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 a b s t r a c t

Human-Object Interaction (HOI) recognition in videos requires understanding both visual patterns and geometric 
relationships as they evolve over time. Visual and geometric features offer complementary strengths. Visual fea-
tures capture appearance context, while geometric features provide structural patterns. Effectively fusing these 
multimodal features without compromising their unique characteristics remains challenging. We observe that 
establishing robust, entity-specific representations before modeling interactions helps preserve the strengths of 
each modality. Therefore, we hypothesize that a bottom-up approach is crucial for effective multimodal fusion. 
Following this insight, we propose the Geometric Visual Fusion Graph Neural Network (GeoVis-GNN), which 
uses dual-attention feature fusion combined with interdependent entity graph learning. It progressively builds 
from entity-specific representations toward high-level interaction understanding. To advance HOI recognition 
to real-world scenarios, we introduce the Concurrent Partial Interaction Dataset (MPHOI-120). It captures dy-
namic multi-person interactions involving concurrent actions and partial engagement. This dataset helps address 
challenges like complex human-object dynamics and mutual occlusions. Extensive experiments demonstrate the 
effectiveness of our method across various HOI scenarios. These scenarios include two-person interactions, single-
person activities, bimanual manipulations, and complex concurrent partial interactions. Our method achieves 
state-of-the-art performance.

1.  Introduction

Human-Object Interaction (HOI) recognition aims to interpret the 
intricate relationships between humans and the objects they interact 
with. While traditional video analysis tasks can achieve strong perfor-
mance using visual features alone, HOI recognition demands additional 
geometric reasoning through human poses and object spatial configu-
rations. In video-based scenarios, this complexity intensifies as systems 
track dynamic spatial relationships across frames while handling occlu-
sions and viewpoint changes. This complexity goes beyond the pixel-
level understanding required for coarse actions like cooking. Instead, 
it includes geometric analysis of fine-grained interactions, such as spe-
cific hand poses for holding objects or spatial configurations needed for 
cutting. These interactions often occur concurrently or in sequence.

Significant efforts have focused on image-based HOI detection, 
which combines object localization and interaction classification within 
static frames. Recent advances have leveraged transformer architectures 
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with specialized mechanisms (Kim, Jung, & Cho, 2023; Li, Wei, Wang, 
& Yang, 2024; Ma, Wang, Wang, & Wei, 2023; Zhu, Ho, Chen, Yang, & 
Shum, 2024). While these methods are effective for static scenes, they 
are inadequate for capturing the temporal dynamics and motion com-
plexities inherent in video scenarios.

Video-based HOI recognition is a relatively less-explored area, which 
requires understanding not only the spatial relationships between hu-
mans and objects but also how these interactions evolve over time. Exist-
ing methods primarily rely on visual features (Morais, Le, Venkatesh, & 
Tran, 2021; Tu, Sun, Min, Zhai, & Shen, 2022; Wang et al., 2023), which 
encode rich appearance and contextual cues but are vulnerable to occlu-
sions common in real-world scenarios. In contrast, geometric features, 
derived from human pose estimations and object spatial configurations, 
provide explicit structural details crucial for interaction understanding
(Das, Sharma, Dai, Bremond, & Thonnat, 2020; Wan, Zhou, Liu, Li, 
& He, 2019; Zhu et al., 2024). While some recent approaches (Qiao, 
Li, Li, & Shum, 2024; Qiao et al., 2022) have attempted to integrate
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Fig. 1. Two examples (Teaching and Signing) of our collected concurrent partial interaction datasets. Geometric features such as skeletons and bounding boxes are 
annotated.

visual and geometric features to leverage their complementary advan-
tages, these methods typically fuse both modalities directly. This sim-
plistic fusion neglects the distinct and valuable characteristics inherent 
to each modality, resulting in suboptimal interaction representations. 
Consequently, effectively integrating visual and geometric features re-
mains challenging, limiting the capability to fully exploit their comple-
mentary strengths for robust interaction recognition.

Another challenge is that current approaches often fail to preserve 
fine-grained entity characteristics when integrating multimodal fea-
tures, resulting in the loss of important interaction details. Effectively 
fusing geometric and visual features to fully leverage their potential 
for enhancing entity interaction recognition remains underexplored. A 
mixed-fusion approach (Qiao et al., 2022) that combines feature fusion 
and entity interaction learning in a unified graph suffers from entangled 
entity representations, limiting explicit HOI understanding. A top-down 
approach (Zheng et al., 2023) that prioritizes entity-level relationships 
over specific features may miss critical interaction details and misalign 
overarching patterns with individual nuances. An alternative bottom-
up approach (Wang, Zhou, Chen, Tang, & Wang, 2022a; Wang, Li, Cai, 
Chen, & Han, 2022b) starts with fundamental entity features, enabling 
detailed integration before addressing complex interactions, resulting 
in more effective entity interaction analysis. Although the bottom-up 
approach has potential benefits, it faces challenges in accurately fusing 
multimodal features. Specifically, it struggles to preserve fine-grained 
entity characteristics when transitioning from individual entity repre-
sentations to modeling complex interactions.

In this paper, we introduce a novel Geometric Visual Fusion Graph 
Neural Network (GeoVis-GNN) to address the two critical challenges 
identified in previous research. To overcome the inadequate fusion of ge-
ometric and visual features, we propose a dual-attention mechanism op-
erating at the feature level. This mechanism first utilizes graph attention 
to produce structured geometric embeddings and then employs channel 
attention to adaptively fuse these embeddings with visual features, ef-
fectively leveraging the complementary strengths of both modalities. 
To preserve fine-grained entity characteristics, we adopt a bottom-up 
approach. Specifically, we first establish robust entity-specific represen-
tations and then progressively build up to higher-level interaction un-
derstanding through an interdependent entity graph. This graph models 
explicit spatial interactions and implicit contextual dependencies among 
entities, ensuring that detailed entity characteristics are retained even 
when modeling complex interactions.

Video-based HOI datasets have primarily focused on single-person 
activities or limited two-person interactions, leaving a notable gap in 
capturing the complexity of real-world multi-person scenarios. Existing 
datasets, such as UCLA HHOI (Shu, Gao, Ryoo, & Zhu, 2017; Shu, Ryoo, 
& Zhu, 2016) and MPHOI-72 (Qiao et al., 2022), include interactions 
with up to two participants and a few objects. They assume all partic-
ipants are continuously active, which limits their ability to represent 
scenarios with idle or waiting individuals. To address this limitation, 
we introduce the Concurrent Partial Interaction Dataset (MPHOI-120), 
which captures dynamic multi-person interactions where some partici-

pants are engaged while others are idle Fig. 1. This dataset incorporates 
diverse interactions, high variability, and challenging dynamics such as 
simultaneous actions, mutual dependencies, and occlusions. It offers a 
richer and more realistic benchmark for advancing HOI recognition in 
complex real-world scenarios.

We demonstrate the effectiveness of our approach across a com-
prehensive spectrum of real-world HOI scenarios. These include single-
person interactions in CAD-120 (Koppula, Gupta, & Saxena, 2013), bi-
manual manipulations in Bimanual Actions (Dreher, Wächter, & Asfour, 
2020), two-person collaborative activities in MPHOI-72 (Qiao et al., 
2022), and concurrent partial interactions in our proposed MPHOI-120
dataset. These diverse datasets collectively represent the full range of 
human-object interactions, from individual tasks to simultaneous multi-
person collaborations. Our main contributions are:

• A novel bottom-up framework (GeoVis-GNN) for multi-person HOI 
recognition. It preserves fine-grained entity characteristics and pro-
gressively builds from entity-level representations to interaction-
level understanding.1

• A dual-attention fusion mechanism that first employs graph atten-
tion to learn structured geometric embeddings, followed by channel 
attention-based adaptive fusion with visual features, resulting in rich 
entity-specific representations.

• An interdependent entity graph that leverages the enriched entity 
representations to simultaneously model explicit spatial interactions 
and implicit contextual dependencies among multiple entities.

• A novel Concurrent Partial Interaction Dataset (MPHOI-120)2 cap-
tures complex multi-person interactions with concurrent actions and 
partial engagement, providing a more realistic benchmark to ad-
vance HOI recognition.

