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1 Introduction

The holographic principle constitutes one of the most successful paths toward a description of
quantum gravity and has been extensively studied for spacetimes with a negative cosmological
constant through the celebrated AdS/CFT correspondence. On the other hand, it is of great
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interest to extend this approach to more realistic backgrounds, notably four-dimensional
spacetimes which are approximately flat or have positive curvature. Early works [1–3]
attempted to implement a flat space limit of AdS/CFT to obtain a holographic description of
spacetimes with vanishing cosmological constant. In recent years there has been an explosion
of activity seeking to formulate flat space holography in terms of a two-dimensional CFT
at null infinity, known as a celestial CFT [4–10], or a three-dimensional Carrollian CFT
living on all of null infinity [11–26], and these two approaches have been related in [23–25].
Many deep lessons have been learned about the nature of flat space holography [27–70], and
tremendous progress has been made in constructing explicit examples involving self-dual
sectors of Yang-Mills theory and gravity [71–75]. Connections have also been established with
certain non-gravitational amplitudes [76–82]. However, to date there is no concrete example
of a flat space hologram for a UV complete theory which reduces to Einstein gravity at low
energies. As a result, the holographic principle is still far less established in flat spacetime
than in AdS. The goal of this paper is to take the first steps in deriving a concrete flat space
Carrollian hologram from a canonical example of the AdS/CFT correspondence, notably the
AdS4/CFT3 correspondence which relates M-theory on AdS4×S7 to a 3D superconformal
Chern-Simons theory known as the ABJM theory [83].

It has recently been understood from a bottom-up perspective that the flat space limit
of AdS spacetime corresponds to a Carrollian limit in the dual boundary theory. The latter
is a non-relativistic limit of the Poincaré algebra, formally defined by taking the speed of
light to zero [84]. This correspondence has been explored at the level of Einstein’s equations
in three [85, 86] and four dimensions [22, 87–89] using Bondi-type coordinates and has
been extended to holographic correlators in [90], see also [91–96] for recent related works.
Notably, [90] provides a universal procedure for implementing the Carrollian limit of scalar
correlators in 3D CFTs.

In this paper, we focus on two, three, and four-point correlation functions of protected
scalar operators in the ABJM theory which are dual to Kaluza-Klein (KK) modes on the
seven-sphere whose mode number is tied to the R-symmetry charge of the dual operators.
Such correlation functions have been extensively studied using superconformal bootstrap
techniques [97–103] and are typically written in Mellin space. At four points, we write the
Mellin space expressions in terms a finite number of D̄-functions in position space (along the
lines of [100, 104]), allowing us to directly apply the techniques developed in [90] to derive
their Carrollian limit. This provides data for a putative 3D Carrollian theory living at null
infinity. At the same time, we show how to derive the Carrollian correlators from a bulk
perspective by restricting 11D supergravity amplitudes in flat space to a four-dimensional
hyperplane, with polarisation vectors pointing along the transverse directions. This directly
gives the lowest charge correlators and we show how to obtain higher-charge correlators by
appropriately defining the external states of the bulk scattering amplitudes. We also show
that two and three-point Carrollian correlators can be derived by truncating the sum over KK
modes in AdS4×S7, integrating out the seven sphere, and taking the flat space limit of the
resulting effective field theory in AdS4. In the flat space limit, the S7 decompactifies, and the
KK modes lead to a tower of massless scalar fields. In the dual theory, this corresponds to a
tower of Carrollian primaries, each with a corresponding conformal dimension. We also discuss
the kinematic properties of the Carrollian ABJM theory obtained in this limit and show an
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isomorphism between the superconformal Carrollian algebra in three dimensions and the
super-Poincaré algebra in four dimensions. Although we mostly restrict to the supergravity
approximation, which corresponds to the large N limit in the boundary theory, the approach
developed in this paper can be extended to higher orders in 1/N (see appendix D).

This paper is organised as follows. In section 2 we review some background material
such as the AdS4/CFT3 correspondence and methods for extracting the Carrollian limit of
3D CFT correlators. In section 3, we then review correlators of protected scalar operators in
the ABJM theory, obtaining new expressions for four-point correlators in position space. In
section 4, we then compute the Carrollian limit of these correlators and in section 5 we derive
these results from a bulk perspective. In section 6, we derive the superconformal Carrollian
algebra in three dimensions, demonstrate the relation to the bulk 4D super Poincare algebra,
and use it to define super conformal Carrollian primaries. Finally in section 7 we present
our conclusions and future directions. There are also several appendices, where we review
previous results on ABJM correlators in Mellin space (appendix A), analyse the relation
between the high energy limit in Mellin space and the Carrollian limit (appendix B), provide
more details on how to derive two and three-point Carrollian correlators in the ABJM theory
from bulk supergravity amplitudes (appendix C), and consider higher-derivative corrections
to supergravity (appendix D).

2 Review

In this section we will review some important concepts that we will make use of throughout the
paper, notably the AdS4/CFT3 correspondence and the Carrollian limit of CFT correlators.

2.1 AdS4/CFT3 correspondence

We are interested in the correspondence between M-theory on AdS4×S7/ZkCS and ABJM
theory on R2,1 [83]. The AdS4 has radius ℓ and the S7 has radius 2ℓ. The ABJM theory is a
superconformal Chern-Simons matter theory with gauge group U(N)kCS × U(N)−kCS , where
kCS is the Chern-Simons level and the matter fields are in the bi-adjoint representation of the
gauge group. The theory has a Lagrangian description with N = 6 supersymmetry [105, 106],
but for kCS = 1, 2, the quantum theory has maximal N = 8 supersymmetry [107]. We will
only consider these case where the Chern-Simons level kCS = 1.

The central charge cT is defined as the coefficient of the stress tensor two-point function.
When N ≫ kCS, the relationship between cT and N is [83, 108]

cT = 64
3π

√
2kCSN

3
2 +O

(
N1/2

)
. (2.1)

Moreover when N ≫ k5
CS, the bulk is described by supergravity on AdS4×S7 and we have

ℓ6

ℓ6
11

=
(3πcT kCS

211

) 2
3
+O

(
c0

T

)
= NkCS

8 +O
(
N0
)

, (2.2)

where ℓ11 is the 11-dimensional Planck length.
We will focus on correlators of scalar operators which are 1/2-BPS (i.e. annihilated by half

of the supersymmetry generators) and are dual to modes on the 7-sphere. These operators
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take the form OI1...Ik
k , where I1, . . . , Ik are SO(8) R-symmetry indices and OI1...Ik

k is symmetric
trace-free. To make this property manifest, we will contract the indices with null vectors tI

Ok (x, t) ≡ OI1...Ik
k tI1 . . . tIk

, (2.3)

where the subscript k denotes the R-charge. The scaling dimensions of these operators are
protected and an operator with R-charge k has conformal dimension ∆k = k

2 . For the minimal
value k = 2, these operators belong to the stress tensor multiplet.

The t’Hooft coupling is λ = N/kCS and the planar limit corresponds to taking kCS and
N to infinity while holding λ fixed. In this limit, the theory becomes integrable (see [109] for
a review). On the other hand, the enhancement of supersymmetry at kCS = 1, 2 arises from
non-perturbative effects involving monopole operators. In this regime, the operators Ok are
quantum operators which are not constructed directly out of the fields in the Lagrangian
and have no classical analogue [110, 111]. As a result, their correlation functions have been
mainly been computed using superconformal bootstrap methods [97–103].

2.2 Carrollian amplitudes

In this section, we briefly review salient results on Carrollian amplitudes in flat space, and
their relation with holographic correlators in AdS. We will mainly follow [90, 112] and refer
to [23–25, 62, 94–96, 113–125] for recent developments on this topic. Carrollian holography
suggests that gravity in 4D asymptotically flat spacetime is dual to a 3D Carrollian CFT
living at null infinity (I ). These theories exhibit conformal Carrollian or, equivalently [126],
BMS symmetries, as spacetime symmetries, and can be constructed from standard Lorentzian
CFT by taking the Carrollian limit. Explicit examples of Carrollian field theories have been
presented e.g. in [17, 127–142] and their quantization has been discussed in [143–149].

Let us first review how a massless scattering amplitude in Minkowski space can be recast
as a correlator of local operators in a putative Carrollian CFT at I . The momentum of a
massless particle j in Minkowski space can be parametrized by

pj = 1√
2

ϵjωj (1 + zj z̄j , zj + z̄j ,−i(zj − z̄j), 1− zj z̄j) . (2.4)

Here ϵj = ±1 labels an outgoing/incoming particle, ωj is the energy and (zj , z̄j) coordinates
on the celestial sphere. We will often find it useful to work in Klein space (spacetime with
(2, 2) signature), in which case the appropriate parametrization of the momentum is obtained
by Wick rotating the third component.1 The Carrollian amplitude corresponding to the
scattering of massless scalars is [23–25, 34, 112, 151]

C∆1,...,∆n
n

(
{uj , zj , z̄j}ϵj

)
=
∫ +∞

0

n∏
j=1

dωj

2π
(−iϵjωj)∆j−1e−iϵjωjujAn ({ωj , zj , z̄j}ϵj ) , (2.5)

where An ({ωj , zj , z̄j}ϵj ) is the momentum space amplitude. They can also be interpreted
as correlators of Carrollian CFT primaries inserted at null infinity,

C∆1,...,∆n
n

(
{uj , zj , z̄j}ϵj

)
≡
〈

n∏
j=1

Φϵj

∆j
(uj , zj , z̄j)

〉
. (2.6)

1In this case, ϵj = ±1 labels the two Poincaré patches on the celestial torus [150].
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At this stage, it is important to note that the encoding of the massless S-matrix in (2.5)
is redundant, and one has to fix the value of ∆i to obtain a one-to-one correspondence
between massless scattering amplitudes and Carrollian CFT correlators. A natural choice
is setting ∆i = 1, which is consistent with the extrapolate dictionary, and for which (2.5)
reduces to the Fourier transform [23, 25, 112]

C1,...,1
n

(
{uj , zj , z̄j}ϵj

)
=
∫ +∞

0

n∏
j=1

dωj

2π
e−iϵjωjujAn ({ωj , zj , z̄j}ϵj ) . (2.7)

As we shall see in section 5, in the context of ABJM, the value of ∆i will be dictated by
the R-symmetry properties of the primary.

Carrollian amplitudes are the flat space analogues of holographic correlators in AdS. To
see this, we briefly review the correspondence between flat space limit in the bulk theory
and Carrollian limit in the boundary theory [90]. The AdS4 line element can be written
in Bondi coordinates as

ds2
AdS4 = −r2

ℓ2 du2 − 2dudr + 2r2dzdz̄, (2.8)

where the dimensions of length are ℓ ∼ L, u ∼ L, r ∼ L, z ∼ L0 and z̄ ∼ L0. The flat limit
is obtained by taking ℓ

r ≫ 1 which is distinct from the large N limit ℓ
ℓ11

≫ 1 discussed in
section 2.1. Hence one could in principle consider the flat space limit term by term in the
1/N expansion (cf. appendix D). An advantage of the Bondi coordinates (2.8) is that the flat
limit can simply be obtained by formally taking ℓ → ∞, so that (2.8) reduces to

ds2
R3,1 = −2dudr + 2r2dzdz̄, (2.9)

which is the line element of R3,1. Furthermore, the boundary metric of AdS4 is the flat
space Lorentzian metric

ds2
∂AdS4 = −du2

ℓ2 + 2dzdz̄. (2.10)

Implementing the flat limit in the bulk yields the degenerate metric

ds2
I = 0 du2 + 2dzdz̄, (2.11)

which is part of the Carrollian structure at null infinity [126, 152–154], the boundary of 4D
flat space. Notice that the 1/ℓ2 in (2.10) appears at the same place and plays the same role
as if we were to restore the speed of light c in a 3D Minkowski line element and take the
Carrollian limit c → 0 [84]. Therefore, we have a correspondence between flat space limit
in the bulk of AdS and Carrollian limit at the boundary, which is formally implemented in
Bondi coordinates by the following identification:

cboundary ≡ 1
ℓbulk

(2.12)

This correspondence was solidified in [90], where it was shown that the Carrollian limit of
holographic CFT correlators yields Carrollian amplitudes. For the convenience of the reader,
we now briefly review the relevant results of that paper. The procedure for obtaining the
Carrollian amplitude for massless scalars ⟨Φ∆1 . . .Φ∆n⟩ from its Euclidean CFT counterpart
⟨O∆1 . . .O∆n⟩ is:
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▷ Analytically continue the correlator to Lorentzian/Kleinian signature.

