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ABSTRACT
We propose a distribution-free distance-based method for high dimensional change points that can address
challenging situations when the sample size is very small compared to the dimension as in the so-called
HDLSS data or when non-sparse changes may occur due to change in many variables but with small signifi-
cant magnitudes. Our method can detect changes in mean or variance of high dimensional observations as
well as other distributional changes. We present efficient algorithms that can detect single and multiple
high dimensional change points. We use nonparametric metrics, including a new dissimilarity measure
and some new distance and difference distance matrices, to develop a procedure to estimate change
point locations. We also introduce a nonparametric test to determine the significance of estimated change
points. We provide theoretical guaranties for our method and demonstrate its empirical performance in
comparison with some of the recent methods for high dimensional change points. An R package called
HDDchangepoint is developed to implement the proposed method.
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1. Introduction

Change point analysis is frequently used in various fields such as
economics, finance, engineering, genetics and medical research.
The main objective is to detect significant changes in the under-
lying distribution of a data sequence. The change point problem
is well studied for low dimensional data in the literature, how-
ever, change point analysis is challenging for high dimensional
data which are growing in different domains. A change could
happen in a small or large subset of the variables and with a
small or large magnitude, but when the sample size is small
compared to the number of variables it is difficult to distinguish
a significant change point from just random variability.

In recent years there has been increasing interest in the so-
called high-dimensional low-sample-size (HDLSS) data where
the sample size n is very small while the dimension p can be
very large. The asymptotics for HDLSS data is different than the
usual high dimensional asymptotic setting (i.e., p > n → ∞)
in the sense that p → ∞ but the sample size n can remain fixed
(e.g., Hall, Marron, and Neeman 2005; Jung and Marron 2009; Li
2020). Detecting change points is more challenging for HDLSS
data with small samples. In this article, we will see that recent
methods for high dimensional change points struggle to have a
good performance with HDLSS data where sample size is very
small compared to dimension.

A common strategy in the literature of high dimensional
change points is to simplify the problem by reducing the
dimension of data so a simpler algorithm such as a univariate
change point algorithm can be applied to the transformed data.

CONTACT Reza Drikvandi reza.drikvandi@durham.ac.uk Department of Mathematical Sciences, Durham University, DH1 3LE Durham, UK.
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This may be done using random projection (e.g., Wang and
Samworth 2018; Hahn, Fearnhead, and Eckley 2020), geometric
mapping (e.g., Grundy, Killick, and Mihaylov 2020) or any
other relevant techniques such as principal components (e.g.,
Xiao et al. 2019), factor analysis (e.g., Barigozzi, Cho, and
Fryzlewicz 2018) and regularization approaches (e.g., Lee, Seo,
and Shin 2016; Safikhani and Shojaie 2022). This strategy relies
on sparsity, often a significant amount of sparsity, to maintain
its oracle performance. Such techniques may not be suitable
for non-sparse change point problems. By non-sparse change
points, we mean the changes that can happen in many variables
and with small significant magnitudes.

Another strategy is to search for change point locations
through dissimilarity distances between pairs of observations.
This may be done using appropriate dissimilarity measures such
as the interpoint distances (e.g., Li 2020) or the divergence
measures based on Euclidean distance (e.g., Matteson and James
2014). Some authors including Garreau and Arlot (2018) and
Chu and Chen (2019) indirectly use interpoint distances to
develop methods based on counting the number of edges from a
certain similarity graph constructed from interpoint distances.
The performance, especially power, of such methods generally
depends on distance measures and test statistics used, as also
discussed in Li (2020). In this article, we aim to develop a novel
powerful method for detecting high dimensional change points
based on dissimilarity measures, especially suitable for HDLSS
data.

There has been a growing literature on change point analysis
for high dimensional data in recent years. We review some of the

© 2024 Durham University. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/10618600.2024.2365733
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2024.2365733&domain=pdf&date_stamp=2025-02-14
http://orcid.org/0000-0002-7245-9713
http://orcid.org/0000-0003-1240-6027
mailto:reza.drikvandi@durham.ac.uk
http://www.tandfonline.com/r/JCGS
http://creativecommons.org/licenses/by-nc-nd/4.0/


JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 291

recent methods focusing on offline change point detection. Chen
and Zhang (2015), Garreau and Arlot (2018), and Chu and Chen
(2019) developed change-point detection methods using kernels
and similarity graphs. Wang and Samworth (2018) proposed
a two-stage procedure called inspect for estimation of change
points, which is based on random projection and sparsity. Their
approach assumes the mean structure changes in a sparse subset
of the variables and requires the normality assumption. Enikeeva
and Harchaoui (2019) suggested a method for detecting a sparse
change in mean in a sequence of high dimensional vectors.
This method was studied for a single change point detection
and was developed based on the normality assumption. Grundy,
Killick, and Mihaylov (2020) used geometric mapping to project
the high dimensional data to two dimensions, namely distances
and angles. Their approach requires the normality assump-
tion. Liu et al. (2020) developed a general data-adaptive frame-
work by extending the classical CUSUM statistic to construct
a U-statistic-based CUSUM matrix. Their approach is based
on the independence assumption for variables and is mainly
studied for single change point detection. Li (2020) proposed
an asymptotic distribution-free distance-based procedure for
change point detection in high dimensional data. Using the
random projection approach of Wang and Samworth (2018),
Hahn, Fearnhead, and Eckley (2020) proposed a Bayesian algo-
rithm to efficiently estimate the projection direction for change
point detection. Yu and Chen (2021) established a bootstrap
CUSUM test for finite sample change point inference in high
dimensions. Follain, Wang, and Samworth (2022) extended the
random projection approach to estimate change points with
heterogeneous missingness. There have also been a few other
methods, some of which are reviewed in Liu, Zhang, and Liu
(2022).

Below we highlight the importance of our work and summa-
rize our main contributions.

(i) Change point detection for HDLSS data, when the sample
size is very small, is challenging and understudied. Also,
many of the existing methods focused on sparse change
points (e.g., Wang and Samworth 2018; Enikeeva and
Harchaoui 2019; Follain, Wang, and Samworth 2022). Our
method can deal with non-sparse high dimensional situa-
tions. Unlike existing methods which mainly detect changes
in mean of high dimensional observations, our method can
detect changes in mean or variance of observations and
other distributional changes.

(ii) Unlike most of the recent methods for high dimensional
change point detection which require the normality assump-
tion as reviewed above, our approach does not require nor-
mality or any other distribution for variables. We use novel
nonparametric tools to develop a method to detect change
point locations.

(iii)Many of the recent methods in the literature either used
a bootstrap/permutation procedure or derived asymptotic
distribution to test significance of change points (e.g., Wang
and Samworth 2018; Yu and Chen 2021). We establish both
asymptotic and permutation procedures for our method to
handle both small and large sample size situations.

(iv) Our strategy is to search for change point locations through
an n × n matrix of distances instead of the n × p matrix

of observations. Because the n × n matrix of distances has
a smaller dimension which does not grow with p, it would
be easier mathematically and computationally to investigate
the distance matrix for a change point location.

We use the following notation throughout the article. For a
vector u ∈ R

p, we write the Lq-norm as ‖u‖q = (∑p
j=1 |uj|q

)1/q.
The infinity norm is defined as ‖u‖∞ = maxj |uj|. We write

√
as the short version of square root. For a real-value constant a,
notation |a| denotes the absolute value of a, while for a set C,
|C| denotes the cardinality of C. Also, O(.) and o(.) denote the
usual big O and little o notation. We sometimes write Op(.) or
op(.) to emphasize them for p → ∞. We write OP(.) and oP(.)
to denote, respectively, the big O in probability and the little o in
probability. We use P→ and D→ for convergence in probability and
convergence in distribution, respectively. We also define some
more specific notation as we develop the article.

2. Methodology

Let X1, X2, . . . , Xn be a sequence of independent p-dimensional
random vectors with unknown distributions F1, F2, . . . , Fn,
respectively. In high dimensional settings we have p � n and
that the p variables in each observation Xi = (Xi1, Xi2, . . . , Xip)
are potentially correlated. We aim to develop a distribution-
free approach, so we do not assume a parametric form for the
distributions F1, F2, . . . , Fn.

For the sake of clarity, we first present the proposed approach
for detecting a single change point in high dimensions and then
extend the idea for multiple change point detection in Section 3.
The problem of detecting a single change point in general can be
formulated as the following hypothesis testing problem{

H0 : F1 = F2 = · · · = Fn
Hs

1 : F1 = · · · = Fτ−1 �= Fτ = · · · = Fn, (1)

where τ is a change point location, which is unknown too. When
conducting this single change point problem, we first estimate
the change point location τ and then test for significance of the
estimated change point.

