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Highlights

• A bottom-up framework optimizes entity representations before learning
interactions

• A dual-attention mechanism optimizes the fusion of visual and geometric
features

• An interdependent entity graph captures explicit and implicit interac-
tions

• A novel multi-person dataset offers concurrent partial interactions
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Abstract

Human-Object Interaction (HOI) recognition in videos requires understanding
both visual patterns and geometric relationships as they evolve over time.
Visual and geometric features offer complementary strengths. Visual features
capture appearance context, while geometric features provide structural pat-
terns. Effectively fusing these multimodal features without compromising
their unique characteristics remains challenging. We observe that establish-
ing robust, entity-specific representations before modeling interactions helps
preserve the strengths of each modality. Therefore, we hypothesize that a
bottom-up approach is crucial for effective multimodal fusion. Following
this insight, we propose the Geometric Visual Fusion Graph Neural Network
(GeoVis-GNN), which uses dual-attention feature fusion combined with inter-
dependent entity graph learning. It progressively builds from entity-specific
representations toward high-level interaction understanding. To advance HOI
recognition to real-world scenarios, we introduce the Concurrent Partial Inter-
action Dataset (MPHOI-120). It captures dynamic multi-person interactions
involving concurrent actions and partial engagement. This dataset helps
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address challenges like complex human-object dynamics and mutual occlu-
sions. Extensive experiments demonstrate the effectiveness of our method
across various HOI scenarios. These scenarios include two-person interactions,
single-person activities, bimanual manipulations, and complex concurrent
partial interactions. Our method achieves state-of-the-art performance.

Keywords: Human-object interaction, Multi-person interaction, Feature
fusion

1. Introduction

Human-Object Interaction (HOI) recognition aims to interpret the in-
tricate relationships between humans and the objects they interact with.
While traditional video analysis tasks can achieve strong performance using
visual features alone, HOI recognition demands additional geometric reason-
ing through human poses and object spatial configurations. In video-based
scenarios, this complexity intensifies as systems track dynamic spatial re-
lationships across frames while handling occlusions and viewpoint changes.
This complexity goes beyond the pixel-level understanding required for coarse
actions like cooking. Instead, it includes geometric analysis of fine-grained
interactions, such as specific hand poses for holding objects or spatial config-
urations needed for cutting. These interactions often occur concurrently or in
sequence.

Significant efforts have focused on image-based HOI detection, which
combines object localization and interaction classification within static frames.
Recent advances have leveraged transformer architectures with specialized
mechanisms (Ma et al., 2023; Kim et al., 2023; Li et al., 2024; Zhu et al.,
2024). While these methods are effective for static scenes, they are inadequate
for capturing the temporal dynamics and motion complexities inherent in
video scenarios. Video-based HOI recognition is a relatively less-explored
area, which requires understanding not only the spatial relationships between
humans and objects but also how these interactions evolve over time. Existing
methods primarily rely on visual features (Morais et al., 2021; Tu et al.,
2022; Wang et al., 2023), which encode rich appearance and contextual
cues but are vulnerable to occlusions common in real-world scenarios. In
contrast, geometric features, derived from human pose estimations and object
spatial configurations, provide explicit structural details crucial for interaction
understanding (Wan et al., 2019; Das et al., 2020; Zhu et al., 2024). While
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some recent approaches (Qiao et al., 2022, 2024) have attempted to integrate
visual and geometric features to leverage their complementary advantages,
these methods typically fuse both modalities directly. This simplistic fusion
neglects the distinct and valuable characteristics inherent to each modality,
resulting in suboptimal interaction representations. Consequently, effectively
integrating visual and geometric features remains challenging, limiting the
capability to fully exploit their complementary strengths for robust interaction
recognition.

Another challenge is that current approaches often fail to preserve fine-
grained entity characteristics when integrating multimodal features, resulting
in the loss of important interaction details. Effectively fusing geometric and
visual features to fully leverage their potential for enhancing entity interaction
recognition remains underexplored. A mixed-fusion approach (Qiao et al.,
2022) that combines feature fusion and entity interaction learning in a unified
graph suffers from entangled entity representations, limiting explicit HOI
understanding. A top-down approach (Zheng et al., 2023) that prioritizes
entity-level relationships over specific features may miss critical interaction
details and misalign overarching patterns with individual nuances. An alter-
native bottom-up approach (Wang et al., 2022a,b) starts with fundamental
entity features, enabling detailed integration before addressing complex inter-
actions, resulting in more effective entity interaction analysis. Although the
bottom-up approach has potential benefits, it faces challenges in accurately
fusing multimodal features. Specifically, it struggles to preserve fine-grained
entity characteristics when transitioning from individual entity representations
to modeling complex interactions.