2.  Related work

2.1.  HOI recognition

HOI recognition is divided into two primary areas: HOI detection in 
images and HOI recognition in videos. HOI detection in images focuses 
on identifying interactions within a single static picture, combining ob-
ject localization with interaction classification. It aims to detect triplets 
⟨ℎ𝑢𝑚𝑎𝑛, 𝑣𝑒𝑟𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡⟩, providing a spatially grounded understanding of 
HOIs in a single image (Cheng, Duan, Wang, & Chen, 2024b; Kim et al., 
2023; Li et al., 2024). These methods are not directly applicable to HOI 
recognition in videos, as the task introduces a temporal dimension, re-
quiring models to capture interactions as they evolve over time. Video-
based HOI recognition demands the ability to process dynamic, sequen-
tial data to understand interaction context more comprehensively. While 

1 Code is available in the Supplementary Materials.
2 Data collection performed in the UK, under Durham University Ethics Ap-

proval Ref: COMP-2020-10-01T19_29_22-cbmw62.
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some image-based methods provide valuable spatial insights using geo-
metric and visual features (Park, Park, & Lee, 2023; Wu et al., 2022; Zhu 
et al., 2024), they lack the temporal modeling capabilities necessary to 
capture motion patterns, action progression, and continuity. This limita-
tion results in an incomplete understanding of the evolving interactions 
critical for accurate recognition in video scenarios.

HOI recognition in videos encompasses human action analysis (Cob-
Parro, Losada-Gutiérrez, Marrón-Romera, Gardel-Vicente, & Bravo-
Muñoz, 2024; Hu, Xiao, Li, Liu, & Ji, 2024; Tan, Lim, Lee, & Kwek, 2022) 
and skeleton-based activity recognition (Cheng, Cheng, Liu, Ren, & Liu, 
2024a; Setiawan, Yahya, Chun, & Lee, 2022; Yu, Tanaka, & Fujiwara, 
2024) by integrating the detection of human movements and postures 
with the contextual understanding of interactions between humans and 
objects, thereby offering a more holistic approach to activity recognition 
in complex environments. Deep Neural Networks (DNNs) and graphical 
models are combined in recent works. Wang et al. (2021) utilize the 
parsed graphs to directly model the global relationship between the hu-
man and object, capturing the state change of the interacting objects 
across frames. ASSIGN (Morais et al., 2021) presents a visual feature at-
tention model to learn asynchronous and sparse HOIs in videos. TUTOR 
(Tu et al., 2022) employs a reinforced tokenization strategy that jointly 
learns instance tokens through selective attention and aggregation in 
the spatial domain and links them across frames to generate tubelet to-
kens, serving as highly-abstracted spatio-temporal representations for 
HOI recognition. Xing and Burschka (2022) introduce a spatial attention 
mechanism that can enhance action recognition by adaptively generat-
ing a spatial-relation graph during HOIs. STIGPN (Wang et al., 2023) 
exploits spatio-temporal graph convolutions to enhance the detection 
of salient human-object interactions and efficiently modeling long-term 
dynamics.

Based on prior visual-based approaches, 2G-GCN (Qiao et al., 2022) 
firstly proposes the multi-person HOI recognition problem and incorpo-
rates geometric features into the Graph Convolutional Network (GCN). 
However, 2G-GCN merges the collective geometric features of all en-
tities with individual visual features, leading to potential hierarchical 
misalignment. The high-level spatial information from geometric fea-
tures may not align well with detailed, entity-specific visual data. As a 
result, the model may struggle to correctly distinguish between differ-
ent entities and their interactions, leading to impaired performance and 
a focus on less relevant objects. CATS (Qiao et al., 2024) learns HOIs 
from multimodal feature fusion of different categories, such as humans 
and objects, to the scenery interactive graph. However, it neglects the 
entity concept and entity relationships within the same category, which 
is particularly limiting in multi-person HOI scenarios. Therefore, in this 
paper, we follow a bottom-up approach that first establishes fine-grained 
entity-specific features before capturing entity-level interactions, ensur-
ing precise entity representations and facilitating accurate interaction 
modeling in complex multi-entity scenarios.

2.2.  Geo-vis fusion in human activities

Combining diverse data modalities offers unique, complementary in-
sights that lead to a more holistic understanding of a subject. In mul-
timodal research of human action recognition, attention has been di-
rected towards key areas of the human body, particularly the hands 
(Baradel, Wolf, & Mille, 2017, 2018a; Baradel, Wolf, Mille, & Taylor, 
2018b). These studies employ attention-based methods to improve the 
overall accuracy of models that integrate skeletal and visual modalities. 
Building on this, Bruce, Liu, and Chan (2021) expand the focus to in-
clude additional regions of the body such as the head, hands, and feet 
by adopting a temporal approach. They generate a fused representa-
tion by multiplying spatial attention weights with appearance features. 
TSMF (Bruce et al., 2021) fuses skeleton and RGB data at the model level 
using teacher-student networks to learn enriched representations. How-
ever, these model-based fusion models often lack transparency, making 
it difficult to interpret how individual features contribute to recogni-

tion. Besides, Boulahia, Amamra, Madi, and Daikh (2021) investigate 
the integration of various image modalities (RGB, Depth, Skeleton, and 
InfraRed) at different stages of the action recognition pipeline, encom-
passing early, intermediate, and late fusion techniques, to enhance the 
robustness of recognition.

In human interaction analysis, Wan et al. (2019) concatenate human 
skeletal embeddings with visual embeddings from other branches like 
human, object and union to obtain the final holistic feature in the HOI 
scene. Zhou et al. (2022) combine embedded visual and human pose fea-
tures through element-wise addition. Wang et al. (2023) directly con-
catenate multimodalities to output visual-spatial and spatial-semantic 
feature sequences, which are then input into a two-stream network. 
CATS (Qiao et al., 2024) also concatenates geometric and visual features 
for different categories. However, their direct operations may dilute 
distinct contributions of visual and geometric features, often amplify-
ing dominant features while undervaluing subtle geometric cues, which 
can reduce accuracy in fine-grained interaction recognition. These chal-
lenges indicate that the fusion of geometric and visual features still has 
design intricacies that require further optimization. Therefore, we pro-
pose a dual-attention fusion mechanism to integrate geometric and vi-
sual features. This mechanism combines graph attention and channel 
attention to preserve the complementary strengths of both modalities. 
As a result, it produces enriched entity representations, enabling more 
robust and precise interaction modeling.

2.3.  Video-based HOI datasets

There are various datasets available for the investigation of HOI in 
videos for multiple tasks. For single-person HOI recognition, datasets 
like CAD-120 (Koppula et al., 2013), Bimanual Actions (Dreher et al., 
2020), Bimanual Manipulation (Krebs, Meixner, Patzer, & Asfour, 2021), 
etc. are effective, with the latter two also encompassing bimanual HOI 
tasks due to their focus on interactions involving both hands. There 
are several datasets available for single-hand HOI recognition tasks, 
including Something-Else (Materzynska et al., 2020), VLOG (Fouhey, 
Kuo, Efros, & Malik, 2018), EPIC Kitchens (Damen et al., 2021). Since 
EPIC Kitchens records both hands in the cooking process, it can also 
be utilized for bimanual HOI recognition. Besides, a full-body HOI 
dataset called BEHAVE (Bhatnagar et al., 2022) includes multi-view 
RGBD frames, associated 3D SMPL and object fits. HOI4D (Liu et al., 
2022) is a large-scale 4D egocentric dataset aimed to facilitate research 
on category-level HOIs. The UCLA HHOI Dataset (Shu et al., 2017, 
2016) focuses on human-human-object interaction with a maximum 
of two humans and one object involved. The MPHOI-72 dataset (Qiao 
et al., 2022) is specifically proposed for the multi-person HOI recog-
nition task but is constrained to interactions between two individu-
als and 2–4 objects, reducing its applicability to complex real-world
scenarios.