▷ Compute limc→0 c
∑

i
∆i−1 ⟨O∆1 . . .ODn⟩ by keeping track of distributional terms and

identify the rescaled operator c∆−1O∆ with Φ∆ up to a normalization.

The resulting object is the Carrollian amplitude. We will outline how this works for 2, 3
and 4 point correlators below.

2 points. The two point function is completely fixed by conformal symmetry. After analytic
continuation to Lorentzian signature it is given by

⟨O∆ (x1)O∆ (x2)⟩ =
N2(

x2
12 + iϵ

)∆ , (2.13)

where N2 is a normalization and x2
ij = −c2u2

ij + 2|zij |2. Following the procedure above,
we compute

lim
c→0

c2∆−2 ⟨O∆ (x1)O∆ (x2)⟩ =
N2 δ2(z12)

2(∆− 1)(−u12 + iε)2∆−2 ∝
〈
Φϵ1

∆Φϵ2
∆
〉

, (2.14)

where we have suppressed the coordinate dependence of the Carrollian amplitude. After
appropriate normalization and setting ϵ1 = −ϵ2 = −1, the above proportionality can be
turned into an equality.

3 points. Here it is convenient to work in Klein signature in the bulk since it allows for
non-trivial 3-point amplitudes.2 This amounts to treating zi, z̄i as real and independent. The
time-ordered correlator with zi, z̄i real and independent is:

⟨O∆1 (x1)O∆2 (x2)O∆3 (x3)⟩K = N3
c

1(
x2

12+ iε
)∆12 (x2

23+ iε
)∆23 (x2

13+ iε
)∆13

, (2.15)

where N3 is once again a normalization and ∆ij = ∆i + ∆j − 1
2
∑3

k=1 ∆k. Applying the
procedure outlined above, we get

lim
c→0

c
3−
∑3

j=1 ∆j ⟨O∆1(u1, z1, z̄1)O∆2(u2, z2, z̄2)O∆3(u3, z3, z̄3)⟩ (2.16)

= Ñ3 δ(z̄12)δ(z̄23)Θ (z12z31)Θ (z13z23) z∆3−2
12 z∆1

23 z∆2−2
13

(u1z23 + u2z31 + u3z12 + isign z23ε)
∑3

j=1 ∆j−4
∝ ⟨Φ∆1Φ∆2Φ∆3⟩.

We refer the reader to [90] for the normalization factor Ñ3. This coincides with a 3-point
Carrollian scalar amplitude with ϵ1 = −ϵ2 = −ϵ3 = 1 obtained from the 3-point amplitude
in (2, 2) signature momentum space by using (2.5).

2In Minkowski space, they are non-zero only when all momenta are collinear.
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4 points. We will only need to consider the Carrollian limit of scalar contact diagrams
in the bulk, which take the form

⟨O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)⟩ ∝ D̄∆1,∆2,∆3,∆4 (U, V ) (2.17)

where we have dropped numerical factors and a coordinate-dependant one which encodes
the conformal weights, and

U = x2
12x2

34
x2

13x2
24

= ZZ̄ , V = x2
23x2

14
x2

13x2
24

= (1− Z)(1− Z̄) (2.18)

are the conformal cross ratios. The definition of D̄ functions and various useful properties can
be found in appendix D of [155]. The D̄ function becomes singular as Z → Z̄ upon analytic
continuation to Lorentzian signature [156, 157] and its leading singularity is [90]

D̄∆1,∆2,∆3,∆4 (U, V ) Z→Z̄−−−→ Φ̂l.s
∆1,∆2,∆3,∆4 ≡ K∆

Z∆3+∆4−2(1− Z)∆1+∆4−2

(Z − Z̄)
∑4

i=1 ∆i−3
. (2.19)

The Carrollian limit is non-trivial only on the support of this leading singularity and

lim
c→0

Φ̂l.s
∆1,∆2,∆3,∆4 = R (ui, zi) δ (z − z̄) , (2.20)

where z = z12z34
z13z24

is the 2D cross ratio and R (ui, zi) is a complicated function of the coordinates
whose expression can be found in [90]. Using these results, we can show that applying the
procedure outlined at the beginning of this section to the correlator corresponding to the
four point contact diagram results in

lim
c→0

c4−
∑

∆⟨O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)⟩

= N
(

|z23|2

|z34|2 |z24|2

) 4−Σ∆
2 z2−∆1−∆2 (1− z)∆1+∆4−2 δ (z − z̄)

U
∑4

i=1 ∆i−4
∝ ⟨Φϵ1

∆1
Φϵ2

∆2
Φϵ3

∆3
Φϵ4

∆4
⟩,

(2.21)

where

U = u4 − u1z

∣∣∣∣z24
z12

∣∣∣∣2 + u2
1− z

z

∣∣∣∣z34
z23

∣∣∣∣2 − u3
1

1− z

∣∣∣∣z14
z13

∣∣∣∣2 (2.22)

is the translation-invariant denominator appearing in the four-point Carrollian amplitude.
Depending on the details of the analytic continuation, we can have z < 0, 0 < z < 1 or
z > 1. This coincides with the allowed values of z for which the Carrollian amplitude is
non-zero. Focussing on 0 < z < 1, the proportionality can once again be turned into an
equality after an appropriate choice of normalization and setting ϵ1 = ϵ2 = −ϵ3 = −ϵ4 = 1.
Let us emphasize that the Carrollian limit discussed above is taken intrinsically in the CFT,
without referring to the bulk spacetime. It is valid for any scalar subsector of holographic
CFTs in three dimensions. We will apply this to ABJM correlators in section 4 to obtain
correlators of a Carrollian ABJM theory living at null infinity.
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3 ABJM correlators in position space

In this section, we present 2, 3 and 4-point correlation functions of 1
2 -BPS operators in the

ABJM theory. The 2 and 3-point functions are computed directly in position space from
the dual supergravity action. The 4-point function has been computed using bootstrap
methods in Mellin space, the results of which we review in appendix (A). Here we rewrite
these results in position space in a way that makes the computation of their Carrollian
limit feasible. At 4 points, We will restrict our attention to correlators in the supergravity
approximation, i.e the leading terms in the 1

N expansion, relegating a discussion of higher
derivative corrections to appendix (D).

3.1 Two and three-point functions

On the supergravity side, we can identify the operator (2.3) as the source for one of the
scalar fluctuations around the AdS4 × S7 background. Denoting this bulk scalar by s, we
can expand it in Kaluza Klein (KK) modes on the 7-sphere as [158]

s =
∑
k≥0

Y
(7)

k sk =
∑
k≥0

sk

ℓk
C(k)

I1...Ik
ZI1 . . . ZIk (3.1)

where Y
(7)

k are spherical harmonics on S7 and ZI are embedding coordinates for the S7,
notably coordinates in R8 such that ZIZI = 1. In the second equality, we have represented
the spherical harmonics as homogeneous polynomials encoded by the traceless, symmetric
tensor CI1...Ik

[159]. The action for the scalar fields sk on AdS4 can be derived from the 11D
N = 1 supergravity action after integrating over the S7 [160] and is given by3

S = 243
κ2

∫
AdS4

d4y
√
−ḡ4

{∑
k≥2

(2ℓ)7

2 Aksk

(
2AdS − m2

k

)
sk

〈
C(k)C(k)

〉

+
∑
ki≥2

(2ℓ)5

3
〈
C(k1)C(k2)C(k3)

〉
g123 sk1 sk2 sk3

}
, (3.2)

where κ is the 11D gravitational coupling and is related to the 11D Planck length by
4κ2 = (2π)5 ℓ9

11. The other constants appearing in the action are

Ak = 4π4k(k − 1)
3× 2k(k + 1)(k + 2)2 , m2

k = k (k − 6)
4ℓ2 , (3.3)

g123 = 192π4 (α2 − 9
) (

α2 − 1
)
(α + 2)

(2α + 6)!!

3∏
i=1

ki!
(ki + 2)Γ (αi)

.

Here
〈
C(k1) . . . C(kn)

〉
is the unique SO(7) invariant contraction of the tensors representing

the spherical harmonics and

αi =
1
2

3∑
j=1

kj − ki, α = 1
2

3∑
i=1

ki (3.4)

3The modes k = 0, 1 decouple from the action.
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The scalar fields sk couple to the operators Ok in the dual ABJM theory via

Sint =
∫

∂AdS4
d3y wk s

(0)
k Ok, (3.5)

where wk are proportionality factors, s
(0)
k is the boundary value of sk and Ok = OI1...Ik

CI1...Ik .
From (3.3) and the standard relation ∆(∆− d) = m2ℓ2 (where d is the boundary dimension),
we see that the spectrum of scaling dimensions of the operators dual to the scalars sk is
indeed k/2. We can make contact with the operators in (2.3) if we set

Ck
I1...Ik

= tI1 . . . tIk
. (3.6)

Note that this choice implies the normalization〈
C(k1)C(k2)

〉
≡ C(k1)

I1...Ik1
C(k2)I1...Ik2 = tk1

12 δk1,k2 , (3.7)

where t12 ≡ t1 · t2. In the rest of this paper, we will tacitly assume that this choice has been
made. For more details, we refer the reader to [158, 160].

Two-point functions. The two-point function of the operators Ok can be computed by
evaluating the supergravity action (3.2) on-shell and differentiating it with respect to the
scalars. This yields

⟨Ok1 (x1, t1)Ok2 (x2, t2)⟩ = 243Ak
(2ℓ)7

κ2
(k − 3)

π
3
2

Γ
(

k
2

)
Γ
(

k−3
2

) w2
k1

tk1
12δk1,k2(

x2
12
)k1

(3.8)

We choose the constants wk such that the two-point function has the normalization

⟨Ok1 (x1, t1)Ok2 (x2, t2)⟩ =
δk1,k2 tk1

12(
x2

12
) k1

2

. (3.9)

Plugging in the value of Ak from (3.3), replacing κ by the 11D Planck length and simplifying
the resulting expression, we get

wk = (2π)
3
2
√
2ℓ

9

(
ℓ11
2ℓ

) 9
2 (k + 2)
(k − 3)(k − 1)

√
Γ(2 + k)

Γ
(

k
2 + 1

) (3.10)

Three-point functions. The three point function of Ok derived from the supergravity
action is [160]

⟨Ok1 Ok2 Ok3⟩ =
(

ℓ11
ℓ

) 9
2

Rk1,k2,k3
tα3
12 tα1

23 tα2
13

xα3
12 xα1

23 xα2
13

, (3.11)

with (
ℓ11
ℓ

) 9
2

Rk1,k2,k3 = 7776(2ℓ)6

ℓ9
11 (2π)8 Γ

(
α − 3
2

) 3∏
i=1

Γ
(αi

2
)

wki

Γ
(

ki−3
2

) g123. (3.12)
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Plugging in the value of wki
from (3.10) and simplifying, we get

(
ℓ11
ℓ

) 9
2

Rk1,k2,k3 = π

2
5
2

(
ℓ11
ℓ

) 9
2 2−α

Γ
(
1 + α

2
) 3∏

i=1

√
Γ (ki + 2)
Γ
(

αi+1
2

) = π

N
3
4

2−α− 1
4

Γ
(
1 + α

2
) 3∏

i=1

√
Γ (ki + 2)
Γ
(

αi+1
2

) .

(3.13)

In arriving at the last equality, we have used the relationship between ℓ an N from (2.2) and
set kCS = 1 for simplicity. The numerator was obtained by evaluating the contraction〈

Ck1Ck2Ck3
〉
= tα3

12 tα1
23 tα2

13 (3.14)

In particular, note that the 3 point function is finite when ki = 2 or ∆i = ki
2 = 1. This is

in contrast with the three point couplings considered in [90].

3.2 Four-point functions

Four-point functions of the superconformal primaries in ABJM can be written as [99, 161]

⟨Ok1 . . .Ok4⟩ =
∏
i<j

(
t2
ij

x2
ij

) γ0
ij
2
(

t2
12t2

34
x2

12x2
34

)E
2

Gk1,...,k4 (U, V, σ, τ ) . (3.15)

Here tij = ti · tj , x2
ij = −c2u2

ij + 2zij z̄ij and

U = x2
12x2

34
x2

13x2
24

= ZZ̄, V = x2
14x2

23
x2

13x2
24

= (1− Z)
(
1− Z̄

)
, σ = t13t24

t12t34
, τ = t14t23

t12t34
.

