—>F—>7->0 ~ gl =(0.1),
02
1= @ +vH? - 2313_—>El g 13537 = (=1,2442),
2
1>y 0> 2 > 21 ~ g3 3 = (=1,1++2),
22
ol > U v = 32 = Ul e 135 = (-1 - V2,242V,
2
Wl— 1y > 1> Iyl - gl = (—v2,1+V2),
02
V1= Wy +9))) = OF > Byl - g1l =(—1-+2,24+2),
1- 950> %1 ~ =10,
10— 21> X1 ~ g™l =(~1,0),
0
05030550« gTI=0-D.

As we can see, these are identical to the folded g-vectors computed before.
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