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Abstract

We study numerical approximations to the periodic measures of time-periodic stochastic differential 
equations. For those systems with locally Lipschitz coefficients, while the explicit Euler-Maruyama scheme 
does not work, we carry out semi-implicit Euler-Maruyama schemes to compute their periodic measures. 
We prove the local Doeblin condition for the numerical schemes uniformly with respect to discretization 
step size. This, together with a Lyapunov function argument due to the weakly dissipative condition, leads 
to the existence and uniqueness of periodic measures of numerical schemes, and geometric ergodicity with 
the convergence being independent of the step size in the discretization. The novelty of our approach is that 
without knowing any a priori information about periodic measure of the original problem, even the exis-
tence, we can prove its existence and ergodicity from that of periodic measure of the discretized numerical 
scheme.
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1. Introduction

Random periodicity attracts increasing attention since the works of [60] and [22]. It can de-
scribe many natural phenomena consisting of both periodicity and uncertainty. Examples include 
seasonal climate variations and the evolution of glacial periods, where alternations between the 
two climates that occurred approximately every 50,000 years were observed in the early last cen-
tury; human activities including but not limited to agricultural and industrial productions, which 
are highly affected by periodic patterns. Some stochastic differential equations with time-periodic 
coefficients, such as the stochastic resonance model for climate change and a temperature model 
in the study of the weather derivative were proposed, respectively ([4], [5]). This work is devoted 
to developing their numerical analysis as one of the key tools in this analysis underpinning this 
kind of mathematical model.

The study of random periodicity is carried out in two different, but highly related indispens-
able ways, namely random periodic solutions and periodic measures, which give the mathemat-
ical definitions of random periodicity in the pathwise sense and in the sense of distributions, 
respectively ([19]). Periodicity in the sense of distribution was also studied in [12], [32]. The re-
cent works ([21], [20]) discussed the existence of a periodic measure and its geometric ergodicity. 
In [19], the ergodic theory of random periodic processes started to emerge. The “equivalence” of 
the random periodic solutions and periodic measures and their characterization in terms of purely 
imaginary eigenvalues of the infinitesimal generator of the Markovian semigroup were obtained. 
The presence of pure imaginary eigenvalues distinguishes random periodic processes/periodic 
measures regime from stationary processes/mixing invariant measures. In the latter case, the 
Koopman-von Neumann Theorem says the infinitesimal generator has a unique eigenvalue 0 on 
the imaginary axis, and the eigenvalue is simple.

Our concept of random periodicity is the random counterpart of periodicity in the theory of 
dynamical systems. It has contributed to many important works in studying random periodicity in 
a variety of different topics, including bifurcations ([55]), random attractors ([3]), stochastic res-
onance ([10], [21], [20], [16]), random horseshoes ([30]), modelling El Niño phenomenon ([8]), 
stochastic oscillations ([13]), linear response and homogenizations ([6], [54]), large deviations 
principle ([24]), synchronization ([14]), random almost periodic solutions ([7], [46]), random 
periodic solutions of certain functional differential equations ([23]), certain stochastic differen-
tial equations and stochastic partial differential equations ([35], [49], [2]), invariant measures of 
quasi-periodic stochastic systems ([18], [35]).

However, it is difficult to give explicit formulae for periodic measures in many concrete mod-
els, so numerical approximation becomes critical in the study of stochastic dynamics. There are 
abundant important works on numerical analysis of SDEs on a finite horizon ([28], [31], [33], 
[41], [42]). A numerical analysis on approximation to invariant measures of SDEs by discretizing 
the pull-back flow was given in [38], [51], [52], [53], [57], [58]. Despite importance of random 
periodicity both at the theoretical and applied level, their numerical analysis has barely been 
investigated until very recently. Since its publication, the work [15] has prompted many recent 
works in this direction especially those in the last two years including [56], [43], [9], [59], [61], 
[62]. However, the current work is still the only work so far in the study on ergodic theory of nu-
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merical schemes and their approximation of periodic measures of SDEs with polynomial growth 
and weakly dissipative drift.

In this paper, we consider the following nonautonomous stochastic differential equations

dX(t) = b(t,X(t))dt + σ(t,X(t))dWt , t ≥ s, (1.1)

with initial condition X(s) = x, where b :R×Rd →Rd , σ :R×Rd → Rd×d , Wt is a two-sided 
Wiener process in Rd on the Wiener probability space (Ω,F ,P ). We assume that b is τ -periodic 
in the time variable and locally Lipschitz weakly dissipative in the space variable, σ is τ -periodic 
in the time variable and Lipschitz in the space variable and nondegenerate. This equation has a 
unique solution, denoted by Xs,x(t), t ≥ s, throughout the paper.

Denote by (Ω,F ,P , (θs)s∈R) the metric dynamical system associated with the canonical 
probability space (Ω,F ,P ) for Brownian motion W in Rd . Here θs : Ω → Ω is defined by 
(θsω)(t) = W(t + s) − W(s) for all s ∈ R and it is a measurable map. It is measurably in-
vertible, as θ−1(s) = θ(−s) exists for all s ∈ R, so the inverse is also measurable. Denote 
Ft = σ {Ws : −∞ < s ≤ t}, Δ := {(t, s) ∈ R2 : s ≤ t} and u : Δ × Ω × Rd → Rd as a periodic 
stochastic semi-flow of period τ if for all (t, s) ∈ Δ and r ∈ [s, t]

u(t, r,ω) ◦ u(r, s,ω) = u(t, s,ω), (1.2)

and

u(t + τ, s + τ,ω) = u(t, s, θτω), (1.3)

for almost all ω ∈ Ω. In the case of SDE (1.1), u(t, s,ω)x = Xs,x(t,ω) defines a periodic semi-
flow of period τ .

The work of Meyn and Tweedie [40] gave a criterion for the existence of invariant measures 
of stationary Markovian processes under a Lyapunov condition and the local Doeblin condition. 
More relevant interpretation for stochastic differential equations of this abstract and general er-
godicity framework was provided in the work [38]. In [21], the authors gave a method to obtain 
the geometric ergodicity of periodic measures for periodic stochastic semi-flows. It was also 
proved that the periodic measure ρs exists and has a density function. In this paper, we study the 
numerical approximation of the periodic measure.

It is well known that the forward Euler-Maruyama scheme requires a global Lipschitz condi-
tion on the drift and diffusion coefficients ([38]). The analysis of periodic measures suffers the 
same drawback ([16]). However, an implicit Euler-type scheme supplies a tool to study many 
important SDE models with locally Lipschitz property on their drift terms. Semi-implicit Euler-
Maruyama schemes on autonomous SDEs were studied in [28], [29], [33], [38]. Some more 
recent works ([1], [11], [36], [45], [47]) studied infinite-horizon problems on numerical approx-
imations to invariant measures. In [48], the authors gave a perturbation theory for stationary 
Markov chains and invariant measures. Helped by this, they showed that the geometric ergodic 
property provides a way to obtain a uniform numerical error for the infinite-horizon problem.

Without a global Lipschitz assumption on the drift term, we apply some semi-implicit numer-
ical schemes such as the backward Euler-Maruyama method and the split-step Euler-Maruyama 
method to approximate nonlinear random periodic flows. For any fixed initial time s and initial 
position x, we denote by {X̂n}n=0,1,..., the discrete approximation of the solution of (1.1) with 
step size Δt = τ/K and X̂0 = x, i.e. X̂n := X̂s,x(s + nΔt). We prove that the discrete semi-flow 
3 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
has a periodic measure ρ̂Δt
s , s ∈ R and the transition probability converges to the periodic mea-

sure in the Wasserstein distance W1 uniformly with respect to the step size Δt (Theorem 2.7). 
The uniformity is the main result of the first part of this paper. To prove this result, the local Doe-
blin condition and the Lyapunov function condition in one time-step Δt , in which the parameters 
depend on Δt , are not enough. Instead, we need to consider these two conditions for τ

Δt
discrete 

steps corresponding to a time interval of length of period τ together and obtain estimates that are 
uniform in Δt ((2.13), (2.18)).

The other main result is Theorem 5.3 which proves that the cumulation of discretization errors 
in the Wasserstein distance W1 is of the order of O(Δt)

η
2 for the approximation of periodic 

measure for some η ∈ (0,1) i.e. for any s ∈ [0, τ ),

W1(ρs, ρ̂
Δt
s ) = sup 

φ∈Lip(1)

∣∣∣∣∣∣∣
ˆ

Rd

φ(x)ρs(dx) −
ˆ

Rd

φ(x)ρ̂Δt
s (dx)

∣∣∣∣∣∣∣≤ C(Δt)η/2, (1.4)

where C > 0 is a constant independent of Δt . With the help of the perturbation theorem, the 
ergodicity of the approximating numerical scheme and the convergence to its periodic measure 
uniformly in the step size Δt ., we can obtain (1.4) if the true periodic measure ρs exists (Propo-
sition 5.1). The novelty of our approach is that without knowing any a priori information about 
ρs, s ∈ R, even its existence, we can prove the existence and ergodicity of ρs, s ∈ R from that 
of periodic measure ρ̂Δt

s , s ∈ R of the discretized system (Theorem 5.3). In addition to the per-
turbation result, the explicit form of the dβ distance, the use of the Wasserstein distance and the 
estimate of transition probabilities of the true and approximating system (2.12) make it possible.

In the case where the numerical error does not accumulate with respect to the time duration 
of the random periodic flows, we have the coefficient η = 1, and thus the error is of order 1/2. 
This is the case, for example, when the drift is strongly dissipative and Lipschitz. Under these 
stronger conditions, our result agrees with the previous result that the infinite horizon problem 
will possess the same order of numerical error as that of the finite time scheme ([15], [56]). 
Needless to say that the results in this paper go beyond these previous results without requiring 
global Lipschitz and strong dissipative conditions.

The results in this paper are applicable to many physically relevant SDEs, for instance, Benzi-
Parisi-Sutera-Vulpiani’s stochastic resonance model (BPSV model) for the ice-age transition in 
the climate change dynamics is given by SDE (1.1), with b(t, x) = x −x3 +A cos(Bt) ([5]). This 
model was proved to have a unique periodic measure ([21]). This result implies the presence of 
transitions between the ice-age and the interglacial climates. A partial differential equation for 
expected transition time provides a method for studying the transition time in the stochastic 
resonance problem ([20]). The ergodic numerical analysis of the Euler scheme to periodic mea-
sures was given in [16] for SDEs with weakly dissipative and linear growth drifts, so that result 
was only applicable to a modified BPSV model. Compared with the result of [16], the implicit 
schemes release the global Lipschitz condition on the drift term and are applicable to the true 
BPSV model.

The rest of this paper will be organized as follows. In Section 2, we prove that the semi-
implicit numerical schemes are ergodic and have discrete periodic measures which contains the 
main theorem of the first part of the paper (Theorem 2.7). In Section 3, we use a modified SDE 
(3.4) to analyze the approximation error for a finite horizon. In Section 4, we give the a priori 
estimates for the numerical schemes, original SDEs and an auxiliary SDE. These two sections 
4 
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provide the necessary preparations for the use of a perturbation theorem. In Section 5, to consider 
the infinite-horizon problem, we prove a perturbation theory on the periodic measures. This leads 
us to obtain the order of the numerical error of the approximate periodic measure to the true 
periodic measure and the main result of the second part of the paper Theorem 5.3. In Section 6, a 
numerical experiment on the BPSV model is carried out as a verification of the theoretical results 
proven in this paper.