Let X = [X1, X2, . . . , Xn]T represent the entire data as an
n × p matrix. As discussed in the introduction, the problem
of change point detection in high dimensional situations is
challenging, especially when n is very small compared to p. In
our approach, instead of searching in the n×p space, we translate
the problem into the lower dimensional space n × n without
reducing the dimension of data. This is different than the dimen-
sionality reduction techniques such as random projection (e.g.,
Wang and Samworth 2018), geometric mapping (e.g., Grundy,
Killick, and Mihaylov 2020), principal components (e.g., Xiao
et al. 2019) and factor analysis (e.g., Barigozzi, Cho, and Fry-
zlewicz 2018) which reduce the dimension of data. We propose
a distance-based method based on dissimilarity measures to find
the change point location in the original data X through the
distance matrix of X. The dimension of the observed data X is
n × p while the dimension of its distance matrix is n × n, so
it is easier mathematically and computationally to investigate
the distance matrix for a change point location as n is small
compared to p in high dimensions, especially in HDLSS data.
We describe the idea in the sequel.
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Let dij := d(Xi, Xj) be a dissimilarity distance between obser-
vations Xi and Xj, where d(·, ·) is a suitable dissimilarity distance
function for high dimensional vectors. Since our proposal can be
implemented with any suitable dissimilarity distance, we discuss
the choice of dissimilarity distance measure after illustrating the
main mechanism. We use the dissimilarity measure dij to obtain
the n × n distance matrix between all pairs of the observations
X1, X2, . . . , Xn as follows

D =
⎡
⎢⎣

d11 d12 . . . d1n
...

...
. . .

...
dn1 dn2 . . . dnn

⎤
⎥⎦ ,

in which d11 = · · · = dnn = 0.
To find the location of change point τ , we propose a pro-

cedure that finds an estimate of τ by finding the maximum
distance between observations in the distance matrix D. For
this, we define the distance difference between each pair of the
observations as

�ij := |dij − di,j−1|, i = 1, . . . , n, j = 2, . . . , n
�i1 := 0, i = 1, . . . , n.

This gives the following n × n matrix of distance differences,
which we call difference distance matrix,

� =
⎡
⎢⎣

0 �12 . . . �1,n−1 �1n
...

...
. . .

...
...

0 �n2 . . . �n,n−1 �nn

⎤
⎥⎦ .

We then suggest an estimate of the change point location τ ,
based on the difference distance matrix �, as follows

τ̂ = arg max
1≤j≤n

{ 1
n

n∑
i=1

�ij
}

. (2)

The change point estimate τ̂ is the location of maximum slope
among the column sums of the difference distance matrix � (a
simple illustrative example will be given later in Figure 1). If
1
n

∑n
i=1 �ij = 0 for all j = 1, . . . , n or if they all are equal, then

we set τ̂ = ∅, where the empty set ∅ means no change point is
detected.

It is known that the Euclidean distance is not appropriate for
high dimensional situations. A modified version of Euclidean
distance can be obtained by dividing it by

√
p for convergence

guarantees in high dimensions, as suggested by Hall, Marron,
and Neeman (2005). One can use the modified Euclidean dis-
tance dij = d(Xi, Xj) = p−1/2‖Xi − Xj‖2 or other Lq-norm
distances in our approach. However, a more general dissimilarity
measure that takes into account the information of distances
from all the n − 2 other observations can be defined as

dij = d(Xi, Xj) = 1
n − 2

∑
l �=i,j

∣∣‖Xi − Xl‖D − ‖Xj − Xl‖D
∣∣, (3)

where ‖ · − · ‖D can be any appropriate distance function. We
here suggest two simple options for this. A natural multivari-
ate option is to use the modified Euclidean distance function

Figure 1. Illustrative example with one change point: plots for all elements of the distance matrix D obtained using the dissimilarity measure d(Xi , Xj) in (3) with both the
univariate and multivariate distance functions, as well as for all column sums of the difference distance matrix �.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 293

‖Xu − Xl‖D = p−1/2‖Xu − Xl‖2 or modified L1-norm ‖Xu −
Xl‖D = p−1‖Xu − Xl‖1. A univariate option is to use a distance
function based on differences between the sample mean and
variance of the observations. For this, let X̄p

i = p−1 ∑p
j=1 Xij and

Sp
Xi

= √
p−1 ∑p

j=1
(
Xij − X̄p

i
)2 denote, respectively, the mean

and standard deviation of the ith observation Xi, i = 1, . . . , n.
We define ‖Xu − Xl‖D = √

(X̄p
u − X̄p

l )
2 + (Sp

Xu
− Sp

Xl
)2, which

quantifies the differences between the sample mean and variance
of each pair of observations.

The following theorem shows the dissimilarity measure
d(Xi, Xj) in (3) is a pseudometric, that is d(Xi, Xj) ≥ 0,
d(Xi, Xi) = 0, d(Xi, Xj) = d(Xj, Xi) and d(Xi, Xj) ≤ d(Xi, Xl)+
d(Xj, Xl). The proof along with all other technical proofs are
provided in Appendix A.

Theorem 1. The dissimilarity measure d(Xi, Xj) in (3) is a pseu-
dometric on X for n ≥ 3.

The following theorem indicates that proximity in terms of
the modified Euclidean distance implies proximity in terms of
d(Xi, Xj), but the converse implication does not hold.

Theorem 2. Consider the dissimilarity measure d(Xi, Xj) in
(3) and the Euclidean distance ‖Xi − Xj‖2 for each pair of
observations Xi and Xj. We have d(Xi, Xj) ≤ 1√

p‖Xi − Xj‖2.

In Section 4, we show that d(Xi, Xj) → 0 if Xi and Xj have the
same distribution. The computational cost of the dissimilarity
measure d(Xi, Xj) is of order O(np). The cost of computing
d(Xi, Xj) for all 1 ≤ i < j ≤ n is O(n3p) with n not being fixed.
The cost is O(p) with fixed n as in HDLSS data.

We here provide a simple illustrative example with one
change point for which we generate five observations from
a standard multivariate normal distribution with p = 500
and another five observations from the same distribution
but with the mean being shifted by 0.5. Figure 1(a) and (b)
visualize all elements of the distance matrix D obtained using the
dissimilarity measure d(Xi, Xj) in (3) with both the univariate
distance function based on differences of the sample mean and
variance of observations and the multivariate distance function
based on the modified Euclidean distance. From both plots, it
can be seen that the observations from the first distribution show
a larger dissimilarity with the observations from the second
distribution, and vice versa, so both distance functions capture
the change point trend. More interestingly, Figure 1(c) visualizes
all elements of the matrix � based on the dissimilarity measure
(3), which indicates that the change point location (i.e., location
6) has the largest values �ij. Also, Figure 1(d) presents all the
column sums of �, which reveals the change point location
exactly as in the proposed estimate τ̂ in (2). In Section 4, we will
prove that τ̂ is consistent for the true change point, denoted by
τ0, under some assumptions.

We now construct a test statistic based on the change point
estimate τ̂ to conduct the test whether or not the change point
estimate τ̂ is statistically significant. Our proposed test statistic
uses the information of dij and �ij before and after the change
point estimate τ̂ . For this, considering the hypothesis test (1), we
first define two sets of indices one for observations before and

one for observations after the change point estimate τ̂ as follows

∇−
τ̂

:= {j : 1 ≤ j ≤ τ̂ − 1}, ∇+
τ̂

:= {j : τ̂ ≤ j ≤ n}.

The two sets ∇−
τ̂

and ∇+
τ̂

are visualized in Figure 2, showing their
connection with the change point candidate τ̂ . We then propose
the following test statistic for testing the significance of change
point estimate τ̂

T(τ̂ ) = 1
n|∇−

τ̂
||∇+

τ̂
|

n∑
i=1

∑
j∈∇−

τ̂

∑
j′ ∈∇+

τ̂

(
dij − dij′

)2, (4)

where |∇−
τ̂

| = τ̂ − 1 and |∇+
τ̂

| = n − τ̂ + 1 are the cardinalities
of ∇−

τ̂
and ∇+

τ̂
, respectively.

We will investigate the theoretical properties of the statistic
T(τ̂ ) in Section 4. Intuitively, the test statistic T(τ̂ ) quantifies
the differences between distances for the observations before
change point and the observations after change point. If there
is no change point then the differences will be small, and if there
is a change point then T(τ̂ ) will deviate from 0. In fact, we will
prove that as p → ∞

T(τ̂ )
∣∣
H0

= oP(1), T(τ̂ )
∣∣
Hs

1
= κ2

τ0 + oP(1),

where κτ0 is specified in Theorem 3 with τ0 being the true change
point. We can therefore carry out the hypothesis test for a single
change point and reject the null hypothesis H0 for large values
of T(τ̂ ). For large n, we conduct the test using the asymptotic
distribution of T(τ̂ ) under H0, when n, p → ∞. In Theorem 7,
we will prove that the asymptotic distribution of T(τ̂ ), denoted
by GT(·), is a normal distribution as n, p → ∞ under some
assumptions, so that

n|∇−
τ̂

||∇+
τ̂

|
(

T(τ̂ ) − 1
n|∇−

τ̂
||∇+

τ̂
|
∑n

i=1
∑

j∈∇−
τ̂

∑
j′∈∇+

τ̂
mijj′

)
√∑n

i=1
∑

j∈∇−
τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

D→ N(0, 1),

under H0, where mijj′ and cijj′kll′ are specified in the statement of
Theorem 7.

