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An engineered aldolase enables the 
biocatalytic synthesis of 2′-functionalized 
nucleoside analogues

Matthew Willmott    1, William Finnigan1, William R. Birmingham    1, 
Sasha R. Derrington1, Rachel S. Heath1, Christian Schnepel    1, 
Martin A. Hayes    2, Peter D. Smith    3, Francesco Falcioni4 & 
Nicholas J. Turner    1 

Nucleosides functionalized at the 2′-position play a crucial role in 
therapeutics, serving as both small-molecule drugs and modifications in 
therapeutic oligonucleotides. However, the synthesis of these molecules 
often presents substantial synthetic challenges. Here we present an 
approach to the synthesis of 2′-functionalized nucleosides based on 
enzymes from the purine nucleoside salvage pathway. Initially, active-site 
variants of deoxyribose-5-phosphate aldolase were generated for the highly 
stereoselective synthesis of d-ribose-5-phosphate analogues with a broad 
range of functional groups at the 2-position. Thereafter, these 2-modified 
pentose phosphates were converted into 2′-modified purine analogues by 
construction of one-pot multienzyme cascade reactions, leading to the 
synthesis of guanosine (2′-OH) and adenosine (2′-OH, 2′-Me, 2′-F) analogues. 
This cascade allows for the control of the 2′-functional group a lo ng side 
2 -s te re oc he mistry. O  u r fi n di ngs demonstrate the capability of these 
biocatalytic cascades to efficiently generate 2′-functionalized nucleosides, 
starting from simple starting materials.

Nucleoside analogues are an important class of pharmaceutical agent 
showing activity towards a range of biological targets1. For therapeu-
tic applications nucleosides are typically modified at a variety of 
different positions including the ribose sugar, the phosphate back-
bone or the nucleobase, depending on the desired pharmacological 
properties2. Particularly important and synthetically challenging is the 
2′-modification of the ribose sugar, which is utilized both in nucleoside 
analogue drugs (Fig. 1a) and in nucleoside building blocks of thera-
peutic oligonucleotides (Fig. 1b). Therapeutic oligonucleotides are an 
important new modality that facilitate a precision medicine approach 
for patients3,4. Modifications to the 2′-position of the nucleoside, for 

example, 2′-methoxy, 2′-methoxyethoxy (MOE) and 2′-fluoro, are all 
commonly deployed substitutions in therapeutic oligonucleotides 
(Fig. 1b) which impart both resistance to nucleases and improvements 
in RNA binding affinity.

The preparation of 2′-modified nucleosides often requires mul-
tistep synthesis, with extensive protection/deprotection sequences, 
or generates complex mixtures of regioisomers, making the synthesis 
of these molecules challenging. We considered a biocatalytic route 
to access 2′-modified nucleosides because enzymes are often able to 
carry out complex transformations in an atom-efficient manner, under 
relatively mild conditions and without the use of protecting groups. 
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thus far the approach has been limited to 2′-deoxynucleosides when 
starting from DERA, with acetaldehyde as the donor. Engineering DERA 
would allow the synthesis of 2-modified d-ribose-5-phosphate (R5P) 
analogues, starting from d-G3P and a suitable aldehyde donor. The 
products can then be further modified with the remaining enzymes 
in the pathway to generate 2′-functionalized nucleosides (Fig. 1e).

Aldolases tend to have more limited substrate scope for the donor 
rather than the acceptor, and consequently they are often classified 
based on their donor selectivity16 with the acetaldehyde-dependent 
enzyme DERA being a prime example17. DERA catalyses the reversible 
aldol condensation of acetaldehyde and d-G3P and is typically only 
able to accept a small range of donor analogues, such as propanal 
or glycolaldehyde, often coming at the cost of reduced activity18. A 
recent report demonstrated that screening a diverse panel of DERAs 
resulted in activity toward six different aldehydes19. Recent work has 
also involved engineering DERA to expand the activity of the wild-type 
enzyme, resulting in variants able to catalyse the Michael addition of 
nitromethane to α,β-unsaturated ketones20.

In this work, we demonstrate that mutations in the active site of 
Escherichia coli DERA (EcDERA) result in a considerably broadened 
donor substrate scope, allowing for the synthesis of a wide range of 
2-modified-5-phosphate sugars. We have used these DERA variants to 
develop a cascade for the synthesis of 2-functionalized d-ribose- and 
l-lyxose-5-phosphate analogues with a range of functional groups 
including fluoro, MOE and benzyloxy (OBn). Further addition of PPM 
and PNP results in a one-pot synthesis of adenosine analogues func-
tionalized at the 2′-position with –OH, –araOH, –Me and –F.

Results and discussion
Broadening the donor substrate scope of DERA
Previous work suggested that the restriction in the donor substrate 
scope of DERA was possibly due to steric constraints in the active site17. 
Moreover, the substrate scope of fructose-6-phosphate aldolase (FSA) 
was greatly expanded by a ‘minimalist protein engineering’ approach 

Moreover, because different biocatalysts often function under similar 
temperature and pH in aqueous solution, they can be combined into 
multienzyme cascades allowing for two or more reactions to be car-
ried out in one pot without the need to isolate intermediates. In many 
cases this approach can lead to a reduction in waste from intermediate/
product isolation, and allows reactions to be coupled together, thereby 
overcoming potential thermodynamic barriers of individual reactions5. 
These advantages have resulted in biocatalysis becoming increasingly 
deployed in the synthesis of active pharmaceutical ingredients6.