3.  Concurrent partial interaction dataset

The majority of video-based HOI datasets primarily focus on single-
person HOIs, albeit from various perspectives (Bhatnagar et al., 2022; 
Damen et al., 2021; Koppula et al., 2013; Liu et al., 2022). Efforts to 
encompass multiple human interactions are still in their infancy. For 
instance, the UCLA HHOI dataset (Shu et al., 2017, 2016) captures in-
teractions involving up to two people and one object, while MPHOI-72 
(Qiao et al., 2022) slightly broadens this scope to include two people 
and several objects. However, these datasets assume that all participants 
are continuously active throughout the activity. In contrast, real-world 
multi-person HOIs often include scenarios where some individuals are 
not interacting, such as sitting or standing idle while waiting for their 
turn. This gap highlights the need for datasets that better represent the 
complexity and variability of real-world multi-person and multi-object 
interactions.
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To bridge this critical gap, we introduce the Concurrent Partial Inter-
action Dataset (MPHOI-120), which captures dynamic interactions in-
volving multiple people and objects. In our context, “concurrent” refers 
to scenarios where multiple interactions occur simultaneously, while 
“partial interaction" highlights moments when not all individuals are 
actively engaging - some may remain idle or waiting during certain mo-
ments of the activity. For example, in the Signing activity, while two 
people are passing a notebook and pen, the other person is standing or 
sitting idle. Similarly, when one individual is signing, the other two are 
not interacting. Such scenarios, which reflect real-world interaction pat-
terns, are extensively captured in our dataset, providing a richer bench-
mark for advancing multi-person HOI recognition methods. In addition, 
increasing the number of people and objects introduces an exponential 
increase in complexity. It expands the range of human-human, human-
object, and object-object interactions, while also intensifying challenges 
such as simultaneous actions, mutual dependencies, and significant oc-
clusions.

3.1.  Dataset details

MPHOI-120 is a dataset of 120 high-resolution videos of three par-
ticipants interacting with 2 to 5 objects. All annotations are performed 
frame-by-frame by a single trained annotator using a predefined list of 
sub-activities to ensure consistency and avoid inter-annotator variabil-
ity. Sample video screenshots with annotated sub-activities for all activ-
ities are shown in Fig. 2. Each main activity captures unique interaction 
patterns. Signing highlights turn-taking behaviors amid potential occlu-
sions, while Cheering features synchronous and sequential human-object 
actions. Teaching depicts fine-grained states (e.g., noting vs. listening) 
between a teacher and students, and Snooker focuses on strategic turn-
taking with frequent body occlusions around the table.

Leveraging the Azure Kinect SDK along with the Body Tracking SDK 
(Microsoft, 2022), we acquire RGB-D videos to capture the compre-
hensive dynamics of multiple individual skeletons. We offer 2D hu-
man skeletal data and bounding boxes for both subjects and objects 
within each video, serving as geometric characteristics. The integration 
of depth information within our dataset further broadens its utility, such 
as versatile benchmarks for 3D human pose estimation (You et al., 2023; 
Zhai, Nie, Ouyang, Li, & Yang, 2023) and 3D object estimation (Fan, 
Chen, Hu, & Zhou, 2023; Heitzinger & Kampel, 2023), among others.

Table 1 
A statistical comparison between MPHOI-120 and popular HOI datasets. CPI 
denotes Concurrent Partial Interactions.
 Datasets MPHOI-120  MPHOI-72  CAD-120 Bimanual 

Actions

 No. people interacting  3  2  1 1
 Total videos  120  72  120 540
 Total frames  53,604  26,383  61,585 221,000
 Total frames of CPI  20,100  0  0 0
 Video average length  15s  12s  17s 15s
 No. sub-activities  17  13  10 14
 No. subjects/objects  7/6  5/6  4/10 6/12
 Total activities  4  3  10 9
 Fps  30  30  30 30
 Resolution 1920×1080 3840×2160 640×480 640×480

3.2.  Statistical comparison of datasets

We perform a statistical comparison between MPHOI-120 and ex-
isting popular HOI datasets, as shown in Table 1. MPHOI-120 includes 
scenarios with three people interacting and 17 sub-activities, which is 
higher than any other listed dataset, standing out for its complexity 
and richness. With a total of 53,604 frames across 120 videos, nearly 
half (20,100 frames) capture concurrent partial interactions, offering 
a unique focus on dynamic multi-person interactions absent in other 
datasets. Additionally, the high video resolution (1920 × 1080) ensures 
detailed feature capture, essential for advanced HOI analysis. In con-
trast, although Bimanual Actions is large, it is limited to dual-hand 
movements of an individual, leading to a more monotonic data distri-
bution.

4.  Methodology

We propose a bottom-up approach to design GeoVis-GNN, which 
(1) preserves fine-grained entity characteristics during feature fusion, 
and (2) progressively builds from entity-specific representations to 
interaction-level understanding. The bottom-up approach has been 
widely used in pose estimation (Kresović & Nguyen, 2021; Wang 
et al., 2022a,b) and object detection (Samet, Hicsonmez, & Akbas, 
2020; Wang, Shen, Cheng, & Shao, 2019; Zhou, Zhuo, & Krahenbuhl, 
2019) tasks with considerable performances. It ensures a thorough

Fig. 2. Sample video screenshots from our new MPHOI-120 dataset, displaying concurrent partial interactions along the timelines of four multi-person HOI activities 
in daily life.
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understanding of the fundamental aspects of each entity before delving 
into complex entity-level interactions. This approach, starting from ba-
sic features and building upwards, enables detailed feature integration 
to achieve more effective entity interaction analysis.

Alternative designs perform suboptimally. A top-down approach 
(Zheng et al., 2023), which prioritizes a broad view of entity-level rela-
tionships before refining specific entity features, often overlooks crucial 
interaction details and misaligns overarching patterns with individual 
interaction nuances. Besides, a mixed-fusion method (Qiao et al., 2022) 
that integrates feature fusion and entity interaction learning within a 
single graph entangles entity concepts, lacking a specific feature to rep-
resent each entity, which fails to learn HOIs explicitly. We compare these 
alternative architectures with our method in Experimental Results 5.

4.1.  Dual-attention fusion for feature optimization

Previous HOI recognition approaches primarily rely on CNN or 3D-
CNN models to process visual inputs. These models extract spatio-
temporal features that capture rich appearance and contextual cues from 
humans and objects (Le, Sahoo, Chen, & Hoi, 2020; Maraghi & Faez, 
2019; Morais et al., 2021). While effective in clean settings, these meth-
ods are highly sensitive to occlusions and struggle when visual cues are 
incomplete or ambiguous. Without explicit spatial reasoning, they often 
fail to capture the structural context of interactions. Incorporating ge-
ometric information is therefore critical for improving robustness and 
enabling accurate recognition in real-world HOI scenarios. Advanced 
methods such as 2G-GCN (Qiao et al., 2022) attempt to integrate geo-
metric features within a GCN framework to augment visual data. How-
ever, their fusion of collective geometric features with individual visual 
features risks hierarchical misalignment, fusion inefficiencies, and diffi-
culties in entity distinction. CATS (Qiao et al., 2024) also employs GCN 
to model geometric features but directly combines them with visual fea-
tures, which may dilute their distinct contributions.

We propose a dual-attention fusion mechanism to optimize multi-
modal feature integration for entity representations (Fig. 3). We first 
apply a graph attention mechanism to geometric features, enabling the 
model to learn structured spatial representations by capturing the vary-
ing importance of neighboring entities. With these enriched geometric 
embeddings, we then employ a channel attention module to adaptively 
fuse geometric and visual features, selectively emphasizing informative 
channels while suppressing less relevant ones. This sequence ensures 
that spatial reasoning is established before feature fusion and allows the 
model to balance modality contributions more effectively. If channel at-
tention is applied before relational modeling, it would risk fusing less 
informative geometric features and weaken the spatial reasoning capa-

bility. As a result, we obtain a well-contextualized entity representation 
that effectively blends geometric and visual cues, providing a robust 
foundation for subsequent entity interaction graph learning.

4.1.1.  Graph attention-based feature embedding
Previous research (Qiao et al., 2024, 2022; Zhou et al., 2022) learns 

geometric features using GCNs, which typically apply the same convolu-
tion operation to all neighbors of a node. This approach fails to account 
for the different roles or importance that neighbors may have in the con-
text of multi-person HOIs. This may lead to a homogenization of features 
that fails to capture the complexity of multi-entity dynamics.