For small n, we use a permutation procedure based on T(τ̂ )

to conduct the test. Permutation testing is useful here because
all the observations have the same distribution under H0 and
hence are exchangeable or permutable. In each permutation
step, we randomly permute the indices of observations before
and after the change point estimate τ̂ , while holding the change
point location, to get a random permutation sample. Based on R
permutations, the approximate permutation distribution of the
test statistic, denoted by GTR(t), is defined as

GTR(t) = 1
R

R∑
r=1

I
(
Tr(τ̂ ) ≤ t

)
, (5)

Figure 2. The sets ∇−
τ̂

and ∇+
τ̂

with the estimated change point location τ̂ .
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where I(·) is the indicator function and Tr(τ̂ ) is the test statistic
calculated for the rth permutation sample. The p-value of the
permutation test, denoted by pperm, is given by

pperm = 1 − GTR(Tobs(τ̂ )) = 1
R

R∑
r=1

I
(
Tr(τ̂ ) > Tobs(τ̂ )

)
, (6)

where Tobs(τ̂ ) is the test statistic for the observed sample. Our
theoretical results show that PH0(pperm ≤ α) ≤ α for all
0 ≤ α ≤ 1. We will show the asymptotic and permutation tests
are equivalent asymptotically under H0, that is GTR(t) D→ GT(t)
for all t as n, p → ∞. Algorithm 1 summarizes our proposed
method for single change point detection in high dimensional
data.

Input : A data sequence or matrix of observations
X = [X1, X2, . . . , Xn]T .

Output: Change point estimate τ̂ , or “NA" if there is no
significant change point.

Step 1: Calculate the n × n distance matrix D for the
n × p data matrix X.
Step 2: Calculate the n × n difference distance matrix �.
Step 3: Calculate the change point estimate τ̂ . If τ̂ = ∅,
stop the algorithm and return “NA" for no detected
change point. Otherwise, go to the next step.
Step 4: Calculate the test statistic T(τ̂ ).
Step 5: Apply the permutation test based on T(τ̂ ) if n is
small, or the asymptotic test if n is large, to test the
significance of the change point estimate τ̂ .
Step 6: If it is significant, return the change point
estimate τ̂ . Otherwise, return “NA" for no significant
change point.

Algorithm 1: Single change point detection

In addition to estimation and hypothesis test for change point
τ , we can also construct confidence interval for change point
location τ using the change point estimate τ̂ . Finding the exact
or asymptotic distribution of the change point estimate (2) is
difficult due to the absolute value functions in both the defini-
tion of �ij and the dissimilarity measure dij in (3). We instead
obtain a permutation-based confidence interval for τ . Unlike
the above permutation procedure which conducts under H0,
we here obtain a permutation sample by separately permuting
observations before and after the change point location τ among
themselves. The reason is that observations before the change
point τ have the same distribution and observations after the
change point τ also have the same distribution. We calculate
the change point estimate (2) for each permutation sample
from R permutations and denote these permutation estimates by
τ̂ ∗

1 , . . . , τ̂ ∗
R . Then, a 100(1 − α)% confidence interval for change

point location τ is

(2τ̂ − τ̂ ∗
(1−α/2), 2τ̂ − τ̂ ∗

(α/2)) (7)

in which τ̂(α/2) and τ̂(1−α/2) are, respectively, the (α/2)th and
(1 − α/2)th percentiles of the R ordered permutation estimates.

3. Multiple Change Point Detection

In this section, we extend our approach to detect multiple change
points in high dimensional data. The problem of detecting mul-
tiple change points in general can be formulated as⎧⎨
⎩

H0 : F1 = F2 = · · · = Fn
Hm

1 : F1 = · · · = Fτ1−1 �= Fτ1 = · · · = Fτ2−1 �= Fτ2 = · · ·
= Fτs−1 �= Fτs = · · · = Fn,

(8)
where 1 < τ1 < τ2 < · · · < τs < n are the unknown
change point locations and s is the number of change points,
which is also unknown. If the above null hypothesis is rejected,
the main objective will be to find the s change point estimates
τ̂1, τ̂2, . . . , τ̂s.

Similar to the illustrative example in Figure 1 for single
change point, Figure 3 shows how the dissimilarity measure (3)
and the proposed approach based on the difference distance
matrix � can be helpful for finding multiple change points
(here the same settings as previous example but with two true
change points at locations 6 and 11). To carry out the problem
of multiple change points, we use a recursive binary segmen-
tation procedure on the basis of our method for single change
point detection. We also demonstrate combining with the wild
binary segmentation procedure of Fryzlewicz (2014) at the end
of this section. We sequentially apply the proposed single change
point method to uncover all significant change points in the
data according to our asymptotic or permutation test. Suppose
that s change points are detected sequentially and denoted by
γ̂k, k = 1, . . . , s. We use the notation γ̂k because the detected
change points using binary segmentation are not necessarily in
increasing order, when there are more than one change point.
Note that (τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s).

The recursive binary segmentation starts with applying
the single change point algorithm to the data sequence
[X1, X2, . . . , Xn], and if a change point is detected then the data
sequence will be split to two segments (data sub-sequences)
before and after the detected change point in order to continue
the same process with each data sub-sequence separately for
any further change points. Let bk and ek denote the beginning
and ending indices of observations for a data sub-sequence, say
[Xbk , Xbk+1, . . . , Xek ], for finding a potential change point γ̂k.
We apply the single change point algorithm to this data sub-
sequence and if a change point location γ̂k is detected, we split
the data sequence [Xbk , Xbk+1, . . . , Xek ] to two sub-sequences
before and after the change point γ̂k, say [Xbk , Xbk+1, . . . , Xγ̂k−1]
and [Xγ̂k , Xγ̂k+1, . . . , Xek ] respectively. We apply the single
change point algorithm to each of these two sub-sequences to
check for further change points. We continue the process until
no further change points are detected.

For multiple change point detection, we extend the formula
of single change point estimate (2) and write the estimate of the
change point location γk as follows

γ̂k = arg max
bk≤j≤ek

{ 1
ek − bk + 1

ek∑
i=bk

�ij
}

, (9)

where we note that b1 = 1 and e1 = n, implying e1 − b1 +
1 = n. When checking the significance of the change point
estimate γ̂k, we need to update both ∇− and ∇+ according to
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Figure 3. Illustrative example with two change points: plots for all elements of the distance matrix D obtained using the dissimilarity measure d(Xi , Xj) in (3) with both
the univariate and multivariate distance functions, as well as for all column sums of the difference distance matrix �.

the change point estimate γ̂k. For this, the two sets of indices for
observations before and after the change point estimate γ̂k are
expressed as

∇−
γ̂k

= {j : bk ≤ j ≤ γ̂k − 1}, ∇+
γ̂k

= {j : γ̂k ≤ j ≤ ek}.

To conduct the test for significance of γ̂k, the test statistic can be
defined similarly as

T(γ̂k) = 1
(ek − bk + 1)|∇−

γ̂k
||∇+

γ̂k
|

ek∑
i=bk

∑
j∈∇−

γ̂k

∑
j′ ∈∇+

γ̂k

(
dij − dij′

)2,

which simplifies to the test statistic (4) when k = 1. Algorithm 2
summarizes our method for multiple change point detection.

We also incorporate the wild binary segmentation procedure
of Fryzlewicz (2014) in our proposal for multiple change points.
For this, following the principle of wild binary segmentation,
we first randomly draw a large number of pairs (b∗

k , e∗
k) from

the whole domain {1, . . . , n} including the pair (1, n), and find
arg maxb∗

k≤j≤e∗
k

{ 1
e∗

k−b∗
k+1

∑e∗
k

i=b∗
k
�ij

}
for each draw. The can-

didate change point location is the one that has the largest{ 1
e∗

k−b∗
k+1

∑e∗
k

i=b∗
k
�ij

}
among all the draws. We test the signifi-

cance of the change point candidate using either the asymptotic
or permutation test. If it is significant, the same procedure will be
repeated to the left and to the right of it. The process is continued
recursively until there is no further significant change point. The

Input : A data sequence or matrix of observations
X = [X1, X2, . . . , Xn]T .

Output: A list of significant change point estimates
{τ̂1, τ̂2, . . . , τ̂s}, or “NA" if there is no significant
change point.

Step 1: Apply the single change point Algorithm 1 to the
data sequence X. If there is no significant change point,
end the process and return “NA". Otherwise, denote the
detected change point by γ̂1 and go to next step.
Step 2: Split the data sequence to two sub-sequences
before and after the detected change point. Apply
Algorithm 1 to each of the two sub-sequences separately
to check for further change points.
Step 3: Repeat Step 2 until no further sub-sequences
have significant change points.
Step 4: Denote all the detected change points by
{γ̂1, γ̂2, . . . , γ̂s}. Return
(τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s) as a list of
significant change points.

Algorithm 2: Multiple change point detection

theory of wild binary segmentation shows it performs at least
as good as the standard binary segmentation. Algorithm 2 then
easily updates with the wild binary segmentation.
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4. Asymptotic Results

We study the asymptotic properties of our method for detecting
single and multiple high dimensional change points. We estab-
lish the theory with both the multivariate modified Euclidean
distance function and the univariate distance function based on
differences between the sample mean and variance of observa-
tions, although one could see that the theory could similarly
follow with other suitable distance measures including other Lq-
norm distances. We study the situations when both n and p
approach infinity, as well as when p approaches infinity but n
remains finite as in HDLSS data.