Recent reports have shown that enzymes from the nucleoside 
salvage pathway7 (Fig. 1c) provide a useful platform for the generation 
of functionalized nucleosides. In the retrosynthetic direction, this 
pathway is responsible for the degradation of 2′-deoxynucleosides. 
Starting with a nucleoside phosphorylase (NP) the nucleobase is 
removed, resulting in the generation of a C1 phosphate sugar (Fig. 1c). 
In the following step, phosphopentomutase (PPM) catalyses transfer 
of the phosphate group from the 1-position to the 5-position; finally, 
deoxyribose-5-phosphate aldolase (DERA) breaks down the sugar 
into acetaldehyde and d-glyceraldehyde-3-phosphate (d-G3P) via 
a retroaldol reaction. Because all three enzymes catalyse revers-
ible reactions, they can be combined in the synthetic direction to 
generate nucleosides. An excellent example of this approach is the 
synthesis of the antiviral nucleoside analogue islatravir8 (Fig. 1d). 
There are additional examples of enzymes on this pathway being 
used to generate nucleoside analogues such as dideoxyinosine9 and 
molnupiravir10. There are also many examples of other biocatalysts 
being used in the synthesis of nucleosides, nucleotide analogues11,12 
and oligonucleotides13.

To exploit this pathway for the synthesis of 2′-modified nucleo-
sides, all enzymes in the pathway would need to possess sufficient 
promiscuity to tolerate a wide range of 2′-modifications. The initial chal-
lenge posed by this synthetic cascade is the limited substrate scope of 
DERA. While PPM and purine nucleoside phosphorylase (PNP) enzymes 
have been shown to tolerate a small number of 2′-modifications14,15, 
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that increased space in the active site21. We initially decided to focus on 
a similar strategy, generating mutations in the active site of DERA with 
the intention of enlarging the binding pocket for the donor substrate. 
The previously reported crystal structure of EcDERA [PDB:1JCL]18, which 
contains the linear aldol product bound to the catalytic lysine residue, 
was used to identify six active-site residues in close proximity to the 
2-position of the final product. These residues were mutated to alanine, 
and the resulting variants screened for activity against a broad panel 
of aldehyde donor substrates (Fig. 2).

In addition to the EcDERA variants, wild-type DERA from Arthro-
bacter chlorophenolicus (AcDERA), which was recently shown to 
have the broadest donor substrate scope of a panel of DERAs19, and 
wild-type FSA from E. coli (EcFSA) were also screened. The panel of 
aldehyde donors included halogen (Cl)-substituted, two functional 
groups found in therapeutic oligonucleotides (OMe and MOE) and 
two typical protecting groups used in nucleoside chemistry (OBn 
and O-tert-butyldimethylsilyl (OTBDMS)). These aldehydes were all 
screened with dl-G3P (1) as the acceptor.

The EcDERA-L20A and EcDERA-F76A variants showed notable 
improvement over both wild-type EcDERA and EcFSA. Between both 
variants, conversions ranging from 22% to 73% were obtained towards 
all substrates screened with the exception of OTBDMS which showed 
no activity towards any of the enzyme variants. For the majority of 
substrates, EcDERA-F76A gave higher conversion than EcDERA-L20A. 
The double alanine mutation at these two positions EcDERA-L20A/F76A 
showed increased conversion with larger aldehyde substrates (MOE, 

OBn, heptanal), at the cost of decreased conversion with a selection of 
other functional groups (OH, Cl, OMe).

The equilibrium of this aldolase reaction for the wild-type sub-
strate (acetaldehyde) has been shown to favour the formation of the 
aldol addition product deoxyribose-5-phosphate22. In addition to 
this, calculation of the equilibrium constants for a model reaction 
(synthesis of product 3) via eQuilibrator23 gave an equilibrium constant 
K = 5.4 × 102. The equilibrium for the remaining products 3–14 similarly 
favours the synthetic direction.

In practice, however, these reactions did not proceed to the 
expected thermodynamic equilibrium values. A time-course study 
(Supplementary Information, section 6.3.2) showed that the opti-
mal reaction length was 4 h, with longer reaction times resulting in a 
decrease in product formation. This was probably due to the chemical 
degradation of the G3P starting material24, combined with the revers-
ible nature of the reaction, shifting the equilibrium away from the 
desired product. In the future, this could be mitigated by engineering 
the enzymes in the cascade to function at lower pH, where G3P is more 
stable.