We propose a Graph Attention Network (GAT) (Brody, Alon, & Ya-
hav, 2021) based embedding to capture the evolving significance of in-
teractions. It learns multi-entity geometric features, adaptively weight-
ing the importance of each entity’s geometric features through an atten-
tion mechanism. This enables the model to expertly handle occlusions 
and dynamic environments for multi-person HOI recognition.

For feature representation, we concatenate the position and velocity 
of all entities into keypoint channels, forming geometric features  =
{𝑔𝑒,𝑘𝑡 }𝑇 ,𝐸,𝐾

𝑡=1,𝑒=1,𝑘=1 ∈ ℝ4 with 𝑔𝑒,𝑘𝑡  as the 𝑘-th type features for entity 𝑒 at 
frame 𝑡, where 𝑇  denotes the total number of frames in the video, 𝐸
and 𝐾 denote the total number of entities and keypoints of an entity in 
a frame, respectively. Human joints and object bounding box diagonals 
are extracted as keypoints.

We adaptively infer spatial correlations with our GAT among key-
points 𝑘1 and 𝑘2 for a single timestep among entities as follows: 
𝐠𝑠𝑡 = 𝛼𝑘1 ,𝑘1𝚯𝐠𝑡,𝑘1 +

∑

𝑘2∈
𝛼𝑘1 ,𝑘2𝚯𝐠𝑡,𝑘2 , (1)

and the attention coefficients 𝛼𝑘1 ,𝑘2  are computed as: 

𝛼𝑘1 ,𝑘2 =
exp

(

Γ
(

𝐚⊤[𝚯𝐠𝑘1 ‖𝚯𝐠𝑘2 ]
))

∑

𝑘3∈∪{𝑘3} exp
(

Γ
(

𝐚⊤[𝚯𝐠𝑘1 ‖𝚯𝐠𝑘3 ]
)) , (2)

where 𝚯 and Γ are the transformation function and LeakyReLU activa-
tion, respectively.

To efficiently integrate spatial and temporal information, we further 
process the attention-enhanced geometric features. In particular, 𝐠𝑠𝑡  is 
then fused with a 1 × 1 convolution along the temporal channel to form 
spatial-temporal geometric features 𝐠𝑠𝑡𝑡 ∈ ℝ𝑇×𝑁𝐾×𝐶1 , effectively summa-
rizing temporal dynamics while avoiding the complexities of 3D convo-
lutions. It is then reshaped to 𝐠𝑠𝑡𝑡 ∈ ℝ𝑇×𝑁×𝐾𝐶1  and embedded by a Multi-
Layer Perceptron (MLP) to get entity geometric features 𝐠′𝑡 ∈ ℝ𝑇×𝑁×𝐶2 .

Unlike geometric features, visual features in videos contain rich con-
textual information and fundamental feature representations. Following 

Fig. 3. Overview of our bottom-up framework GeoVis-GNN. We first design a dual-attention fusion for entity feature optimization, which embeds and fuses visual and 
geometric features in a graph attention-based mechanism and channel attention module, respectively. The enriched entity-specific representations are then inputted 
into the interdependent entity graph to further model explicit interactions and implicit interdependencies. Finally, we apply a BiGRU to capture the temporal 
dependencies to obtain segmentation and recognition results.
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(Morais et al., 2021; Qiao et al., 2024), we extract entity visual fea-
tures 𝐯𝑡,𝑛 ∈ ℝ2048 from ROI pooled 2D bounding boxes of humans and 
objects in videos, utilizing a pre-trained Faster R-CNN (Ren, He, Gir-
shick, & Sun, 2016) module on the Visual Genome (Krishna et al., 2017). 
They are subsequently aligned dimensionally with geometric features to 
𝐯′𝑡 ∈ ℝ𝑇×𝑁×𝐶2  through an MLP with learnable embeddings.

4.1.2.  Geo-vis channel attention-based feature fusion
Incorporating geometric and visual features poses a significant chal-

lenge due to their inherent representation and scale discrepancies. Prior 
approaches have attempted multimodal fusion by element-wise addi-
tion (Zhou et al., 2022) or feature concatenation (Qiao et al., 2024; Wan 
et al., 2019). However, such direct operations are infeasible for our task 
as they do not account for the disparate nature of feature spaces, leading 
to suboptimal learning outcomes.

We propose a novel geometry-visual channel attention-based feature 
fusion to effectively integrate geometric and visual features of all hu-
mans and objects, which achieves selective feature enhancement and 
encourages complementarity between multimodal features. We exploit 
channel attention mechanisms (Hu, Shen, & Sun, 2018) in geometry-
visual channels of all entities. This allows the model to adaptively em-
phasize informative features while suppressing less relevant ones, which 
is especially beneficial for learning more representative visual and geo-
metric features in diverse HOI scenarios. For instance, visual features of-
ten suffer in noisy backgrounds but thrive in scenarios with small back-
grounds. Geometric features demonstrate strength in addressing partial 
occlusions (Qiao et al., 2022), which is a common situation in multi-
person HOI scenarios.

Specifically, as shown in Fig. 3, our channel attention based feature 
fusion module first concatenates 𝐠′𝑡 and 𝐯′𝑡 along the entity dimension to 
entity geometry-visual features 𝐠𝐯𝑡 ∈ ℝ𝑇×2𝑁×𝐶2 , and compute a channel 
attention 𝐴 as: 
𝐴 = 𝜎

(

𝐖2𝛿
(

𝐖1
(

𝐺𝐴𝑃
(

𝐠𝐯𝑡
))))

, (3)

where GAP denotes Global Average Pooling (Lin, Chen, & Yan, 2013), 
𝛿 and 𝜎 represent the ReLU and Sigmoid activation. 𝐖1 and 𝐖2 are 
weights of Fully-Connected (FC) layers, shared across all entities and 
timesteps to ensure consistent transformation and improved generaliza-
tion with fewer parameters. Apply these values to original features for 
attended geometry-visual fusion features: 
𝐠𝐯′𝑡 = 𝐴 ⋅ 𝐠𝐯𝑡. (4)

Finally, we enhance the feature representation of each entity. In par-
ticular, after assigning distinct weights to each geometry-visual channel 
of an entity, the weighted features are strategically split into separate ge-
ometric and visual streams. These are then adeptly fused back together, 
producing a new enriched entity representation ̃𝐠𝐯𝑡 ∈ ℝ𝑇×𝑁×𝐶3 . This re-
fined feature fusion set, being a weighted and well-contextualized blend 
of geometric and visual cues, sets the stage for more discerning entity 
interaction graph learning.

Compared to our attention-based feature fusion, Zhang et al. (2022), 
Tu, Sun, Zhai, and Shen (2023) apply Transformer to fuse geometric and 
visual features in image-based HOI detection, which is constrained in 
processing video data due to memory inefficiency. Graph-based feature 
fusion treats multimodal features as graph nodes (Gao et al., 2020; Liang 

et al., 2020), which is heavily reliant on the design of graph represen-
tation. As HOI is a dynamic process, it is non-trivial to manually define 
an appropriate representation.

4.2.  Interdependent entity graph

In HOI analysis, the majority of approaches (Morais et al., 2021; 
Wang et al., 2023, 2021) construct an independent entity graph that 
assumes a fixed structure to decipher spatial interactions between en-
tities focusing solely on visual features. For example, 2G-GCN (Qiao 
et al., 2022) represents geometric features of all entities as a single en-
tity linked with visual features of object entities, failing to explicitly 
model interactions between all entities. CATS (Qiao et al., 2024) learns 
interactions between human and object categories but neglects relation-
ships between entities within the same category, which is particularly 
limiting in multi-person HOI scenarios.

Our insight is that an effective entity interaction graph should not 
only capture explicit interactions among independent entities, but also 
concurrently discern the implicit interdependencies that exist among 
neighboring entities surrounding a specific entity. These complemen-
tary focuses are crucial for understanding the intricate graph network 
of relations that exist around any specific entity within the scene.

To this end, we propose an interdependent entity graph to capture 
the interdependencies among all neighboring nodes around a particular 
entity with fused geometric and visual features. To improve the pre-
cision of interaction modeling and the representation of relational dy-
namics, we further refine it by employing attention weights between the 
entity in focus and its neighbors (Fig. 3 right). This entity-level graph 
offers a richer representation of spatial interactions in multi-person HOI 
scenarios, advancing the understanding of complex behavioral patterns 
beyond the reach of previous methods.