To develop the asymptotic theory with d(Xi, Xj) based on the
multivariate modified Euclidean distance function, according
to Hall, Marron, and Neeman (2005) we make the following
three assumptions on observations Xi = (Xi1, Xi2, . . . , Xip), i =
1, . . . , n.
(A1) Assume that max

1≤i≤n
max

1≤j≤p
E(X4

ij) < ∞.

(A2) Assume tr(�i)/p → λi and p−1/2‖E(Xi) − E(Xj)‖2 → ηij
for 1 ≤ i, j ≤ n.
(A3) Assume

∑p
j=1

∑p
j′=1

j �=j′
cov(X2

ij, X2
ij′) = o(p2).

Alternatively, for using the univariate distance function based
on differences between the sample mean and variance of obser-
vations, we make the following assumptions.
(B1) Assume that max

1≤i≤n
max

1≤j≤p
E(X2

ij) < ∞.

(B2) Let S2
ij = (Xij − X̄p

i )
2 and define σ 2

ij = E(S2
ij). Assume

max
1≤i≤n

max
1≤j≤p

σ 2
ij < ∞.

(B3) For all ε > 0 and i = 1, . . . , n, define

Ai =
p∑

j=1
E
(
(Xij − μ̄ij)

2),

Bi =
p∑

j=1
E
(
(Xij − μ̄ij)

2I(|Xij − μ̄ij| > εAi)
)
,

A∗
i =

p∑
j=1

E
(
(S2

ij − σ 2
ij )

2),

B∗
i =

p∑
j=1

E
(
(S2

ij − σ 2
ij )

2I(|S2
ij − σ 2

ij | > εA∗
i )

)
,

and assume Bi
Ai

→ 0 and B∗
i

A∗
i

→ 0 as p → ∞.

(B4) Assume
∑p

j=1
∑p

j′=1
j �=j′

cov(Xij, Xij′) = o(p2) and
∑p

j=1
∑p

j′=1
j �=j′

cov(S2
ij, S2

ij′) = o(p2) as p → ∞.
(B5) Assume

∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1

i �=j �=k�=l
cov

(‖Xi − Xj‖2
D, ‖Xk−

Xl‖2
D
) = o(n4) as n → ∞.

Assumptions (A1)–(A3) are required for the convergence
of the modified Euclidean distance used by Hall, Marron,
and Neeman (2005), Li (2020), and many others. Assumption
(A3) implies weak dependence among variables and is only
needed for the case of correlated variables, which is trivial
if the variables are independent. Assumptions (B1) and (B2)
ensure bounded second moments for convergence of the

mean X̄p
i and standard deviation Sp

Xi
. Assumption (B3) is the

usual Lindeberg condition which is a common assumption for
applying central limit theorem (a weaker condition compared
to Lyapunov condition). Assumptions (B4)–(B5) imply weak
dependence among variables and are only required for the case
of correlated variables. Assumptions (B4) guarantees bounded
covariances for the case of correlated variables Xij, which is
a typical assumption for dependent variables to satisfy the
conditions for central limit theorem and weak law of large
numbers. Assumption (B5) is a similar covariance condition
for ‖Xi − Xj‖2

D which can be simplified since ‖Xi − Xj‖2
D =

(X̄p
i − X̄p

j )
2 + (Sp

Xi
− Sp

Xj
)2. Note that Assumptions (B1) and

(B2) imply
∑n

i=1
∑n

j=1 E
(‖Xi − Xj‖2

D
)

< ∞. We also note
that Assumptions (A3) and (B4)–(B5) hold for variables with
the ρ-mixing property (e.g., Utev 1990) as well as with the
spatial dependence (e.g., Wang and Samworth 2018), so we here
consider a more general dependence structure. For instance,
under the spatial dependence cov(Xij, Xij′) ∝ ρ|j−j′| with
|ρ| ≤ 1, it is easy to show

∑p
j=1

∑p
j′=1

j �=j′
cov(Xij, Xij′) = o(p2).

If observations Xi and Xj have the same distribution, we can
write

λi = λj := λ∇−
τ

, ηij := η∇−
τ

∀i, j ∈ ∇−
τ ,

λi = λj := λ∇+
τ

, ηij := η∇+
τ

∀i, j ∈ ∇+
τ ,

and also
μ̄i = μ̄j := μ̄∇−

τ
, σi = σj := σ∇−

τ
∀i, j ∈ ∇−

τ ,

μ̄i = μ̄j := μ̄∇+
τ

, σi = σj := σ∇+
τ

∀i, j ∈ ∇+
τ ,

in which μ̄i = E(X̄p
i ) and σi = √

E((Sp
Xi

)2) for i = 1, . . . , n.
Note that μ̄i = p−1 ∑p

j=1 μij and σ 2
i = p−1 ∑p

j=1 σ 2
ij . The

following theorem concerns the asymptotic behavior of the dis-
similarity measure d(Xi, Xj) for high dimensional observations.

Theorem 3. Consider the data sequence X1, X2, . . . , Xn and
dissimilarity measure d(Xi, Xj) in (3). Suppose that τ is a change
point so that F1 = · · · = Fτ−1 �= Fτ = · · · = Fn. We have

d(Xi, Xj) = oP(1) ∀ i ∈ ∇−
τ , j ∈ ∇−

τ or ∀ i ∈ ∇+
τ , j ∈ ∇+

τ ,
d(Xi, Xj) = κτ + oP(1) ∀ i ∈ ∇−

τ , j ∈ ∇+
τ or ∀ i ∈ ∇+

τ , j ∈ ∇−
τ ,

as p → ∞, where for the modified Euclidean distance function,
under Assumptions (A1)–(A3),

κτ = 1
N − 2

{(|∇−
τ | − 1

)∣∣√λ2
∇−

τ
+ λ2

∇+
τ

+ η2
∇−

τ ∇+
τ

− √
2λ2

∇−
τ

∣∣
+ (|∇+

τ | − 1
)∣∣√λ2

∇−
τ

+ λ2
∇+

τ
+ η2

∇−
τ ∇+

τ
− √

2λ2
∇+

τ

∣∣},

while for the univariate distance function based on differences
between the sample mean and variance, under Assumptions
(B1)–(B4),

κτ = ∣∣√(μ̄∇−
τ

− μ̄∇+
τ
)2 + (σ∇−

τ
− σ∇+

τ
)2∣∣.

The next two theorems provide guaranties for consistency of
the proposed single change point estimate (2) for high dimen-
sional observations when p → ∞ and n is fixed, as well as when
p → ∞ and n diverges too.
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Theorem 4. Suppose that there is a true single change point τ0,
2 ≤ τ0 ≤ n, so that F1 = · · · = Fτ0−1 �= Fτ0 = · · · = Fn. Under
the assumptions of Theorem 3, (a) we have as p → ∞, with any
fixed n, { 1

n
∑n

i=1 �ij = oP(1) if j �= τ0,
1
n

∑n
i=1 �ij = κτ0 + oP(1) if j = τ0,

where κτ0 = O(1) under Assumptions (A1)–(A2) or (B1)–(B2).
(b) it follows τ̂ − τ0 = oP(1), hence, the change point estimate
τ̂ = arg max1≤j≤n

{
1
n

∑n
i=1 �ij

}
is consistent for τ0 as p → ∞.

From this theorem, the consistency of the proposed change
point estimate holds when p → ∞ and n is fixed as in HDLSS
data. In the following result, we show that the consistency also
holds when n → ∞ as well, as one expects.

Theorem 5. Under the conditions in Theorem 4, we have as n →
∞ and p → ∞

max
1≤j≤n

{ 1
n

n∑
i=1

�ij − I(j = τ0)κτ0

}
= oP(1).

The next theorem studies the asymptotic limit of the pro-
posed test statistic (4) under the null hypothesis H0 as well as
under the alternative hypothesis Hs

1.

Theorem 6. Suppose that there is a true single change point τ0,
2 ≤ τ0 ≤ n, and consider the test statistic T(τ̂ ) in (4) based
on the change point estimate τ̂ = arg max1≤j≤n

{
1
n

∑n
i=1 �ij

}
.

Under the above assumptions, we have as p → ∞
T(τ̂ )

∣∣
H0

= oP(1), T(τ̂ )
∣∣
Hs

1
= κ2

τ0 + oP(1).

The following theorem proves that the asymptotic distribu-
tion of the test statistic (4) is a normal distribution under above
conditions when both n and p go to infinity.