Computational rationalization of substrate scope
To rationalize the increase in activity of the three active variants, models 
were generated in silico and compared to that of the E. coli wild-type 
DERA. The binding pocket volumes for all four enzymes were analysed 
using fpocket25 and compared. As predicted, mutation of the selected 
residues to alanine resulted in an increase in the volume of the active 

O
O3

2– PO

HO

FSA-WTa

AcDERA-WT

EcDERA-WT

EcDERA-I139A

EcDERA-V73A

EcDERA-T170A

EcDERA-T172A

EcDERA-L20A

EcDERA-F76A

EcDERA-L20A/F76A

Products

C
onversion (%

)

3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

OH

OH O
O3

2– PO

HO Cl

OH

O
O3

2– PO

HO

OH O
O3

2– PO

HO

OH

O
O3

2– PO

HO

OH O
O3

2– PO

HO

OH

O
O3

2– PO

HO

OH O
O3

2– PO

HO

OH

O
O3

2– PO

HO O

OH O
O3

2– PO

HO OBn

OH O
O3

2– PO

HO OTBDMS

OH

O

3 4

5 6

7 8

9 10

12 13 14

OO3
2– PO

OH O
O3

2– PO

HO R

OHDERA E. coli
mutants

1

2a–l

Products 3–15

N
O

O -Benzylhydroxylamine 
derivatization

R

OH

OH
O3

2– PO

O
O3

2– PO

HO OMe

OH

11

R
O

+

a

b

Fig. 2 | Screening of DERA variants. a, Assay of DERA variants towards a range  
of aldehyde donors using dl-G3P as acceptor. Conversion was monitored by 
HPLC using UV at 220 nm after derivatization with O-benzylhydroxylamine.  
b, Heatmap showing the average conversions of triplicate repeats for each of the 
aldolase variants with a range of aldehyde donors generating products (3–14). 

The stereochemistry of these products is assigned based on the mechanism of 
DERA. The stereochemistry was later confirmed for a subset of 2′-functionalized 
analogues (Fig. 6). aFor FSA the opposite stereochemistry at C2 is generated to 
the stereochemistry shown.
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site for all variants. The wild-type enzyme has a binding pocket volume 
of 317 Å3; this increases to 416 Å3 for L20A, 447 Å3 for F76A and 529 Å3 for 
L20A/F76A. These increases in binding pocket size seem to correlate 
with the trend of activity observed: larger donor molecules showed 
little to no activity towards the wild-type enzyme, but show better 
activity with the larger binding pockets of the variants. Conversely, 
smaller donor molecules, which were already active towards the wild 
type, did not benefit from the increased active site volume.

To determine whether the generated products are able to fit inside 
the active site and occupy a reasonable binding mode a representative 
product functionalized with 2-MOE was covalently docked into the three 
variants using Autodock26 and compared to the wild-type ligand in the 
crystal structure (Fig. 3). For all three variants the 2-MOE-functionalized 
products were able to occupy a binding mode similar to that of the 
wild-type product (2-deoxy) and in all cases the larger functional group 
added at the 2-position was able to occupy the newly generated binding 
pockets. Further study, in particular molecular dynamics, may help to 
better understand the effect of these mutations on the conformation 
of the active site and the increased donor substrate scope.

Synthesis of 2-modified pentose-5-phosphates
Glyceraldehyde-3-phosphate is both expensive and relatively unsta-
ble, degrading to methyl glyoxal and free phosphate at neutral pH24. 
One way to offset these problems is to generate d- or l-G3P from d- or 
l-glyceraldehyde, respectively, in situ using a kinase, an approach that 
has been employed previously when using FSA27,28. l-G3P (1a) can be gen-
erated from l-glyeraldehyde (15) using glycerokinase from Cellumonas 
sp.29 (Fig. 4a), and d-G3P (1b) can be generated from d-glyceraldehyde 
(16) using dihydroxyacetone kinase from Citrobacter freundii30 (CfD-
HAK, Fig. 4b). These kinase enzymes were therefore combined into 
two-step cascades with the active EcDERA variants.

For both reactions, enzyme loadings were optimized (Supple-
mentary Information, section 8.2.1) and the cascades were screened 

towards a selection of substrates from the initial panel (Fig. 4d,e). 
In general, a similar pattern of activity for the wild type and the two 
variants was seen compared to the initial screen. However, for both 
cascades, when starting from enantiomerically pure glyceraldehyde, 
only a single product peak was observed in the HPLC traces (compared 
to two peaks for dl-G3P) which suggested the formation of a single 
product diastereomer at the 2-position as desired (Supplementary 
Information, section 11.15.1).

Interestingly, when comparing the two reactions, the cascade 
starting from l-glyceraldehyde performed notably better than with 
d-glyceraldehyde. One possible explanation for this difference is the 
presence of native E. coli enzymes coexpressed with the EcDERA vari-
ants. For example, d-G3P is a substrate for triose phosphate isomerase 
(TIM), a highly active enzyme that is rate-limited only by diffusion 
of G3P into the active site31. Even small quantities of this enzyme 
present from E. coli remaining after purification are likely to be suf-
ficient to isomerize a notable proportion of d-G3P into dihydroxy-
acetone phosphate (DHAP, 20) thus lowering conversions (Fig. 5a).  
Because l-G3P is not a substrate for this isomerase, the cascade start-
ing from l-glyceraldehyde can be assumed to show the optimal con-
versions for the reaction in the absence of enzymatic side reactions; 
however, both cascades are still affected by the chemical degradation 
of G3P.

Despite this side reaction, the d-ribose-5-phosphate analogues 
were all generated with conversions ranging from 22% to 66% for all 
the substrates screened.