In this paper, we introduce a novel Geometric Visual Fusion Graph Neural
Network (GeoVis-GNN) to address the two critical challenges identified in
previous research. To overcome the inadequate fusion of geometric and visual
features, we propose a dual-attention mechanism operating at the feature
level. This mechanism first utilizes graph attention to produce structured
geometric embeddings and then employs channel attention to adaptively
fuse these embeddings with visual features, effectively leveraging the com-
plementary strengths of both modalities. To preserve fine-grained entity
characteristics, we adopt a bottom-up approach. Specifically, we first estab-
lish robust entity-specific representations and then progressively build up
to higher-level interaction understanding through an interdependent entity
graph. This graph models explicit spatial interactions and implicit contextual
dependencies among entities, ensuring that detailed entity characteristics are
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Figure 1: Two examples (Teaching and Signing) of our collected concurrent partial inter-
action datasets. Geometric features such as skeletons and bounding boxes are annotated.

retained even when modeling complex interactions.
Video-based HOI datasets have primarily focused on single-person activ-

ities or limited two-person interactions, leaving a notable gap in capturing
the complexity of real-world multi-person scenarios. Existing datasets, such
as UCLA HHOI (Shu et al., 2016, 2017) and MPHOI-72 (Qiao et al., 2022),
include interactions with up to two participants and a few objects. They
assume all participants are continuously active, which limits their ability to
represent scenarios with idle or waiting individuals. To address this limita-
tion, we introduce the Concurrent Partial Interaction Dataset (MPHOI-120),
which captures dynamic multi-person interactions where some participants
are engaged while others are idle. This dataset incorporates diverse interac-
tions, high variability, and challenging dynamics such as simultaneous actions,
mutual dependencies, and occlusions. It offers a richer and more realistic
benchmark for advancing HOI recognition in complex real-world scenarios.

We demonstrate the effectiveness of our approach across a comprehensive
spectrum of real-world HOI scenarios. These include single-person interactions
in CAD-120 (Koppula et al., 2013), bimanual manipulations in Bimanual
Actions (Dreher et al., 2020), two-person collaborative activities in MPHOI-
72 (Qiao et al., 2022), and concurrent partial interactions in our proposed
MPHOI-120 dataset. These diverse datasets collectively represent the full
range of human-object interactions, from individual tasks to simultaneous
multi-person collaborations. Our main contributions are:

• A novel bottom-up framework (GeoVis-GNN) for multi-person HOI
recognition. It preserves fine-grained entity characteristics and pro-
gressively builds from entity-level representations to interaction-level
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understanding. 1

• A dual-attention fusion mechanism that first employs graph attention to
learn structured geometric embeddings, followed by channel attention-
based adaptive fusion with visual features, resulting in rich entity-specific
representations.

• An interdependent entity graph that leverages the enriched entity rep-
resentations to simultaneously model explicit spatial interactions and
implicit contextual dependencies among multiple entities.

• A novel Concurrent Partial Interaction Dataset (MPHOI-120)2 captures
complex multi-person interactions with concurrent actions and partial
engagement, providing a more realistic benchmark to advance HOI
recognition.

2. Related Work

2.1. HOI Recognition

HOI recognition is divided into two primary areas: HOI detection in images
and HOI recognition in videos. HOI detection in images focuses on identifying
interactions within a single static picture, combining object localization with
interaction classification. It aims to detect triplets ⟨human, verb, object⟩,
providing a spatially grounded understanding of HOIs in a single image (Kim
et al., 2023; Cheng et al., 2024b; Li et al., 2024). These methods are not directly
applicable to HOI recognition in videos, as the task introduces a temporal
dimension, requiring models to capture interactions as they evolve over
time. Video-based HOI recognition demands the ability to process dynamic,
sequential data to understand interaction context more comprehensively.
While some image-based methods provide valuable spatial insights using
geometric and visual features (Wu et al., 2022; Park et al., 2023; Zhu et al.,
2024), they lack the temporal modeling capabilities necessary to capture
motion patterns, action progression, and continuity. This limitation results in
an incomplete understanding of the evolving interactions critical for accurate
recognition in video scenarios.