Theorem 7. Consider the test statistic T(τ̂ ) in (4) for testing a
significant change point. Under the null hypothesis H0 and the
above assumptions, we have as n → ∞ and p → ∞

Tsd(τ̂ ) :=

n|∇−
τ̂

||∇+
τ̂

|
(

T(τ̂ ) − 1
n|∇−

τ̂
||∇+

τ̂
|∑n

i=1
∑

j∈∇−
τ̂

∑
j′∈∇+

τ̂
mijj′

)
√ ∑n

i=1
∑

j∈∇−
τ̂

∑
j′∈∇+

τ̂

∑n
k=1∑

l∈∇−
τ̂

∑
l′∈∇+

τ̂
cijj′kll′

D→ N(0, 1),

where Tsd(τ̂ ) is defined as standardized test statistic. For the
univariate distance function we have mijj′ = vij + v∗

ij + vij′ +
v∗

ij′ + op(1) and

cijj′kll′ = cov
(‖Xi − Xj‖2

D + ‖Xi − Xj′ ‖2
D, ‖Xk − Xl‖2

D

+ ‖Xk − Xl′ ‖2
D
)

= cov
(‖Xi − Xj‖2

D, ‖Xk − Xl‖2
D)

+ cov
(‖Xi − Xj‖2

D, ‖Xk − Xl′ ‖2
D
)

+ cov
(‖Xi − Xj′ ‖2

D, ‖Xk − Xl‖2
D)

+ cov
(‖Xi − Xj′ ‖2

D, ‖Xk − Xl′ ‖2
D
)
,

where
cov

(‖Xi − Xj‖2
D, ‖Xk − Xl‖2

D
)

=

⎧⎪⎪⎨
⎪⎪⎩

2(v2
ij + v∗2

ij ) + op(1) if i �= j, k �= l, i = k, j = l,
(v∗2

ii + v∗2
ii )/2 + op(1) if i �= j, k �= l, i = k, j �= l,

(v∗2
jj + v∗2

jj )/2 + op(1) if i �= j, k �= l, i �= k, j = l,
op(1) otherwise,

and vij = var(X̄p
i ) + var(X̄p

j ) and v∗
ij = var(Sp

Xi
) + var(Sp

Xj
). For

the multivariate modified Euclidean distance function we have
mijj′ = E(p−1‖Xi − Xj‖2

2) + E(p−1‖Xi − Xj′ ‖2
2) and

cijj′kll′ = cov
(
p−1‖Xi − Xj‖2

2 + p−1‖Xi − Xj′ ‖2
2,

p−1‖Xk − Xl‖2
2 + p−1‖Xk − Xl′ ‖2

2
)

= cov
(
p−1‖Xi − Xj‖2

2, p−1‖Xk − Xl‖2
2)

+ cov
(
p−1‖Xi − Xj‖2

2, p−1‖Xk − Xl′ ‖2
2
)

+ cov
(
p−1‖Xi − Xj′ ‖2

2, p−1‖Xk − Xl‖2
2)

+ cov
(
p−1‖Xi − Xj′ ‖2

2, ‖Xk − Xl′ ‖2
2
)
.

Remark. We use estimates of the constant quantities vij and v∗
ij to

calculate mijj′ and cijj′kll′ . Following Slutsky’s theorem, the result
of Theorem 7 also holds when plugging in consistent estimates of
the quantities vij and v∗

ij. For the univariate distance case, we get

a consistent estimate of var(X̄p
i ) in vij using (under Assumption

(B4))

var(X̄p
i ) = 1

p2

p∑
l=1

p∑
l′=1

cov(Xil, Xil′) = 1
p2

p∑
l=1

var(Xil) + o(p2)

p2

and p−1 ∑p
l=1 (Xil − X̄p

i )
2 − p−1 ∑p

l=1 var(Xil)
P→ 0. Similarly,

we get a consistent estimate of var(Sp
Xi

) in v∗
ij by first using (under

Assumption (B4))

var
(
(Sp

Xi
)2) = 1

p2

p∑
l=1

p∑
l′=1

cov
(
(Xil − X̄p

i )
2, (Xil′ − X̄p

i )
2)

= 1
p2

p∑
l=1

var
(
(Xil − X̄p

i )
2) + o(p2)

p2

= 1
p2

p∑
l=1

E
(
(Xil − X̄p

i )
4)

− 1
p2

p∑
l=1

(
var(Xil)

)2 + o(1)

= 1
p2

p∑
l=1

E
(
(Xil − X̄p

i )
4) − p

(
var(X̄p

i )
)2 + o(1)

(10)
and p−1 ∑p

l=1 (Xil − X̄p
i )

4−p−1 ∑p
l=1 E

(
(Xil − X̄p

i )
4) P→ 0, and

then applying the delta method to obtain the required estimate
as v̂ar(Sp

Xi
) = 1

4(Sp
Xi

)2 v̂ar
(
(Sp

Xi
)2). Note that the last equality in

(10) is obtained by applying the Taylor expansion
(
var(Xil)

)2 =(
pvar(X̄p

i )
)2 + 2pvar(X̄p

i )
(
var(Xil) − pvar(X̄p

i )
) + o(p). Also for

the modified Euclidean distance case, under Assumption (A3),
we use the consistent estimates of E(‖Xi − Xj‖2

2) and cov
(‖Xi −

Xj‖2
2, ‖Xk − Xl‖2

2
)

as obtained in Li (2020).
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We now study the optimality and detection power of the
proposed method and obtain conditions for optimal detection
rates and full power.

Theorem 8. Consider the conditions in Theorems 3 and 7. We
have, as p → ∞,

PH0(|Tsd(τ̂ )| > Zα/2) → α,

PHs
1
(|Tsd(τ̂ )| > Zα/2) = 1 − �

(
Zα/2

c
c∗ − n2κ2

τ0

c∗
)

+ �
( − Zα/2

c
c∗ − n2κ2

τ0

c∗
) + o(1),

where � is the CDF of standard normal distribution, Zα/2 is
the corresponding critical point of standard normal distribution,
c = √∑n

i=1
∑

j∈∇−
τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′ with

cijj′kll′ given in Theorem 7, and c∗ = √ ∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗

ijj′kll′ with c∗
ijj′kll′ = cijj′kll′ + bijkl + bijkl′ +

bij′kl + bij′kl′ where bijkl is specified in the proof of theorem.

Under Assumptions (B4)–(B5) or (A3) the covariances are
bounded asymptotically, so c and c∗ are finite. So, with κ2

τ0 > 0,
the test is consistent and has full power as n → ∞, that is,

PHs
1
(|Tsd(τ̂ )| > Zα/2) → 1, as n → ∞ and p → ∞.

Also, with fixed n as in HDLSS data, the test is consistent if κ2
τ0

diverges. The following results demonstrate this for two cases
when there is a change point in mean and when there is change
in variance of observations considering the sparsity level and the
change magnitude.

Corollary 1. Consider a change point in mean of high dimen-
sional observations, while variance remains unchanged, with the
mean shift δk := μik −μjk, k = 1, . . . , p, for all i ∈ ∇−

τ , j ∈ ∇+
τ .

Let S0 = {k : δk �= 0} be the set of variables having a change
point with s0 := |S0| being its cardinality or the sparsity level.
Then, κ2

τ0 = 1
p2 (

∑
k∈S0 δk)

2 and

PHs
1
(|Tsd(τ̂ )| > Zα/2) = 1 − �

(
Zα/2

c
c∗ − n2(

∑
k∈S0 δk)

2/p2

c∗
)

+ �
( − Zα/2

c
c∗ − n2(

∑
k∈S0 δk)

2/p2

c∗
) + o(1).

Hence, with fixed n, the test is consistent if (
∑

k∈S0 δk)
2 > p2/n2.

In particular, when δk = δmin for all k ∈ S0 with δmin = min
k∈S0

δk,

the optimality is achieved if

s0 >
p

n|δmin| or |δmin| >
p

ns0
.

Corollary 2. Consider a change point in variance of high dimen-
sional observations, while mean remains unchanged, with the
variance shift ωk := σ 2

ik − σ 2
jk, k = 1, . . . , p, for all i ∈ ∇−

τ , j ∈
∇+

τ . Let S0 = {k : ωk �= 0} be the set of variables having a
change point in this case with s0 := |S0| being the sparsity level.

Then, κ2
τ0 = (

∑
k∈S0 ωk)

2

p2(σ∇−
τ0

+σ∇+
τ0

)2 . Hence, similar to Corollary 1, with

fixed n, the test is consistent if (
∑

k∈S0 ωk)
2 > p2/n2, where

the assumption of finite variance implies σ∇−
τ0

+ σ∇+
τ0

< ∞. In
particular, when ωk = ωmin for all k ∈ S0 with ωmin = min

k∈S0
ωk,

the optimality is achieved if

s0 >
p

n|ωmin| or |ωmin| >
p

ns0
.

We now demonstrate the consistency of multiple change
point estimates from Algorithm 2 for multiple high dimensional
change point detection.

Theorem 9. Suppose there are s true change points τ 0
1 , τ 0

2 , . . . , τ 0
s ,

2 ≤ τ 0
1 < τ 0

2 < · · · < τ 0
s ≤ n, so that F1 = · · · = Fτ 0

1 −1 �=
Fτ 0

1
= · · · = Fτ 0

2 −1 �= Fτ 0
2

= · · · = Fτ 0
s−1

�= Fτ 0
s

= · · · = Fn.
Assume the minimum spacing between change points satisfies

min
1≤i≤s−1

|τ 0
i+1 − τ 0

i | ≥ Mnε for some M > 0 and ε ≤ 1.