2. Geometric ergodic periodic measures of SDEs and their semi-implicit discretizations

2.1. Assumptions and numerical schemes

A solution of stochastic differential equations (1.1) with coefficients being periodic in time 
with period τ , when it exists and is unique, generates a periodic semi-flow by setting u(t, s)x =
Xs,x(t). Moreover, for any Γ ∈ B(Rd), t, s ∈ R, (t, s) ∈ Δ denote the transition probability of u
by P(t, s, x,Γ) = P ({ω : u(t, s,ω)x ∈ Γ}). Then it satisfies the periodicity property

P(t + τ, s + τ, x, ·) = P(t, s, x, ·), (t, s) ∈ Δ, (2.1)

and the measure preserving property of θτ . Define for φ ∈ Bb(Rd),

Pt,sφ(x) := Eφ(Xs,x(t)) =
ˆ

Rd

φ(y)P (t, s, x, dy), t ≥ 0,

where Bb(Rd) is the space of bounded and Borel measurable function from Rd to R. Then it 
is well known that Pt,s : Bb(Rd) → Bb(Rd) defines a semigroup and satisfies the τ -periodic 
property:

Pt+τ,s+τ = Pt,s,

and the semigroup property

Pr,s ◦ Pt,r = Pt,s,

for all s ≤ r ≤ t . The definition of periodic measure of the periodic Markovian semigroup is 
given below. Let P(Rd) denote all probability measures on Rd . The measure-valued function 
ρ : R→ P(Rd) is called a τ -periodic measure of the τ -periodic Markovian semigroup P if

P ∗
t,sρs(·) :=

ˆ

Rd

P (t, s, x, ·)ρs(dx) = ρt (·), ρs+τ = ρs, (2.2)

for all s ∈ R, t ∈ R+. Such kind of ρ was also called τ−periodic evolution system of measures 
([12], [34], [37]). We use the name periodic measure for simplicity. In this paper, we use |·| to 
denote the Euclidean norm in Rd and use ‖·‖ to denote the matrix norm.

Condition (A1) Functions b and σ are locally Lipschitz with respect to the spatial variables, 
1 -Hölder continuous and τ -periodic with respect to the time variable, and σ is bounded.
2
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Condition (A2) (Non-degeneracy) There exists a positive constant c such that for any t ∈ R
and x ∈ Rd , we have 

∑
i,j aij (t, x)xixj ≥ c |x|2, where a = σσ ∗.

Condition (A3) (Weak dissipativity) There exist constants β > 0 and M > 0 such that for any 
t ∈ R and x ∈Rd , 〈x, b(t, x)〉 ≤ −β |x|2 + M . 

If all (A1), (A2) and (A3) are satisfied, we call Condition (A) holds. Under this condition, it 
was proved in [21] that a periodic measure ρ : (−∞,+∞) → P(Rd) exists and is geometrically 
ergodic: there exist C > 0 and δ > 0 such that

‖P(nτ + s, s, x) − ρs‖T V ≤ Ce−δnτ . (2.3)

To approximate the periodic measure, we consider a semi-implicit scheme with step size Δt =
τ/K > 0, for some K ∈ N , for SDE (1.1). In the following, to simplify notation especially in 
the numerical schemes, we denote X̂i = X̂s,x(s + iΔt), Ẑi := Ẑs,x(s + iΔt). Sometimes to 
simplify notation, we also set that bs(iΔt, x) := b(s + iΔt, x), σ s(iΔt, x) := σ(s + iΔt, x) and 
ΔsWi = Ws+(i+1)Δt −Ws+iΔt . This reparameterization is very convenient to signify the starting 
time s and to make it as if from the time 0. We denote the exact solution as Xt := Xs,x(s + t). 
The equation (1.1) is rewritten as

dXt = bs(t,Xt )dt + σ s(t,Xt )dW̃t , t ≥ 0, (2.4)

where W̃t = Wt+s − Ws = (θsω)(t).
We consider the split-step Euler-Maruyama scheme (SSEM) {X̂i}i∈N given by

{
X̂∗

i = X̂i + bs(iΔt, X̂∗
i )Δt,

X̂i+1 = X̂∗
i + σ s(iΔt, X̂∗

i )Δ
sWi,

(2.5)

with initial condition X̂0 = x and the backward Euler-Maruyama scheme (BEM) {Ẑi}i∈N given 
by

Ẑi+1 = Ẑi + bs((i + 1)Δt, Ẑi+1)Δt + σ s(iΔt, Ẑi)Δ
sWi, (2.6)

with initial condition Ẑ0 = x. The fully-implicit scheme involves an unbounded random variable, 
which requires a more stringent assumption on the model. Therefore, we consider schemes where 
the diffusion terms are in explicit form. This is why they are called semi-implicit schemes. In 
order to emphasize the dependence of X̂i and Ẑi on Δt , we may denote them by X̂Δt

i and ẐΔt
i . 

When no confusions occur, we still use the notation X̂i and Ẑi for simplicity. One can find more 
details for the semi-implicit schemes of autonomous cases in [33], [29], [50], [28].

Remark 2.1. The two schemes are equivalent. If Ẑi satisfies (2.6), then X̂i := Ẑi −bs(iΔt, Ẑi)Δt

solves (2.5) where Ẑi coincides with X̂∗
i , and vice versa.

There are many ways to generate the stochastic increment ΔsWi := Ws+(i+1)Δt − Ws+iΔt . 
In this paper, we apply scaling Gaussian random variables in the approximation of numerical 
schemes i.e. ΔsWi = √

ΔtN (0,1). To apply numerical approximation, we give an additional 
assumption on the SDE.
6 
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Condition (B1) The functions b and σ are C1, and there exists Lb > 0 such that for any t ∈ R
and x, y ∈ Rd , we have 〈x − y, b(t, x) − b(t, y)〉 ≤ Lb |x − y|2.

Function σ is globally Lipschitz with respect to the spatial variables, i.e. there exists a con-
stant Lσ > 0 such that for any t ∈R and x, y ∈ Rd ,

‖σ(t, x) − σ(t, y)‖ ≤ Lσ |x − y| .
Here ‖σ‖ is the matrix norm ‖σ‖ = √

trace(σσ ∗) for a Rd×d matrix σ .

Condition (B2) The initial condition X(s) = ξ is finite in any order of moment, i.e. for any 
integer p ≥ 2, E |ξ |p < ∞. 

If both Conditions (B1) and (B2) are satisfied, we say Condition (B) holds. Sometimes we 
also need the following Condition.

Condition (C) There exist C > 0 and positive integer q such that for all x, y ∈ Rd and t ∈ R,

|b(t, x) − b(t, y)|2 ≤ C
(

1 + |x|2q + |y|2q
)

|x − y|2 .

Remark 2.2. For any fixed t,Δt , denote Gt,Δt (x) = x −b(t, x)Δt + c with some given constant 
c. From Condition (B1), for any t ∈ [0, τ ) and x, y ∈ Rd , we have

〈
x − y,Gt,Δt (x) − Gt,Δt (y)

〉=|x − y|2 − Δt 〈x − y, b(t, x) − b(t, y)〉 ≥ (1 − LbΔt) |x − y|2 .

We choose a step size Δt < 1/Lb to satisfy the condition of the following theorem.

Theorem 2.3 (Uniform Monotonicity Theorem [44], [50]). Suppose G :Rd →Rd is continuous 
and there exists c > 0 such that for any x, y ∈Rd ,

〈x − y,G(x) − G(y)〉 ≥ c |x − y|2 ,

then G is one-to-one and onto. Furthermore, G−1 is Lipschitz continuous and for any x, y ∈Rd ,∣∣∣G−1(x) − G−1(y)

∣∣∣≤ c−1 |x − y| .

Remark 2.4. Under Condition (B1), from Remark 2.2, we know that the map G(x) = x −
b(t, x)Δt is one-to-one when Δt < 1/Lb . Thus, G is invertible, and the first equation of (2.5) 
has a unique solution. As a direct consequence of Theorem 2.3 and Remark 2.1, the numerical 
schemes (2.5) and (2.6) are well-defined.

2.2. Discrete periodic measures

Take Δt = τ/K with an integer K > 0 and consider the discrete counterpart of periodic 
stochastic semi-flow with period K . Denote the discrete Wiener shift θ̂ : Ω → Ω by θ̂ = θΔt , 
then θ̂K = θτ . Denote Δ̂ := {(i, j) ∈ Z2 : j ≤ i}. For a fixed parameter s ∈ [0, τ ), define 
ûs : Δ̂ × Ω ×Rd → Rd as a stochastic semi-flow satisfying for all (i, j) ∈ Δ̂ and j ≤ l ≤ i,

ûs
i,l ◦ ûs

l,j = ûs
i,j , a.s., (2.7)
7 
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and the random periodicity condition

ûs
i+K,j+K(ω) = ûs

i,j (θ̂
Kω) = ûs

i,j (θτω), for almost all ω ∈ Ω. (2.8)

The numerical scheme (2.5) possesses a discrete semi-flow defined as

ûs
i,j (ω)x = X̂i−j = X̂s+jΔt,x(s + iΔt)(ω),

where (i, j) ∈ Δ̂. Here X̂0 = X̂s+jΔt,x(s + jΔt) = x as initial condition of the scheme at time 
s + jΔt . The transition probability is

P̂ s
i,j (x,Γ) = P̂ s

i,j IΓ(x) := P {ûs
i,j (ω)x ∈ Γ}, Γ ∈ B(Rd),

the corresponding semigroup P̂ s·,· is given by

P̂ s
i,j φ(x) =

ˆ

Rd

P̂ s
i,j (x, dy)φ(y), (i, j) ∈ Δ̂,

for any φ ∈ Bb(Rd). From the Markovian property and (2.7), it is easy to see the semigroup 
property of P̂ s , i.e. P̂ s

l,j ◦ P̂ s
i,l = P̂ s

i,j for all (i, j) ∈ Δ̂ and j ≤ l ≤ i, and from (2.8) and the 

measure preserving property of θτ , it follows that P̂ s
i+K,j+K = P̂ s

i,j , for all (i, j) ∈ Δ̂. We call a 

measure-valued function ρ̂s· : Z→ P(Rd) a periodic measure of the semigroup P̂ s
i,j with period 

K if
ˆ

Rd

P̂ s
i,j (x,Γ)ρ̂s

j (dx) = ρ̂s
i (Γ), (i, j) ∈ Δ̂,

and

ρ̂s
i+K = ρ̂s

i , i ∈Z.

To consider the existence of discrete periodic measures under a Wasserstein distance, we apply 
the Harris small set and Lyapunov function method ([27], [40]). This method was refined in 
Theorem 1.3 in [26] where the authors gave the measure contraction result under a weighted 
total variation distance on P(Rd),

dβ(μ1,μ2) =
ˆ

Rd

(1 + βV (x)) |μ1 − μ2| (dx),

where β > 0. It was known that dβ is complete for the space of probability measures P(Rd). 
In the following, let P : Bb(Rd) → Bb(Rd) be a linear map and P ∗ : P(Rd) → P(Rd) be its 
conjugate. Denote P(x, ·) := PI·(x) = P ∗δx(·).
8 
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Lemma 2.5. [26] Assume there exist a measurable function V : Rd → [0,∞) and constants 
C ≥ 0 and γ ∈ (0,1) such that

(PV )(x) ≤ γV (x) + C, x ∈ Rd, (2.9)

and there exist a constant ζ ∈ (0,1) and ν ∈ P(Rd) such that

inf 
x∈C

P(x, ·) ≥ ζν(·), (2.10)

with C = {x ∈ Rd : V (x) ≤ R} for some R > 2C 
1−γ

. Then for any μ1,μ2 ∈P(Rd)

dβ(P ∗μ1,P
∗μ2) ≤ αdβ(μ1,μ2),

where α = max{1 − ζ
2 ,

2+β(Rγ+2C)
2+βR } < 1 and β = ζ

2C
.

Remark 2.6. (i) When β = ζ
2C

,R > 2C 
1−γ

,

2 + β(Rγ + 2C)

2 + βR 
= 1 − β(R(1 − γ ) − 2C)

2 + βR 
< 1.

(ii) A function V satisfying (2.9) is called a Lyapunov function, and the second condition of 
Lemma 2.5, i.e. (2.10), is called the local Doeblin condition.

In the following two theorems, we give the existence of discrete periodic measures and the 
geometric contraction of numerical approximations (SSEM and BEM schemes). Note the con-
vergence of P̂ s

i,−kK+i to ρ̂s
i as k → ∞ is proved to be uniform in Δt for Δt < 1 

Lb
.

Theorem 2.7. Assume Conditions (A), (B) and (C). If Δt < 1/Lb , then the split-step Euler-
Maruyama scheme (2.5) is geometrically ergodic, i.e. for any fixed s ∈ R, there exists a periodic 
measure ρ̂s· : Z→ P(Rd) such that

dβ

(
P̂ s

i,−kK+i (x, ·), ρ̂s
i

)
≤ C(1 + |x|2)e−δ(kτ+iΔt), k ∈ N, (2.11)

for some constants C,δ > 0 and any i ∈Z.