Specifically, as illustrated in Fig. 4, given a specific entity 𝑒 at each 
frame 𝑡, we first calculate the features from its neighbor 𝑢 to itself as 
follows: 

𝑆𝑢
𝑡 = 𝜆 × 𝐠𝐯𝑢𝑡 + (1 − 𝜆) ×

(GAP(𝐖3(𝐠𝐯
𝑢
𝑡 )))

𝑁 − 1
, (5)

where 𝜆 controls the contextual fusion threshold and is fixed to 0.5. This 
value is selected based on preliminary validation experiments, and we 
find that the model’s performance remains stable despite small varia-
tions in this setting. 𝐖3 is the weight of a FC layer. These neighboring 
features are then aggregated into a robust representation that encapsu-
lates the collective attributes of the neighboring group: 
𝑆𝑒
𝑡 = 𝑆𝑇𝐴𝐶𝐾𝑢∈𝑁,𝑢≠𝑒(𝑆𝑢

𝑡 ⊙𝑀(𝑆𝑢
𝑡 )), (6)

where 𝑀(⋅) is the mask indicator for valid neighbors and ⊙ denotes 
element-wise multiplication. Meanwhile, we employ a dot-product at-
tention mechanism (Morais et al., 2021; Vaswani et al., 2017) to obtain 
the attention weights between node 𝑒 and its neighbors as: 

𝑊 𝑒
𝑡 =

∑

𝑢∈𝑁,𝑢≠𝑒𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑆𝑒
𝑡 (𝑆

𝑢
𝑡 )

𝑇

√

𝑑

)

, (7)

where 𝑑 is the feature dimension. Finally, the refined feature represen-
tation of the entity is 𝐹 𝑒

𝑡 = 𝑊 𝑒
𝑡 ⊙ 𝑆𝑒

𝑡 , ensuring a contextually aware in-
tegration of features that strengthens the entity’s representation within 
its surroundings.

Fig. 4. In the interdependent entity graph, we first model neighbor features ¬ before aggregating them to the target entity .

Expert Systems With Applications 290 (2025) 128344 

6 



Author

To enable precise and adaptable delineation of sub-event lengths in 
video sequences, after obtaining the fused features of each entity at each 
time step, we employ a Gumbel-Softmax module (Jang, Gu, & Poole, 
2016) to 𝐹 𝑒

𝑡 . It efficiently facilitates gradient-based learning and en-
sures probabilistically coherent segmentation, essential for handling the 
dynamic nature of video data. Finally, we apply a Bi-directional Gated 
Recurrent Unit (BiGRU) (Chung, Gulcehre, Cho, & Bengio, 2014) to cap-
ture the temporal dependencies between each sub-action and then use 
the output features to recognize sub-activities for humans and object 
affordances for objects, varying according to the dataset.

5.  Experimental results

5.1.  Datasets

We evaluate GeoVis-GNN on multiple datasets: MPHOI-120, MPHOI-
72 (Qiao et al., 2022), CAD-120 (Koppula et al., 2013), and Bimanual 
Actions (Dreher et al., 2020), showcasing the superior results on concur-
rent partial HOI, two-person, single-person and two-hand HOI recogni-
tion.

The MPHOI-72 dataset is valuable for two-person HOI recognition 
tasks. It contains 72 videos of 8 pairs of people performing 3 distinct 
activities (Cheering, Hair cutting and Co-working) with 13 human sub-
activities (e.g., Sit, Approach, Pour). Each video showcases two partici-
pants interacting with 2–4 objects from 3 unique angles. Geometric fea-
tures and human sub-activity labels are frame-wise annotated.

CAD-120 is a prominent dataset for single-person HOI recognition. It 
contains 120 RGB-D videos, capturing 10 distinct activities executed by 
4 participants, each repeated three times. In each video, a participant 
interacts with 1–5 objects. The dataset provides frame-wise annotations 
for 10 human sub-activities (e.g., opening, cleaning, placing) and 12 object 
affordances (e.g., openable, cleanable, placeable).

The Bimanual Actions dataset is a large-scale collection of 540 RGB-
D videos capturing HOIs using both hands. It documents the actions 
of 6 subjects who engage in 9 varied bimanual tasks, with each task 
performed 10 times. The dataset assigns 14 unique action labels to each 
hand, with frame-wise annotations for each entity within the videos.

5.2.  Implementation details

We follow Morais et al. (2021) and Qiao et al. (2024, 2022) to evalu-
ate GeoVis-GNN on two tasks: joint segmentation and label recognition, 
and label recognition given known segmentation. The first task involves 
segmenting the timeline of each entity and classifying segment labels 
in a video. The second task, an extension of the first, requires label-
ing pre-existing segments with known ground-truth segmentation. We 
utilize the F1@𝑘 metric (Lea, Flynn, Vidal, Reiter, & Hager, 2017) for 
evaluation, applying standard thresholds of 𝑘 = 10%, 25%, and 50%. 
This metric considers a predicted action segment correct if it achieves 
a minimum Intersection over Union (IoU) overlap of 𝑘 with the ground 
truth. It is widely adopted in temporal segmentation research (Farha & 
Gall, 2019; Lea et al., 2017; Morais et al., 2021), particularly for its abil-
ity to handle short or partial actions commonly found in HOI scenarios 
by requiring a certain overlap for each segment. As a result, it offers 
a more fine-grained evaluation of segmentation quality, capturing both 
the correctness of segment boundaries and the overall alignment with 
the ground truth.

For dataset evaluation, we use different cross-validation protocols 
tailored to the characteristics of each dataset to ensure subjects in the 
training set do not appear in the test set. For the single-person HOI 
datasets, CAD-120 and Bimanual Actions, we use leave-one-subject-out 
cross-validation, treating each individual as a separate fold. For the 
two-person HOI dataset MPHOI-72, we employ leave-two-subjects-out 
to preserve the same principle while accounting for pairs of interacting 
subjects. This ensures a strict separation of subjects (or subject pairs) be-

Table 2 
Joined segmentation and label recognition results on 
MPHOI-120.

Model
 Sub-activity
F1@10 F1@25 F1@50

 ASSIGN  58.0 ± 8.5  53.7 ± 7.9  39.1 ± 7.4
 2G-GCN  60.7 ± 6.5  55.3 ± 6.9  39.6 ± 6.5
 CATS  62.8 ± 2.7  56.7 ± 4.2  42.8 ± 3.9
GeoVis-GNN  65.1 ± 5.2  59.8 ± 4.7  46.6 ± 5.1

tween training and testing. For MPHOI-120, our cross-validation scheme 
specifies three subjects not present in the training set as the test set.

The GeoVis-GNN framework is implemented in PyTorch and trained 
in two stages using the AdamW optimizer. A batch size of 16 is used 
across all datasets. The learning rate is set to 0.0001 for both the MPHOI 
datasets and the CAD-120 and Bimanual Actions datasets. Training 
MPHOI-120, MPHOI-72, CAD-120 and Bimanual Actions on four Nvidia 
Titan RTX GPUs take 6, 4, 8 hours and 7 days respectively, while testing 
the entire set takes approximately 2, 2, 6 and 20 minutes respectively.

To capture increasingly complex features while keeping computa-
tional cost reasonable, we adopt an incremental increase in dimension-
ality. Specifically, we set 𝐶1 = 128, 𝐶2 = 256, and 𝐶3 = 512 based on em-
pirical experimentation to balance model capacity and efficiency. 𝐶1 and 
𝐶2 serve as mid-level embeddings for spatio-temporal transformations, 
while 𝐶3 enables deeper representations for modeling high-level inter-
actions. As Bimanual Actions has a significantly more monotonic data 
distribution, we set 𝐶2 = 32, 𝐶3 = 64 and [𝑆𝑢

𝑡 = 0].