Under the above assumptions, Algorithm 2 returns the change
point estimates (τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s) that satisfy
‖(τ̂1, τ̂2, . . . , τ̂s) − (τ 0

1 , τ 0
2 , . . . , τ 0

s )‖∞ = oP(1).

Note that the condition min
1≤i≤s−1

|τ 0
i+1 − τ 0

i | ≥ Mnε ensures

that there are not too many change points to detect, because
it implies that s ≤ (

min
1≤i≤s−1

|τ 0
i+1 − τ 0

i |/M
)1/ε since 0 ≤

s < n. The following result shows that the asymptotic test and
the permutation test are equivalent asymptotically and that the
permutation test is also unbiased when n → ∞ and p → ∞.

Theorem 10. Consider the asymptotic test with the distribution
GT(t) obtained in Theorem 7 as well as the permutation test with
the approximate permutation distribution GTR(t) in (5) and with
the permutation-based p-value pperm in (6). Assume the above
assumptions hold. Under the null hypothesis H0 of no change
points, we have as n → ∞ and p → ∞
(a) GTR(t) D→ GT(t) ∀ t,
(b) PH0(pperm ≤ α) ≤ α ∀ 0 ≤ α ≤ 1.

5. Numerical Results

In this section, we evaluate the performance of the proposed
methods under various simulation scenarios and in comparison
with some of the recent methods in the literature for high
dimensional change points. We compare our methods with the
nonparametric method proposed by Matteson and James (2014),
called E-divisive, the method based on random projection devel-
oped by Wang and Samworth (2018), called Inspect, and the
nonparametric method of Li et al. (2019) for high dimensional
change points, called HDcpdetect. In the simulations, we set
the tuning parameter selection of these methods as the recom-
mended defaults in their R packages. We assess the performance
of all the methods for detecting a single change point as well
as multiple change points under different scenarios, especially
for the challenging situation when n is very small compared
to p as in HDLSS data. We investigate the performance of our
asymptotic and permutation tests using both the univariate and
multivariate distance functions. In the simulations we find that
the results of our method with the univariate and multivariate
distance functions are quite similar, so for simplicity of presen-
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tation and comparisons with the other methods, we avoid pre-
senting duplicate results unless when the results are different as
in Section 5.4. Some simulation results are deferred to Appendix
B due to space limitation.

5.1. Simulations for a Single Change in Mean

We first start with the case of a single change point in mean
of high dimensional observations, where we generate data with
n random observations X1, X2, . . . , Xn from a p-variate normal
distribution, where the first 3n/5 observations are generated
from N(μ1, �) and the other 2n/5 observations are generated
from N(μ2, �). We consider different high dimensional settings
with n ∈ {45, 90} and p ∈ {500, 1000, 1500}, as well as with μ1 =
0p and μ2 ∈ {0p, (0.1 × 13p/4, 0 × 1p/4), (0.2 × 13p/4, 0 × 1p/4)}
where 0p and 1p denote p-dimensional vectors of zeros and ones,
respectively. We here set � = σ 2

p Vp where σ 2
p ∈ {0.5, 1} and

Vp represents the covariance structure of data. In the simula-

tions, we consider two covariance structures: the uncorrelated
structure Vp = Ip where Ip is the identity matrix of size p,
and the correlated autoregressive structure Vp = [

V ij
]p

i,j=1 =[
0.5|i−j|]p

i,j=1. Note that the true change point location here is
τ1 = 3n/5 + 1 for all scenarios, except for the scenario when
μ1 = μ2 = 0p as it implies there is no change point. We consider
250 replications for each simulation scenario and use R = 200
random permutations for the permutation test. We apply each of
the change point methods to the generated datasets and record,
in addition to the change point estimates, the frequency and
average number of detected change points over 250 replications
for each method. The results on frequency and average number
of the change points detected are presented in Table 1. From
the table, it can be seen that all the methods perform well when
there is no change point, but for the cases with a true change
point our proposed method based on both the asymptotic and
permutation tests performs better than all the other methods

Table 1. Frequency and average number of the detected change points over 250 replications by each of the methods when there is one true change point, also including
the case with no change point.

μ2 n p Number of true change points Method Frequency of the detected change points Average number of detected
change points

0 1

45 500 0 Permutation 0.98 0.02 0.02
45 500 0 Asymptotic 0.98 0.02 0.02

0p 45 500 0 E-divisive 0.97 0.03 0.03
45 500 0 Inspect 0.97 0.03 0.03
45 500 0 HDcpdetect 0.98 0.02 0.02
45 1000 0 Permutation 0.97 0.03 0.03
45 1000 0 Asymptotic 0.96 0.04 0.04

0p 45 1000 0 E-divisive 0.95 0.05 0.05
45 1000 0 Inspect 0.94 0.06 0.06
45 1000 0 HDcpdetect 0.96 0.04 0.04
45 1500 0 Permutation 0.95 0.05 0.05
45 1500 0 Asymptotic 0.95 0.05 0.05

0p 45 1500 0 E-divisive 0.96 0.04 0.04
45 1500 0 Inspect 0.94 0.06 0.06
45 1500 0 HDcpdetect 0.96 0.04 0.04
45 500 1 Permutation 0.80 0.20 0.20
45 500 1 Asymptotic 0.73 0.27 0.27

(0.1 × 13p/4, 0 × 1p/4) 45 500 1 E-divisive 0.83 0.17 0.17
45 500 1 Inspect 0.91 0.09 0.09
45 500 1 HDcpdetect 0.87 0.13 0.13
45 1000 1 Permutation 0.42 0.58 0.58
45 1000 1 Asymptotic 0.33 0.67 0.67

(0.1 × 13p/4, 0 × 1p/4) 45 1000 1 E-divisive 0.67 0.33 0.33
45 1000 1 Inspect 0.93 0.07 0.07
45 1000 1 HDcpdetect 0.71 0.29 0.29
45 1500 1 Permutation 0.16 0.84 0.84
45 1500 1 Asymptotic 0.13 0.87 0.87

(0.1 × 13p/4, 0 × 1p/4) 45 1500 1 E-divisive 0.38 0.62 0.62
45 1500 1 Inspect 0.93 0.07 0.07
45 1500 1 HDcpdetect 0.49 0.51 0.51
45 500 1 Permutation 0.12 0.88 0.88
45 500 1 Asymptotic 0.10 0.90 0.90

(0.2 × 13p/4, 0 × 1p/4) 45 500 1 E-divisive 0.14 0.86 0.86
45 500 1 Inspect 0.77 0.23 0.23
45 500 1 HDcpdetect 0.15 0.85 0.85
45 1000 1 Permutation 0.00 1.00 1.00
45 1000 1 Asymptotic 0.00 1.00 1.00

(0.2 × 13p/4, 0 × 1p/4) 45 1000 1 E-divisive 0.03 0.97 0.97
45 1000 1 Inspect 0.72 0.28 0.28
45 1000 1 HDcpdetect 0.05 0.95 0.95
45 1500 1 Permutation 0.00 1.00 1.00
45 1500 1 Asymptotic 0.00 1.00 1.00

(0.2 × 13p/4, 0 × 1p/4) 45 1500 1 E-divisive 0.02 0.98 0.98
45 1500 1 Inspect 0.63 0.37 0.37
45 1500 1 HDcpdetect 0.02 0.98 0.98
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E-divisive, Inspect and HDcpdetect. On average across the 250
replications, the proposed method detects the change point in
a higher frequency compared to the other methods under all
scenarios considered. We note that the method Inspect of Wang
and Samworth (2018) is not very competitive under such non-
sparse high dimensional scenarios because it requires sparsity
and performs better with much larger sample sizes n when p is
very large (see Wang and Samworth 2018; Hahn, Fearnhead, and
Eckley 2020; Follain, Wang, and Samworth 2022). Also, Figure 4
presents the boxplots of the estimated change point from each of
the methods over 250 replications. The boxplots show that the
proposed method also produces a more accurate change point

estimate compared to the other methods. The performance of
our method for the correlated autoregressive structure is similar,
so we skip the similar results because of space limitation.

5.2. Simulations for Multiple Changes in Mean

We next consider the case of multiple change points in mean
of high dimensional observations, where we use the same
simulation settings as before but here with three true change
points in the simulated data. For this, we generate data with n
random observations X1, X2, . . . , Xn from a p-variate normal
distribution, where the first 3n/10 observations are generated

Figure 4. The estimate of change point from each of the methods over 250 replications with a true single change point at location 3n/5 + 1 = 28 when n = 45.
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from N(μ1 = 0p, �), the next n/5 observations are generated
from N(μ2, �), the next 3n/10 observations are generated from
N(2μ2, �) and the last n/5 observations are generated from
N(3μ2, �). So the three true change point locations here are
τ1 = 3n/10 + 1, τ2 = n/2 + 1 and τ3 = 4n/5 + 1. We
again use 250 replications for each simulation scenario and apply
the proposed method and the other methods to the generated
datasets. We here set the minimum segment length to 5. For each
method we calculate the frequency and average number of the
correctly detected change points over 250 replications. We also
calculate the total number of change points detected (correct
or incorrect detection). Table 2 shows the results on frequency
and average number of the correctly detected change points for
each method. From the results in Table 2, we can see that all
the methods tend to perform well in the cases when there is no
change point. For the cases with three true change points, our
method based on both the asymptotic and permutation tests

outperforms all the other methods in all scenarios considered.
The frequency of the correctly detected change points, reported
in the table, shows that the proposed method detects the true
change points more accurately compared to the other methods.
The performance of our method and the E-divisive by Matteson
and James (2014) improves when the dimension p increases, but
this is not the case for the Inspect by Wang and Samworth (2018)
as it relies on sparsity and tends to improve with the sample size
n (see Wang and Samworth 2018; Hahn, Fearnhead, and Eckley
2020; Follain, Wang, and Samworth 2022). The average number
of correctly detected change points over the 250 replications is
much closer to the actual number of true change points for our
method in the case of multiple change points too. The results
on average number of the total change points detected (correct
or incorrect) are reported in Figure 5(a) and (b), which suggest
that our method does not over-detect or under-detect change
points.