Proof. Firstly, we will verify the local Doeblin condition hold for the discrete transition semi-
group generated by the numerical approximation by scheme SSEM or BEM. We will mainly 
use Theorem 6.2 in [38]. It is not difficult to generalize this theorem to the semigroup Pt,s as the 
Chapman-Kolmogorov equality still holds. Here, we have KΔt = τ is fixed for all Δt sufficiently 
small. For any open set O and compact set C, define for any δ > 0,

Oc
δ := {x : dist(x,Oc) < δ}.

Then for any x ∈ C,
9 
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P (Xs,x(s + τ) ∈O) =P (Xτ ∈O)

=P (Xτ − X̂K + X̂K ∈ O)

≥P (X̂K ∈ Oδ, |Xτ − X̂K | < δ)

≥P (X̂K ∈ Oδ) − P (|Xτ − X̂K | ≥ δ).

So, by Theorem 4.5, (note: the proof of Theorem 4.5 does not use any argument of this theorem)

P (X̂K ∈ O) − P (Xτ ∈O) ≤P (X̂K ∈O\Oδ) + P (|Xτ − X̂K | ≥ δ)

≤P (X̂K ∈O\Oδ) + 1 
δ2E[|Xτ − X̂K |2]

≤P (X̂K ∈O\Oδ) + 1 
δ2 Ceλτ (Δt)2

→0,

as Δt → 0 first and then δ → 0. This verifies the first condition in Condition 6.1 of [38], i.e.

sup 
x∈C

∣∣∣P̂ s
K,0(x,O) − P(s + τ, s, x,O)

∣∣∣ Δt→0 −−−→ 0. (2.12)

On the other hand, as the noise term is assumed to be non-degenerate, so it is easy to verify 
the density p(t, s, x, y) and p̂(s + Δt, s, x, y) exist, and p(t, s, x, y) is jointly continuous in 
(t, s, x, y) ∈ Δ × C × C. Denote k0 be an integer such that k0Δt ≥ τ

3 . By Theorem 1.2 in [39], 
we can get for k1, k2 ≥ k0 and k1 + k2 = K , the density p(s + k1Δt, s, x, y) is differentiable in 
(x, y) with derivative bounded independently of Δt sufficiently small, for kiΔt ≥ τ

3 fixed and 
for some y∗ ∈ Int(C),

P(s + kiΔt, s, x,Bδ1(y
∗)) > 0, i = 1,2, ∀x ∈ C.

Because of (2.12), we can see

∣∣p(s + kiΔt, s, x, y) − p̂(s + kiΔt, s, x, y)
∣∣< ε,

for sufficiently small Δt . Therefore the second condition in Condition 6.1 of [38] is also verified. 
Then by Theorem 6.2 of [38], we have

inf 
x∈C

P̂ s
K,0(x,Γ) > ζν(Γ), (2.13)

where ζ is independent of Δt . Thus we obtained the local Doeblin condition (2.10) as C = {x ∈
Rd : V (x) ≤ R} is a compact set, where V (x) = 1 + |x|2.

Next, we prove the Lyapunov condition (2.9) with V (x). For the numerical scheme SSEM 
(2.5), from the first equation and Condition (A3), we have
10 
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|X̂i |2 =
∣∣∣X̂∗

i − (Δt)bs(iΔt, X̂∗
i )

∣∣∣2
=|X̂∗

i |2 − 2
〈
X̂∗

i , (Δt)bs(iΔt, X̂∗
i )
〉
+
∣∣∣(Δt)bs(iΔt, X̂∗

i )

∣∣∣2
≥(1 + 2βΔt)|X̂∗

i |2 − 2MΔt,

where M is the constant in Condition (A3). So,

|X̂∗
i |2 ≤ (1 + 2βΔt)−1

(
|X̂i |2 + 2MΔt

)
. (2.14)

Define F̂i = Fs+iΔt . As X̂∗
i , X̂i are measurable with respect to F̂i and independent of ΔsWi , 

and E
[
ΔsWi

∣∣F̂i

]
= 0, it follows that

E
[
|X̂i+1|2

∣∣F̂i

]
(2.15)

=E
[
|X̂∗

i |2
∣∣F̂i

]
+ 2E

[〈
X̂∗

i , σ
s(iΔt, X̂∗

i )Δ
sWi

〉 ∣∣F̂i

]
+E

[
|σ s(iΔt, X̂∗

i )Δ
sWi |2

∣∣F̂i

]
≤|X̂∗

i |2 + ‖σ s(iΔt, X̂∗
i )‖2E

[∣∣ΔsWi

∣∣2 ∣∣F̂i

]
≤ (1 + 2βΔt)−1 |X̂i |2 + C′Δt.

Here we can find such a constant C′ from the uniform boundedness assumption of σ and 

E
[
|ΔsWi |2

∣∣F̂i

]
= Δt . As (1 + 2βΔt)−1 < 1 with strictly positive β and Δt , so there exist 

constants r = 1 
1+2βΔt

∈ (0,1) and C1 ≥ 0 such that

E
[
V (X̂i+1)

∣∣F̂i

]
=1 +E

[
|X̂i+1|2

∣∣F̂i

]
(2.16)

=1 + r|X̂i |2 + C′Δt

=rV (X̂i) + 1 − r + C′Δt

≤rV (X̂i) + 2βΔt + C′Δt

≤rV (X̂i) + C1Δt.

This implies that

P̂ s
i+1,iV (x) ≤ rV (x) + C1Δt, i = 0,1, . . . . (2.17)

By the semigroup property of P̂ s·,·, it is easy to obtain that

P̂ s
K,0V (x) ≤rKV (x) +

K−1∑
i=0 

riC1Δt

=(1 + 2βΔt)
τ
Δt V (x) + C1Δt

1 − rK
1 − r 

11 
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≤e− 1
2 βτV (x) + C1Δt

1 + 2βΔt

2βΔt

=e− 1
2 βτV (x) + C2, (2.18)

where C2 is independent of Δt .
Set P = P̂ s

K,0. From P̂ s
2K,K = P̂ s

K,0, then P̂ s
kK,0 = (P̂ s

K,0)
k = P k , and

dβ(P k(x, ·),P k−1(x, ·)) = dβ((P k−1)∗P(x, ·), (P k−1)∗δx).

By Lemma 2.5, we have

dβ(P k(x, ·),P k−1(x, ·)) =dβ(P̂ s
kK,0(x, ·), P̂ s

(k−1)K,0(x, ·))
≤αdβ(P̂ s

(k−1)K,0(x, ·), P̂ s
(k−2)K,0(x, ·))

≤αk−1dβ(P̂ s
K,0(x, ·), δx)

=αk−1
ˆ

Rd

(1 + βV (y))

∣∣∣P̂ s
K,0 − δx

∣∣∣ (dy)

≤αk−1

⎡
⎢⎣ˆ
Rd

(1 + βV (y))P̂ s
K,0(dy) +

ˆ

Rd

(1 + βV (y))δx(dy)

⎤
⎥⎦

≤αk−1
(

2 + βE
(
V (X̂K)

)
+ βV (x)

)
≤αk−1

(
2 + β(e− 1

2 βτV (x) + C2) + βV (x)
)

=αk−1
(

2 + β(e− 1
2 βτ + 1)(1 + |x|2) + βC2

)
≤Cαk−1(1 + |x|2),

where C > 0 is a constant and 0 < α < 1 is a constant. It follows that for any l ≥ k,

dβ(P̂ l(x, ·), P̂ k(x, ·)) =dβ((P̂ k)∗P̂ l−k(x, ·), (P̂ k)∗δx)

≤Cαkdβ(P̂ s
(l−k)K,0(x, ·), δx)

≤Cαk
(

2 + β(e− 1
2 βτ(l−k)V (x) + C2) + βV (x)

)
≤Cαk(1 + |x|2),

so we know {P̂ k}k is a Cauchy sequence. Then we have the existence of its limit which is an 
invariant measure of P̂ k , denoted by ρ̂s

0. Let l → ∞, we have

dβ(P̂ s
kK,0(x, ·), ρ̂s

0) = dβ(P̂ k(x, ·), ρ̂s
0) ≤ Cαk(1 + |x|2) = C(α1/K)kK(1 + |x|2). (2.19)

Let δ > 0 be chosen such that e−δΔt = α
1 
K , then
12 
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dβ(P̂ s
0,−kK(x, ·), ρ̂s

0) ≤ Ce−δkτ (1 + |x|2). (2.20)

Note from (2.17) and Lemma 2.5 again, we also have for any μ1,μ2 ∈P(Rd), and all i ∈ Z,

dβ((P̂ s
i+1,i )

∗μ1, (P̂
s
i+1,i )

∗μ2) ≤ Ce−δΔtdβ(μ1,μ2). (2.21)

Define

ρ̂s
i = (P̂ s

i,0)
∗ρ̂s

0, i = 0,1, . . . . (2.22)

Then it is easy to see from the semigroup property, (2.20) and (2.21) that for i = 0,1, . . . , k ∈ N ,

dβ(P̂ s
i,−kK(x, ·), ρ̂s

i ) =dβ((P̂ s
i,0)

∗P̂ s
0,−kK(x, ·), (P̂ s

i,0)
∗ρ̂s

0)

≤e−δiΔtdβ(P̂ s
0,−kK(x, ·), ρ̂s

0)

≤Ce−δ(kτ+iΔt)(1 + |x|2). (2.23)

In the following we want to prove the above also holds for i ∈Z\N . From (2.20) and periodicity 
of P̂ s·,·, we know that

dβ(P̂ s
−K,−kK(x, ·), ρ̂s

0) ≤ e−δ(k−1)τ (1 + |x|2).

Define ρ̂s
−K = ρ̂s

0, then

dβ(P̂ s
−K,−kK(x, ·), ρ̂s

−K) ≤ e−δ(k−1)τ (1 + |x|2).

Define

ρ̂s
i = (P̂ s

i,−K)∗ρ̂s
−K, i = −K + 1,−K + 2, . . . , (2.24)

then it is obvious that ρ̂s
i defined in (2.24) is consistent with that defined in (2.22) for all i ∈ N . 

On the other hand, (2.21) holds for all i ∈Z. Thus it follows that for i ≥ −K,k ≥ 1, similarly as 
(2.23),

dβ(P̂ s
i,−kK(x, ·), ρ̂s

i ) =dβ((P̂ s
i,−K)∗P̂ s

−K,−kK(x, ·), (P̂ s
i,−K)∗ρ̂s

−K)

≤e−δΔt(i+K)Ce−δ(k−1)τ (1 + |x|2)
=Ce−δ(kτ+iΔt)(1 + |x|2).

The result can extend similarly to all i < −K as well. The result of this theorem is proved. �
Remark 2.8. For the backward Euler-Maruyama scheme (2.6), define, for (i, j) ∈ Δ̂,

P̃ s (x,Γ) = P {Ẑi ∈ Γ
∣∣Ẑj = x}.
i,j

13 
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The map X̂i = Ẑi − bs(iΔt, Ẑi)Δt = G
s,Δt
i (Ẑi) between the SSEM scheme X̂i and the BEM 

scheme Ẑi is one-to-one with step size Δt < 1/Lb . By Remark 2.1, we have that for any set Γ, 
(i, j) ∈ Δ̂,

P̃ s
i,j (x,Γ) =P {Ẑi−j ∈ Γ}

=P {(Gs,Δt
i )−1X̂

s+jΔt,G
s,Δt
j (x)

(s + iΔt) ∈ Γ}
=P {X̂s+jΔt,G

s,Δt
j (x)

(s + iΔt) ∈ G
s,Δt
i (Γ)}

=P̂ s
i,j (G

s,Δt
j (x),G

s,Δt
i (Γ))

=(G
s,Δt
i )−1P̂ s

i,j (G
s,Δt
j (x),Γ). (2.25)

In particular,

P̃ s
i,−kK(x,Γ) =P̂ s

i,−kK(G
s,Δt
−kK(x),G

s,Δt
i (Γ))

=P̂ s
i,−kK(G

s,Δt
−K (x),G

s,Δt
i (Γ)). (2.26)

Now define

ρ̃s
i (Γ) = ρ̂s

i (G
s,Δt
i (Γ)) = ((G

s,Δt
i )−1ρ̂s

i )(Γ). (2.27)

From the periodicity of ρ̂s· and Gs,Δt· , we see that i �→ ρ̃s
i is also K-periodic. Moreover for 

(i, j) ∈ Δ̂, Γ ∈ B(Rd),

(P̃ s
i,j )

∗ρ̃s
j (Γ) =

ˆ

Rd

P̂ s
i,j (G

s,Δt
j (y),G

s,Δt
i (Γ))ρ̂s

j (G
s,Δt
j (dy))

=
ˆ

Rd

P̂ s
i,j (x,G

s,Δt
i (Γ))ρ̂s

j (dx)

=ρ̂s
i (G

s,Δt
i (Γ)) = ρ̃s

i (Γ).