1Code is available in the Supplementary Materials.
2Data collection performed in the UK, under Durham University Ethics Approval Ref:

COMP-2020-10-01T19 29 22-cbmw62.
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HOI recognition in videos encompasses human action analysis (Tan et al.,
2022; Hu et al., 2024; Cob-Parro et al., 2024) and skeleton-based activity
recognition (Setiawan et al., 2022; Cheng et al., 2024a; Yu et al., 2024) by
integrating the detection of human movements and postures with the con-
textual understanding of interactions between humans and objects, thereby
offering a more holistic approach to activity recognition in complex environ-
ments. Deep Neural Networks (DNNs) and graphical models are combined in
recent works. Wang et al. (2021) utilize the parsed graphs to directly model
the global relationship between the human and object, capturing the state
change of the interacting objects across frames. ASSIGN (Morais et al., 2021)
presents a visual feature attention model to learn asynchronous and sparse
HOIs in videos. TUTOR (Tu et al., 2022) employs a reinforced tokenization
strategy that jointly learns instance tokens through selective attention and
aggregation in the spatial domain and links them across frames to generate
tubelet tokens, serving as highly-abstracted spatio-temporal representations
for HOI recognition. Xing and Burschka (2022) introduce a spatial attention
mechanism that can enhance action recognition by adaptively generating a
spatial-relation graph during HOIs. STIGPN (Wang et al., 2023) exploits
spatio-temporal graph convolutions to enhance the detection of salient human-
object interactions and efficiently modeling long-term dynamics.

Based on prior visual-based approaches, 2G-GCN (Qiao et al., 2022)
firstly proposes the multi-person HOI recognition problem and incorporates
geometric features into the Graph Convolutional Network (GCN). However,
2G-GCN merges the collective geometric features of all entities with individual
visual features, leading to potential hierarchical misalignment. The high-
level spatial information from geometric features may not align well with
detailed, entity-specific visual data. As a result, the model may struggle to
correctly distinguish between different entities and their interactions, leading
to impaired performance and a focus on less relevant objects. CATS (Qiao
et al., 2024) learns HOIs from multimodal feature fusion of different categories,
such as humans and objects, to the scenery interactive graph. However, it
neglects the entity concept and entity relationships within the same category,
which is particularly limiting in multi-person HOI scenarios. Therefore, in
this paper, we follow a bottom-up approach that first establishes fine-grained
entity-specific features before capturing entity-level interactions, ensuring
precise entity representations and facilitating accurate interaction modeling
in complex multi-entity scenarios.
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2.2. Geo-Vis Fusion in Human Activities

Combining diverse data modalities offers unique, complementary insights
that lead to a more holistic understanding of a subject. In multimodal research
of human action recognition, attention has been directed towards key areas of
the human body, particularly the hands (Baradel et al., 2017, 2018a,b). These
studies employ attention-based methods to improve the overall accuracy of
models that integrate skeletal and visual modalities. Building on this, Bruce
et al. (2021) expand the focus to include additional regions of the body such as
the head, hands, and feet by adopting a temporal approach. They generate a
fused representation by multiplying spatial attention weights with appearance
features. TSMF (Bruce et al., 2021) fuses skeleton and RGB data at the
model level using teacher-student networks to learn enriched representations.
However, these model-based fusion models often lack transparency, making
it difficult to interpret how individual features contribute to recognition.
Besides, Boulahia et al. (2021) investigate the integration of various image
modalities (RGB, Depth, Skeleton, and InfraRed) at different stages of the
action recognition pipeline, encompassing early, intermediate, and late fusion
techniques, to enhance the robustness of recognition.