Table 2. Frequency and average number of the correctly detected change points over 250 replications by each of the methods when there are three true change points,
also including the case with no change points.

μ2 n p Number of true
change points

Method Frequency of the detected change points Average number of
detected change points

0 1 2 3

90 500 0 Permutation 0.97 0.03 0.00 0.00 0.03
90 500 0 Asymptotic 0.97 0.03 0.00 0.00 0.03

0p 90 500 0 E-divisive 0.96 0.04 0.00 0.00 0.04
90 500 0 Inspect 0.95 0.05 0.00 0.00 0.05
90 500 0 HDcpdetect 0.96 0.04 0.00 0.00 0.04
90 1000 0 Permutation 0.97 0.03 0.00 0.00 0.03
90 1000 0 Asymptotic 0.96 0.04 0.00 0.00 0.04

0p 90 1000 0 E-divisive 0.95 0.05 0.00 0.00 0.05
90 1000 0 Inspect 0.96 0.04 0.00 0.00 0.04
90 1000 0 HDcpdetect 0.95 0.05 0.00 0.00 0.05
90 1500 0 Permutation 0.96 0.04 0.00 0.00 0.04
90 1500 0 Asymptotic 0.96 0.04 0.00 0.00 0.04

0p 90 1500 0 E-divisive 0.96 0.04 0.00 0.00 0.04
90 1500 0 Inspect 0.94 0.06 0.00 0.00 0.06
90 1500 0 HDcpdetect 0.94 0.06 0.00 0.00 0.06
90 500 3 Permutation 0.32 0.46 0.20 0.02 0.92
90 500 3 Asymptotic 0.24 0.48 0.26 0.02 1.06

(0.1 × 13p/4, 0 × 1p/4) 90 500 3 E-divisive 0.30 0.56 0.12 0.02 0.86
90 500 3 Inspect 0.56 0.38 0.06 0.00 0.50
90 500 3 HDcpdetect 0.32 0.62 0.06 0.00 0.74
90 1000 3 Permutation 0.09 0.24 0.56 0.11 1.69
90 1000 3 Asymptotic 0.06 0.27 0.50 0.17 1.77

(0.1 × 13p/4, 0 × 1p/4) 90 1000 3 E-divisive 0.07 0.60 0.23 0.10 1.36
90 1000 3 Inspect 0.46 0.45 0.09 0.00 0.63
90 1000 3 HDcpdetect 0.20 0.63 0.14 0.03 1.00
90 1500 3 Permutation 0.00 0.05 0.19 0.76 2.71
90 1500 3 Asymptotic 0.00 0.05 0.15 0.80 2.75

(0.1 × 13p/4, 0 × 1p/4) 90 1500 3 E-divisive 0.05 0.25 0.46 0.24 1.89
90 1500 3 Inspect 0.22 0.58 0.19 0.01 0.99
90 1500 3 HDcpdetect 0.08 0.44 0.38 0.10 1.50
90 500 3 Permutation 0.00 0.02 0.18 0.80 2.78
90 500 3 Asymptotic 0.00 0.02 0.16 0.82 2.80

(0.2 × 13p/4, 0 × 1p/4) 90 500 3 E-divisive 0.00 0.02 0.24 0.74 2.72
90 500 3 Inspect 0.06 0.30 0.36 0.28 1.86
90 500 3 HDcpdetect 0.01 0.45 0.14 0.40 1.93
90 1000 3 Permutation 0.00 0.00 0.00 1.00 3.00
90 1000 3 Asymptotic 0.00 0.00 0.00 1.00 3.00

(0.2 × 13p/4, 0 × 1p/4) 90 1000 3 E-divisive 0.00 0.00 0.14 0.86 2.86
90 1000 3 Inspect 0.00 0.13 0.57 0.30 2.16
90 1000 3 HDcpdetect 0.00 0.53 0.19 0.28 1.75
90 1500 3 Permutation 0.00 0.00 0.00 1.00 3.00
90 1500 3 Asymptotic 0.00 0.00 0.00 1.00 3.00

(0.2 × 13p/4, 0 × 1p/4) 90 1500 3 E-divisive 0.00 0.00 0.02 0.98 2.98
90 1500 3 Inspect 0.00 0.08 0.35 0.57 2.49
90 1500 3 HDcpdetect 0.00 0.85 0.04 0.11 1.26
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Figure 5. Average number of the total change points detected (correct or incorrect detection) over 250 replications by each of the methods for multiple change point
detection.

5.3. Simulations for a Change in Variance

We then investigate the performance of the methods for detect-
ing a change in variance of observations while mean remains
unchanged. We consider two scenarios for this when the vari-
ance of observations is increased by 0.1 and 0.2, that is �1 =
0.5Vp and �2 ∈ {0.6Vp, 0.7Vp}, while the mean of observa-
tions is the same, that is μ1 = μ2. The simulation results for
all the methods considered are reported in Table 3. From the
results, one can see that our proposed method based on both
the asymptotic and permutation tests perform well in detecting
such a change in variance, but the other methods do not have
power for detecting the change point due to the variance of
observations.

5.4. Simulations for Change in Distribution While Mean
and Variance Remain Unchanged

It is a challenging problem for many methods in the literature
to detect a change in distribution while the mean and variance
of observations remain unchanged (see Zhang and Drikvandi
2023). We consider two simulation scenarios for this with n =
45 and a change in distribution at location 28 when the vari-
ables for observations are generated from N(0, 5/3) and t(5),
respectively, both having the same means and variances, as well
as from N(1, 1) and Exp(1). Considering the asymptotic limit
of the univariate distance function and the modified Euclidean
distance, they might not distinguish between distributions when
their mean and variance are the same, so we here also include
the modified L1 norm distance to see how it performs in this
situation. Thus, we try our method with these three distance
functions all using the permutation test for a fair comparison.
The simulation results over 250 replications, which are reported
in Table 4, show that all the methods perform quite poorly in
this case, except our method with the modified L1 norm distance
function which performs reasonably good in this challenging
situation. This is because the asymptotic limit of the L1 norm
distance does not simplify to expressions just in terms of the
mean and variance of observations.

6. Real Data Application

We apply the proposed method to a real data application from
the U.S. stock return data. The dataset is available at https://www.
finance.yahoo.com and can be obtained using the R package
BatchGetSymbols for different time periods. The data we
use here holds the daily closing prices of stocks from the S&P
500 index during the first year of COVID-19 pandemic between
1st January 2020 and 30th June 2020, which results in n = 125
time points and p = 496 stocks. This specific time period
is chosen because based on the experts analysis reported in
Statista Research Department (2022), the S&P 500 index showed
much volatility and dropped by about 20% in early March 2020
entering into a bear market. While the drop was the steepest
one-day fall since 1987, S&P 500 index began to recover at
the start of April 2020. Stock markets fell in the wake of the
COVID-19 pandemic, with investors fearing its spread could
destroy economic growth. Figure 6(a) shows a rough display of
the price changes for all the stocks over this time period, where
all the stock prices are standardized for visualization purpose.
One can see the very steep drop around early March 2020, as
explained. The drop seems to be happened for a majority of
stocks with some different magnitudes, suggesting a non-sparse
high dimensional change point problem here.

Figure 6(b) displays the dissimilarity visualization of the S&P
500 data using the dissimilarity measure d(Xi, Xj) with both
the modified Euclidean distance function and the univariate
distance function, which show a similar trend. Note that the
column sums of the two dissimilarity indices are drawn for those
trading days in the first half of 2020. The figure suggests that the
trading days 13th and 16th March 2020 show the largest total
dissimilarity from all the other observations and are marked by
vertical bars.

We first implement our distribution-free method, using our R
package HDDchangepoint, to find significant change points
in this high dimensional dataset. Our method with the asymp-
totic test, using both distance functions, returns six change
point locations, namely 51, 57, 66, 95, 106, 112. The method
with the permutation test returns four change point locations,

https://www.finance.yahoo.com
https://www.finance.yahoo.com
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Table 3. Frequency and average number of the detected change points over 250 replications by each of the methods when there is a true change in variance of observations.