Thus ρ̃s· is a periodic measure of P̃ s·,·.

Similar to the proof of Theorem 2.7, we have the geometric ergodicity of BEM.

Theorem 2.9. Assume Conditions (A), (B) and (C). If Δt < 1/Lb , then the backward Euler-
Maruyama scheme (2.6) is geometrically ergodic i.e. for any fixed s, there exists a periodic 
measure ρ̃s : Z→ P(Rd) of period K such that

dβ

(
P̃ s

i,−kK(x, ·), ρ̃s
i

)
≤ C(1 + |x|2)e−δ(kτ+iΔt), k ∈N, (2.28)

for some constants C,δ > 0 and i = 0, . . . ,K − 1.
14 
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3. A priori estimates for SDEs and their semi-implicit numerical scheme

The main objective of the rest of this paper is to estimate the error of the periodic measure and 
its numerical approximation. For this purpose we need a priori estimates for both the solution of 
SDE (1.1) and its numerical approximation.

3.1. A priori estimates of the semi-implicit numerical schemes

First we show the numerical approximations under Conditions (A) and (B) possess bounded 
2p-th moments.

Proposition 3.1. Assume Conditions (A) and (B), 0 < Δt < 1/Lb, then for any integer p, there 
exist constants Cp,λ > 0 such that for any x ∈ Rd and n ∈ N , s ∈R,

E|X̂s,x(s + nΔt)|2p ≤ Cp

(
1 + |x|2p exp(−λpnΔt)

)
,

Proof. For simplicity in this proof, we denote X̂n = X̂s,x(s +nΔt). Firstly by applying Young’s 
inequality, we have for any a, b > 0,

(a + b)p ≤
⎡
⎣1 +

p−1∑
l=1 

(
p

l

)
l

p
δ

p
l

l

⎤
⎦ap +

⎡
⎣p−1∑

l=1 

(
p

l

)
p − l

p
δ
− p

p−l

l

⎤
⎦bp.

Here δl > 0 can be any fixed constants. For any given integer p and Δt , we choose each δl such 
that l

p
δl

p
l = (εΔt)l . Then,

(a + b)p ≤
⎡
⎣1 +

p−1∑
l=1 

(
p

l

)
(εΔt)l

⎤
⎦ap + Cp,Δt,εb

p ≤ (1 + εΔt)p ap + Cp,Δt,εb
p. (3.1)

Here Cp,Δt,ε is a constant depending on p,Δt, ε. Using the estimations (2.14) and (2.15), ap-
plying the inequality (3.1), we have for each i,

|X̂i+1|2p =
(
|X̂∗

i + σ s(iΔt, X̂∗
i )Δ

sWi |2
)p

=
(
|X̂∗

i |2 + 2
〈
X̂∗

i , σ
s(iΔt, X̂∗

i )Δ
sWi

〉
+ |σ s(iΔt, X̂∗

i )Δ
sWi |2

)p

≤
(

(1 + ε1Δt)|X̂∗
i |2 + CΔt,ε1

∣∣∣σ s(iΔt, X̂∗
i )Δ

sWi

∣∣∣2)p

≤
(

1 + ε1Δt

1 + 2βΔt

(
|X̂i |2 + 2CΔt

)
+ CΔt,ε1

∣∣∣σ s(iΔt, X̂∗
i )Δ

sWi

∣∣∣2)p

≤
(

(1 + ε1Δt)(1 + ε2Δt)

1 + 2βΔt

(
|X̂i |2 + 2CΔt

))p

+ Cp,Δt,ε1,ε2

∣∣∣σ s(iΔt, X̂∗
i )Δ

sWi

∣∣∣2p

≤
(

(1 + ε1Δt)(1 + ε2Δt)(1 + ε3Δt) |X̂i |2
)p
1 + 2βΔt

15 
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+ Cp,Δt,ε3 (2CΔt)p + Cp,Δt,ε1,ε2

∣∣∣σ s(iΔt, X̂∗
i )Δ

sWi

∣∣∣2p

.

It is worth noting that if we take ε = β
2+βΔt

, then

1 + εΔt

1 + βΔt
= 1 + β

2+βΔt
Δt

1 + βΔt
= 2 + βΔt + βΔt

(1 + βΔt)(2 + βΔt)
= 1 

1 + β
2 Δt

.

So we choose ε1 > 0, ε2 > 0, ε3 > 0 in succession to satisfy that

(1 + ε1Δt)(1 + ε2Δt)(1 + ε3Δt)

1 + 2βΔt
= 1 

1 + β
4 Δt

.

Then we take λ = ln
(

1+ β
4 Δt

)
Δt > 0 to have

(1 + ε1Δt)(1 + ε2Δt)(1 + ε3Δt)

1 + 2βΔt
= e−λΔt < 1.

By the boundedness of σ s(iΔt, Ŷi) and its independence with ΔsWi , we have that

E
(
|X̂i+1|2p

∣∣F̂i

)
≤ e−λpΔt |X̂i |2p + Cp,σ . (3.2)

Here λ,Cp,σ could depend on Δt , but independent of i. Iterating (3.2), we obtain that

E|X̂n|2p ≤ e−λpnΔt |x|2p + Cp,σ

n ∑
i=0 

e−λpiΔt .

The result of this proposition follows from the fact that 
∑n

i=0 e−λpiΔt < 1 
1−e−λpΔt < ∞. �

Denote Gs,Δt
t (x) = x − bs(t, x)Δt = x − b(t + s, x)Δt and take Δt < 1/Lb with one-sided 

Lipschitz coefficient Lb of b. It is easy to see there is a unique solution to x = y +bs(t, x)Δt , for 
any give y ∈Rd , denoted by x = (G

s,Δt
t )−1(y). In [28], the authors presented an idea to analyze 

the semi-implicit scheme by an explicit numerical scheme in a finite horizon for autonomous 
SDEs. In the following, we will extend the analysis to the non-autonomous SDEs. This is an 
important step to analyze the semi-implicit scheme in infinite horizon. For this, set

b̂s(t, x) = bs(t, (G
s,Δt
t )−1(x)), σ̂ s(t, x) = σ s(t, (G

s,Δt
t )−1(x)) (3.3)

and consider

dŜt = b̂s(t, Ŝt )dt + σ̂ s(t, Ŝt )dW̃t , (3.4)

with Ŝ0 = x, where W̃t = Wt+s − Ws = (θsω)(t). Note that by rewriting the SSEM (2.5), we 
obtain
16 
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X̂i+1 = X̂i + b̂s(iΔt, X̂i)Δt + σ̂ s(iΔt, X̂i)Δ
sWi.

It is clear that the above is an explicit Euler-Maruyama scheme of modified SDE (3.4) which 
will help to carry out the desired analysis. We first give the following estimates in Lemma 3.2.

Lemma 3.2. Assume Condition (A3), (B1) and take Δt < 1 
2Lb

, then for any x, y ∈Rd and t ∈R

|b̂s(t, x)| ≤ 1 
1 − LbΔt

∣∣bs(t, x)
∣∣ , (3.5)

∣∣∣(Gs,Δt
t )−1(x) − (G

s,Δt
t )−1(y)

∣∣∣2 ≤ 1 
1 − 2LbΔt

|x − y|2 , (3.6)

〈
x − y, b̂s(t, x) − b̂s(t, y)

〉
≤ Lb

1 − 2LbΔt
|x − y|2 , (3.7)

∥∥σ̂ s(t, x) − σ̂ s(t, y)
∥∥≤ Lσ

1 − 2LbΔt
|x − y|2 , (3.8)

〈
x, b̂s(t, x)

〉
≤M − β

1 + 2βΔt
|x|2 . (3.9)

The proof of (3.5) follows a homotopy argument as in [25] and the rest parts of Lemma 3.2
follows the proof in [28] (Lemma 3.4). The only difference is that the functions b̂, σ̂ depend on 
a time variable t here. But this does not create any difficulty to the proof, so we omit the proof in 
this paper.

Now we consider the solution of (3.4), we have the following estimate.

Lemma 3.3. Assume Conditions (A) and (B) and take Δt < 1 
2Lb

. Then for any integer p ≥ 2, 
there exists Cp,Lp > 0, such that for any t > 0,

E|Ŝt |p ≤ Cp(1 + |Ŝ0|p exp(−Lpt)). (3.10)

Proof. From (3.9), we have a corresponding weakly dissipative condition for the modified SDE 
(3.4). Following the proof of Proposition 3.5, we conclude the result with some new constant Cp

and Lp . �
Now we consider

X̄t = X̂i + (t − iΔt)b̂s(iΔt, X̂i) + σ̂ s(iΔt, X̂i)Δ
sWi(t), (3.11)

where W̃r = Wr+s − Ws = (θsω)(r), X̂r := X̂Δt
i , r̂ = iΔt for r ∈ [s + iΔt, s + (i + 1)Δt) and 

X̄0 = ξ̄ . Here X̂i is given in SSEM (2.5). Note X̄iΔt = X̂i , so (3.11) is a continuous version of 
the SSEM Scheme agrees with X̂i for i = iΔt . This can be rewritten as (3.11) below.

Lemma 3.4. Assume Conditions (A) and (B), take Δt < 1 
2Lb

. Then for any integer p ≥ 2, there 

exists a constant C = C(p) > 0, such that for any t > 0, the process X̄ defined in (3.11) satisfies

E
∣∣X̄t

∣∣2p ≤ Cp. (3.12)
17 
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Proof. Note from (2.5),

X̂∗
i = X̂i + bs(iΔt, X̂∗

i )Δt = X̂i + b̂s(iΔt, X̂i)Δt. (3.13)

Then it can be proved as in (2.14) that |X̂∗
i |2 ≤ (1 + 2βΔt)−1

(
|X̂i |2 + 2CΔt

)
. Denote a =

t−iΔt
Δt . Hence from (3.11) and (3.13), we have that for any t ∈ [iΔt, (i + 1)Δt),

∣∣X̄t

∣∣2p =
∣∣∣(1 − a)X̂i + aX̂∗

i + σ̂ s(iΔt, X̂i)Δ
sWi(t)

∣∣∣2p

≤22p

(
(1 − a)|X̂i |2p + a|X̂∗

i |2p +
∥∥∥σ̂ s(iΔt, X̂i)Δ

sWi(t)

∥∥∥2p
)

.

From (2.14), boundedness of σ and Proposition 3.1, we obtain the result of this lemma. �
3.2. A priori estimates for the solution of equation (1.1)

Denote by Xt := Xs,x(s + t) for simplicity. We also need p-th moment estimates for the 
solution of equation (1.1) as given in the following proposition.

Proposition 3.5. Assume Conditions (A1) and (A3). Then for any integer p ≥ 2, there exist 
Cp,Lp > 0, such that for any t > 0 and x ∈Rd ,

E |Xt |p ≤ Cp(1 + |x|p exp(−Lpt)). (3.14)

Proof. The Brownian motion is also shifted, W̃t = Wt+s − Ws = (θsω)(t). Applying Itô’s for-
mula and Conditions (A1), (A3), we have

d
(
eδt |Xt |p

)≤ (δ − pβ)eδt |Xt |p dt + pσ(t,Xt )e
δt |Xt |p−1 dW̃t

+
(

pM + p(p − 1)

2 
C2

σ

)
eδt |Xt |p−2 dt, (3.15)

where Cσ is the bound of function σ , M and β are as given in the weak dissipativity Condition 
(A3). Denote Cp,σ = pM + p(p−1)

2 C2
σ . Let τN be the first exit time of the process Xt from the 

ball of radius N centred at 0, then E
´ T ∧τN

s
σ (t,Xt ) |Xt |p dWt = 0 for arbitrary p. Now take 

expectation on both sides of (3.15) after integrating from s to T ∧ τN , together with Young’s 
inequality, we have

Eeδ(T ∧τN−s)
∣∣XT ∧τN

∣∣p
≤|x|p + (δ − pβ)E

T ∧τNˆ

s

eδ(t−s) |Xt |p dt + Cp,σE

T ∧τNˆ

s

eδ(t−s) |Xt |p−2 dt (3.16)

≤|x|p + 2Cp,σ

pδε
p
2 
E(eδ(T ∧τN−s) − 1) + K0E

T ∧τNˆ

0 

eδt |Xt |p dt,
18 
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where K0 = δ − pβ + (p−2)Cp,σ

p
ε

p
p−2 and we applied Young’s inequality

|Xt |p−2 ≤ (|Xt |p−2 ε)
p

p−2

p
p−2

+
( 1

ε

) p
2 

p
2 

= p − 2

p
ε

p
p−2 |Xt |p + 2 

pε
p
2 

with ε <
(

p2β 
(p−2)Cp,σ

) p−2
p

.