(3.16)

The extremality E is

E =


k1+k2+k3−k4

2 Case I : k1 + k4 ≥ k2 + k3,

k1 Case II : k1 + k4 < k2 + k3,
(3.17)

and the exponents γ0
ij are given by

γ0
12 = γ0

13 = 0, γ0
34 = κs

2 , γ0
24 = κu

2 , (3.18)

Case I: γ0
14 = κt

2 , γ0
23 = 0, Case II: γ0

14 = 0, γ0
23 = κt

2 ,

where

κs = |k1 + k2 − k3 − k4| , κt = |k1 + k4 − k2 − k3| , κu = |k2 + k4 − k1 − k3| .
(3.19)

These correlators admit a large cT expansion of the form

Gk1,...,k4 = G0
k1,...,k4 +

1
cT

GR
k1,...,k4 + . . . , (3.20)
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where G0
k1,...,k4

is the disconnected part of the correlator which is described by generalized
free fields. We will ignore this contribution for the rest of this paper and focus only on
the connected part. The leading contribution in the large cT limit comes from tree-level
supergravity in the bulk and has been computed in [99]. The stress tensor belongs to the
k = 2 multiplet and these correlators are of particular interest. Corrections in 1

cT
arise from

higher derivative and loop corrections to supergravity in the bulk. These have been computed
in [101]. In [99], the authors exploit the ambiguity inherent in the definition of exchange
diagrams to absorb all contact terms into them and write

GR
k1,k2,k3,k4 = GR

k1,k2,k3,k4,s + GR
k1,k2,k3,k4,t + GR

k1,k2,k3,k4,u, (3.21)

where the subscripts stand for s−, t− and u-channels. All of these correlators have been
computed in Mellin space. The connected 4-point correlator

Gc
k1,...k4 (U, V, σ, τ ) ≡ Gk1,...k4 (U, V, σ, τ )− G0

k1,...k4 (U, V, σ, τ ) (3.22)

admits the following Mellin representation:

Gc
k1,...k4 (U, V, σ, τ ) =

∫ i∞

−i∞

ds dt

(4πi)2 U
s
2−as V

t
2−at Mk1,...k4 (s, t;σ, τ) Γ{ki}, (3.23)

where

Γ{ki} = Γ
(

k1 + k2
4 − s

2

)
Γ
(

k3 + k4
4 − s

2

)
Γ
(

k1 + k4
2 − t

2

)
(3.24)

Γ
(

k2 + k3
4 − t

2

)
Γ
(

k1 + k3
4 − u

2

)
Γ
(

k2 + k4
4 − u

2

)
,

as = 1
4 (k1 + k2)−

1
2E , at =

1
4Min {k1 + k4, k2 + k3} , s + t + u = 1

2

4∑
i=1

ki.

(3.25)

We have relegated the discussion of the details of the ABJM Mellin amplitudes to appendix A.
We will convert these expressions to position space by recognizing certain pieces in them as
D̄ functions by comparing with their Mellin representation [162–164]

D̄∆1∆2∆3∆4(U,V )=
∫ i∞

−i∞

dj1dj2
(2πi)2 U j1V j2Γ(j1+j2+∆2)Γ(j1+j2+∆−∆4)

×Γ(−j1)Γ(−j2)Γ(−j1−∆+∆3+∆4)Γ(−j2+∆−∆2−∆3), (3.26)

where 2∆ =
∑4

i=1 ∆i. This definition holds for zero, half-integer and negative integer weights.
In the rest of the paper, we will focus on connected correlators (3.22) and drop the

superscript c. Furthermore, we will focus on the 1
cT

contributions and drop the superscript
R. Hence, we denote Gc,R

k1,k2,k3,k4
≡ Gk1,k2,k3,k4 .

3.2.1 G2,2,2,2

The four-point function involving operators with weight ∆i = ki
2 = 1 is of particular interest

since they are at the bottom of the stress tensor multiplet. The definition of the Mellin

– 11 –
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amplitude (3.23) adapted to the case k1 = k2 = k3 = k4 = 2 gives

G2,2,2,2 (U, V, σ, τ ) ≡
∫ i∞

−i∞

ds dt

(4πi)2 U
s
2 V

t
2−1 M2,2,2,2 Γ2

(2− s

2

)
Γ2
(2− t

2

)
Γ2
(

s + t − 2
2

)
.

(3.27)

The contact contributions are polynomials in s, t and can be directly written as D̄ functions in
position space. The s-channel contribution to the position space correlator can be evaluated
by starting from (A.3), plugging it into (3.27), cancelling the s(s + 2) poles by shifting
the arguments of various Γ functions, comparing with (3.26) and writing it as a sum of D̄

functions. In doing so, we arrive at the following expression:

G2,2,2,2,s = − 6√
8N3π3

[(
3
√

πUD̄3,1,0,0 −
√

π U2D̄4,2,0,0 − 2
√

UD̄ 5
2 , 1

2 ,0,0

)
(3.28)

+σ
(
3
√

πUD̄2,1,0,1 −
√

πU2D̄3,2,0,1 − 2
√

UD̄ 3
2 , 1

2 ,0,1

)
+τ

(
3
√

πUD̄2,1,1,0 −
√

πU2D̄3,2,1,0 − 2
√

UD̄ 3
2 , 1

2 ,1,0

)]
.

The t, u channel contributions can be expressed in terms of the s channel one by using
(this follows from (A.4))

GR
2,2,2,2,t (U, V, σ, τ ) = τ2 U

V
GR

2,2,2,2,s

(
V, U,

σ

τ
,
1
τ

)
, (3.29)

GR
2,2,2,2,u (U, V, σ, τ ) = σ2UG2,2,2,2,s

( 1
U

,
V

U
,
1
σ

,
τ

σ

)
,

along with the D̄ function identities

D̄∆1,∆2,∆3,∆4 (V, U) = D̄∆3,∆2,∆1,∆4 (U, V ) , (3.30)

D̄∆1,∆2,∆3,∆4

( 1
U

,
V

U

)
= U∆2D̄∆4,∆2,∆3,∆1 (U, V ) .

We can now write down the position space correlator from (3.15). Since k1 = k2 = k3 = k4 = 2,
equations (3.17), (3.18) and (3.19) give

E = 2, κs = κt = κu = 0, γ0
ij = 0, (3.31)

and we have

⟨O2 (x1, t1) . . .O2 (x4, t4)⟩ =
t2
12t2

34
x2

12x2
34
G2,2,2,2 (U, V, σ, τ ) (3.32)

3.2.2 G2,2,k,k

We will follow a similar procedure to evaluate the position space correlator G2,2,k,k whose
Mellin representation is

G2,2,k,k (U,V,σ,τ )=
∫ i∞

−i∞

dsdt

(4πi)2 U
s
2 V

t
2−

k
4−

1
2M2,2,k,k (3.33)

×Γ
(
1− s

2

)
Γ
(

k−s

2

)
Γ2
(1
2+

k

4−
t

2

)
Γ2
(

s+t−1
2 − k

4

)
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The s-channel contribution from (A.6) is

G2,2,k,k,s=
6√

8π3N3

 √
π

Γ
(

k
2

) ((1−k)U∂U−k)
(

V

U
D̄−1,1, k

2 +1, k
2 +1+σV D̄0,1, k

2 +1, k
2
+τD̄0,1, k

2 , k
2 +1

)

+k

(
V

U
D̄−1,1, 3

2 , 3
2
+V σD̄0,1, 3

2 , 1
2
+τD̄0,1, 1

2 , 3
2

) (3.34)

While this can be simplified and expressed fully in terms of D̄ functions, we will not do so here
as the above form is more suitable for taking the Carrollian limit. The t-channel contribution
is more complicated even in Mellin space and is given in (A.10). Upon converting to position
space, we get

G2,2,k,k,t=(−1)
k
2
12kτU√
2N3

Γ
(

k
2+1

)
Γ
(

k
2−

1
2

)
 1
4π

(
D̄ 1

2 ,2− k
2 ,0, 1+k

2
+σD̄ 1

2 ,1− k
2 ,1, 1+k

2
+τD̄ 1

2 ,1− k
2 ,0, 3+k

2

)

−
⌈ k−1

2 ⌉∑
i=0

2ixi(k)
(

V ∂V +k

4+
1
2

)i(
D̄1,2− k

2 ,0,1+ k
2
+σD̄1,1− k

2 ,1,1+ k
2
+τD̄1,1− k

2 ,0,2+ k
2

),

(3.35)

where xi (k) is defined in (A.9). Finally, the u-channel contribution can be obtained from
the t-channel one by

G2,2,k,k,u (U, V, σ, τ ) = G2,2,k,k,t

(
U

V
,
1
V

, τ, σ

)
. (3.36)

We can now write down the position space correlator from (3.15). Since k1 = k2 = 2 and
k3 = k4 = k, equations (3.17), (3.18), (3.19) give

E = 2, κs = 2k − 4, κt = κu = 0, γ0
12 = γ0

13 = γ0
14 = γ0

23 = γ0
24 = 0, γ0

34 = k − 2,

(3.37)

and (3.15) reduces to

⟨O2O2OkOk⟩ =
(

t2
34

x2
34

) k−2
2
(

t2
12t2

34
x2

12x2
34

)
G2,2,k,k (U, V, σ, τ ) . (3.38)

3.2.3 Gk1,k2,k3,k4

The full correlator for generic ki cannot be expressed as a finite sum of D̄ functions in
position space and we will restrict our attention to the leading high energy term of the Mellin
amplitude (cf. (A.11)). As shown in appendix B, this is sufficient to compute the Carrollian
limit.4 We begin by assuming that k1 + k2, k1 + k3, k1 + k4 ∈ 2Z+. The final result will
be valid in all cases. We can use the formula

1
s
Γ
(

k1 + k2
4 − s

2

)
= −1

2Γ
(
−s

2

) k1+k2
4 −1∏
n=1

[
k1 + k2

4 − s

2 − n

]
, (3.39)

4We have presented a working proof of this in appendix[ B]. We will address the connection more completely
in a future publication.
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and analogous ones for t, u to express (A.11) in position space as

GHE
k1,k2,k3,k4 =−1

2Nki
Pki

(σ,τ)(−1)
k1+k2

2 + k1+k4
2 + k1+k3

4 ((1−α)U∂U+V ∂V )2((1−ᾱ)U∂U+V ∂V )2

∑
r

(
k1+k3

4 −1
r

)
U

k1+k2
4 −1−as+r V

2k1+k3+k4
4 −2−at−rD̄a1+r−1,a2−3,a3−r−2,a4 ,

(3.40)

where

a1 = k2 − k4
4 , a2 = 2k1 + k2 + k4

2 , a3 = k1 − k2 + k3 + k4
4 , a4 = −k1 + k2 + k3 + k4

4 .

(3.41)

The superscript serves as a reminder that this is not the full position space correlator but
merely the one corresponding to the leading high energy (HE) behaviour of the Mellin
amplitude. With this, we have

⟨Ok1 . . .Ok4⟩
HE =

∏
i<j

(
t2
ij

x2
ij

) γ0
ij
2
(

t2
12t2

34
x2

12x2
34

)E
2

GHE
k1,...,k4 (U, V, σ, τ ) . (3.42)

4 Carrollian limit of ABJM correlators

In this section, we implement the Carrollian limit of the ABJM correlators derived in the
previous sections. We will follow the procedure presented in [90] and reviewed in section 2.2.
The flat space limit of the full AdS4 × S7 line element,

ds2
AdS4×S7 = ds2

AdS4 + 4ℓ2ds2
S7 (4.1)

is more subtle than the flat space limit of the AdS4 factor alone described around (2.8).
Indeed, the S7 factor decompactifies, so that limℓ→∞ ds2

AdS4×S7 = ds2
R10,1 , yielding an infinite

tower of massless KK modes. One of the objectives of our analysis is to understand how
the decompactification of S7 is seen from the 3D boundary perspective when taking the
Carrollian limit.