5.3.  Quantitative and qualitative comparison with SOTAs

5.3.1.  Concurrent partial HOIs
In the MPHOI-120 dataset, GeoVis-GNN beats ASSIGN (Morais et al., 

2021), 2G-GCN (Qiao et al., 2022) and CATS (Qiao et al., 2024) by a 
considerable gap (Table 2). Especially under multi-person HOI condi-
tions, ASSIGN drops below 60% in F1 metrics due to occlusions affect-
ing visual features in HOI tasks. GeoVis-GNN shows an improvement of 
about 2% to 4% in F1@{10, 25, 50} over SOTA, demonstrating its ability 
to effectively handle concurrent partial interactions. This highlights the 
strength of its dual-attention fusion strategy and interdependent entity 
graph in capturing essential features and modeling stable interactions, 
even in the presence of unexpected occlusions and complex multi-person 
dynamics.

Fig. 5 illustrates the visualization results of GeoVis-GNN and CATS 
on MPHOI-120 comparing with Ground-truth for the Signing activity, 
where red dashed boxes highlight major segmentation errors. Although 
both GeoVis-GNN and CATS make errors compared to Ground-truth, 
GeoVis-GNN can contribute relatively plausible segmentation results in 
all three subjects. For example, in subject 3, CATS oversegments sit in 
the beginning and then completely misses pass and lift before note, while 
our GeoVis-GNN can accurately segment sit and pass but miss lift. This 
is likely due to the lift action of the subject being very fast and closely 
resembles the note action, leading our model to misclassify lift as note. 
Incorporating temporal attention mechanisms could potentially enhance 
performance in the short duration of the action and its overlapping fea-
tures with subsequent actions.

5.3.2.  Two-person HOIs
GeoVis-GNN achieves an impressive performance on the MPHOI-72 

dataset (Table 3), with an F1@10 score of 84.3%, significantly outstrip-
ping the 71.3% scored by CATS (Qiao et al., 2024). Across all F1 con-
figurations, GeoVis-GNN exhibits substantial improvements of 13.0%, 
10.8%, and 10.6%, respectively. The advanced technique for fusing ge-
ometric and visual features allows to capture more complex patterns in 
the data, while CATS and 2G-GCN cannot leverage it due to its ineffi-
cient fusion.
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Fig. 5. Visualization of segmentation on MPHOI-120 for Signing activity. Red dashed boxes highlight major segmentation errors.

Table 3 
Joined segmentation and label recognition results on 
MPHOI-72.

Model
 Sub-activity
F1@10 F1@25 F1@50

 ASSIGN  59.1 ± 12.1  51.0 ± 16.7  33.2 ± 14.0
 2G-GCN  68.6 ± 10.4  60.8 ± 10.3  45.2 ± 6.5
 CATS  71.3 ± 5.0  65.8 ± 3.9  48.8 ± 5.3
GeoVis-GNN  84.3 ± 5.5  76.6 ± 4.5  59.4 ± 4.9

Fig. 6 shows the visualization of segmentation and labeling on the 
MPHOI-72 dataset with the two advanced models for the Cheering ac-
tivity comparing with Ground-truth. GeoVis-GNN presents more reason-
able and robust segmentation results in all sub-activities, while CATS 
provides some unexpected abnormal results in certain sub-activities, 
such as pour and place. Interestingly, CATS directly recognizes the static 
action sit rather than the ongoing action retreat following place at the 
end of the activity for subject 1. This may result from the dominant role 
of visual features, as these two actions appear similar in the front view.

5.3.3.  Single-person HOIs
Table 4 shows the effectiveness of GeoVis-GNN in CAD-120 eval-

uated by sub-activity and object affordance labels. GeoVis-GNN beats 
previous visual-based (Koppula & Saxena, 2016; Morais et al., 2021; 
Sener & Saxena, 2015) and geometry-informed (Qiao et al., 2024, 2022) 
networks for both labels and achieves the highest F1 scores of mean 
in every configuration. Notably, the two geometry-informed networks 
show comparable performance in human sub-activity recognition, but 
CATS performs poorly in object affordance recognition. This may be 
due to two main factors: an imbalance in feature representation, with 
fewer keypoints for objects than humans, reducing object emphasis in 
the scene graph, while the dual-attention feature fusion in GeoVis-GNN
helps mitigate this. Additionally, our task requires both segmentation 
and label recognition, a two-stage process that does not align well with 
the end-to-end framework of CATS, which may struggle with such dis-

tinct processing stages. Although CATS performs well in multi-person 
HOI scenarios, empirical results indicate that it is less suited for single-
person HOI tasks. Therefore, in the subsequent HOI recognition compar-
isons involving a single individual, we use 2G-GCN as the state-of-the-art 
benchmark.

Fig. 7 presents the visualization outcomes for the Cleaning Objects ac-
tivity in CAD-120, depicting a scene where a person uses a cloth to clean 
a microwave. The qualitative analysis shows that GeoVis-GNN surpasses 
2G-GCN in recognizing human sub-activities and object affordances, no-
tably reachable and movable for the microwave, closely matching the 
Ground-truth.

5.3.4.  Two-hand HOIs
GeoVis-GNN achieves the superior performance on the large-scale 

Bimanual Actions dataset (Table 5), with near 1% improvement in the 
same standard deviation at F1@10. The slight improvement is partly 
due to the limited hand pose estimation that OpenPose (Cao, Hidalgo, 
Simon, Wei, & Sheikh, 2018) uses for the hand skeleton of the dataset, 
which may introduce noise, especially in occlusions. Fig. 8 presents the 
visualization outcomes for the Pouring activity in Bimanual Actions. The 
qualitative analysis demonstrates that GeoVis-GNN has outstanding per-
formance in segmenting and recognizing actions of both hands, which 
almost overlaps the Ground-truth, while 2G-GCN oversegments some 
sub-activities like pour.

5.4.  Scenario-Based performance and error analysis

Table 6 summarizes GeoVis-GNN’s performance across different HOI 
scenarios with performance gaps of MPHOI-120 at F1@10. It arranges 
the datasets from single-person to multi-person partial, revealing a pro-
gressive increase in complexity. In single-person scenarios, CAD-120 
shows the largest gap relative to MPHOI-120 at +24.8%, indicating that 
single-participant tasks with clear sub-activity boundaries are relatively 
straightforward. Similarly, Bimanual Actions follows with a +20.7% 
gap, reflecting simpler interactions than multi-person scenarios. GeoVis-
GNN generally distinguishes between left- and right-hand movements 

Fig. 6. Visualization of segmentation on MPHOI-72 for Cheering activity. Red dashed boxes highlight major segmentation errors.
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Table 4 
Joined segmentation and label recognition results on CAD-120.

Model
 Sub-activity  Object Affordance
F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

 rCRF  65.6 ± 3.2  61.5 ± 4.1  47.1 ± 4.3  72.1 ± 2.5  69.1 ± 3.3  57.0 ± 3.5
 Independent BiRNN  70.2 ± 5.5  64.1 ± 5.3  48.9 ± 6.8  84.6 ± 2.1  81.5 ± 2.7  71.4 ± 4.9
 ATCRF  72.0 ± 2.8  68.9 ± 3.6  53.5 ± 4.3  79.9 ± 3.1  77.0 ± 4.1  63.3 ± 4.9
 Relational BiRNN  79.2 ± 2.5  75.2 ± 3.5  62.5 ± 5.5  82.3 ± 2.3  78.5 ± 2.7  68.9 ± 4.9
 ASSIGN  88.0 ± 1.8  84.8 ± 3.0  73.8 ± 5.8  92.0 ± 1.1  90.2 ± 1.8  82.4 ± 3.5
 2G-GCN  89.5 ± 1.6  87.1 ± 1.8  76.2 ± 2.8  92.4 ± 1.7  90.4 ± 2.3  82.7 ± 2.9
 CATS  89.6 ± 2.1  87.3 ± 1.5  76.0 ± 3.5  90.2 ± 1.5  89.1 ± 2.4  80.5 ± 2.8
GeoVis-GNN  89.9 ± 2.0  87.8 ± 1.9  76.7 ± 3.1  92.7 ± 0.4  90.4 ± 0.6  83.3 ± 1.8

Fig. 7. Visualization of segmentation on CAD-120 for Cleaning objects activity. Red dashed boxes highlight major segmentation errors.

Fig. 8. Visualization of segmentation on Bimanual Actions for Pouring activity. Red dashed boxes highlight major segmentation errors.

Table 5 
Joined segmentation and label recognition results on Bimanual Actions.