Synthesis of 2-fluoro pentose-5-phosphates
One modification of particular interest for therapeutic oligonucleo-
tides is 2ʹ-fluoro, which is used in several currently approved thera-
peutic oligonucleotides (lumasiran, inclisiran, etc.)32. Synthesis of the 
2-fluoro-modified R5P requires fluoroacetaldehyde 18 as the donor 
substrate. In view of the difficulty of handling aldehyde 18 we decided 
instead to generate it in situ using an oxidase. Initial work showed that 
fluoroacetaldehyde 18 could be generated from fluoroethanol 17 
using wild-type methanol alcohol oxidase from Pichia Pastoris (PpAO) 
(Fig. 4c). This system was then combined with both kinase enzymes, 
CsGK or CfDHAK, and screened with the wild-type EcDERA alongside 
the two best-performing variants.

Combining the oxidase, kinase and aldolase enabled the synthesis 
of fluorinated products 19a and 19b (Fig. 4f,g). In contrast to the pre-
vious aldehyde substrates, with fluoroacetaldehyde 17 the wild-type 
enzyme gave higher conversion than both the F76A and L20A/F76A 
variants, presumably due to the small size of the fluorine substituent. 
The HPLC traces for this cascade (Supplementary Information, sections 
9.2.1 and 9.3.1) contained multiple peaks, suggesting the presence of 
a mixture of diastereomers at the 2-position (19a d.r., 12:88; 19b d.r., 
50:50). Carrying out a time-course analysis for the synthesis of product 
19b (Supplementary Information, section 9.2.4) demonstrated little dif-
ference in diastereomeric ratio at 1 h compared to 18 h, suggesting that 
this lack of diastereoselectivity is not due to thermodynamic effects, 
as can be observed with threonine-dependent aldolases33.

Inhibition of TIM activity by phosphoenolpyruvate
As highlighted above, the isomerization of d-G3P 1a to DHAP 20 
catalysed by TIM presented a problem for the cascade to generate 
d-ribose-5-phosphate analogues (Fig. 5a). Phosphoenolpyruvate (PEP) 
has been previously shown to inhibit TIM34 and can also be used as a 
phosphate donor substrate for pyruvate kinase (PK) to implement an 
ATP-recycling system. We reasoned that addition of PEP to the cascade 
could serve to both recycle ATP for the kinase step and to increase over-
all conversion to product by inhibiting the formation of DHAP via TIM.

Reactions were screened using the F76A variant, both with and 
without the PEP/PK-recycling system present (Fig. 5b). PEP (10 mM, 
2 equiv.) was added to ensure efficient inhibition of TIM throughout 
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the reaction while still enabling recycling of ATP. Addition of the 
PEP/PK-recycling system resulted in an increase in conversion for all 
donor substrates screened. For the majority of donors, conversions 
to the d-R5P analogues in the presence of the PEP/PK-recycling system 
matched or exceeded the conversions to equivalent l-L5P products.

Addition of the PEP/PK-recycling system enables not only the 
use of catalytic amounts of ATP but also reduces the effects of TIM 
on the cascade, enabling the generation of d-R5P analogues in higher 
conversions.

Semipreparative-scale synthesis of pentose-5-phosphates
Following the development of successful analytical-scale reactions, a 
number of key substrates were then carried through on a semiprepara-
tive scale using EcDERA-F76A with a substrate loading of 20 mM glyc-
eraldehyde.

For the synthesis of l-lyxose-5-phosphates 11a–13a (Fig. 6a) the 
ATP-recycling system was omitted because the PEP-based inhibi-
tion of TIM was not needed for l-G3P. Reactions were instead car-
ried out at 20 mM substrate loading with stoichiometric amounts of 
ATP. The initial substrate chosen to analyse was the 2-OMe, due to its 
diagnostic singlet peak in 1H NMR. Conditions for the scale-up reac-
tion of l-lyxose-5-phosphates were optimized via design of experi-
ment (DOE) (Supplementary Information, section 11.1.1). The most 
important factors were found to be both aldolase and donor substrate 
concentrations.

For the synthesis of d-ribose-5-phosphates 11b and 12b (Fig. 6b) 
reactions were carried out at 20 mM substrate loading with the PEP/
PK-recycling system. The reaction conditions were again optimized by 
DOE (Supplementary Information, section 11.1.2). Reaction products 
from both cascades were purified by anion-exchange chromatography.

For the synthesis of l-lyxose-5-phosphate analogues, 2-OMe 
and MOE products 11a and 12a were generated in good conversions 
(62% and 61%, respectively) and isolated in reasonable yields (28% and 
39%, respectively). For the benzylated product 13a, conversion of 53% 
was obtained alongside an isolated yield of 25%.