Throughout this section, we will work with the coordinates (u, z, z̄) for which the metric
on 3D Minkowski space, where the ABJM theory is living, is given by (2.10), and we will
implement the Carrollian limit c ≡ 1

ℓ → 0 on the CFT correlators. We define the electric
Carrollian operators Φk by

Ok = σk ℓ
k
2−1 Φk, σk = 2π√

Γ (k − 1)
. (4.2)

The normalization σk has been chosen so that the Carrollian limit of the two point function
agrees with the 2 point Carrollian amplitude (5.5). In particular, the scaling with ℓ in (4.2)
is consistent with the one used in section 2.2, upon identification (2.12).
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4.1 Two and three-point functions

We start off by computing the Carrollian limit of the two and three-point functions. The
electric limit of (3.9), after analytic continuation to Lorentzian signature, is

lim
ℓ→∞

⟨Ok1 (x1)Ok2 (x2)⟩

ℓ
k1+k2

2 −2σk1σk2

= ⟨Φk1Φk2⟩ =
δk1,k2

(2π)2
(−1)

k1
2 −1Γ(k1 − 2)

(u12 − iϵ)k1−2 tk1
12 δ2 (z12) , (4.3)

which is the electric two-point Carrollian amplitude (5.5) whose precise relation with a
two-point flat space amplitude will be discussed in section 5.1. The dependence of three-point
correlators in ABJM (3.11) on ℓ is different from the scalar correlators considered in [90]. This
reflects the fact that these arise from a theory on AdS4 × S7 rather than AdS4. Applying the
analysis of section 4.3 of [90] and reviewed in section 2.2, which involves analytic continuation
to (2, 2) Kleinian signature in the bulk of AdS4, we see that

⟨Ok1Ok2Ok3⟩

ℓ
k1+k2+k3

2 −3
ℓ→∞−−−→ O

( 1
ℓ

11
2

)
. (4.4)

While this might seem troubling, this behaviour must be compared with Carrollian amplitudes
of appropriately normalized scalars. We will show in section 5.1 that such amplitudes also
vanish at an identical rate with respect to an IR cut-off. It is thus useful to compute the
leading order term in the limit:

lim
ℓ→∞

ℓ
11
2

⟨Ok1Ok2Ok3⟩

ℓ
k1+k2+k3

2 −3∏3
i=1 σki

=
Γ
(

α
2 − 2

)
Θ(z12z31)Θ (z13z23)

Γ
(α1

2
)
Γ
(α2

2
)
Γ
(α3

2
) π2Rk1,k2,k3

3∏
i=1

1
σki

(4.5)

× δ(z̄12)δ(z̄23)
tα3
12 tα1

23 tα2
13 z

k3
2 −2

12 z
k1
2 −2

23 z
k2
2 −2

13

(u1z23 + u2z31 + u3z12 + iε)
k1+k2+k3

2 −4
.

4.2 Four-point functions

In section 3.2, we expressed all four-point functions5 in terms of D̄ functions. We will start
by analyzing the Carrollian limits of G2,2,2,2 and G2,2,k,k before moving on to the generic
case. As in the previous section, we will restrict out attention to the leading term in the 1

N

expansion, treating higher derivative corrections in appendix (D).

4.2.1 Carrollian limit of G2,2,2,2

In order to compute the Carrollian limit, we will use the following formula [90]:6

UaV bD̄∆1,∆2,∆3,∆4
ℓ→∞−−−→ ℓ−4+Σ∆K

UΣ∆−4

(
|z23|2

|z34|2 |z24|2

) 4−Σ∆
2 (1−z)∆1+∆4−2+2b

z∆1+∆2−2−2a
δ(z−z̄)Θ(z)Θ(1−z),

(4.6)

5For the case of generic ki, we mean the part relevant for the flat space limit GHE
k1,k2,k3,k4 .

6This formula was previously derived assuming integer scaling dimensions. We extend this result to
non-integer values by analytic continuation.
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where z = z12z34
z13z24

is the is the 2d cross-ratio, U was defined in (2.22) and

K = (−1)∆1+∆32
Σ∆

2 π2Γ
(Σ∆ − 4

2

)
. (4.7)

As we explained in section (2.2), this formula involves a choice of analytic continuation. In
writing (4.6), we have chosen a particular one such that 0 < z < 1. The leading terms in
the Carrollian limit are those which have D̄ functions with the highest weight. Applying
the above formula to (3.28), the leading terms are

G2,2,2,2,s
ℓ→∞−−−→ 48π ℓ2

√
2N3U2

(
|z34|2 |z24|2

|z23|2

)
(1− z) (1− αz)2 (1− ᾱz)2 δ (z − z̄)Θ (z)Θ (1− z) ,

(4.8)

where we have set σ = αᾱ, τ = (1− α) (1− ᾱ). Combining the results of the other two
channels and accounting for the pre-factor in (3.32) we get

⟨O2(x1,t1)...O2(x4,t4)⟩
ℓ→∞−−−→ 3ℓ9

11π

8ℓ7U2

(
|z24|2

|z12|2 |z23|2

)
t2
12t2

34(1−αz)2(1−ᾱz)2
δ(z−z̄)Θ(z)Θ(1−z),

(4.9)

where we have used the relation (2.2) with kCS = 1. As we will see in section 5, the flat space
counterpart of this correlator also vanishes at an identical rate. In order to get a non-zero
result as ℓ → ∞, we multiply by the volume of S7, V7 = (2ℓ)7π4

3 :

lim
ℓ→∞

V7

(2π)4 ⟨O1(x1,t1)...O1(x4,t4)⟩

=⟨Φ2(u1,z1,z̄1) ...Φ2(u4,z4,z̄4)⟩ (4.10)

= πℓ9
11

2U2

(
|z24|2

|z12|2 |z23|2

)
t2
12t2

34(1−αz)2(1−ᾱz)2δ(z−z̄)Θ(z)Θ(1−z).

4.2.2 Carrollian limit of G2,2,k,k

We will compute the Carrollian limit of the correlators G2,2,k,k by once again applying the
formula (4.6). The terms from the s− and t-channel contributions that will dominate in
the Carrollian limit are

G2,2,k,k,s
ℓ→∞−−−→ −3U√

2N3π

(1− k)
Γ
(

k
2

) (
V D̄0,2, k

2 +1, k
2 +1 + σ U V D̄1,2, k

2 +1, k
2
+ τ U D̄1,2, k

2 , k
2 +1

)
(4.11)

G2,2,k,k,t
ℓ→∞−−−→ 12k τ U√

2N3

Γ
(

k
2 + 1

)
Γ
(

k
2 − 1

2

)2 k
2 x k

2

(
D̄1,2, k

2 ,1+ k
2
+ σD̄1,1,1+ k

2 ,1+ k
2
+ τD̄1,1, k

2 ,2+ k
2

)
,

with x k
2

being given by (A.9). The dominant term in the u− channel can be simply obtained
from the t-channel one by using the relation (3.36). Combining all of this, accounting for the
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prefactor in (3.38), the relations in (4.2) and (2.2) and multiplying by the volume of S7 we find,

lim
ℓ→∞

V7

[
ℓ2−k ⟨O2O2OkOk⟩

σ2
k

]
=πℓ9

11
2 (1− αz)2(1− ᾱz)2(−1)

k
2−1 tk

34t2
12 (4.12)

× |z24|k

|z12|2 |z23|k
Γ (k) (1− z)

k
2−1δ (z − z̄)

Uk
.

4.2.3 Carrollian limit of Gk1,k2,k3,k4

Following a similar procedure starting from (3.40), we arrive at

GHE
k1,k2,k3,k4

ℓ→∞−−−→

Nki
Pki

N
3
2U
∑

i
ki

2 −2
(−1)

k1+k3
2 z−2as (1−z)

∑
i

ki

2 −2−2at π
5
2 24−

∑
i

ki

4

Γ
(∑

i
ki

2 −5
)
Γ
(∑

i
ki

4 −1
)

Γ
(∑

i
ki

4 −4
)
Γ
(∑

i
ki

4 − 1
2

)

×(1−αz)2(1−ᾱz)2
(

|z23|2

|z34|2 |z24|2

)1−
∑

i
ki

4

δ(z−z̄)
(1

ℓ

)2−
∑

i
ki

2
. (4.13)

We can use this to compute the Carrollian limit of the correlator (3.15). Accounting for
all the prefactors, using (4.2) and (2.2), we get

lim
ℓ→∞

V7
⟨Ok1 ...Ok4⟩∏4

i=1ℓ
ki
2 −1σk

=Ñ

∏
i<j

(
tij

|zij |

)γ0
ij( t12t34

|z12||z34|

)E
(

|z2t3|2

|z34|2 |z24|2

)1−
∑

i
ki

4

 (4.14)

×

z−2as (1−z)
∑

i
ki

2 −2−2at
δ(z−z̄)

U
∑

i
ki

2 −2

×[(1−αz)2(1−ᾱz)2Pki
(σ,τ)

]
,

where

Ñ = V7ℓ9
11

(2π)4Nki
π

5
2 2−

1+
∑

i
ki

2

Γ
(∑

i
ki

2 − 5
)
Γ
(∑

i
ki

4 − 1
)

Γ
(∑

i
ki

4 − 4
)
Γ
(∑

i
ki

4 − 1
2

)(−1)
k1+k3

2 . (4.15)

4.2.4 Carrollian limit of superconformal Ward identities

In this section, we will compute the Carrollian limit of the superconformal Ward identities
satisfied by correlators of 1

2 -BPS operators [161], which for ABJM take the form(
Z∂Z−

α

2 ∂α

)
Gk1,k2,k3,k4

(
Z,Z̄,α,ᾱ

)∣∣∣
α= 1

Z

=
(

Z̄∂Z̄−
α

2 ∂α

)
Gk1,k2,k3,k4

(
Z,Z̄,α,ᾱ

)∣∣∣
α= 1

Z̄

=0,

(4.16)(
Z∂Z−

ᾱ

2 ∂ᾱ

)
Gk1,k2,k3,k4

(
Z,Z̄,α,ᾱ

)∣∣∣
ᾱ= 1

Z

=
(

Z̄∂Z̄−
ᾱ

2 ∂ᾱ

)
Gk1,k2,k3,k4

(
Z,Z̄,α,ᾱ

)∣∣∣
ᾱ= 1

Z̄

=0.
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Since the Carrollian limit is obtained from the leading singularity of the four point function
as Z → Z̄, we first expand

Gk1,k2,k3,k4

(
Z, Z̄, α, ᾱ

)
= G0 (Z, α, ᾱ)(

Z − Z̄
)p +O

 1(
Z − Z̄

)p−1

 . (4.17)

Here, G0 is the expression that eventually turns into the numerator of the Carrollian amplitude.
Plugging this into (4.16) and retaining only the leading piece leads to

G0
(

z, α = 1
z

, ᾱ

)
= G0

(
z, α, ᾱ = 1

z

)
= 0. (4.18)

This is easily seen to be satisfied by the Carrollian limit of G2,2,2,2 in (4.9), of G2,2,k,k in (4.12)
and of Gk,k,k,k in (4.14). It would be interesting to find an intrinsically Carrollian derivation
of these identities.

5 Bulk perspective in flat space

In this section we will explain how to obtain the Carrollian ABJM correlators derived in
the previous section from a bulk point of view. At two and three points, we will follow the
strategy of expanding the supergravity action in AdS4×S7 in modes on 7-sphere, truncating
the sum over modes, integrating out the 7-sphere to obtain a four-dimensional effective action
in AdS4, and taking the flat space limit. The resulting Lagrangian can then be used to derive
scattering amplitudes which reproduce the results of the previous section after performing
a modified Mellin transform. At four points, we follow a different strategy: starting from
the 11d supergravity amplitude in flat space we will take the external kinematics to be four
dimensional and the polarisation vectors to point along the other seven directions. After
performing a modified Mellin transform, we obtain the lowest-charge (k = 2) 4-point correlator.
We can then obtain higher-charge correlators by conformally compactifying the internal space
to a seven-sphere and making an appropriate choice of external states. This approach can also
be used to obtain 2 and 3-point Carrollian ABJM correlators, as we explain in appendix C.