Model
 Sub-activity
F1@10 F1@25 F1@50

Dreher et al. (2020)  40.6 ± 7.2  34.8 ± 7.1  22.2 ± 5.7
 Independent BiRNN  74.8 ± 7.0  72.0 ± 7.0  61.8 ± 7.3
 Relational BiRNN  77.7 ± 3.9  75.0 ± 4.2  64.8 ± 5.3
 ASSIGN  84.0 ± 2.0  81.2 ± 2.0  68.5 ± 3.3
 2G-GCN  85.0 ± 2.2  82.0 ± 2.6  69.2 ± 3.1
GeoVis-GNN  85.8 ± 2.2  82.7 ± 2.8  69.7 ± 3.0

Table 6 
GeoVis-GNN performance across different HOI scenarios. The right-
most column indicates the performance gap relative to MPHOI-120.
 Dataset  Scenario  Difference (F1@10)

 CAD-120  Single-person (General)  +24.8%
 Bimanual Actions  Single-person (Bimanual)  +20.7%
 MPHOI-72  Two-person (Full)  +19.2%
 MPHOI-120  Multi-person (Partial)  –

effectively. Furthermore, Fig. 9 shows an example of sub-activity seg-
mentation by GeoVis-GNN compared to the ground-truth, with corre-
sponding RGB screenshots for visual reference. The segmentation er-

Fig. 9. Example of sub-activity segmentation error on the CAD-120 dataset for 
Microwaving Food activity. Corresponding RGB frames are provided for visual 
context.

ror in the red box occurs because the model misclassifies part of the 
moving phase as placing, likely due to the smooth transition and similar 
motion patterns between the two sub-activities. This suggests that the 
model lacks sensitivity to subtle temporal boundaries. Improving tem-
poral modeling or introducing boundary-aware supervision could help 
address this issue.

In multi-person settings, the challenges are more pronounced. 
MPHOI-72 focuses on two fully engaged participants and has a +19.2% 
advantage. Although moderate occlusions and overlapping actions are 
present, the model generally maintains good performance. In contrast, 
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Fig. 10. Example of sub-activity segmentation error on the MPHOI-72 dataset 
for Hair Cutting activity. Corresponding RGB frames are provided for visual con-
text.

MPHOI-120, which features partial engagements, idle participants, and 
concurrent interactions, yields a significantly lower score of 65.1% due 
to heavy occlusions and ambiguous sub-activity boundaries. These re-
sults highlight the difficulty of accurately segmenting short actions and 
managing overlapping activities in crowded, dynamic scenes. Fig. 10 
shows an over-segmentation error by GeoVis-GNN on the MPHOI-72 
dataset during the Hair Cutting activity. As highlighted in the red box, 
the model incorrectly inserts a sit action between place and approach. 
This likely results from short-term pose ambiguity, causing the model 
to misinterpret a brief motion pause as a distinct sub-activity. This
suggests the need for improved temporal smoothing to reduce false seg-
ment boundaries.

5.5.  Cross-dataset zero-shot study

In real-world applications, models usually perform reliably on un-
seen data distributions without the luxury of extensive retraining or 
domain-specific adaptations. To demonstrate the robustness and gen-
eralization capabilities of our proposed GeoVis-GNN, we conduct a 
cross-dataset zero-shot evaluation, as detailed in Table 7. This study 
involves training GeoVis-GNN exclusively on the concurrent partial in-
teraction dataset and subsequently testing it on the two-person HOI
dataset.

Our results show that GeoVis-GNN significantly outperforms the ex-
isting baselines, ASSIGN, 2G-GCN and CATS, achieving an improvement 
of 3.6% in the F1@10 score. This substantial performance gain under-
scores the stronger generalization ability of GeoVis-GNN compared to 
state-of-the-art methods. The ability to effectively transfer learned fea-
tures from a more complex concurrent partial HOI scenario to a simpler 
two-person setting highlights the model’s adaptability and transferabil-
ity across diverse multi-person HOI datasets.

Additionally, in many real-world scenarios, target domain fine-
tuning or transfer learning is often employed to adapt models to spe-
cific environments. However, our zero-shot results, while not reach-
ing the performance levels achievable when training and testing on 
the same two-person dataset, are achieved without any such fine-
tuning, relying solely on training with one dataset and testing on an-

Table 7 
Zero-shot results of training on concurrent partial in-
teraction dataset (MPHOI-120) and testing on two-
person HOI dataset (MPHOI-72).

Model
 Sub-activity
F1@10 F1@25 F1@50

 ASSIGN  33.7  31.5  28.2
 2G-GCN  36.2  33.3  30.4
 CATS  38.5  35.6  33.2
GeoVis-GNN  42.1  40.3  34.5

Table 8 
Results of different strategies in channel attention-based feature fusion on 
MPHOI-120.

Model
 Sub-activity
F1@10 F1@25 F1@50

 (a) ho feature-channel attention  58.2 ± 4.0  50.7 ± 4.2  38.4 ± 3.6
 (b) ho entity-channel attention  61.4 ± 5.7  56.5 ± 5.3  40.4 ± 4.7
 (c) vg entity-channel attention  59.1 ± 5.3  50.4 ± 6.0  39.9 ± 4.8
 d) GeoVis-GNN (ours)  65.1 ± 5.2  59.8 ± 4.7  46.6 ± 5.1

other that do not necessarily share a direct relationship. This sug-
gests that GeoVis-GNN has the potential to generalize across different 
datasets with varying characteristics, even without extensive retrain-
ing. Although there is room for improvement, the results are promis-
ing and indicate that our approach can still be valuable in scenarios 
where labeled data for every possible situation may not be readily
available.

5.6.  Ablation study and alternative architecture

We extensively evaluate the design of channel attention-based fea-
ture fusion. Fig. 11 shows four design strategies, in which: (a): Sep-
arately concatenate human features hv, hg and object features ov, og
on feature-channel with attentions; (b): Separately concatenate human 
features hv, hg and object features ov, og on entity-channel with atten-
tions; (c): Separately concatenate visual features hv, ov and geometric 
features hg, og on entity-channel with attentions; (d) Ours: Concate-
nate all features hv, hg, ov, og on entity-channel with a unified atten-
tion. The results of the comparison are shown in Table 8. Our design
(d) presents the highest F1 score with a significant improvement gap 
w.r.t. other designs. Notably, design (a) shows the lowest score, indicat-
ing the importance of entity-channel fusion. Although (b) and (c) con-
tribute relatively high score, they still show 3.7% and 6% performance 
degradation in F1@10, respectively. This demonstrates the efficiency of 
our holistic entity-channel attention in selectively enhancing the most 
crucial visual or geometric features among all entities.

To further validate the effectiveness and complementary roles of 
each module, we conduct ablation studies on MPHOI-120, where CAF 
and IEG refer to the channel attention-based fusion and the interdepen-
dent entity graph, respectively (Table 9). Specifically, variant (1) re-
moves IEG, variant (2) removes both CAF and IEG, variant (3) removes 
CAF and IEG while replacing the GAT-based geometric embedding with 
GCN, and variant (4) adopts an alternative top-down design instead of 
our bottom-up architecture.

Our results show that removing any module leads to a signifi-
cant performance drop, confirming that each component not only ad-
dresses a specific challenge but also enhances the entire pipeline. For 
instance, variant (1) sees a 3.9% decline in F1@10, highlighting the 
critical role of IEG in modeling complex entity interactions. Likewise,
variants (2) and (3) drop by 5.8% and 6.5%, respectively, underscor-
ing the importance of CAF for effectively merging geometric and vi-

Table 9 
Architecture alternative and ablation study on MPHOI-120. CAF and IEG 
denote the channel attention-based fusion and the interdependent entity 
graph, respectively.

Model
 Sub-activity
F1@10 F1@25 F1@50

 (1) GAT, w CAF, w/o IEG  61.2 ± 6.0  55.7 ± 5.2  45.4 ± 4.6
 (2) GAT, w/o CAF&IEG  59.3 ± 6.1  52.5 ± 5.7  39.4 ± 4.3
 (3) GCN, w/o CAF&IEG  58.6 ± 6.4  51.5 ± 5.3  38.3 ± 5.7
 (4) Top-down architecture  62.8 ± 5.7  56.7 ± 5.2  42.8 ± 4.9
 (5) GeoVis-GNN (ours)  65.1 ± 5.2  59.8 ± 4.7  46.6 ± 5.1

Expert Systems With Applications 290 (2025) 128344 

10 



Author

Fig. 11. Different designs to combine geometric and visual features in channel attention-based feature fusion.