For the d-cascade, 2-OMe and 2-MOE products 11b and 12b were 
obtained in high analytical yields (74% and 62%, respectively) and 
good isolated yields (48% and 47%, respectively). Interestingly for 
11b, the scale-up analytical yield was higher than any of the previous 
optimization reactions carried out in 200 µl volumes. When com-
pared to the l-lyxose-5-phosphate products, d-ribose-5-phosphate 
analogues contained a small amount of pyruvate, a by-product of the 
recycling system, alongside small amounts of unknown impurities. 
The synthesis of the 2-OMe analogue 11b was further scaled up to a 
50 ml reaction volume. This reaction showed a conversion of 71% and 
an isolated yield of 62% (168 mg). At this larger scale the product was 
isolated alongside an unknown phosphorylated impurity. Nonethe-
less, an almost identical conversion was obtained between both the 
5 ml and 50 ml scale reactions, demonstrating the potential scalability 
of this cascade.
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CsGK and EcDERA variants. e, Synthesis of d-ribose-5-phosphate analogues via 

two-step biocatalytic cascades using Cf DHAK and EcDERA variants. Heatmaps 
show average conversions for triplicate repeats. f, Synthesis of 2-F-l-lyxose-5-
phosphate via one-pot biocatalytic cascade using PpAO, CsGK and wild-type (WT) 
EcDERA. Values represent average conversions ± s.d. g, Synthesis of 2-F-d-ribose-
5-phosphate via one-pot biocatalytic cascade using PpAO, CfDHAK and wild-type 
EcDERA. Values represent average conversions ± s.d.
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Preparative-scale syntheses of the 2-F products were also car-
ried out (Fig. 6c,d). For these reactions several alterations had to 
be made to the reaction conditions. To overcome issues with oxy-
gen limitation posed by the oxidase, the concentration of sub-
strate was decreased to 10 mM and the reaction was carried out as 
a series of smaller-volume biotransformations (10 × 500 µl). For 
2-F-l-lyxose-5-phosphate 19a a conversion of 62% was obtained, 
whereas the 2-F-d-ribose-5-phosphate 19b was generated with a con-
version of 46%.

Mass spectrometry electrospray ionization (ESI) analysis con-
firmed the presence of desired [M–H]− ions in both products. While 
HPLC analysis of the 2-F products seemed to show a mixture of two 
diastereomers, NMR spectra showed a more complex mixture of prod-
ucts. Both 1H and 19F NMR analysis appeared to show multiple unknown 
peaks in addition to the expected four diastereomers (Supplementary 
Information, sections 11.2.5 and 11.3.4).

The stereochemistry of the isolated products was determined by 
comparison to previous work and by the use of 1H–1H nuclear Over-
hauser effect NMR spectroscopy (Supplementary Information, section 
11.5.2). Products were assigned the 2R,3R stereochemistry, in agree-
ment with previous work19.

Biocatalytic synthesis of 2′-functionalized nucleosides
Finally, to demonstrate the application of this cascade to generate 
nucleosides functionalized at the 2′-position the aldolase step was 
combined with phosphopentomutase (wild-type EcPPM) and purine 
nucleoside phosphorylase (wild-type EcPNP) to synthesize guanosine 
and adenosine analogues in a one-pot reaction (Fig. 7).

Initial studies showed that the five-enzyme cascade (Fig. 7a) 
was able to generate the ribonucleoside adenosine 25 in good con-
versions (Table 1). Furthermore, as wild-type CfDHAK is enan-
tiospecific, d-glyceraldehyde can also be substituted with 2 equiv. 
dl-glyceraldehyde (Fig. 7e), removing the need to start from enantio-
pure starting material.

Calculation of the overall thermodynamic equilibrium for the 
synthesis of adenosine gave a value of K = 4.0 × 102 (Supplementary 
Information, section 14.1) suggesting the cascade should favour nucleo-
side formation. Previous work has shown that equilibrium constants of 
phosphorolysis are largely unchanged for 4′-functionalized nucleoside 
analogues35. It is likely, therefore, that the 2′-functionalized nucleoside 
analogues generated here show similarly favourable equilibrium con-
stants to the synthesis of adenosine.

In practice, the experimental conversion did not reach the 
expected equilibrium values. A time-course analysis showed an initial 
increase in conversion over time followed by a decrease in conversion 
at longer reaction times (Supplementary Information, section 14.2). In 
the same manner as the aldolase reaction, this was assumed to be due 
to the degradation of G3P shifting reaction equilibrium away from the 
product. Addition of 10 equiv. glyceraldehyde appeared to mitigate 
these effects, showing both higher conversions and no decrease in 
conversion over time.

While the 2′-substrate scope of wild-type PPM and PNP is likely to be 
restricted, it was found that in addition to 2′-OH, 2′-Me 27 and 2′-F 28 sub-
stitutions were accepted, by both enzymes, albeit with lower conversions 
(Table 1). For both of these analogues, a 10× excess of the d-glyceraldehyde 
starting material was required to give reasonable conversions. Alongside 
mitigating the effects of G3P degradation, the requirement of a 10× excess 
to observe conversion is presumably due to the lower activity of the 
wild-type EcPNP towards these non-natural substrates.

DOE was used to determine the effects of enzyme loading on 
conversion for the three main enzymes (DERA, PPM and PNP) (Sup-
plementary Information, section 13). This revealed that the concen-
tration of PNP was by far the most limiting of the three enzymes. PNPs 
typically show Michaelis constant (Km) values in the high micromolar 
to low millimolar range36. Therefore, under the conditions at which 
the cascade is being carried out, PNP is probably kinetically limited, 
operating well below the Km. By increasing the concentration of PNP 
in these reactions, an increase in conversions for both 2′-Me (from 38% 
to 65%) and 2′-F (from 6% to 20%) was observed (Table 1). Addition of a 
recently published PNP variant, which was engineered to give a small 
increase in activity to 2′-F adenosine37, resulted in a further increase 
in conversion to 28% (Table 1). The lower conversions seen for the 
fluorinated analogues are in part due to around 20% conversion to the 
by-product to 2′-F inosine, via adenosine deaminase (Supplementary 
Information, section 12.3.3). This issue is compounded by the relatively 
large amounts of protein required and highlights the need for further 
engineering, particularly of the PNP enzyme.