5.1 Two and three-point amplitudes

In this section, we will provide an interpretation of the Carrollian limit of ABJM correlators
in terms of flat space physics. First, we will compute the two and three-point amplitudes
from the flat limit of the SUGRA action in (3.2) and compare them to those obtained from
the Carrollian limit of ABJM. Kaluza-Klein modes sk whose conformal dimensions scale with
the AdS radius become massive in the flat space limit, consistently with ∆(∆− 3) = m2ℓ2.
Since the scaling dimension of sk is k/2, where k is the R-charge of the dual CFT operator,
we will truncate the sum over KK modes in (3.2) to a finite maximum value kmax in order
to ensure that the scalars become massless when we take ℓ → ∞. On taking the flat limit
ℓ → ∞ of (3.2) and rescaling the fields such that the kinetic terms are canonical we then get

S =
∫
R3,1

d4x


kmax∑
k=2

tk
12
2 sk2sk +

kmax∑
k1,k2,k3=2

tα3
12 tα1

23 tα2
13

2ℓ

(
ℓ11
2ℓ

) 9
2 g̃123

3 sk1 sk2 sk3

 , (5.1)
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where

g̃123 = 144
√
3 2α

(
α2 − 9

) (
α2 − 1

)
(α + 2)

(2α + 6)!!π2

3∏
i=1

Γ (ki − 1)
Γ (αi)

√
(ki + 1)ki(ki − 1). (5.2)

Parametrizing the null momenta as in (2.4), the two point amplitude of two massless scalars
computed from the action (5.1) is

Ak1,k2 = tk1
12δk1,k2

ω1
δϵ1,−ϵ2δ (ω1 − ω2) δ2 (z12) . (5.3)

The corresponding Carrollian amplitude is obtained by computing the following modified
Mellin transform (2.5):

C∆1,∆2
k1,k2

=
∫ 2∏

j=1

dωj

2π
ω

∆j−1
j eiujωjϵjAk1,k2

∣∣∣
ϵ1=−ϵ2=−1

= δk1,k2

(2π)2
(−1)∆1−1Γ(∆1+∆2−2)

(u12−iϵ)∆1+∆2−2 tk1
12δ2(z12).

(5.4)

This is in agreement with (4.3) only if we set ∆k = k
2 , in which case we get

C
k1
2 ,

k2
2

k1,k2
= δk1,k2

(2π)2
(−1)

k1
2 −1Γ(k1 − 2)

(u12 − iϵ)k1−2 tk1
12 δ2 (z12) . (5.5)

It is interesting to note that we have to use the modified Mellin transform with a fixed
value of ∆k which differs for each operator field sk. The three point amplitude can be read
off from the cubic term to be

Ak1,k2,k3 = g̃123
2ℓ

(
ℓ11
2ℓ

) 9
2

tα3
12 tα1

23 tα2
13 δ(4) (p1 + p2 + p3) . (5.6)

Note that this amplitude vanishes in the strict ℓ → ∞ limit. This is consistent with the
behaviour of the 11D three-point graviton amplitude after dimensional reduction to 4D, (see
appendix C for more details). Three-point amplitudes are non-trivial only in (2, 2) signature.
We can obtain the Carrollian amplitude from (5.6) by parametrizing the momentum in (2, 2)
signature, found by Wick rotating (2.4), and applying the modified Mellin transform (2.5):

C∆1,∆2,∆3
k1,k2,k3

=
∫ 3∏

j=1

dωj

2π
ω

∆j−1
j ei ujωjϵjAk1,k2,k3 . (5.7)

This gives

C∆1,∆2,∆3
k1,k2,k3

=−iϵ1ϵ2ϵ3
(2π)3

g̃123
2ℓ

(
ℓ11
2ℓ

) 9
2
tα3
12 tα1

23 tα2
13 (z12)∆1−2(z13)∆2−2(z23)∆3−2δ(z̄12)δ(z̄23)

×Θ
(
−z13

z23
ϵ1ϵ2

)
Θ
(

z12
z23

ϵ1ϵ3

) Γ
(∑3

i=1∆i−4
)

(z23u1+z31u2+z12u3−iεϵ1sign(z23))
∑3

i=1∆i−4
,

(5.8)

which can be matched with (4.5) with the exact factor by taking again ∆k = k
2 and setting

ϵ1 = −ϵ2 = −ϵ3 = 1.
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5.2 Four-point amplitudes

In the previous section, we first computed the flat limit of the effective action (3.2) for scalar
fluctuations around AdS4 × S7 to obtain (5.1). The 2 and 3 point amplitudes in flat space
followed directly from the quadratic and cubic terms in it. However, the generalization
of (3.2) to the quartic level is not known. We will instead start from the tree-level, 4
point graviton amplitude in 11D N = 1 supergravity and make contact with the Carrollian
limits (4.10), (4.12), (4.14) by evaluating the amplitude in certain special configurations.
The amplitude is [165, 166]

A4=
−a4ℓ9

11
stu

(1
2e2·e3(se1·P3e4·P2+te1·P2e4·P3)+

1
2e1·e4 (se2·P4e3·P1+te2·P1e3·P4)

+1
2e2·e4(se1·P4e3·P2+ue1·P2e3·P4)+

1
2e1·e3(se2·P3e4·P1+ue2·P1e4·P3)

+1
2e3·e4(te1·P4e2·P3+ue1·P3e2·P4)+

1
2e1·e2(te3·P2e4·P1+ue3·P1e4·P2)

−1
4ste1·e4e2·e3−

1
4sue1·e3e2·e4−

1
4 tue1·e2e3·e4

)2
δ(11)

( 4∑
i=1

Pi

)
, (5.9)

where s, t, u are the Mandelstam variables (s + t + u = 0), eµν,i = eµ,ieν,i are the polarization
vectors for the gravitons and a4 is a normalization constant.

We need to choose the momenta and polarizations in a specific way to make contact with
the Carrollian limits of ABJM correaltors. As we will see, this choice leads to divergences
which need to be regulated. A natural way of doing this is by introducing a sphere of radius
2ℓ with ℓ → ∞. We explain the various choices involved below. A similar procedure has
been utilized in Mellin space [98, 167].

Momenta. We first pick four directions which will later be identified as arising from the
flat limit of AdS4. The momentum of the particle i decomposes as

P α
i =

(
pµ

i , p̃I
i

)
, pi ∈ R1,3, p̃i ∈ R7, pµ

i ∼ O (1) , p̃I
i ∼ O

(1
ℓ

)
≈ 0. (5.10)

Here ℓ is a large parameter with dimensions of length. We expect to land on such a
configuration on taking the flat limit of AdS4×S7 with ℓ being the AdS radius. α = 0, 1, . . . , 10,
µ = 0, . . . , 3 and I = 4, . . . , 10.

Polarizations. We are interested in massless scalars in R1,3 arising from dimensional
reduction of the 11D graviton. We will set

eα
i =

(
0, 0, 0, 0, ξI

i

)
, (5.11)

where ξ2
i = 0 since e2

i = 0. Later on we will conformally compactify R7 to S7 and express
the latter in terms of 8D embedding coordinates Z · Z = 1. We can then embed the 7D
null vector ξi into an 8D vector and identify

ti = (0, ξi) , (5.12)

where tA
i is the R-symmetry null vector. This has the property

ei · ej = ti · tj ≡ tij , ei · pj ∼ O
(1

ℓ

)
≈ 0, (5.13)
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Wavefunctions. Since the fields on AdS4 × S7 are expanded in spherical harmonics, a
natural choice for the wavefunctions of the level k KK mode of the 11D graviton is

hαβ
j (X) = Nj eα

j eβ
j eipj ·x (ξj · x̃)kj−2 , (5.14)

with X = (x, x̃) ∈ R1,10, x ∈ R1,3 and x̃ ∈ R7. It is easy to see that this wavefunction
solves the equations of motion for a free, massless spin-2 field in 11D flat space in de Donder
gauge (∂αh̄αβ = 0),

2h̄αβ = 0, h̄αβ = hαβ − 1
2ηαβhγ

γ , (5.15)

since p2
i = ξ2

i = 0. However, it is not normalizable and leads to divergences when computing
amplitudes as seen simply by computing the inner product∫
R1,3

d4x

∫
R7

d7x̃hαβ
1 h2,αβ =N1N2t2

12 (2π)4 δ(4) (P1+P2)
∫
R7

d7x̃(ξ1 ·x̃)k1−2 (ξ2 ·x̃)k2−2

=N1N2t2
12 (2π)4 δ(4) (P1+P2)×

2π
7
2 t2k1−2

12 δk1,k2

Γ
(

7
2

) ∫ ∞

0
d |x̃| |x̃|k1+k2+2 .

(5.16)

We evaluated the integral using the methods in [158, 159, 168] and replaced ξ1 · ξ2 by t12.
It is easy to see that such divergences will also occur in the four point function. We will
regulate these divergences by replacing the integral over R7 by an integral over S7 of radius
2ℓ.7 Choosing an appropriate normalization and replacing ξi · x̃ → ti · Z, where Z ∈ R8 are
embedding coordinates for the sphere and Z · Z = 1, the wavefunction is

hαβ
j (X) = 1√

V7
eα

i eβ
i eipj ·x (tj · Z)kj−2

(2ℓ)kj−2 . (5.17)

This wavefunction now solves the free equations of motion on R1,3× S7 and is a solution
of the free field equations on R1,3 × R7 in the limit ℓ → ∞. To see this, note that the
scalar Laplacian in S7 takes the same form in embedding coordinates as a Laplacian in flat
space. With this, we are now in a position to connect the 11D supergravity amplitude with
the Carrollian limit of ABJM correlators. It is instructive to understand this connection
separately for correlators involving operators with k = 2 and k > 2.

5.2.1 Amplitudes of k = 2 KK modes

The Carrollian limit of ⟨O2 . . .O2⟩ in (4.10) corresponds to the amplitude for in/out states
with the wavefunctions

hαβ
j (X) = 1√

V7
eα

i eβ
i eipj ·x, (5.18)

with pj being a null momentum parametrized by (2.4). The dimensional reduction can be
carried out by plugging in (5.13). In addition to this, since the wavefunction in (5.18) does

7The choice of 2ℓ for the radius is arbitrary. The exact numerical factor is irrelevant since we only match
with the Carrollian limit up to a numerical factor.
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not involve plane waves in the x̃I directions, the amplitude for these states does not produce
δ(11)

(∑4
i=1 Pi

)
. We should replace the δ function by

δ(11)
( 4∑

i=1
Pi

)
→ 1

(2π)7 V 2
7

∫
R3,1

d4x

(2π)4 e
i
∑4

j=1 pj ·x
∫

S7
d8Z δ

(
Z · Z − 4ℓ2

)
=

δ(4)
(∑4

i=1 pi

)
(2π)7 V7

(5.19)

Putting all of this together, we get

A2,2,2,2
4 = −a4ℓ9

11t2
12t2

34
(2π)7 V7stu

(s t τ + s uσ + t u)2 × δ(4)
( 4∑

i=1
pi

)
. (5.20)

This amplitude can also be derived from the 4D N = 8 supergravity amplitude. We refer
the reader to appendix C of [98] for this connection. Note that this amplitude vanishes as
ℓ → ∞ as mentioned in section 4. The Carrollian amplitude corresponding to this can be
obtained simply via a Fourier transform (2.7). Setting ϵ1 = −ϵ2 = ϵ3 = −ϵ4 = 1, we get

V7C1,...,1
4

(
{uj ,zj ,z̄j}ϵj

)
= a4ℓ9

11

2(2π)11U2

(
|z24|2

|z12|2 |z23|2

)
t2
12t2

34(1−αz)2(1−ᾱz)2
δ(z−z̄)Θ(z)Θ(1−z),

(5.21)

where U was defined in (2.22). This agrees with (4.10) up to a normalization. We only find
this agreement if we choose to perform the Fourier transform or equivalently, the modified
Mellin transform (2.5) with ∆i = 1.