Now we consider δ = 0. In this situation, K0 < 0 and we have E
∣∣XT ∧τN

∣∣p ≤ |x|p < ∞. Let

Ω0 = {ω : lim 
N→∞ τN ≤ T },

then note |x|p ≥ E
∣∣XT ∧τN

∣∣p ≥ E1Ω0

∣∣XT ∧τN

∣∣p ≥ NpP (Ω0). Thus P (Ω0) ≤ 1 
Np |x|p → 0

as N → ∞. So P (Ω0) = 0. Note τN is non-decreasing in N a.s. So P (Ω0) = 0 suggests 
limN→∞ τN ≥ T a.s. But T is arbitrary. Hence, τN → ∞ as N → ∞. Next we let N go to 
∞ in (3.16), by Fatou’s lemma

eδ(T −s)E |XT |p ≤E lim 
N→∞ eδ(T ∧τN−s)|XT ∧τN

|p

≤ lim inf
N→∞ 

Eeδ(T ∧τN−s)|XT ∧τN
|p

≤ lim inf
N→∞ 

⎡
⎣|x|p + 2Cp,σ

pδε
p
2 
E(eδ(T ∧τN−s) − 1) + K0

T ∧τN−sˆ

s

eδ(t−s)E |Xt |p dt

⎤
⎦

≤|x|p + 2Cp,σ

pδε
p
2 

(eδ(T −s) − 1) + K0

T̂

s

eδ(t−s)E|Xt |pdt. (3.17)

Now we choose the constant δ to guarantee K0 > 0 and apply the Gronwall inequality on (3.17),

eδT E |XT |p ≤ 2Cp,σ

pδε
p
2 

eδT + eK0T

(
|x|p − 2Cp,σ

pδε
p
2 

)
+ 2K0Cp,σ

p(δ − K0)δε
p
2 
(eδT − eK0T ). (3.18)

Then (3.14) follows as K0 < δ. �
4. Convergence of numerical schemes in finite horizon

In the previous sections, we have given the numerical schemes to stochastic periodic systems 
and discussed the existence of their periodic measures. In order to analyze the error of the ap-
proximated periodic measures to the true periodic measures, we first need to study the numerical 
approximation to the true solution of the SDE (1.1) in finite horizon first.

As b(t,0) is continuous and periodic in t , we know that it is uniformly bounded for any t ∈ R. 
From Condition (C), we have a polynomial growth of b in the spacial variable as

|b(t, x)|2 ≤ 2 |b(t,0)|2 + 2C
(

1 + |x|2q
)

|x|2 .
19 
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Applying Young’s inequality and rearranging the constants, we have that

|b(t, x)|2 ≤ Cq(1 + |x|2q+2). (4.1)

Assuming Conditions (A) and (B) and applying Proposition 3.5 and Proposition 3.1, we have 
that

E |b(t,Xt )|2 ≤ Cq

(
1 +E |Xt |2q+2

)
≤ Cq(1 +E |ξ |2q+2 exp(−nL2q+2Δt)) (4.2)

and

E|b(t, X̂n)|2 ≤ C′
q

(
1 +E|X̂n|2q+2

)
≤ C′

q(1 +E |ξ |2q+2 exp(−nL2q+2Δt)). (4.3)

Under Condition (B2), we have the boundedness of b under the expectation following (4.2) and 
(4.3).

Lemma 4.1. Assume Conditions (A), (B) and (C) and take Δt < 1 
2Lb

. Then there exist q ∈ Z+

and constants Ci = Ci(q), i = 1,2,3 such that for any x, y ∈ Rd and t ∈ R, b̂s , σ̂ s defined by 
(3.3) satisfy

|b̂s(t, x) − b̂s(t, y)|2 ≤ C1(1 + |x|2q + |y|2q) |x − y|2 , (4.4)

|bs(t, x) − b̂s(t, x)|2 ≤ C2(1 + |x|4q+2)(Δt)2, (4.5)∥∥σ s(t, x) − σ̂ s(t, x)
∥∥2 ≤ C3(1 + |x|2q+2)(Δt)2. (4.6)

Proof. Similar to the argument in (2.14), we have |(Gs,Δt
t )−1(x)|2 ≤ 1 

1+2βΔt
(|x|2 + 2CΔt). It 

implies that (Gs,Δt
t )−1(x) has the same growth order as x, i.e.

|(Gs,Δt
t )−1(x)|p ≤ Cp(1 + |x|p) (4.7)

for any fixed integer p ≥ 2. From Condition (C) and (3.6)

|b̂s(t, x) − b̂s(t, y)|2

≤C
(

1 + |(Gs,Δt
t )−1(x)|2q + |(Gs,Δt

t )−1(y)|2q
) ∣∣∣(Gs,Δt

t )−1(x) − (G
s,Δt
t )−1(y)

∣∣∣2
≤C

(
1 + |x|2q + |y|2q

)
|x − y|2 .

Here C is a constant. Next from the fact that

b̂s(t, x) = bs(t, (G
s,Δt
t )−1(x)) = bs

(
t, x + bs

(
t, (G

s,Δt
t )−1(x)

))
= bs(t, x + b̂s(t, x)Δt),

it follows that
20 
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|bs(t, x) − b̂s(t, x)|2 ≤C
(

1 + |x|2q + |(Gs,Δt
t )−1(x)|2q

)
|b̂s(t, x)|2(Δt)2

≤C2

(
1 + |x|2q

)
|bs(t, (G

s,Δt
t )−1(x))|2(Δt)2

≤C2

(
1 + |x|2q

)(
1 + |(Gs,Δt

t )−1(x)|2q+2
)

(Δt)2

≤C2(1 + |x|4q+2)(Δt)2,

where (4.1), (4.7) were used and constant C2 can differ from time to time. Finally as σ is globally 
Lipschitz, σ̂ s(t, x) = σ s(t, x + b̂s(t, x)Δt), (4.7), with a similar argument, it follows that

∥∥σ s(t, x) − σ̂ s(t, x)
∥∥2 ≤Lσ |b̂s(t, x)|2(Δt)2

=Lσ

∣∣∣bs(t, (G
s,Δt
t )−1(x))

∣∣∣2 (Δt)2

≤C3

(
1 + |(Gs,Δt

t )−1(x)|2q+2
)

(Δt)2

≤C3(1 + |x|2q+2)(Δt)2.

Here C3 is a constant that may differ from time to time. �
Recall the notations in the proof of Proposition 3.5 for simplicity: Xt = Xs,x(s + t), t ≥ 0, is 

the solution of (1.1) with X0 = x. X̂i = X̂s,x(s + iΔt) is the SSEM scheme approximation with 
X̂0 = x and ti = iΔt .

Lemma 4.2. Assume Conditions (A), (B) and (C). Then for 0 ≤ t ≤ T with a given T > 0, the 
solutions of original SDE (1.1) and modified SDE (3.4) satisfy

sup 
0≤t≤T

E|Xt − Ŝt |2 ≤ CeK1T (Δt)2,

for some constants K1 and C > 0.

Proof. Define e(t) = Xt − Ŝt , so e(0) = 0. We apply Itô’s formula to have

|e(t)|2 = 2

tˆ

0 

〈
bs(r,Xr) − b̂s(r, Ŝr ), e(r)

〉
dr +

tˆ

0 

‖σ s(r,Xr) − σ̂ s(r, Ŝr )‖2dr + M(t),

where

M(t) = 2

tˆ

0 

〈
e(r), (σ s(r,Xr) − σ̂ s(r, Ŝr )dW̃r

〉

and W̃t = Wt+s − Ws = (θsω)(t). Note
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2

tˆ

0 

〈
bs(r,Xr) − b̂s(r, Ŝr ), e(r)

〉
dr

=2

tˆ

0 

〈
bs(r,Xr) − bs(r, Ŝr ), e(r)

〉
dr + 2

tˆ

0 

〈
bs(r, Ŝr − b̂s(r, Ŝr ), e(r)

〉
dr

≤2Lb

tˆ

0 

|e(r)|2 dr + 2

tˆ

0 

|bs(r, Ŝr − b̂s(r, Ŝr )|2dr + 2

tˆ

0 

|e(r)|2 dr

≤2(Lb + 1)

tˆ

0 

|e(r)|2 dr + 2C2(Δt)2

tˆ

0 

[
1 + |Ŝr |4q+2

]
dr

and

tˆ

0 

‖σ s(r,Xr) − σ̂ s(r, Ŝr )‖2dr

≤2

tˆ

0 

‖σ s(r,Xr) − σ(r, Ŝr )‖2dr + 2

tˆ

0 

‖σ s(r, Ŝr ) − σ̂ s(r, Ŝr )‖2dr

≤Lσ

tˆ

0 

|e(r)|2 dr + 2C3(Δt)2

tˆ

0 

[
1 + |Ŝr |2q+2

]
dr.

So it follows from above and Lemma 3.3 that

E |e(t)|2 ≤(2(Lb + 1) + Lσ )

tˆ

0 

E |e(r)|2 dr + 2(C2 + C3)(Δt)2

tˆ

0 

[
1 +E|Ŝr |4q+2

]
dr

≤K1

tˆ

0 

E |e(r)|2 dr + K2(Δt)2t,

where K1, K2 are independent of Δt . From the Gronwall inequality,

E |e(t)|2 ≤ K2(Δt)2

tˆ

0 

eK1(t−r)dr ≤ K2

K1
eK1t (Δt)2.

The desired result follows. �
Lemma 4.3. Assume Conditions (A), (B) and (C), then the local error of (3.11) satisfies for any 
p ≥ 1,
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sup
t≥0 

E|X̄t − X̂t |2p ≤ Cp(Δt)p.

Proof. Recall the definitions of X̄ and X̂i in (3.11),

X̄t − X̂i = b̂s(iΔt, X̂i)(t − iΔt) + σ̂ s(iΔt, X̂i)Δ
sWi(t),

and the coincidence of this two processes on grip points, i.e. X̂r := X̂i , r̂ = iΔt for r ∈ [s +
iΔt, s + (i + 1)Δt). We apply (3.5), (4.1) and the boundedness of σ to deduce that

E|X̄t − X̂i |2 ≤2(Δt)2E
∣∣∣b̂s(iΔt, X̂i)

∣∣∣2 + 2E
∣∣∣σ̂ s(iΔt, X̂i)Δ

sWi(t)

∣∣∣2
≤ 2(Δt)2

(1 − LbΔt)2E
∣∣∣bs(t, X̂i))

∣∣∣2 + 2C2
σ Δt

≤ 2Cq(Δt)2

(1 − LbΔt)2

(
1 +E|X̂i |2q+2

)
+ 2C2

σ Δt.

The desired result when p = 1 follows from the a priori estimate in Proposition 3.1 and the 
notation of X̂t and X̂i . Moreover, the above inequality can be extended to any power 2p (p ≥ 1)

and the result of this lemma follows immediately from Proposition 3.1 again. �
Lemma 4.4. Assume Conditions (A), (B) and (C), then the solutions of modified SDE (3.4) and 
continuous-time extension (3.11) satisfy

sup 
0≤t≤T

E|Ŝt − X̄t |2 ≤ CeK3T (Δt),

for some constants K3,C > 0.