In addition to adenosine, guanosine was also synthesized using 
the same conditions as the adenosine reaction (Table 1). Conversion 
to guanosine was notably lower than for adenosine. The equilibrium 
constant for the overall synthesis of guanosine is lower than that of 
adenosine (1.4 × 102), due to guanosine having a higher equilibrium con-
stant for phosphorolysis35, and the reaction is therefore less favourable 
in the synthetic direction. In addition to this, the nucleobase substrate 
guanine shows much poorer solubility than adenine.

As the stereochemistry of the 2′-position is set by the aldolase 
used, changing to a different aldolase allows for control of this stereo-
chemistry. Thus, replacement of DERA by wild-type EcFSA38 resulted in 
the synthesis of the nucleoside analogue vidarabine (2′-araOH adeno-
sine, 29) (Table 1). Vidarabine was generated alongside a small amount 
of adenosine, in a diastereomeric ratio of 90:10.

Finally, to characterize the 2′-OH, 2′-araOH, 2′-Me and 2′-F adeno-
sine analogues by 1H NMR 5 ml scale reactions were carried out and 
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the products were purified by semipreparative HPLC. For adenosine, 
vidarabine and the 2′-Me adenosine analogues the 1H NMR spectra 
confirmed the products were isolated as a single diastereomer at the 
2′-postion. For 2′-F adenosine 28, despite the aldolase step generating 
a mixture of 2′-F diastereomers, the 2′-F adenosine product was syn-
thesized in a diasteromeric ratio of 98:2 (Supplementary Information, 
section 15.4.3) favouring the desired ‘down’ stereochemistry of the 
fluorine. These isomers were unable to be separated by semiprepara-
tive HPLC and were isolated together. This observation suggests that, 
while the aldolase exhibits poor stereochemical control, one or both 
of the final two enzymes in the cascade are stereoselective for the 
desired fluorine diastereomer. Alongside the desired 2′-F adenosine we 
were also able to isolate the 2′-F inosine side product (Supplementary 
Information, section 14.5), thereby demonstrating the potential to gen-
erate 2′-functionalized inosine analogues by addition of a deaminase 
enzyme to the cascade.

Conclusions
By targeting the active site of wild-type EcDERA, simple muta-
tions (F76A and L20A) have considerably expanded the donor 
substrate scope, enabling the synthesis of a diverse range of 
d-ribose-5-phosphate and l-lyxose-5-phosphate analogues in two- 
or three-step cascades. Semipreparative-scale biotransformations 
successfully produced 2-OMe, 2-MOE, 2-OBn and 2-F analogues with 
reasonable conversions and yields of 5.8–15.2 mg. A further 50 ml 
scale-up reaction yielded over 150 mg of the 2-OMe analogue 11b, 
highlighting the scalability of this cascade. Furthermore, with the 
exception of the fluorinated products, all analogues were synthesized 
as single diastereomers at the 2-position, demonstrating the excellent 
stereoselectivity of DERA.

Combination of these engineered aldolase-based cascades with 
wild-type EcPPM and EcPNP enabled the one-pot synthesis of ribonu-
cleosides, including adenosine and guanosine, alongside the 2′-Me and 
2′-F adenosine analogues. This demonstrates the ability to generate 
2′-functionalized analogues in a one-pot cascade from simple starting 
materials. The modularity of this cascade was further demonstrated 
by substituting EcDERA-F76A with wild-type EcFSA, which imparted 
stereochemical control at the 2′-position, thereby facilitating the 
synthesis of the arabinosyl nucleoside analogue vidarabine.

Like many biocatalytic routes to nucleoside analogues39, this cas-
cade currently suffers from relatively large amounts of waste water and 
low substrate loadings. Despite these shortcomings, the cascade pro-
vides a completely protection-group-free synthesis of 2ʹ-functionalized 
nucleoside analogues, which represents a notable improvement over 
traditional chemical methods. Further improvements in process devel-
opment should help to improve both the yield and the E-factor of this 
cascade. This is exemplified by recent developments to the synthe-
sis of islatravir and molnupiravir40, which demonstrate the ability of 
nucleoside salvage pathway enzymes to generate these analogues at 
high substrate loadings on a multikilogramme scale.