5.2.2 Amplitudes of k > 2 KK modes

We can also make contact with the Carrollian limit of ABJM correlators involving operators
with k > 2 by dimensionally reducing 11D supergravity amplitude using the wavefunc-
tion (5.17) which implies that δ(11) (

∑
i Pi) is replaced by

δ(11) (P1 + P2 + P3 + P4) −→ δ(4)
( 4∑

k=1
pk

)
1

(2π)7V 2
7

∫
d8Zδ

(
Z · Z − 4ℓ2

) 4∏
j=1

(tj · Z)kj−2

(2ℓ)kj−2

(5.22)

= Ñki

V7

∏
i<j

t
γ0

ij

ij (t12t34)E−2 Pki
(σ, τ) δ(4)

 4∑
j=1

pj

 ,

where Pki
(σ, τ) is a polynomial defined in (A.12) which depends on ratios of polarization

vectors which are equal to the R-symmetry cross ratios σ, τ due to (5.13),

ϵ1 · ϵ3 ϵ2 · ϵ4
ϵ1 · ϵ2 ϵ3 · ϵ4

= t13t24
t12t34

≡ σ,
ϵ2 · ϵ3 ϵ1 · ϵ4
ϵ1 · ϵ2 ϵ3 · ϵ4

= t23t14
t12t34

≡ τ. (5.23)

Implementing these changes in the 11D graviton amplitude (5.9), we get for the 4D amplitude
of higher KK modes (ki > 2),

Ak1,k2,k3,k4
4 = −Ñki

V7

∏
i<j

t
−γ0

ij

ij

(t12t34)2−E

4ℓ9
11s t u

(t u + s u σ + s t τ)2 Pki
(σ, τ) (5.24)
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From this, we can compute the Carrollian amplitude using the modified Mellin transform (2.5).
Setting ϵ1 = −ϵ2 = ϵ3 = −ϵ4 = 1 and ∆i = ki

2 gives

C
k1
2 ,

k2
2 ,

k3
2 ,

k4
2

k1,k2,k3,k4
=
∫ +∞

0

4∏
j=1

dωj

2π
(−iϵjωj)

kj
2 −1e−iϵjωjujAk1,k2,k3,k4

4 (5.25)

=−
Ñki

(−1)
k1+k3

2 i
∑4

i=1
ki
2 Γ
(
−2+

∑4
i=1

ki
2

)
V74ℓ9

11(2π)4

(t12t34)2−E∏
i<j

t
−γ0

ij

ij (1−αz)2(1−ᾱz)2


×
[
|z14|k3−2 |z24|k1+2 |z34|k2−4

|z12|k1+2 |z13|k3−4 |z23|k2

]
×

δ(z−z̄)Θ(z)Θ(1−z)z
k1−k2+4

2 (1−z)
k2−k3

2

U−2+
∑4

i=1
ki
2

,

which agrees with (4.14) up to an overall k dependant normalization factor.

6 Super conformal Carrollian correlators

In the previous sections, we obtained position space correlators at null infinity, which are
interpreted as scalar correlators in a Carrollian ABJM theory. In this section, we discuss
some basic kinematic properties of this theory by (i) deriving the superconformal Carrollian
algebra, (ii) defining super conformal Carrollian primaries, (iii) relating the correlators of
these operators with the above position space correlators at I .

6.1 Superconformal Carrollian algebra

The Carrollian limit of the superconformal algebra has been studied in [169, 170]. In this
section, we revisit this discussion by keeping N arbitrary and carefully treating the Majorana
reality conditions for d = 3. We start from the superconformal algebra and follow the
conventions of [171].

The bosonic generators are given by the Lorentz transformations Jµν = J[µν] (Jij are
the spatial rotations and Bi = J0i the boosts), the translations Pµ = (−H, Pi), the dilation
D, and the special conformal transformations Kµ = (−K, Ki). They form the standard
conformal algebra so(3, 2). Furthermore, the fermionic generators QI

α and SI
α (I = 1, . . . ,N ,

α = 1, 2) satisfy the anticommutation relations

{QIα, Q̄Jβ} = 2δI
Jγµα

βPµ, {SIα, S̄Jβ} = 2δI
Jγµα

βKµ,

{QαI , S̄βJ} = −iδI
J(2δα

βD + (γ[µγν])α
βMµν) + 2iδα

βRI
J

(6.1)

where we defined the Majorana conjugation

Q̄J = (QJ)†γ0 = −(QJ)T ϵ, S̄J = (SJ)†γ0 = −(SJ)T ϵ. (6.2)

Here ϵ = (ϵαβ) = (ϵ[αβ]) with ϵ01 = 1 is the charge conjugation matrix. The 2× 2 matrices
γµ, µ = 0, 1, 2, are given by

γ0 = σ3, γ1 = iσ1, γ2 = iσ2 (6.3)
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with σ1, σ2, σ3 the Pauli matrices, and satisfy the Clifford algebra {γµ, γν} = 2ηµν . Thus, there
are 2N independent fermionic generators. Finally, the R-symmetry generators RIJ = R[IJ ]
form an so(N ) algebra,

[RIJ , RKL] = i(δIKRJL + δJLRIK − δILRJK − δJKRIL). (6.4)

They commute with the bosonic generators, and rotate the fermionic generators

[RIJ , QK ] = i(δI
KδJD − δJ

KδID)QD, [RIJ , SK ] = i(δI
KδJD − δJ

KδID)SD. (6.5)

All the above generators constitute the superconformal algebra, osp(N|4,R).
We now implement the Carrollian limit of this algebra, corresponding to an İnönü-Wigner

contraction. We start with the bosonic sector. We rescale the generators

H → 1
c

H, Bi →
1
c

Bi, K → 1
c

K (6.6)

and keep the other bosonic generators untouched. Taking c → 0, the so(3, 2) algebra contracts
into the global conformal Carrollian algebra CCarrglob

3 . This algebra admits an infinite-
dimensional enhancement with supertranslations (and possibly superrotations), leading to the
conformal Carrollian algebra, CCarr3 ≃ bms4. In this work, we focus on the finite-dimensional
global subalgebra. Possible extensions of the above contractions to the fermionic sector have
been discussed in [169]. Here, we consider the symmetric (or “democratic”) rescaling,

QIα → 1√
c
QIα, SIα → 1√

c
SIα. (6.7)

Furthermore, we do not rescale the R-symmetry generators, R → R, to keep a non-trivial
R-symmetry algebra in the limit. Taking the c → 0 limit on (6.1), (6.4) and (6.5), we get

{QIα, Q̄Jβ}=−2δI
Jγ0α

βH, {SIα, S̄Jβ}=−2δI
Jγ0α

βK, (6.8)

{QαI , S̄βJ}=−2iδI
J(γ[0γi])α

βBi, (6.9)

[RIJ ,RKL] = i(δIKRJL+δJLRIK−δILRJK−δJKRIL), (6.10)

[RIJ ,QK ] = i(δI
KδJD−δJ

KδID)QD, [RIJ ,SK ] = i(δI
KδJD−δJ

KδID)SD. (6.11)

This defines the global superconformal Carrollian algebra in d = 3, sCCarrglob,N
3 . Analogously

to the bosonic case, this algebra admits an infinite-dimensional enhancement with both bosonic
and fermionic supertranslations, sCCarrN3 [169], and also with (bosonic) superrotations [14,
172, 173]. Here we focus on the finite-dimensional global subalgebra.

We now show that sCCarrglob,N
3 is isomorphic to the N -extended super-Poincaré algebra

in four dimensions, spoin(N , 4). To show that, let us recall the isomorphism between the global
conformal Carrollian algebra in three dimensions and the Poincaré algebra in four dimensions,

CCarrglob
3 ≃ iso(3, 1) (6.12)

(see e.g. appendix B of [25] or section 3 of [115]). Hence, the bosonic sector of sCCarrglob,N
3

is already taken care of. For the fermionic sector, the 2N bulk supersymmetry generators
satisfy the algebra

{QI
α, Q̄J

α̇} = 2δIJσµ
αα̇Pµ (6.13)
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where σµ = (I, σi), Q̄I = (QI)† and Pµ the four-dimensional translation generator. Match-
ing the R-symmetry structure between the two algebras is non-trivial an deserves further
comments. The R-symmetry of spoin(N , 4) is typically u(N ) or su(N ) with the supercharges
transforming in the fundamental representation. There appears to be a mismatch with the
so(N ) R-symmetry of sCCarrglob,N

3 induced from the c → 0 limit, and we do not have an
obvious isomorphism. It would be interesting to investigate whether the R-symmetry at the
boundary is enhanced beyond the naive so(N ) to su(N ) in holographic theories. Here, in
order to make contact with the algebra at the boundary, we simply project onto so(N ). This
projection is similar to the one done at the amplitude level in appendix C of [98]. One can
then show that (6.13) reproduces (6.8) and (6.9) by performing the identifications

P0 = −1
2(H + K), , P1 = −B1, P2 = −B2, P3 = 1

2(H − K) (6.14)

together with

QI
1 = SI1 =−S̄I2, Q̄I

1̇ = S̄I1 = SI2, QI
2 = Q̄I1 = QI2, Q̄2̇ = QI1 =−Q̄I2 (6.15)

where in the second equalities, we used the Majorana reality conditions (6.2). Upon the
above mentioned projection of the R-symmetry representation from su(N ) to so(N ), the
R-symmetry generators of the two algebras can simply be identified as RIJ ≡ RIJ , ensuring
that they satisfy the so(N ) algebra (6.10). It is then straightforward to show that

[RIJ ,QK ] = i(δI
KδJD −δJ

KδID)QD, [RIJ ,Q̄K ] = i(δI
KδJD −δJ

KδID)Q̄D
, (6.16)

together with (6.15) reproduce correctly (6.11). Therefore, upon the R-symmetry projection
su(N ) → so(N ) in the right-hand side, we have established the important isomorphism

sCCarrglob,N
3 ≃ spoin(N , 4) (6.17)

generalizing the isomorphism (6.12) to the supersymmetric case. This matching of supersym-
metries between the four-dimensional bulk and the three-dimensional boundary constitutes
a strong hint towards Carrollian holography. Again, this isomorphism can be lifted to the
infinite-dimensional algebras, where sCarrN3 is isomorphic to the super BMS algebra discussed
in [169, 174–176] for N = 1.

6.2 Superconformal Carrollian primaries and correlators

Massless flat space amplitudes have been shown to be encoded in terms of boundary correlators
of Carrollian CFT primaries at null infinity (we refer to [23–25, 62, 90, 95, 112–121] for recent
developments). In this section and the next, we extend this statement to supersymmetric
correlators. Conformal Carrollian primaries have been defined in [21, 23, 26, 115]. This
definition is naturally found by taking the Carrollian limit of the definition of a conformal
primary in CFT and rescaling the operators consistently (see (4.2)). Here we focus on
singlets of scalar primaries, which are relevant to encode correlators of bulk scalar fields
considered in the previous section. They are defined through the action of the subalgebra
of operators preserving the origin:

[Jij , ϕ∆(0)] = 0, [Bi, ϕ∆(0)] = 0,

[D, ϕ∆(0)] = −i∆ϕ∆(0), [K, ϕ∆(0)] = 0, [Ki, ϕ∆(0)] = 0
(6.18)
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where ∆ is the conformal dimension. We can extend this definition to superconformal
Carrollian primaries by replacing the two last conditions in (6.18) by

[SIα, ϕ∆(0)] = 0 = [S̄Iα, ϕ∆(0)] (6.19)

where second equality automatically follows from the first one via the Marjorana condi-
tion (6.2). They transform in spin-s so(N ) representations of the R-symmetry algebra:

[RIJ , ϕ∆(0)] = R(s) · ϕ∆(0). (6.20)

Analogously to (2.3), we can contract the R-symmetry indices with null vectors tI to obtain
R-symmetry scalars

ϕk = ϕI1...IktI1 . . . tIk
(6.21)

and, for the case of interest arising from the Carrollian limit of ABJM, we will have ∆k = k
2 .

It is convenient to introduce fermionic coordinates θIα and θ̄Iα satisfying the Majorana
reality condition (6.2), i.e. θ̄Iα = −ϵ(θI)T . Superconformal Carrollian primaries can be seen
as fields on the superspace, ϕ∆(u, z, z̄, θIα). Using the translation operator on the superspace,

ϕ∆(x, θ) = Uϕ∆(0, 0)U−1, U = e−i(−Hu+Pix
i+Q̄IαθIα) (6.22)

and following similar steps than those presented in [169] (but keeping N general), one can
deduce the action of all the super conformal Carrollian operators on the fields at any point
of the superspace (x, θ) = (u, z, z̄, θIα). Denoting the infinitesimal variation of the field
as the commutator

δϕ∆(x, θ) (6.23)

= i

[
aH + bjBj + kK + ajPj +

1
2rjkJjk + λD + kjKj + ϵIQ̄I + κI S̄I +

1
2ωIJRIJ , ϕ∆(x, θ)

]
where a, bj , k, aj , rjk = r[jk], λ, kj , ϵI , κI , and ωIJ = ω[IJ ] are the transformation parameters,
the superconformal Carrollian Ward identities read as

n∑
j=1

⟨ϕ∆1(x1, θI
1) . . . δϕ∆j

(xj , θI
j ) . . . ϕ∆n(xn, θI

n)⟩ = 0. (6.24)

These Ward identities are associated with the global superconformal Carrollian algebra
sCCarrglob,N

3 . One could also write Ward identities for the infinite-dimensional algebra
sCCarrN3 . The additional constraints on the correlators would be related to soft physics in
the bulk (the fermionic supertranslation Ward identities have been shown to be equivalent
to the leading soft gravitino theorem in the bulk [174]).