Proof. Define e(t) = Ŝt − X̄t . First e(0) = 0. Again Itô’s formula leads to

|e(t)|2 =2

tˆ

0 

〈
b̂s(r, Ŝr ) − b̂s(r̂, X̂r ), e(r)

〉
dr

+
tˆ

0 

‖σ̂ s(r, Ŝr ) − σ̂ s(r̂, X̂r )‖2dr + M(t), (4.8)

where

M(t) = 2

tˆ

0 

〈
e(r),

(
σ̂ s(r, Ŝr ) − σ̂ s(r̂, X̂r )

)
dW̃r

〉
.

Note first from Lemma 3.2, (4.4) and Condition (A1)
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2

tˆ

0 

〈
b̂s(r, Ŝr ) − b̂s(r̂, X̂r ), e(r)

〉
dr

=2

tˆ

0 

〈
b̂s(r, Ŝr ) − b̂s(r, X̄r ), e(r)

〉
dr

+ 2

tˆ

0 

〈
b̂s(r, X̄r ) − b̂s(r, X̂r ), e(r)

〉
dr + 2

tˆ

0 

〈
b̂s(r, X̂r ) − b̂s(r̂, X̂r ), e(r)

〉
dr

≤ 2Lb

1 − 2LbΔt

tˆ

0 

|e(r)|2 dr + 2

tˆ

0 

|e(r)|2 dr

+
tˆ

0 

∣∣∣b̂s(r, X̄r ) − b̂s(r, X̂r )

∣∣∣2 dr +
tˆ

0 

∣∣∣b̂s(r, X̂r ) − b̂s(r̂, X̂r )

∣∣∣2 dr

≤
(

2 + 2Lb

1 − 2LbΔt

) tˆ

0 

|e(r)|2 ds

+ C1

tˆ

0 

(
1 + |X̄r |q + |X̂r |q

)
|X̄r − X̂r |2dr + Lb(Δt)t.

Then take expectation and apply Cauchy-Schwarz inequality to have

2E

tˆ

0 

〈
b̂s(r, Ŝr ) − b̂s(r̂, X̂r ), e(r)

〉
dr (4.9)

≤
(

2 + 2Lb

1 − 2LbΔt

) tˆ

0 

E |e(r)|2 dr

+ Cq

⎛
⎝ tˆ

0 

E
(

1 + |X̄r |q + |X̂r |q
)2

dr ·
tˆ

0 

E|X̄r − X̂r |4dr

⎞
⎠

1
2

+ tLb(Δt).

Moreover,

E

tˆ
‖σ̂ s(r, Ŝr ) − σ̂ s(r̂, X̂r )‖2dr
0 
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≤3

tˆ

0 

E‖σ̂ s(r, Ŝr ) − σ̂ s(r, X̄r )‖2dr + 3

tˆ

0 

E‖σ̂ s(r, X̄r ) − σ̂ s(r, X̂r )‖2dr

+ 3

tˆ

0 

E‖σ̂ s(r, X̂r ) − σ̂ s(r̂, X̂r )‖2dr

≤3Lσ

tˆ

0 

E |e(r)|2 dr + 3Lσ

tˆ

0 

E|X̄r − X̂r |2dr + 3tLσ (Δt). (4.10)

Putting (4.8), (4.9) and (4.10) together applying Lemma 4.3 and a priori estimates for X̄

(Lemma 3.4) and X̂ (Proposition 3.1), we have some constants K3 and K4 independent of Δt or 
t , such that

E |e(t)|2 ≤ K3

tˆ

0 

E |e(r)|2 dr + K4(Δt)t.

Then the desired result follows from the Gronwall inequality. �
Now we simply apply the triangle inequality with the results of Lemma 4.2 and Lemma 4.4

to derive the following result.

Theorem 4.5. Assume Conditions (A), (B) and (C), and take Δt = τ
K

< 1 
2Lb

with some integer 

K . Then the solution Xs,x(s + iΔt) of original SDE (1.1) and its numerical approximation X̂Δt
i

given by the SSEM scheme (2.5) satisfy that for any fixed integer n,

sup 
0≤i≤n

E
∣∣∣Xs,x(s + iΔt) − X̂Δt

i

∣∣∣2 ≤ CeλnΔt (Δt),

where λ = max{K1,K3} with K1,K3 given in Lemma 4.2 and 4.4 respectively.

Proof. Note first as demonstrated in Section 3.1, the SSEM scheme is equivalent to the forward 
Euler-Maruyama scheme of the modified SDE (3.4) i.e. X̂Δt

i = X̂i = X̄(iΔt). Thus,

sup 
0≤i≤n

E
∣∣∣Xs,x(s + iΔt) − X̂Δt

i

∣∣∣2

≤2 sup 
0≤i≤n

(
E
∣∣∣Xs,x(s + iΔt) − ŜiΔt

∣∣∣2 +E
∣∣∣ŜiΔt − X̄iΔt

∣∣∣2)≤ CeλnΔt (Δt),

and then the desired result follows from Lemma 4.2 and Lemma 4.4. �
Remark 4.6. (i) From the equivalence between BEM and SSEM as in Remark 2.1, we have that 
Ẑi = X̂i + bs(iΔt, Ẑi)Δt = X̂i + bs(iΔt, (G

s,Δt
)−1(X̂i))Δt = X̂i + b̂s(iΔt, X̂i)Δt . Thus,
iΔt
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E|X̂i − Ẑi |2 =E
∣∣∣X̂i − (X̂i + b̂s(iΔt, X̂i)Δt)

∣∣∣2 ≤ Cq(1 +E|X̂i |2q+2)(Δt)2,

where the inequality follows from (4.4). Then we combine the above inequality, Proposition 3.1
and Theorem 4.5 to conclude that

sup 
0≤i≤n

E
∣∣∣XiΔt − ẐΔt

i

∣∣∣2 ≤ CeλnΔt (Δt).

This gives the numerical error of the BEM scheme.
(ii) Theorem 4.5 which is about the error estimates of a finite time horizon problem will play 

a key role in the infinite horizon error analysis of periodic measures in the Wasserstein distance 
in the next section.

5. Discretization and pathway to periodic measures and error estimates

Denote by L(X̂) the law of process X̂. Consider a Markov chain {X̂h
n}n=1,2,... with an arbitrary 

time-increment h, generated by the SSEM numerical approximation X̂s,x(s +nh), to the periodic 
Markov process Xs,x(s + nh), with its transition probability as

L(X̂s,x(s + nh))(B) = P̂ (s + nh, s, x,B) = P {ω ∈ Ω : X̂s,x(s + nh) ∈ B}, B ∈ B(Rd).

We also consider the Markov chain {Xs,x(s + nh)}n=1,2,... generated by the exact solution of 
(1.1). The corresponding transition probability is

L(Xs,x(s + nh))(B) = P(s + nh, s, x,B) = P {ω ∈ Ω : Xs,x(s + nh) ∈ B}, B ∈ B(Rd).

For a given p ≥ 1, we consider the following subspace of P(Rd),

Pp(Rd) =

⎧⎪⎪⎨
⎪⎪⎩μ ∈ P(Rd)

∣∣∣∣‖μ‖p =
⎛
⎜⎝ˆ
Rd

|x|p μ(dx)

⎞
⎟⎠

1 
p

< ∞

⎫⎪⎪⎬
⎪⎪⎭ .

This space is a Polish space under the following p-Wasserstein distance

Wp(μ1,μ2) = inf 
ν∈C(μ1,μ2)

⎛
⎜⎝ ˆ

Rd×Rd

|x − y|p ν(dx, dy)

⎞
⎟⎠

1 
p

, μ1,μ2 ∈ Pp(Rd),

where C(μ1,μ2) is the set of all couplings of μ1 and μ2 containing all probability measures on 
Rd × Rd with marginal distributions μ1 and μ2. For μ ∈ Pp(Rd) and φ : Rd → R measurable 
with supx∈Rd

φ(x) 
1+|x|p < ∞, denote μ(φ) = ´

Rd φdμ. Furthermore, let Lip(1) be the collection of 

all functions f :Rd →R that are Lipschitz continuous with Lipschitz constant |f |Lip ≤ 1.
26 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
Consider W1 and its dual representation gives

W1(μ1,μ2) = sup 
f ∈Lip(1)

∣∣∣∣∣∣∣
ˆ

Rd

f (x)μ1(dx) −
ˆ

Rd

f (x)μ2(dx)

∣∣∣∣∣∣∣
= sup 

f ∈Lip(1)

∣∣∣∣∣∣∣
ˆ

Rd

(f (x) − f (0))(μ1 − μ2)(dx)

∣∣∣∣∣∣∣
≤ sup 

f ∈Lip(1)

∣∣∣∣∣∣∣
ˆ

Rd

|f (x) − f (0)| |μ1 − μ2| (dx)

∣∣∣∣∣∣∣
≤
ˆ

Rd

|x| |μ1 − μ2| (dx). (5.1)

For notational convenience, denote μ = μ1 − μ2. If we assume V (x) ≥ |x| and

G = {measurable φ :Rd → R, |φ(x)| ≤ V (x)}.

We introduce the notation μ+ = max{μ,0} and μ− = max{−μ,0}. It is easy to see from (5.1) 
that

W1(μ1,μ2) ≤
ˆ

Rd

V (x)μ+(dx) +
ˆ

Rd

V (x)μ−(dx)

=
ˆ

Rd

(V (x)Isupp(μ+))μ
+(dx) −

ˆ

Rd

(−V (x)Isupp(μ−))μ
−(dx)

≤ sup 
φ∈G

⎡
⎢⎣ˆ
Rd

φ(x)μ+(dx) −
ˆ

Rd

φ(x)μ−(dx)

⎤
⎥⎦

= sup 
φ∈G

⎡
⎢⎣ˆ
Rd

φ(x)μ1(dx) −
ˆ

Rd

φ(x)μ2(dx)

⎤
⎥⎦ . (5.2)

Take Vp(x) = 1 + |x|2p and let

Gp =
{
φ : Rd →R such that |φ(x)| ≤ Vp(x),

|φ(x) − φ(y)| ≤ C(1 + |x|2p−1 + |y|2p−1)|x − y| for a constant C
}

.

It is easy to see that
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W1(μ1,μ2) ≤ sup 
φ∈Gp

⎡
⎢⎣ˆ
Rd

φ(x)μ1(dx) −
ˆ

Rd

φ(x)μ2(dx)

⎤
⎥⎦ . (5.3)

We give the following two hypotheses needed for a perturbation lemma. The idea of the per-
turbation theory was introduced in [48] to analyze the long time behavior of an approximation 
scheme to invariant measures. However, we substitute the geometric ergodicity condition of the 
original continuous semigroup with that of the discretized approximating process. This approach 
offers a significant advantage that it eliminates the necessity to directly establish the ergodic-
ity of the original continuous-time process as a priori information. In fact, we will demonstrate 
that the ergodicity of the discretized approximating process implies the ergodicity of the original 
continuous process.

The theory is presented in an abstract form, applicable to the solutions of SDEs and their 
discretization schemes. Although the theory is general, it can be verified and applied to some 
specific SDEs discussed in the previous sections.

Hypothesis (I) (Geometric ergodicity) For some constant C1 > 0, 0 < r < 1, we have for all 
s ∈ [0, τ ), n ≥ 0,

W1

(
L(X̂s,x(s + nh)), ρ̂s+nh

)
≤ sup 

φ∈G

∣∣∣Eφ(X̂s,x(s + nh)) − ρ̂s+nh(φ)

∣∣∣≤ C1r
nhV (x),

where ρ̂· is the periodic measure on (Rd,B(Rd)) of discrete time Markov process {X̂n}n=1,2,....
Hypothesis (II) There exist some constant C2 > 0, R ≥ 1, such that for all s ∈ [0, τ ), n ≥ 0,

W1

(
L(Xs,x(s + nh)),L(X̂s,x(s + nh))

)
≤ sup 

φ∈G

∣∣∣Eφ(Xs,x(s + nh)) −Eφ(X̂s,x(s + nh))

∣∣∣
≤C2R

nhV (x)ε,

where ε is a parameter related to the process Xs,x(·) and the process X̂s,x(·).
In the above hypotheses, all constants C1,C2, r,R are independent of h. Hypothesis (I) is 

about geometric ergodicity that represents the long time behavior of the approximating process. 
Hypothesis (II) is on an error accumulation in a finite time horizon. Hypotheses (I) and (II) 
together enable us to obtain a uniform error estimate over an arbitrary long time horizon. In ap-
plications to numerical analysis, the perturbation ε is essentially a numerical error of form (Δt)p

with some order p. In the following lemma, for a given V , we denote ρ̄(V ) := sups∈[0,τ ) ρs(V )

and ¯̂ρ(V ) := sups∈[0,τ ) ρ̂s(V ) respectively.