Although PPM and PNP have been shown to tolerate a small 
range of 2′-functionalization such as 2′-NH2, araOH and 2′-F, cas-
cades utilizing DERA have thus far been limited to the synthesis of 
2′-deoxynucleosides. This work shows that a much broader range of 
2′-functionalization is possible via engineering of the aldolase, and that 
installation of a range of functionality is possible by simply changing 
the aldehyde donor used. We consider this to be the first step towards 
the repurposing of this pathway towards generating a much broader 
range of nucleoside analogues. Further engineering of PPM and PNP, 
in particular for increased substrate scope at the 2ʹ-position, will 
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Table 1 | Biocatalytic synthesis of 2′-functionalized nucleoside via one-pot cascades
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Entry 2′-Modification Nucleobase Sugar equivalentsa Aldolase loading (variant) PPM loading (mol%) PNP loading (mol%) Conversionb (%)

1 OH Adenine 1× 7 mol% (EcDERA-F76A) 0.2 0.4 61 ± 1

2c OH Adenine 2× 7 mol% (EcDERA-F76A) 0.2 0.4 64 ± 1

3 OH Adenine 10× 7 mol% (EcDERA-F76A) 0.2 0.4 94 ± 1

4 Me Adenine 1× 7 mol% (EcDERA-WT) 2 8 ND

5 Me Adenine 10× 7 mol% (EcDERA-WT) 2 8 17 ± 1

6 Me Adenine 10× 7 mol% (EcDERA-F76A) 2 8 38 ± 1

7 Me Adenine 10× 7 mol% (EcDERA-F76A) 2 16 65 ± 8

8 F Adenine 1× 7 mol% (EcDERA-WT) 2 8 ND

9 F Adenine 10× 7 mol% (EcDERA-WT) 2 8 6 ± 1

10 F Adenine 10× 7 mol% (EcDERA-WT) 2 16 20 ± 1

11d F Adenine 10× 7 mol% (EcDERA-WT) 2 16 28 ± 1

12 OH Guanine 1× 7 mol% (EcDERA-F76A) 0.2 0.4 24 ± 1

13 AraOH Adenine 1× 4 mol% (EcFSA-WT) 0.2 0.4 32 ± 1
aSugar equivalents as determined by the equivalents of d-glyceraldehyde relative to nucleobase. bAverage conversions ± s.d. cReaction carried out with 2 mM dl-glyceraldehyde as opposed to 
1 mM d-glyceraldehyde, conversion reported with respect to limiting nucleobase. dReaction from entry 10 repeated, replacing wild-type PNP with the best-performing variant from ref. 37. ND, 
not determined.
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hopefully increase both the scope and yield of nucleoside analogues 
via this approach. Further diversification of the nucleoside analogue 
may also be possible, either via the nucleoside phosphorylases them-
selves, or by combining this cascade with other enzymes able to carry 
out transglycosylation reactions41.

Methods
Aldolase reactions
A reaction mixture was made up containing dl-G3P (5.5 mM; final 
reaction concentration, 5 mM), HEPES buffer (111 mM; final reaction 
concentration, 100 mM) and aldolase (2.2 mg ml−1; final reaction 
concentration, 2 mg ml−1). To a 96-well plate 10 µl of donor sub-
strate (200 mM; final reaction concentration, 20 mM) was added. 
For substrates insoluble in water, donor solutions were made up in 
dimethylsulfoxide, giving a final concentration of 10%. Reactions were 
initiated by addition of 90 µl of the reaction mixture to 10 µl of donor 
substrate; plates were then sealed and incubated at 30 °C, shaking 
at 900 rpm. After 4 h the reactions were quenched and derivatized 
with 100 µl of O-benzylhydroxylamine (100 mM) in methanol for 1 h. 
Reactions were then filtered through 96-well 0.45 Å filter plates and 
analysed by ultraperformance liquid chromatography (UPLC) with UV 
detection at 220 nm. Product masses were confirmed by UPLC–mass 
spectrometry.

Kinase-aldolase cascade screening
To a 96-well plate, 10 µl of donor substrate (200 mM; final reaction 
concentration, 20 mM) was added. For substrates insoluble in water, 
donor solutions were made up in dimethylsulfoxide, giving a final 
concentration of 10%. A reaction mixture was made up containing 
d- or l-glyceraldehyde (6.25 mM; final reaction concentration, 5 mM), 
ATP (9.4 mM; final reaction concentration, 7.5 mM, 1.5 equiv.), MgCl2 
(9.4 mM; final reaction concentration, 7.5 mM, 1.5 equiv.), HEPES 
buffer pH 7.5 (125 mM; final reaction concentration, 100 mM), aldo-
lase (1.25 mg ml−1; final reaction concentration, 1 mg ml−1). Then, 80 µl 
of the reaction mixture was added to the plates and the reactions were 
initiated with 10 µl of DHAK or GK (1 mg ml−1; final reaction concentra-
tion, 0.1 mg ml−1). The plates were then sealed and incubated at 30 °C, 
shaking at 900 rpm. After 4 h the reactions were quenched and deri-
vatized with 100 µl of O-benzylhydroxylamine (100 mM) in methanol 
for 1 h. Reactions were then filtered through 96-well 0.45 Å filter plates 
to remove precipitated protein and analysed by UPLC-UV at 220 nm. 
Product masses were confirmed by UPLC–mass spectrometry, which 
gave identical mass spectra to the products from the initial screen.