The superconformal Carrollian primary encode the information of a superconformal
multiplet. One could expand it in terms of the fermionic coordinates as follows:

ϕ∆(xa, θIα) = Φ∆(xa) + θIαΨ̄Iα(xa) + . . . (6.25)

Each component Φ∆, Ψ̄Iα, . . . is a standard conformal Carrollian primary with a certain spin.
In this paper, we were interested by the scalar components ϕ∆(xa, 0) = Φ∆(xa) and their
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associated correlators ⟨Φ∆1(x1) . . .Φ∆n(xn)⟩. These are the type of correlators found in the
Carrollian limit of holographic correlators in section 4, or by modified Mellin transform in
section 5. Indeed, this discussion provides an intrinsic Carrollian CFT definition for what the
operators appearing in the left-hand side of the following integral transform are:

⟨Φk1(x1) . . .Φkn(xn)⟩ =
∫ +∞

0

n∏
j=1

dωj

2π
(−iϵjωk)

kj
2 −1e−iϵjωjujAk1,...,kn

n . (6.26)

In the right-hand side, k1, . . . , kn label the scalar KK modes. As discussed in the previous
sections, the conformal dimension is completely fixed for each operator: ∆i = ki

2 .

7 Conclusion

In this paper we have taken the first step towards the ambitious goal of deriving a flat space
Carrollian hologram from a canonical example of AdS/CFT, which relates the ABJM theory
to M-theory in AdS4× S7. Our strategy was to take the c → 0 limit of ABJM correlators
of protected operators and match them against the flat space limit of bulk supergravity
calculations after integrating out the 7-sphere. Crucially, when doing so we worked at fixed
KK mode number (corresponding to operators of fixed R-charge in the dual CFT), yielding
four-dimensional bulk scattering amplitudes of N = 8 supergravity, dual to three dimensional
Carrollian correlators. We also showed that the superconformal algebra of ABJM, osp (4|8)
contracted to a subalgebra of super Poincaré algebra of N = 8 supergravity.

This paper opens up a number of new directions worth pursuing. Perhaps the most
pressing of all is that it is still unclear how to obtain the scattering amplitudes of this paper
from a 3D Carrollian boundary theory from first principles. As a first step, we may take
the c → 0 limit of the ABJM theory, but various conceptual difficulties arise. As shown
in [177], the Carrollian limit of 3D Chern-Simons matter theories contain kinetic terms of
the form (∂uϕ)2, where we restrict to scalar fields for simplicity. The resulting propagators
are therefore of the form u δ2(z), leading to a proliferation of delta functions which are
incompatible with the structure of Carrollian correlators obtained by performing a modified
Mellin transform of 4D supergravity amplitudes. A related problem is that the Carrollian
correlators in (4.5) and (4.14) have non-local poles and branch cuts in the u-variables whose
origin from Carrollian Feynman rules is completely unclear. We can simultaneously resolve
these two issues by uplifting the Carrollian propagator to a 3D Lorentz-invariant propagator
1/(−c2u2 + 2zz̄) and carefully taking c → 0, effectively treating c as a regulator. On the
other hand if we restore the c-dependence of the propagators, nothing prevents us from doing
so for the interaction vertices. Another motivation for restoring c-dependence is to note
that in the c → 0 limit, Chern-Simons matter theories have infinite dimensional Carrollian
conformal symmetry (or BMS4 symmetry), but this symmetry must be broken to the global
Carroll group in order to probe bulk physics beyond universal soft limits [178]. The question
would then be how to do this in a minimal way such that the resulting theory encodes 4D
scattering amplitudes in flat space without the additional baggage of an infinite series of
curvature corrections. This naturally raises the question of whether Carrollian theories can
be defined without resorting to a limiting procedure. Investigating the Carrollian analogues

– 27 –



J
H
E
P
0
6
(
2
0
2
5
)
0
7
3

of conformal blocks and crossing symmetry would be an obvious place to start. We hope
to address these question more systematically in the future.

Another important question is how to think about the flat space limit. In this paper we
have treated AdS and the 7-sphere asymmetrically by holding charges of the dual operators
fixed and integrating out the 7-sphere when taking the flat space limit, yielding 4D scattering
amplitudes. This was motivated by the desire to understand how holography might work in 4d
flat space. On the other hand, the radius of AdS and the 7-sphere cannot be taken to infinity
independently, so when we take the flat space limit the bulk theory really becomes 11D flat
space, which may be dual to a 10D Carrollian CFT. In principle, this should be visible
from the CFT side if we take the charges to infinity at the appropriate rate. Alternatively,
we could describe the resulting 11D amplitudes in terms of 4D amplitudes with massive
kinematics. Perhaps the nicest context to explore such questions would be in N = 4 SYM,
whose correlators exhibit a hidden 10D symmetry (at least in the supergravity limit [179–182])
which allows them to be repackaged into 10D master correlators whose Carrollian limit can
in principle then be matched with 10D supergravity amplitudes in the flat space limit.

We hope that this paper sharpens the questions that need to be answered in order to
realise the ambitious goal of deriving a concrete example of Carrollian holography from
AdS/CFT and provides crucial data that any such proposal must satisfy.
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A Mellin amplitudes in ABJM

In this appendix, we will summarize the known tree-level Mellin amplitudes in ABJM while
providing some of the explicit details needed for the computations in the main body of
the paper.

A.1 M2,2,2,2

The best understood case is the one with k1 = . . . k4 = 2 corresponding to ∆1 = . . .∆4 = 1.
The Mellin amplitude admits an expansion in cT

M2,2,2,2 = 1
cT

MR
2,2,2,2 +

1

c
5
3
T

BR4M(4)
2,2,2,2 (A.1)

+ 1

c
7
3
T

(
BD6R4

4 M(4)
2,2,2,2 + BD6R4

6 M(6)
2,2,2,2 + BD6R4

7 M(7)
2,2,2,2

)
+ . . . .
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MR
2,2,2,2 is the tree-level supergravity term and is given by [99, 183]

MR
2,2,2,2 (s, t;σ, τ) = MR

2,2,2,2,s +MR
2,2,2,2,t +MR

2,2,2,2,u

MR
2,2,2,2,s (s, t;σ, τ) =

∞∑
m=0

−3 ((t − 2)(u − 2) + (s + 2)((t − 2)σ + (u − 2)τ))
√
2πN

3
2Γ
(

1
2 − m

)2
m! Γ

(
m + 5

2

)
(s − 1− 2m)

. (A.2)

The sum over m in (A.2) can be performed to get

MR
2,2,2,2,s(s,t;σ,τ)= 3√

8π3N3
1

s(s+2) [(t−2)(s+t−2)−σ (s+2)(t−2)+τ (s+2)(s+t−2)]

×

√π(s+4)−4
Γ
(

1−s
2

)
Γ
(
1− s

2
)
 (A.3)

The t, u channel Mellin amplitudes can be obtained from the s channel one via

MR
2,2,2,2,t(s,t;σ,τ)=τ2MR

2,2,2,2,s

(
t,s;σ

τ
,
1
τ

)
, MR

2,2,2,2,u(s,t;σ,τ)=σ2MR
2,2,2,2,s

(
u,t; 1

σ
,
τ

σ

)
.

(A.4)

M4
2,2,2,2,M6

2,2,2,2,M7
2,2,2,2 are correction 1

N to the Supergravity approximation. These are
discussed in more detail in appendix (D). large polynomials in s, t.

A.2 M2,2,k,k

We will also be interested in the amplitude with k1 = k2 = 2, k3 = k4 = k. This also admits
a large cT expansion but we will only focus on the leading term,

M2,2,k,k = 1
cT

MR
2,2,k,k. (A.5)

The leading contributions are presented explicitly in [99]. Performing the sum over m, the
s− channel Mellin amplitude is

M2,2,k,k,s=
3

8
√
2π3/2N3/2s(s+2)

[(k−2t+2)(k−2u+2)−2(s+2)σ(k−2t+2)−2(s+2)τ(k−2u+2)]

×
(√

π(s−k(s+2))
Γ
(

k
2
) +

2kΓ
(1

2−
s
2
)

Γ
(

k−s
2
) )

(A.6)

The t− channel Mellin amplitude is more complicated and is given by

M2,2,k,k,t=
−3kτΓ

(
k
2+1

)
[(k+2t+2)(k−2u+2)+2σ(k−s)(k+2t+2)−2τ(k−s)(k−2u+2)]

4
√
2π

√
N3(k−2t)Γ

(
k−1

2

)
Γ
(

3+k
2

)
×3F2

(1
2 ,

1
2 ,

k

4−
t

2;
k

2+
3
2 ,

k

4−
t

2+1;1
)

(A.7)

For even k, we can replace the hypergeometric function by (see the Mathematica file supplied
with [100])

3F2

(1
2 ,

1
2 ,

k

4 −
t

2;
k

2 +
3
2 ,

k

4 −
t

2 +1;1
)
=

π (k−2t)Γ
(

3+k
2

)
(

2−k+2t
4

)
2+k

2

 Γ
(

k
4 −

t
2

)
4πΓ

(
k
4 +

1
2 −

t
2

)− ⌈ k−1
2 ⌉∑

i=0
xit

i

 ,

(A.8)
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with the coefficients xi being determined in the Mathematica file. For our purposes, we will
only need the coefficient of the highest power of t. For even k, since ⌈k−1

2 ⌉ = k
2 , this is

x k
2
=

Γ
(

1+k
2

)
4π 2

k
2 Γ2

(
1 + k

2

) (A.9)

Plugging this into M2,2,k,k,t, we get

M2,2,k,k,t=
−3kτΓ

(
k
2+1

)
[−(k+2t+2)(k−2u+2)+2σ(k−s)(k+2t+2)−2τ(k−s)(k−2u+2)]

4
√
2
√

N3Γ
(

k−1
2

)[∏ k
2
n=0

(
t
2+

k
4+

1
2−n

)]

×

 Γ
(

k
4−

t
2

)
4πΓ

(
k
4+

1
2−

t
2

)−⌈ k−1
2 ⌉∑

i=0
xit

i

 (A.10)

Finally, M2,2,k,k,u (s, t, σ, τ ) = M2,2,k,k,t (s, u, τ, σ).

A.3 Mk1,k2,k3,k4

It is not possible to easily express correlator for general ki as a sum over a finite number of
D̄ functions. In this case, we appeal to the equivalence of the Carrollian and high energy
limits shown in appendix[ B] and just present the leading high energy behavior in Mellin
space which can be easily converted to position space. From [99], we have

lim
s,t→∞

Mk1,k2,k3,k4 =
Nki

N
3
2

(tu+stσ+τsu)2

stu
Pki

(σ,τ)=Nki

N
3
2

(s+t−sα)2(s+t−sᾱ)2

stu
Pki

(σ,τ),

(A.11)

where

Pki
(σ, τ) =

∑
i+j+k=E−2
0≤i,j,k≤E−2

(E − 2)!σiτ j

i!j!
(
i + κu

2
)
!
(
j + κt

2
)
!
(κu

2
)
! , (A.12)

and in the final equality in (A.11), we have defined new variables α, ᾱ by

σ = αᾱ, τ = (1− α) (1− ᾱ) , (A.13)

and used the fact that s + t + u = 0.

B High energy limit versus Carrollian limit

An efficient way of computing the flat space limit starting from the Mellin amplitude is to
take its high energy limit (s, t → ∞) [164, 184, 185].8 In this section, we will demonstrate
that this is equivalent to taking the Carrollian limit in position space. We will do this by
showing that the following procedures yield identical results:

8This procedure results in a flat space amplitude with massless external particles. We will restrict to this
case in this paper.
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▷ First compute the leading term in the high-energy limit of a generic Mellin amplitude.
Convert this to position space using (B.2).