Proposition 5.1. Under Hypotheses (I) and (II), there exist constants C > 0, ε0 > 0 such that for 
any 0 < ε < ε0, there is a constant N = log ε 

h log
(
r/R2

) , such that

W1
(
L(Xs,x(s + nh)), ρ̂s+nh

)≤ 2C max{ ¯̂ρ(V ),V (x)}εη, for any n ≥ N, (5.4)

where η = log r 
log r−2 logR

∈ (0,1] and ε0 = min

((
r

R2

)2h

,
(
2C1r

−h + 2C2
)− 1 

η

)
. Furthermore, if 

the Markov chain {Xs,x(s + nh)}n=1,2,... has a periodic measure ρ·, then we have for any s ∈
[0, τ ),
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W1
(
ρs, ρ̂s

)≤ 2C{ρ̄(V ) + ¯̂ρ(V )}εη. (5.5)

Proof. For the given constants 0 < r < 1 and R > 1 and fixed h as in Hypotheses (I) and (II), 

we have that for any 0 < ε ≤ ε0 ≤
(

r
R2

)2h

, the constant N(ε) = log ε 
h log

(
r/R2

) ≥ 2 satisfying

εR2Nh = rNh = εη.

From Hypothesis (I), we have for any s ∈ [0, τ ), L ≥ N − 1,

W1

(
L(X̂L), ρ̂s+Lh

)
≤ sup 

φ∈G

∣∣∣Eφ(X̂L) − ρ̂s+Lh(φ)

∣∣∣
≤C1r

LhV (x) ≤ C1r
−hrNhV (x) = C1r

−hV (x)εη.

Also from Hypothesis (II), we have for any i = 0,1, . . . ,K − 1, L ≤ 2N ,

W1

(
L(Xs,x(s + Lh)),L(X̂L)

)
≤ sup 

φ∈G

∣∣∣Eφ(Xs,x(s + Lh)) −Eφ(X̂L)

∣∣∣
≤C2R

LhV (x)ε ≤ C2R
2NhV (x)ε = C2V (x)εη.

Combining the above two results, we have for any L ∈ [N − 1,2N ],

W1
(
L(Xs,x(s + Lh)), ρ̂s+Lh

)≤ sup 
φ∈G

∣∣Eφ(Xs,x(s + Lh)) − ρ̂s+Lh(φ)
∣∣≤ CV (x)εη, (5.6)

where C = C1r
−h + C2. Thus it follows from (5.6) that

L(Xs,x(s + Lh))(V ) =EV (Xs,x(s + Lh)) ≤ ρ̂s+Lh(V ) + ∣∣EV (Xs,x(s + Lh)) − ρ̂s+Lh(V )
∣∣

≤ρ̂s+Lh(V ) + CV (x)εη ≤ ¯̂ρ(V ) + CV (x)εη, (5.7)

where L ∈ [N − 1,2N ].
Now we prove by induction that for any s ∈ [0, τ ), M ∈N and any n ∈ [MN,(M + 1)N ]

W1
(
L(Xs,x(s + nh)), ρ̂s+nh

)≤ ¯̂ρ(V )

M−1∑
j=1 

(Cεη)j + V (x)(Cεη)M. (5.8)

First note that when M = 1, the first summation of (5.8) is 0, so the inequality holds due to (5.6). 
Next we assume that (5.8) holds for a fixed M ∈N . Consider any integer m ∈ [(M + 1)N, (M +
2)N ]. Let n be the closest integer to m − N subject to the constraint that n ∈ [MN,(M + 1)N ]. 
So n ∈ [m−N −1,m−N +1] and hence the integer L := m−n ∈ [N −1,N +1] ⊂ [N −1,2N ]
as N ≥ 2. From the semi-flow property, Xs,x(s + mh) = Xs+Lh,y(s + mh)

∣∣
y=X

s,x
s+Lh

, the Markov 

property, the induction assumption (5.8) for n ∈ [MN,(M + 1)N ], (5.7), we have that
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W1
(
L(Xs,x(s + mh)), ρ̂s+mh

)
= sup 

f ∈Lip(1)

∣∣∣∣
ˆ

f (y)L(Xs,x(s + mh))(dy) −
ˆ

f (y)ρ̂s+mh(dy)

∣∣∣∣
= sup 

f ∈Lip(1)

∣∣∣∣
¨

f (y)L(Xs+Lh,z(s + mh))(dy)L(Xs,x(s + Lh))(dz)

−
¨

f (y)ρ̂s+mh(dy)L(Xs,x(s + Lh))(dz)

∣∣∣∣
≤
ˆ

sup 
f ∈Lip(1)

∣∣∣∣
ˆ

f (y)L(Xs+Lh,z(s + mh))(dy) −
ˆ

f (y)ρ̂s+mh(dy)

∣∣∣∣L(Xs,x(s + Lh))(dz)

=
ˆ

W1

(
L(Xs+Lh,z(s + Lh + nh)), ρ̂s+Lh+nh

)
L(Xs,x(s + Lh))(dz)

≤
ˆ ⎛
⎝ ¯̂ρ(V )

M−1∑
j=1 

(Cεη)j + V (z)(Cεη)M

⎞
⎠L(Xs,x(s + Lh))(dz)

= ¯̂ρ(V )

M−1∑
j=1 

(Cεη)j +L(Xs,x(s + Lh))(V )(Cεη)M

≤ ¯̂ρ(V )

M−1∑
j=1 

(Cεη)j +
( ¯̂ρ(V ) + CV (x)εη

)
(Cεη)M

= ¯̂ρ(V )

M∑
j=1 

(Cεη)j + V (x)(Cεη)M+1.

By induction principle, (5.8) holds for arbitrary M > 0. As ε ≤ ε0 ≤ (2C1r
−h + 2C2

)− 1 
η , we 

have Cεη ≤ 1/2. Then (5.4) is proved as

W1
(
L(Xs,x(s + nh)), ρ̂s+nh

)≤ max{ ¯̂ρ(V ),V (x)}
M+1∑
j=1 

(Cεη)j ≤ 2 max{ ¯̂ρ(V ),V (x)}Cεη.

At last, (5.5) follows from the dual representation of Wasserstein distance, definition of periodic 
measures and averaging of Wasserstein distance of (5.4) with respect to ρs:

W1
(
ρs, ρ̂s

)= sup 
f ∈Lip(1)

∣∣∣∣
ˆ

f (y)ρs(dy) −
ˆ

f (y)ρ̂s(dy)

∣∣∣∣
= sup 

f ∈Lip(1)

∣∣∣∣
¨

f (y)P (s + mτ, s, x, dy)ρs(dx) −
¨

f (y)ρ̂s(dy)ρs(dx)

∣∣∣∣
≤
ˆ

sup 

∣∣∣∣
ˆ

f (y)P (s + mτ, s, x, dy) −
ˆ

f (y)ρ̂s(dy)

∣∣∣∣ρs(dx)

f ∈Lip(1)
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=
ˆ

W1
(
L(Xs,x(s + mτ)), ρ̂s+mτ

)
ρs(dx)

≤2{ ¯̂ρ(V ) + ρ̄(V )}Cεη. �
Remark 5.2. In Proposition 5.1, the choice of increment h of Markov chain is arbitrary. However, 
it is worth noting that to impose fewer restrictions on

ε0 = min

(( r

R2

)2h

,
(

2C1r
−h + 2C2

)− 1 
η

)
,

a smaller value of h would be preferable and more practical. In theoretical arguments, one could 
always fix h in advance, such as setting h = τ , without introducing any rigorous issues in the 
proof.

In the following theorem, we assume the test function φ : Rd → R being measurable and 
satisfying that there exist some constant C > 0 and integer p such that for any x, y ∈ Rd , we 
have

|φ(x)| ≤ C(1 + |x|2p) = CVp(x) (5.9)

and

|φ(x) − φ(y)| ≤ C
(

1 + |x|2p−1 + |y|2p−1
)

|x − y| . (5.10)

The test functions φ ∈ Gp . Consider the SSEM scheme (2.5) generates a discretized periodic 
measure ρ̂Δt

s for s ∈ [0, τ ) with a step size Δt = τ
K

. To consider the numerical error and con-
vergence rate of these two measures, we apply the law of large numbers following the ergodicity 
(see [17]) to approximate the measures as

ρ̂Δt
s (φ) = lim 

N→∞
1 
N

N−1∑
n=0 

φ
(
X̂n

)
. (5.11)

Similarly the approximation of the BEM scheme (2.6) generates a discretized periodic measure 
ρ̃Δt

s by the law of large numbers:

ρ̃Δt
s (φ) = lim 

N→∞
1 
N

N−1∑
n=0 

φ
(
Ẑn

)
. (5.12)

Note that (5.11) and (5.12) are not used immediately in the following error analysis of the pe-
riodic measures. But they are extremely useful in simulation of periodic measures in the next 
section. In the next theorem, we obtain error estimates of the approximation to the periodic mea-
sure ρ· by the discretized periodic measures ρ̂Δt· and ρ̃Δt· in the Wasserstein distance in terms of 
the step size Δt .
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Theorem 5.3. Assume Conditions (A), (B) and (C). Then the Markovian process defined by SDE 
(1.1) has a periodic measure ρs , s ∈ R and there exist C > 0 and Δt0 > 0 such that for any 
Δt ∈ (0,Δt0] and s ∈ [0, τ ), we have

W1
(
ρ̂Δt

s , ρs

)≤ C(Δt)η/2, W1
(
ρ̃Δt

s , ρs

)≤ C(Δt)η/2, (5.13)

where η = δ
δ+λ

with δ given in Theorem 2.7 and λ given in Theorem 4.5.

Proof. By (5.3), Proposition 3.1, Proposition 3.5 and Theorem 4.5, we have that

W1

(
L(Xnh),L(X̂n)

)
≤ sup 

φ∈Gp

∣∣∣Eφ(Xnh) −Eφ(X̂n)

∣∣∣
≤ sup 

φ∈Gp

E
∣∣∣φ(Xnh) − φ(X̂n)

∣∣∣
≤√

3E

[(
1 + |Xnh|2p−1 +

∣∣∣X̂n

∣∣∣2p−1
)(∣∣∣Xnh − X̂n

∣∣∣)]

≤C

[
E

(
1 + |Xnh|4p−2 +

∣∣∣X̂n

∣∣∣4p−2
)]1/2 [

E

(∣∣∣Xnh − X̂n

∣∣∣2)]1/2

≤C
(

1 + |x|2p−1
)

e
λ
2 nh(Δt)1/2,

where h = lΔt for some integer l and λ is obtained from Theorem 4.5. We take R = e
λ
2 ≥ 1 and 

Vp = 1 + |x|2p to achieve

∣∣∣Eφ(Xnh) −Eφ(X̂n)

∣∣∣≤ CRnhVp(x)(Δt)1/2. (5.14)

Thus Hypothesis (II) is verified with Lyapunov function Vp(x) and ε = (Δt)1/2. Moreover, recall 
Theorem 2.7, in which the existence of discrete periodic measure ρ̂Δt· was proved and Hypothesis 
(I) was verified for Δt < 1 

Lb
, where Lb is the one-sided Lipschitz constant of b. We take r =

e−δ < 1 and Vp = 1 + |x|2p to have

sup 
φ∈G

∣∣∣Eφ(X̂s,x(s + nh)) − ρ̂s+nh(φ)

∣∣∣≤ CVp(x)e−δnh,

where δ is given in Theorem 2.7. It follows from Proposition 5.1 that

W1(P (s + nΔt, s, x, ·), ρ̂Δt
s+nΔt ) ≤ 2C max{ ¯̂ρ(V ),V (x)}(Δt)1/2,

where P(s + nΔt, s, x, ·) = L(Xs,x(s + nΔt)). Then triangle inequality implies that {ρ̂Δt
s : s ∈

R} forms a convergent family of measure valued functions with period τ as Δt → 0. Denote this 
limit by ρs , s ∈ R and it is easy to see that s �→ ρs is also τ -periodic. Note when t = nΔt fixed, 
for any open set Γ ∈Rd ,
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ˆ

Rd

P (t + s, s, x,Γ)dρs =
ˆ

Rd

P (t + s, s, x,Γ)d(ρs − ρ̂Δt
s )(x) (5.15)

+
ˆ

Rd

(
P(t + s, s, x,Γ) − P̂ Δt

n,0(x,Γ)
)

dρ̂Δt
s (x)

+
ˆ

Rd

P̂ Δt
n,0(x,Γ)dρ̂Δt

s (x).