Kinase–oxidase–aldolase cascade
A 2× reaction mixture was made up containing d- or l-glyceraldehyde 
(10 mM,), fluoroethanol (40 mM), ATP (15 mM), MgCl2 (15 mM) in HEPES 
buffer (0.1 M, pH 7.5). A 2× enzyme mixture was made up contain-
ing DHAK or GK (0.2 mg ml−1), DERA (2 mg ml−1) and PpAO (1 mg ml−1) 
in HEPES buffer (0.1 M, pH 7.5). The reaction was initiated by addi-
tion of 100 µl reaction mix to 100 µl enzyme mix giving final reaction 
concentrations half those stated. Samples were incubated for 4 h at 
30 °C, shaking at 750 rpm. After 4 h samples were derivatized with 
O-benzylhydroxylamine, filtered and analysed by HPLC.

Semipreparative-scale synthesis of 2-functionalized pentose-
5-phosphates
To a 15 ml Falcon tube, d- or l-glyceraldehyde (20 mM final concentra-
tion), aldehyde donor (80 mM final concentration) and MgCl2 (20 mM) 
were added. HEPES buffer (pH 8.2) and MilliQ water were added to give 
a final buffer concentration of 50 mM and a final reaction volume of 
5 ml. The reaction was initiated by addition of DERA-F76A (final con-
centration, 4 mg ml−1), DHAK (final concentration, 0.1 mg ml−1). The 
reaction mixture was left in a shaking incubator at 30 °C, 200 rpm, for 
18 h. After this time the enzyme was removed using a Vivaspin 10 kDa 

molecular weight cut-off filter. The phosphorylated products were then 
purified using anion-exchange chromatography in the same manner 
as previous products.

For d-ribose-5-phosphates, final concentrations of 1 mol% ATP, 
40 mM PEP and 10 U ml−1 PK were used. For l-lyxose-5-phosphates, 
1.5 equiv. ATP was used without a recycling system.

The phosphorylated products were purified using anion-exchange 
chromatography. The reaction mixtures were loaded directly onto a 
5 ml Bio-Rad High Q anion-exchange column. The column was washed 
with 20 ml of water followed by elution with 10 ml of 200 mM ammo-
nium bicarbonate and 10 ml of 400 mM ammonium bicarbonate. Frac-
tions (1 ml) fractions were collected and analysed for product presence 
by ESI mass spectrometry. Fractions containing product mass by ESI 
were pooled and freeze-dried to give the ammonium salts of the sugar 
phosphate products as white solids.

Semipreparative-scale synthesis of 2-fluoro-pentose-
5-phosphate
To a 15 ml Falcon tube, d- or l-glyceraldehyde (10 mM), fluoroethanol 
(40 mM) and MgCl2 (10 mM) were added. HEPES buffer (pH 8.2) and 
MilliQ water were added to give a final buffer concentration of 50 mM 
and a final reaction volume of 5 ml. The reaction was initiated by addi-
tion of wild-type DERA (4 mg ml−1), glycerokinase (0.1 mg ml−1) and 
PpAO (0.5 mg ml−1). The reaction mixture was split into 10 × 500 µl 
reactions. These were incubated in a thermoshaker at 30 °C, 750 rpm, 
for 18 h. After this time fractions were combined, and the enzyme was 
removed using a 10 kDa molecular weight cut-off filter.

For 2-F-d-ribose-5-phosphate, 1 mol% ATP, 20 mM PEP and  
10 U ml−1 PK were added. 2-F-l-Lyxose-5-phosphate was generated using 
1.5 equiv. ATP and no recycling system.

The phosphorylated products were purified using anion-exchange 
chromatography in the same manner as previous products.

Biocatalytic synthesis of nucleosides
A 2× reaction mixture was made up containing d-glyceraldehyde 
(2 mM), aldehyde donor (8 mM), ATP (10 mol%), PEP (4 mM), adenine 
(2 mM) MgCl2 (2 mM), MnCl2 (2 mM), glucose bisphosphate (0.02 mM) 
and HEPES buffer (50 mM, pH 8). A 2× enzyme mixture was made up 
containing DHAK (0.2 mg ml−1), DERA (4 mg ml−1), PPM (0.2 mg ml−1), 
PNP (0.2 mg ml−1) and PK (20 U ml−1). To initiate the reaction, 100 µl of 
enzyme mix was added to 100 µl of reaction mixture, giving final reac-
tion concentrations half those stated above. The reactions were left 
shaking in an orbital incubator at 30 °C, 200 rpm, for 4 h. The reactions 
were quenched by additions of equal volumes of methanol. Samples 
were filtered and then analysed directly by HPLC.

For the biocatalytic synthesis of guanosine, 1 mM of adenine was 
replaced with 1 mM of guanine.

For the biocatalytic synthesis of vidarabine, 2 mg ml−1 EcDERA-F76A 
was replaced with 1 mg ml−1 wild-type EcFSA

For the biocatalytic synthesis of 2ʹ-Me adenosine, 10 mM of glyc-
eraldehyde, 20 mM PEP and 20 mM propanal donor was used.

For the biocatalytic synthesis of 2ʹ-F adenosine, 10 mM glycer-
aldehyde, 20 mM PEP, 20 mM fluoroethanol and 0.5 mg ml−1 PpAO 
were used.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting this research are available within the Article and 
its Supplementary Information. Plasmid maps, docked structures 
and NMR files are available on figshare via https://doi.org/10.6084/
m9.figshare.26520880 (ref. 42). Additional data can be obtained from 
the corresponding author upon reasonable request.
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