▷ First compute the position space correlator using (B.2) and then take the Carrol-
lian limit.

We will show this equivalence for tree-level contact and exchange diagrams involving external
scalars. The internal operator in the case of exchange diagrams could have any spin. The
following definitions will come in handy.

⟨O1(x1) . . . O4(x4)⟩ =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14
x2

24

)a(
x2

14
x2

13

)b

G(U, V ), (B.1)

where

a = 1
2(∆2 −∆1), b = 1

2(∆3 −∆4),

and

G(U, V ) =
∫ i∞

−i∞

ds dt

(4πi)2 U
s
2 V

t
2−

∆2+∆3
2 M(s, t) Γ{∆i}, (B.2)

with

Γ{∆i} = Γ
(∆1 +∆2 − s

2

)
Γ
(∆3 +∆4 − s

2

)
Γ
(∆1 +∆4 − t

2

)
(B.3)

Γ
(∆2 +∆3 − t

2

)
Γ
(∆1 +∆3 − u

2

)
Γ
(∆2 +∆4 − u

2

)
.

B.1 Contact diagrams

In Mellin space, contact diagrams are just polynomials in s, t. Let

Mc (s, t) =
a1,b1∑

a=a0,b=b0

χa,b sa tb. (B.4)

Position space correlator. The position space correlator can be written as a sum of D̄

functions in a straightforward manner.

Gc (U, V ) =
a1,b1∑

a=a0,b=b0

χa,b (2U∂U )a (2V ∂V +∆2 +∆3)b
(

U
∆1+∆2

2 D̄∆1,∆2,∆3,∆4

)
(B.5)

For the Carrollian limit, we are only interested in the leading singular term as Z → Z̄ which is

Gc,l.s (U, V ) = (−1)a1+b1 χa1,b1 (2U)a1 (2V )b1 U
∆1+∆2

2 ϕl.s
∆1+a1,∆2+a1+b1,∆3+b1,∆4 , (B.6)

where ϕl.s
∆1+a1,∆2+a1+b1,∆3+b1,∆4

is the leading singularity of the D̄ function (2.19).

High energy limit of Mc (s, t). In the limit s, t → ∞, Mc (s, t) s,t→∞−−−−→ χa1,b1sa1 tb1 . It is
easy to see that the position space correlator corresponding to this agrees with (B.6), thus
proving the equivalence of two limits for scalar contact diagrams.
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B.2 Exchange diagrams

Exchange diagrams in Mellin space take the form

Mex
∆E ,ℓE

(s, t) =
∞∑

m=0

fm,ℓE
QℓE

(t, u)
s − τE − 2m

, (B.7)

where τE = ∆E − ℓE is the twist of the exchanged operator, with ∆E , ℓE being its conformal
dimension and spin respectively. fm,ℓE

is a coefficient independent of s, t, u and QℓE
is a

polynomial of degree ℓE in t, u. Explicit expressions for these can be found in appendix B
of [99].9

Position space correlator. As shown in [90], the flat space limit of an exchange diagram
is independent of the conformal dimension of the exchanged operator.10 We can therefore
freely assume τE = ∆1 + ∆2 − 2m0 and write

Mex
∆E ,ℓE

(s, t) =
m0∑

m=0

fm,ℓE
QℓE

(t, u)
s − (∆1 +∆2) + 2km

, (B.8)

where km = (m0 − m). The sum truncates since fm,ℓE
vanishes for m > m0. We can write this

as a finite sum of D̄ functions in position space by using the identity (valid when km ∈ Z+).

1
s−(∆1+∆2)+2km

Γ
(∆1+∆2−s

2

)
=−1

2Γ
(∆1+∆2−s

2 −km

)km−1∏
n=1

[∆1+∆2−s

2 −n

]
,

(B.9)

in (B.2) and arriving at

Gex
∆E ,ℓE

(U,V )=−
m0∑

m=0

fm,ℓE

2 Q̂ℓE

km−1∏
n=1

[∆1+∆2

2 −U∂U−n

](
U

∆1+∆2r
2 −kmD̄∆1−km,∆2−km,∆3,∆4

)
,

(B.10)

where Q̂ℓE
is a differential operator obtained from QℓE

by the replacements

t → Dt = 2V ∂V +∆2 +∆3, u → Du = ∆1 +∆4 − 2U∂U − 2V ∂V . (B.11)

The most singular term in (B.10) arises from the terms of degree ℓE in Qm,ℓE
(t, u). To

this end, let us write

QℓE
(s, t) = Q̃+

∑
a+b=ℓE

χa,b ta ub (B.12)

where Q̃ is a lower degree polynomial and χa,b are coefficients which are independent of t, u.
Their explicit form can be easily extracted from appendix B of [99]. We now have

Gex,l.s
∆E ,ℓE

(U,V )=−1
2

[
m0∑

m=0
fm,ℓE

] ∑
a+b=ℓE

(−1)aχa,b2a+bV aU
∆1+∆2

2 −1Φl.s
∆1−1,∆2−1+a+b,∆3+a,∆4+b.

(B.13)
9Note that here these polynomials are called Qm,ℓE . However, they are independent of m and we have

chosen to drop the subscript m here in order to avoid confusion.
10We remind the reader that we are assuming that the conformal dimension doesn’t scale with ℓ in this limit.
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High energy limit of Mex
∆E,ℓE

(s, t). We will take the high energy limit by first writing
u = Σ∆ − s − t and then taking s, t → ∞ which yields

Mex
∆E ,ℓE

(s, t) s,t→∞−−−−→
∑

a+b=ℓE
χa,b ta ub

s

∞∑
m=0

fm,ℓE
. (B.14)

We can use the identity11

1
s
Γ
(∆1 +∆2 − s

2

)
= −1

2Γ
(
−s

2

) k−1∏
n=1

[
k − s

2 − n

]
, (B.15)

and (B.2) to convert the above expression to position space to get

Gex,l.s
∆E ,ℓE

(U,V )=−1
2

[ ∞∑
m=0

fm,ℓE

] ∑
a+b=ℓE

(−1)aχa,b2a+bV aU
∆1+∆2

2 −1Φl.s
∆1−1,∆2−1+a+b,∆3+a,∆4+b

(B.16)

which is in agreement with (B.13) thus showing equivalence of the two limits for scalar
exchange diagrams.

C Lower-point Carrollian amplitudes

In section (5.2), we obtained the Carrollian limit of 4-point ABJM correlators from a bulk
perspective by dimensionally reducing the 11d gravity amplitude and performing a modified
Mellin transform. In this appendix, we will describe an analogous calculation at two and
three points.

Let us start with the 2-point amplitude:

A2 = (e1 · e2)2 2P 0
1 (2π)10 δ(10) (P1 + P2) . (C.1)

We will dimensionally reduce this to 4D by setting the momenta along all but four directions
to zero. This results in δ(7) (0) which we regulate by replacing it by V7, the volume of the
S7 with radius ℓ, with ℓ → ∞. Furthermore taking ϵ1 · ϵ2 = t12 gives

A2 = t2
12 2P 0

1 V7 (2π)3 δ(3) (P1 + P2) , (C.2)

which is in agreement with (5.3). We may then perform the Fourier transform (2.7) as
described in section (2.2) to obtain the expression in (4.3) with k1 = k2 = 2. Moreover,
to get the higher charge 2-point functions, we dress with external states given in (5.17),
regulate the resulting divergent integral by placing it on S7 and perform the modified Mellin
transform (5.25) with ∆i = ki

2 .
Now let us consider 3-point amplitude:

A3 = (e1 · e2e3 · P1 + cyclic)2 δ(11)(
∑

i

Pi)

= (e1 · e2e3 · P1 + e2 · e3e1 · P2 − e3 · e1e2 · P1)2 δ(11)(
∑

i

Pi),
(C.3)

11Even though this identity is valid only when ∆1+∆2
2 ∈ Z, the final result in terms of D̄ functions holds for

all values of ∆1, ∆2.
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where we used momentum conservation and e2 · P2 = 0 to obtain third term in the second
line. Now write out the terms in the product explicitly:

A3 =
[
(e1 · e2 e3 · P1)2 + (e2 · e3 e1 · P2)2 + (e3 · e1 e2 · P1)2 + 2e1 · e2 e3 · P1 e2 · e3 e1 · P2

− 2e2 · e3 e1 · P2 e3 · e1 e2 · P1 − 2e1 · e2 e3 · P1 e3 · e1 e2 · P1
]
δ(11)(

∑
i

Pi). (C.4)

Repeating the dimensional reduction procedure we performed for the two point-case and
setting ei · Pj = 0, we find that amplitude scales as ℓ5 which is consistent with the cubic
term in the action (3.2). Let us next fix the magnitude of the 7d momenta and integrate
over their directions [2]:

P A
i P B

j → 1
ℓ2

∫
d6p̂A

i d6p̂B
j = 1

ℓ2 δijδAB (C.5)

where p̂A
i is a unit vector and we take the magnitude to be 1/ℓ up to a numerical factor

which we ignore. After performing this integral, the terms in the first line of (C.4) vanish
because they are proportional to e2

i = 0, the terms in the second line vanish because they
are proportional to δij = 0 for i ̸= j, and the third line yields

A3 → −2V7
ℓ2 e1 · e2 e2 · e3 e3 · e1δ(4)(

∑
i

Pi) = −2V7
ℓ2 t12t23t13δ(4)(

∑
i

Pi). (C.6)

Which reproduces the R-symmetry structure found in (4.5) for ki = 2. To get higher charge
correlators, we dress with external states in (5.17) and regulate the divergence by integrating
over S7. We may then perform the modified Mellin transform with ∆i = ki

2 to obtain (4.5).

D Carrollian amplitudes of higher derivative corrections

In this appendix, we will compute the Carrollian amplitudes corresponding to 1
N corrections

to M2,2,2,2. These correspond to higher derivative corrections to supergravity arising from
M-theory. The Mellin amplitudes can be found in [98, 186] and also in the Mathematica
file accompanying [101].

M2,2,2,2 = 1
cT

MR
2,2,2,2 +

1

c
5
3
T

BR4M(4)
2,2,2,2 (D.1)

+ 1

c
7
3
T

(
BD6R4

4 M(4)
2,2,2,2 + BD6R4

6 M(6)
2,2,2,2 + BD6R4

7 M(7)
2,2,2,2

)
+ . . . ,

where

BR4
4 = 1120

(
2

9π8k2
CS

) 1
3

, BD6R4
4 = −1352960

9

(
36

π10k4
CS

) 1
3

,

BD6R4
6 = −220528

(
36

π10k4
CS

) 1
3

, BD6R4
7 = 16016

(
36

π10k4
CS

) 1
3

. (D.2)
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Since we are only interested in the Carrollian limit, it suffices to consider the leading high
energy terms in the Mellin amplitudes, following appendix (B):

M(4),HE
2,2,2,2 = (s + t − sα)2 (s + t − sᾱ)2 , (D.3)

M(6),HE
2,2,2,2 = 2

(
s2 + t2 + st

)
(s + t − sα)2 (s + t − sᾱ)2 ,

M(7),HE
2,2,2,2 = stu (s + t − sα)2 (s + t − sᾱ)2 .

This 1
N expansion of the Mellin amplitude neatly organizes into a u-derivative expansion

of the Carrollian amplitude as shown below:

lim
ℓ→∞

V7

(2π)4 ⟨O2 . . .O2⟩ =
[
1 + f1 (ℓ11∂u4)

6 + f2 (ℓ11∂u4)
10 + f3 (ℓ11∂u4)

11
]
C̃4. (D.4)

The fi are functions depending on the coordinates on the celestial sphere and are given by

f3 = N3f2
1 , f2 = N2

∣∣∣∣z24
z12

∣∣∣∣4
(
(1− z)2

∣∣∣∣z34
z23

∣∣∣∣4 − z(1− z)
∣∣∣∣z34
z23

∣∣∣∣2 + z2
)

f1,

f1 = N1z2 |z24|2 |z34|2 |z14|4 , (D.5)

where Ni are numerical constants. This expansion is reminiscent of how the α′ expansion
of Carrollian string amplitudes is converted to a u-derivative expansion [118].
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