For any fixed ε, the first term of the RHS is less than ε when Δt is sufficiently small as ρ̂Δt
s tends 

to ρs in the Wasserstein W1 metric and P(t + s, s, x,Γ) is Lipschitz in x with bounded Lipschitz 
constant. For the second term, we use first

ˆ

Rd

(
P(t + s, s, x,Γ) − P̂ s

n,0(x,Γ)
)

dρ̂Δt
s (x) (5.16)

=
ˆ

V (x)≤M

(
P(t + s, s, x,Γ) − P̂ s

n,0(x,Γ)
)

dρ̂Δt
s (x)

+
ˆ

V (x)>M

(
P(t + s, s, x,Γ) − P̂ s

n,0(x,Γ)
)

dρ̂Δt
s (x).

But from (2.18), we derive that

P̂ s
kK,0V (x) ≤ (e− 1

2 βτ )kV (x) + C2

1 − e− 1
2 βτ

,

and from (2.19) it is easy to see that

ˆ

Rd

V (x)dρ̂Δt
s (x) ≤ C2

1 − e− 1
2 βτ

=: C.

Thus by Chebyshev’s inequality we have

ρ̂Δt
s (V (x) ≥ M) ≤ C

M
.

So for any fixed ε, there exists M > 0 such that ρ̂Δt
s (V (x) ≥ M) ≤ C

M
< 1

2ε. It turns out that

∣∣∣∣∣∣∣
ˆ

V (x)>M

(
P(t + s, s, x,Γ) − P̂ s

n,0(x,Γ)
)

dρ̂Δt
s (x)

∣∣∣∣∣∣∣< ε. (5.17)
33 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
For this particular chosen M > 0, on x ∈ {V (x) ≤ M}, from the same convergence as that of 

(2.12), we have that 
∣∣∣P(t + s, s, x,Γ) − P̂n,0(x,Γ)

∣∣∣→ 0 as Δt → 0, thus when Δt is sufficiently 
small, ∣∣∣∣∣∣∣

ˆ

V (x)≤M

(
P(t + s, s, x,Γ) − P̂ s

n,0(x,Γ)
)

dρ̂Δt
s (x)

∣∣∣∣∣∣∣< ε. (5.18)

This together with (5.17), gives the desired estimate the second term of (5.15). The last term of 
(5.15) gives that

ˆ

Rd

P̂ Δt
n,0(x,Γ)dρ̂Δt

s (x) = ρ̂Δt
nΔt+s(Γ) = ρ̂Δt

t+s(Γ)
Δt→0 −−−→ ρt+s(Γ). (5.19)

It then follows from (5.15), (5.16), (5.17), (5.18) and (5.19) that

ˆ

Rd

P (t + s, s, x,Γ)dρs = ρt+s(Γ), (5.20)

for any t ≥ 0, s ∈ R and Γ being an open set. Then by a standard π -system argument, we have 
that (5.20) holds for any Borel set Γ ∈Rd . Thus, ρs , s ∈ R is a periodic measure of the transition 
semigroup Pt,s .

It turns out now that the first claim of (5.13) follows from Lemma 5.1 where it is trivial 
to see that η = log r 

log r−2 logR
= δ

δ+λ
. Similarly, by Theorem 2.9 and Remark 4.6, one can verify 

Hypotheses (I) and (II) with respect to ρ̃Δt· . The second conclusion of (5.13) also follows from 
Lemma 5.1 immediately. �
Remark 5.4. (i) It is worth noting from the proof of Theorem 2.9 that we do not have to know 
the form of the periodic measure or even the existence of the periodic measure of the original 
Markovian system as a priori information for this analysis. Our result establishes the existence 
of a periodic measure following that of the discretized approximating system. This novel ap-
proach was made possible by ensuring that the convergence of the transition probability of the 
discretized approximating system to its periodic measure is uniform in the discretization step 
size Δt , as the pull-back time approaches infinity.

(ii) We can also use the ergodicity of the discrete numerical approximation to deduce the 
ergodicity of the original system. This can be seen from the following brief argument that for the 
SSEM scheme, we can use Theorem 2.7 and 5.3 to get:

W1 (P (t, s, x, ·), ρt ) =W1
(
L(Xs,x(t)), ρt

)
≤W1

(
L(Xs,x(t)), L̂(Xs,x(t))

)
+ W1

(
L̂(Xs,x(t)), ρ̂t

)
+ W1

(
ρ̂t , ρt

)
≤CRt−sVp(x)(Δt)

1
2 + C(1 + |x|2)e−δ(t−s) + C|Δt | η

2 ,

and then let Δt → 0 to conclude the result. For the BEM scheme, we can use Theorem 2.9 and 
Theorem 5.3 to get the result.
34 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
(iii) It is worth noting that in a special case with a further strong dissipative condition, which 
required that

2 〈x − y, b(t, x) − b(t, y)〉 + ‖σ(t, x) − σ(t, y)‖2 ≤ −C ‖x − y‖2 ,

for some C > 0, the numerical error does not aggregate with respect to time. One can follow the 
proof as in [15] to obtain a convergence result of paths with different initial values.

With the strong dissipative condition, the numerical error analysis in Lemma 4.2 and 4.4 gives 
estimates with negative constants K1 and K3. Thus, the conclusion in Theorem 4.5 becomes

sup 
0≤i≤n

E
∣∣∣Xs,x(s + iΔt) − X̂Δt

i

∣∣∣2 ≤ Ce−λ′nΔt (Δt),

for some λ′ > 0. Consequently, the numerical error does not aggregate with time-length of sim-
ulation, which ensures the Hypothesis (II) with R = 1 in this case. Therefore the infinite horizon 
problem possesses the same order of numerical error as finite ones by η = log r 

log r−2 log 1 = 1. In 
this special case, the result agrees with the result in [56] and our earlier result [15]. Needless 
to say that the results in this paper go much beyond the results requiring a strong dissipativity 
assumption e.g. in [15] and [56].

6. Numerical experiments

In this section, we simulate the Benzi-Parisi-Sutera-Vulpiani stochastic resonance model of 
the ice age transition in the dynamics of climate change with b(t, x) = x −x3 +0.12 cos(0.001t)

and σ(x) = 0.285(2 + cos(x)). To rescale the period as integer τ = 5000, we take b(t, x) =
0.4π(x − x3 + 0.12 cos(0.0004πt)) and σ(x) = 0.285 × √

0.4π(2 + cos(x)).
In such a model, the computational difficulty in giving an approximation of the periodic mea-

sure comes from the fact that the period is very large. One way to conquer the difficulty would 
be to rescale the model to keep the resonance property by choosing a different scaling coeffi-
cient C as b(t, x) = C(x − x3 + 0.12 cos(0.001Ct)) and σ(x) = 0.285 × √

C. But if we change 
the period, for example, to τ = 5, then the coefficients of the SDE will also change accord-
ingly. As a result, C = 400π and so the approximation requires a very small step size to satisfy 
Δt < 1/2Lb = 1/2C = 1/800π ≈ 0.0008. With such a small step size, the computing time is 
essentially the same as the problem with the original large period. This does not seem to be an 
efficient way to address the problem.

From the ergodicity, we can compute the discrete periodic measure ρ̂ from one sample path 
by the law of large numbers due to the ergodicity [19], see (5.11) and (5.12). But, to deal with 
such a large period problem, one can split the approximations into a collection of several sample 
paths with independent Brownian motions. We apply multiprocess computing to reduce the total 
cost of computation time. We may lose some accuracy from convergence at the beginning of the 
computation for each sample path. However, our method, unlike the Monte Carlo method, uses 
a small number of sample paths. Thus, this kind of error is, in fact, negligible by the geometric 
convergence for each sample path.

From Lemma 4.2, Lemma 4.4, Theorem 4.5 and their proofs, we see that the coefficient λ =
max{K1,K3} = max{2(Lb + 1) + Lσ ,2 + Lb + 3Lσ }. It is worth noting that
1−2LbΔt

35 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
lim 
Δt→ 1 

2Lb

λ = lim 
Δt→ 1 

2Lb

K3 = lim 
Δt→ 1 

2Lb

Lb

1 − 2LbΔt
= ∞.

Thus, though it is allowed to take λ < 1 
2Lb

to be close to 1 
2Lb

, it does not make very good sense 

to take λ to be close to 1 
2Lb

. This results in a large value of λ, causing η = δ
λ+δ

to be small, 
and ultimately leading to a suboptimal error rate order. However, in the case of Lσ < Lb , if one 
chooses Δt ≤ 3Lb−2Lσ

4Lb(Lb−Lσ )
, then λ = K1 and η is independent of Δt , and the error rate is always 

(Δt)η/2.
In the BPSV model, Lb = 0.4π ≈ 1.2566, Lσ = 0.285

√
0.4π ≈ 0.3195. Thus K1 ≈ 4.8327

and an efficient choice of Δt makes K3 ≈ K1, which gives Δt ≤ 1 
2Lb

− 1 
K1−2−3Lσ

≈ 0.1311. 

So we choose Δt = 1 
80 , 1 

64 , 1 
50 , 1 

20 , 1 
16 , 1 

10 in the numerical experiments. As the problem has 
no explicit solution, we may regard the outcome when we take Δt = 1/400 as the true solution. 
To achieve the best possible accuracy, we have performed the computations for the time up to 
185000τ=185000×5000 for each Δt . With the help of multiprocess computing, we are able to 
generate 185000× 5000

Δt data for each Δt .
To compare the numerical error in the Wasserstein distance W1, we generate approxima-

tions of X̂s,x(s + iΔt) with different step size Δt = τ/K and collect the data on period points 
{X̂s,x(s + nKΔt)}n=1,2,...,N . Then we sort the data in the ascending order for each Δt , denoted 
by {X̂Δt

n }n=1,2,...,N . Finally, the numerical error in the Wasserstein distance W1 is estimated 
by

W1(ρs, ρ̂
Δt
s ) = 1 

N

N∑
n=1 

∣∣∣X̂1/400
n − X̂Δt

n

∣∣∣ ,
which agrees the result by applying the “wasserstein1d” function in the R language as men-
tioned in [17]. Here, due to our large amount of computations mentioned above, we can take 
N = 185000.

The numerical errors for Δt = 1 
80 , 1 

64 , 1 
50 , 1 

20 , 1 
16 , 1 

10 are presented in Fig. 1 in the log-log 
scale. They align with the 0.5 order line very well.

We also simulate paths and take the values of X̂s,x(s + nτ) for {sj }j=0,1,...,7 where sj = jτ
8 , 

can then compute their density for each sj by the law of large numbers (5.11). The histogram pre-
sented as in Fig. 2 for each sj illustrates the approximations to the density of the periodic measure 
ρsi . It is noted that the density patterns change according to the periodic term 0.12 cos(0.0004πt)

in the drift b(t, x).
Finally, we summarize some important points from the numerical experiment as follows. The 

semi-implicit Euler schemes provide a numerical tool to estimate periodic measures of locally 
Lipschitz drift systems. The cost of the implicit schemes is higher than that of the explicit scheme 
discussed in [16], but they allow for larger step sizes in practical experiments and work for 
problems with polynomial growth coefficients. In addition, the Wasserstein distance has been 
studied to analyze the errors of the approximate periodic measure ρs for each s ∈ [0, τ ) of the 
semi-implicit schemes to the true periodic measure. A rigorous proof of the error analysis is 
given, and the numerical experiment is carried out as a verification of the theoretical results. 
It is noted that the results of the numerics align with the theoretical results proved in this pa-
per.
36 



C. Feng, Y. Liu, Y. Liu et al. Journal of Differential Equations 441 (2025) 113472 
Fig. 1. Error of approximation to periodic measure versus step size in log-log graph. 
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