Fig. 12. Visualization of HOI attention maps for GeoVis-GNN and 2G-GCN during a “Cheering” activity. Correct and incorrect recognition results are highlighted in 
green and orange, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

sual features, and the GAT for generating expressive geometric embed-
dings. Moreover, comparing the top-down approach (variant (4)) to 
our final method (5) reveals that the bottom-up framework better in-
tegrates multimodal information and preserves fine-grained entity de-
tails. These findings collectively demonstrate the synergy among GAT, 
CAF, and IEG, where each module contributes to robust HOI recog-
nition by providing refined features that the subsequent modules fur-
ther leverage, resulting in more accurate segmentation and interaction
understanding.

5.7.  HOI attention analysis

To enhance the interpretability of our model, we deep into the atten-
tion analysis in the HOI graph. We compare GeoVis-GNN with the re-
cent advanced method that constructs entity-level HOI graphs. Fig. 12 
presents a comparative analysis of HOI attention maps in entity-level 
graphs generated by GeoVis-GNN and 2G-GCN for a Cheering activity 
involving three subjects, each holding a cup, with two bottles placed 
on the table. In the left attention map, our GeoVis-GNN model demon-
strates its superior interpretability by accurately focusing on all three 
cups, even effectively handling occlusions, such as Cup2 being partially 
hidden behind Cup1. This targeted attention enables the model to cor-
rectly recognize the Cheering sub-activity for all three subjects (high-
lighted in green).

In contrast, the 2G-GCN model exhibits less precise attention, incor-
rectly focusing on Cup3 and Bottle1, leading to erroneous sub-activity 
predictions such as Approaching and Lifting (highlighted in orange). This 
comparison highlights GeoVis-GNN’s ability to maintain robust atten-
tion across relevant entities, even in occluded or cluttered environments, 
thereby ensuring more accurate HOI recognition. The clear distinction 
in attention focus between the two models underscores the effectiveness 
of our bottom-up approach in capturing the essential elements of com-
plex interactions, which is critical for accurate activity recognition in 
multi-person scenarios.

Table 10 
Results of different number of object usage on MPHOI-120.

Model
 Sub-activity
F1@10 F1@25 F1@50

 2 objects only  61.4 ± 3.4  55.4 ± 2.0  40.1 ± 3.2
 3 objects only  62.6 ± 6.9  56.2 ± 8.2  41.8 ± 9.1
 4 objects only  63.1 ± 6.4  56.7 ± 7.5  43.2 ± 8.7
GeoVis-GNN (5 objects)  65.1 ± 5.2  59.8 ± 4.7  46.6 ± 5.1

5.8.  Analysis of varying number of objects

Table 10 presents a comprehensive analysis of our model’s per-
formance when varying the number of objects considered on the 
MPHOI-120 dataset. Notably, MPHOI-120 contains 2–5 objects in to-
tal, even when using only 2 objects, our model outperforms the 2G-
GCN baseline, demonstrating its robustness and highlighting its capa-
bility to extract meaningful interactions even from a limited set of
objects.

Increasing the number of objects from 2 to 5 improves performance 
across all F1 metrics, but also increases memory cost. This trade-off sug-
gests that while more objects provide richer interaction contexts, leading 
to better recognition accuracy, the memory requirements scale with the 
number of objects included. However, in highly cluttered environments 
with potentially hundreds of objects, our design offers an advantage by 
enabling the selection of a fixed number of objects to avoid a linear 
increase in memory consumption.

5.9.  Parameter size and inference time analysis

To verify the efficiency of our approach, Table 11 compares GeoVis-
GNN against 2G-GCN, CATS, and ASSIGN, all of which represent re-
cent state-of-the-art HOI recognition frameworks, on the MPHOI-120
dataset. Specifically, 2G-GCN and CATS combine geometric and vi-
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Table 11 
Comparison of parameter size (M), inference time (millisecond per 
frame) and performance between GeoVis-GNN and state-of-the-arts on 
MPHOI-120.

Model
 Param  Time  Sub-activity
 (M)  (ms/f) F1@10

 ASSIGN  121  79  58.0 ± 8.5
 2G-GCN  148  84  60.7 ± 6.5
 CATS  132  137  62.8 ± 2.7
GeoVis-GNN  130  119  65.1 ± 5.2

sual cues, while ASSIGN only focuses on visual features. GeoVis-GNN
demonstrates greater efficiency with a smaller parameter size (130M) 
compared to 2G-GCN (148M) and CATS (132M), while achieving 
competitive interactive times of 119ms/f. Additionally, GeoVis-GNN 
achieves a notable performance improvement, underscoring its capabil-
ity to balance efficiency and accuracy effectively in multi-person HOI 
recognition tasks.

6.  Conclusion and discussion

Our bottom-up GeoVis-GNN framework for video-based multi-
person HOI recognition introduces a novel dual-attention fusion mech-
anism. It optimizes feature integration by embedding and fusing visual 
and geometric features using a graph attention mechanism followed by 
a channel attention module. These enhanced entity-specific represen-
tations are then fed into an interdependent entity graph, enabling the 
modeling of both explicit interactions and implicit interdependencies 
for a more comprehensive understanding of multi-person HOI. Addition-
ally, we propose a challenging concurrent partial interaction dataset and 
GeoVis-GNN sets new benchmarks across various HOI scenarios.

Our attention-based feature fusion effectively handles scenes with 
multiple entities by discerning dynamic relevance and underlying con-
nections among individuals. In highly cluttered environments - where 
dozens of people or objects may overlap - the root issue is that key inter-
actions, whether contact-based or not, risk being overwhelmed by irrel-
evant visual clutter. For instance, a person watching TV in a room filled 
with other objects and people may go unnoticed if the system cannot 
separate important cues from background noise. This interplay between 
partial interactions and large-scale clutter underscores a deeper need for 
efficient extraction of both in-contact and non-contact interactions (Has-
san, Ghosh, Tesch, Tzionas, & Black, 2021; Jiang, Koppula, & Saxena, 
2013; Nie, Dai, Han, & Nießner, 2022). Identifying the most probable 
HOIs in such scenarios requires robust methods for filtering out extra-
neous information and focusing on contextually meaningful entities.

While our concurrent partial interaction dataset closely reflects real-
world multi-person HOIs, its controlled indoor settings do not fully mir-
ror the unpredictability of in-the-wild situations. The underlying cause is 
that real-world environments often introduce variables like inconsistent 
lighting, unpredictable occlusions, diverse camera angles, and partially 
missing objects (Tripathi et al., 2023; Yang, Zhai, Luo, Cao, & Zha, 2024; 
Ye, Wang, Li, & Zhang, 2023). These factors, compounded by more fluid 
participant behaviors, lead to greater data ambiguity and annotation dif-
ficulty. Although we capture significant variation in our dataset, future 
work will extend to in-the-wild HOI videos. Tackling these unstructured 
real-world contexts requires innovative strategies to handle sudden mo-
tion, incomplete viewpoints, and other complexities beyond the scope 
of indoor, well-annotated data.

Contemporary HOI recognition often depends on precise, frame-level 
annotations (Li, Du, Torralba, Sivic, & Russell, 2021), which become 
costly and inconsistent when interactions are frequent and subtle - com-
mon traits in multi-person environments. The core problem is that a 
large volume of overlapping sub-activities escalates labeling complex-
ity, amplifying human errors and making the labeling process time-
consuming. Moreover, ambiguous transitions (e.g., partial engagement 

or fleeting interactions) make it hard for annotators to decide when 
a sub-activity starts or ends. Weakly-supervised learning (Ren, Yang, 
Zhang, & Zhang, 2023; Rizve et al., 2023) mitigates this challenge by 
using approximate or high-level labels, allowing models to generalize 
without requiring every frame to be manually annotated. As a result, 
this approach offers a scalable pathway for handling diverse, real-world 
HOI data, where precise and exhaustive annotations may be neither fea-
sible nor reliable.
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