(μ1, �1) (μ2, �2) n p Method Frequency of the detected change points Average number of detected change points
0 1

(0p , 0.5Vp) (0p , 0.6Vp) 45 500 Permutation 0.87 0.13 0.13
(0p , 0.5Vp) (0p , 0.6Vp) 45 500 Asymptotic 0.85 0.15 0.15
(0p , 0.5Vp) (0p , 0.6Vp) 45 500 E-divisive 0.98 0.02 0.02
(0p , 0.5Vp) (0p , 0.6Vp) 45 500 Inspect 0.98 0.02 0.02
(0p , 0.5Vp) (0p , 0.6Vp) 45 500 HDcpdetect 0.99 0.01 0.01
(0p , 0.5Vp) (0p , 0.6Vp) 45 1000 Permutation 0.32 0.68 0.68
(0p , 0.5Vp) (0p , 0.6Vp) 45 1000 Asymptotic 0.29 0.71 0.71
(0p , 0.5Vp) (0p , 0.6Vp) 45 1000 E-divisive 0.96 0.04 0.04
(0p , 0.5Vp) (0p , 0.6Vp) 45 1000 Inspect 0.96 0.04 0.04
(0p , 0.5Vp) (0p , 0.6Vp) 45 1000 HDcpdetect 0.98 0.02 0.02
(0p , 0.5Vp) (0p , 0.6Vp) 45 1500 Permutation 0.09 0.91 0.91
(0p , 0.5Vp) (0p , 0.6Vp) 45 1500 Asymptotic 0.08 0.92 0.92
(0p , 0.5Vp) (0p , 0.6Vp) 45 1500 E-divisive 0.96 0.04 0.04
(0p , 0.5Vp) (0p , 0.6Vp) 45 1500 Inspect 0.97 0.03 0.03
(0p , 0.5Vp) (0p , 0.6Vp) 45 1500 HDcpdetect 0.97 0.03 0.03
(0p , 0.5Vp) (0p , 0.7Vp) 45 500 Permutation 0.09 0.91 0.91
(0p , 0.5Vp) (0p , 0.7Vp) 45 500 Asymptotic 0.09 0.91 0.91
(0p , 0.5Vp) (0p , 0.7Vp) 45 500 E-divisive 0.86 0.14 0.14
(0p , 0.5Vp) (0p , 0.7Vp) 45 500 Inspect 0.97 0.03 0.03
(0p , 0.5Vp) (0p , 0.7Vp) 45 500 HDcpdetect 0.98 0.02 0.02
(0p , 0.5Vp) (0p , 0.7Vp) 45 1000 Permutation 0.00 1.00 1.00
(0p , 0.5Vp) (0p , 0.7Vp) 45 1000 Asymptotic 0.00 1.00 1.00
(0p , 0.5Vp) (0p , 0.7Vp) 45 1000 E-divisive 0.72 0.28 0.28
(0p , 0.5Vp) (0p , 0.7Vp) 45 1000 Inspect 0.94 0.06 0.06
(0p , 0.5Vp) (0p , 0.7Vp) 45 1000 HDcpdetect 0.97 0.03 0.03
(0p , 0.5Vp) (0p , 0.7Vp) 45 1500 Permutation 0.00 1.00 1.00
(0p , 0.5Vp) (0p , 0.7Vp) 45 1500 Asymptotic 0.00 1.00 1.00
(0p , 0.5Vp) (0p , 0.7Vp) 45 1500 E-divisive 0.49 0.51 0.51
(0p , 0.5Vp) (0p , 0.7Vp) 45 1500 Inspect 0.95 0.05 0.05
(0p , 0.5Vp) (0p , 0.7Vp) 45 1500 HDcpdetect 0.96 0.04 0.04

Figure 6. Change point plots for the S&P 500 data over the time period January 01, 2020 and June 30, 2020 during the COVID-19 pandemic. In plot (b) the two trading days
13th and 16th March 2020 show the largest total dissimilarity from all the other days and are marked by vertical bars (in green).

namely 51, 57, 66, 95. While the two tests produce four com-
mon change points, the permutation test is a bit conserva-
tive considering the dimension of data, which is in line with
our numerical results. The asymptotic p-values for these four
significant change points are 5.64e−09, 5.06e−04, 1.27e−05,
and 2.50e−07, respectively. Also, the same four change points
are obtained when we use 10 or 15 as the minimum segment
length for the binary segmentation. We then apply the E-divisive
method of Matteson and James (2014) with the minimum seg-
ment length being 15, which detects seven significant change
points, namely 15, 37, 48, 68, 80, 95, 106. Also, the random
projection method of Wang and Samworth (2018) finds nine
change point locations, namely 18, 35, 44, 50, 65, 78, 99, 111,

124. The HDcpdetect method of Li et al. (2019) only finds
two change point locations 48, 80. As in our numerical results,
HDcpdetect tends to detect fewer change points when there
are multiple change points (see Figure 5(a) and (b)), and the
random projection method shows a lower accuracy in such
high dimensional data with a small sample size (see Table 2).
Considering our simulation results especially those in Table 2 for
multiple change points, we believe our estimates of change point
locations are more accurate, especially the detected locations 51
and 57 which coincide with the steep drop in the stock prices in
early March 2020 due to the COVID-19 impact on the market.
Some further results on our analysis of this dataset is reported in
Appendix C.
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Table 4. Frequency and average number of the detected change points over 250 replications by each of the methods when there is a change in distribution of observations
while their mean and variance remain the same.

Two different distributions n p Number of true
change points

Method Frequency of the detected change points Average number of
detected change points

0 1

45 500 1 Univariate 0.86 0.14 0.14
45 500 1 L2 norm 0.84 0.16 0.16
45 500 1 L1 norm 0.74 0.26 0.26

N(0, 5/3) & t(5) 45 500 1 E-divisive 0.55 0.45 0.45
45 500 1 Inspect 0.99 0.01 0.01
45 500 1 HDcpdetect 0.98 0.02 0.02
45 1000 1 Univariate 0.83 0.17 0.17
45 1000 1 L2 norm 0.80 0.20 0.20
45 1000 1 L1 norm 0.69 0.31 0.31

N(0, 5/3) & t(5) 45 1000 1 E-divisive 0.51 0.49 0.49
45 1000 1 Inspect 0.97 0.03 0.03
45 1000 1 HDcpdetect 0.96 0.04 0.04
45 1500 1 Univariate 0.80 0.20 0.20
45 1500 1 L2 norm 0.77 0.23 0.23
45 1500 1 L1 norm 0.66 0.34 0.34

N(0, 5/3) & t(5) 45 1500 1 E-divisive 0.50 0.50 0.50
45 1500 1 Inspect 0.94 0.06 0.06
45 1500 1 HDcpdetect 0.94 0.06 0.06
45 500 1 Univariate 0.99 0.01 0.01
45 500 1 L2 norm 0.98 0.02 0.02
45 500 1 L1 norm 0.58 0.42 0.42

N(1, 1) & Exp(1) 45 500 1 E-divisive 0.99 0.01 0.01
45 500 1 Inspect 0.96 0.04 0.04
45 500 1 HDcpdetect 0.99 0.01 0.01
45 1000 1 Univariate 0.98 0.02 0.02
45 1000 1 L2 norm 0.95 0.05 0.05
45 1000 1 L1 norm 0.29 0.71 0.71

N(1, 1) & Exp(1) 45 1000 1 E-divisive 0.98 0.02 0.02
45 1000 1 Inspect 0.94 0.06 0.06
45 1000 1 HDcpdetect 0.98 0.02 0.02
45 1500 1 Univariate 0.96 0.04 0.04
45 1500 1 L2 norm 0.90 0.10 0.10
45 1500 1 L1 norm 0.09 0.91 0.91

N(1, 1) & Exp(1) 45 1500 1 E-divisive 0.92 0.08 0.08
45 1500 1 Inspect 0.93 0.07 0.07
45 1500 1 HDcpdetect 0.97 0.03 0.03

7. Concluding Remarks

We have proposed a distance-based method for detecting single
and multiple change points in non-sparse high dimensional
data. The proposed approach is based on new dissimilarity
measures and some proposed distance and difference distance
matrices, which does not require normality or any other spe-
cific distribution for the observations. However, we note that
our asymptotic tests require up to four finite moments of the
distribution. Our method is especially useful for change point
detection in HDLSS data when the sample size is very small
compared to the dimension of data. This is an understudied
problem in the literature of high dimensional change points.
Our method can handle non-sparse high dimensional situa-
tions where changes may happen in many variables and with
small significant magnitudes. We have introduced a novel test
statistic to formally test the significance of estimated change
points and established its asymptotic and permutation distri-
butions to address both small and large sample size situations.
We have shown that our proposed estimates of change point
locations are consistent for the true unknown change points
under some standard conditions and that our proposed tests are
consistent asymptotically. Our simulation results showed that
both asymptotic and permutation tests perform well compared
to some of the recent methods for high dimensional change

points. Our R package HDDchangepoint for implementation
of the proposed method, including both the recursive binary
segmentation and the wild binary segmentation as well as the
real data application, can be obtained from https://github.com/
rezadrikvandi/HDDchangepoint. The R package returns signif-
icant change point estimates and their corresponding p-values,
and it can also be applied with any other dissimilarity measure
specified by the user.

Supplementary Materials
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