In human interaction analysis, Wan et al. (2019) concatenate human
skeletal embeddings with visual embeddings from other branches like human,
object and union to obtain the final holistic feature in the HOI scene. Zhou
et al. (2022) combine embedded visual and human pose features through
element-wise addition. Wang et al. (2023) directly concatenate multimodalities
to output visual-spatial and spatial-semantic feature sequences, which are then
input into a two-stream network. CATS (Qiao et al., 2024) also concatenates
geometric and visual features for different categories. However, their direct
operations may dilute distinct contributions of visual and geometric features,
often amplifying dominant features while undervaluing subtle geometric cues,
which can reduce accuracy in fine-grained interaction recognition. These
challenges indicate that the fusion of geometric and visual features still has
design intricacies that require further optimization. Therefore, we propose a
dual-attention fusion mechanism to integrate geometric and visual features.
This mechanism combines graph attention and channel attention to preserve
the complementary strengths of both modalities. As a result, it produces
enriched entity representations, enabling more robust and precise interaction
modeling.
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2.3. Video-Based HOI Datasets

There are various datasets available for the investigation of HOI in videos
for multiple tasks. For single-person HOI recognition, datasets like CAD-120
(Koppula et al., 2013), Bimanual Actions (Dreher et al., 2020), Bimanual
Manipulation (Krebs et al., 2021), etc. are effective, with the latter two
also encompassing bimanual HOI tasks due to their focus on interactions
involving both hands. There are several datasets available for single-hand
HOI recognition tasks, including Something-Else (Materzynska et al., 2020),
VLOG (Fouhey et al., 2018), EPIC Kitchens (Damen et al., 2021). Since EPIC
Kitchens records both hands in the cooking process, it can also be utilized for
bimanual HOI recognition. Besides, a full-body HOI dataset called BEHAVE
(Bhatnagar et al., 2022) includes multi-view RGBD frames, associated 3D
SMPL and object fits. HOI4D (Liu et al., 2022) is a large-scale 4D egocentric
dataset aimed to facilitate research on category-level HOIs. The UCLA HHOI
Dataset (Shu et al., 2016, 2017) focuses on human-human-object interaction
with a maximum of two humans and one object involved. The MPHOI-72
dataset (Qiao et al., 2022) is specifically proposed for the multi-person HOI
recognition task but is constrained to interactions between two individuals
and 2-4 objects, reducing its applicability to complex real-world scenarios.

3. Concurrent Partial Interaction Dataset

The majority of video-based HOI datasets primarily focus on single-person
HOIs, albeit from various perspectives (Koppula et al., 2013; Damen et al.,
2021; Bhatnagar et al., 2022; Liu et al., 2022). Efforts to encompass multiple
human interactions are still in their infancy. For instance, the UCLA HHOI
dataset (Shu et al., 2016, 2017) captures interactions involving up to two
people and one object, while MPHOI-72 (Qiao et al., 2022) slightly broadens
this scope to include two people and several objects. However, these datasets
assume that all participants are continuously active throughout the activity.
In contrast, real-world multi-person HOIs often include scenarios where some
individuals are not interacting, such as sitting or standing idle while waiting
for their turn. This gap highlights the need for datasets that better represent
the complexity and variability of real-world multi-person and multi-object
interactions.

To bridge this critical gap, we introduce the Concurrent Partial Interac-
tion Dataset (MPHOI-120), which captures dynamic interactions involving
multiple people and objects. In our context, “concurrent” refers to scenarios
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Figure 2: Sample video screenshots from our newMPHOI-120 dataset, displaying concurrent
partial interactions along the timelines of four multi-person HOI activities in daily life.

where multiple interactions occur simultaneously, while “partial interaction”
highlights moments when not all individuals are actively engaging - some
may remain idle or waiting during certain moments of the activity. For
example, in the Signing activity, while two people are passing a notebook
and pen, the other person is standing or sitting idle. Similarly, when one
individual is signing, the other two are not interacting. Such scenarios, which
reflect real-world interaction patterns, are extensively captured in our dataset,
providing a richer benchmark for advancing multi-person HOI recognition
methods. In addition, increasing the number of people and objects introduces
an exponential increase in complexity. It expands the range of human-human,
human-object, and object-object interactions, while also intensifying chal-
lenges such as simultaneous actions, mutual dependencies, and significant
occlusions.

3.1. Dataset Details

MPHOI-120 is a dataset of 120 high-resolution videos of three participants
interacting with 2 to 5 objects. All annotations are performed frame-by-frame
by a single trained annotator using a predefined list of sub-activities to ensure
consistency and avoid inter-annotator variability. Sample video screenshots
with annotated sub-activities for all activities are shown in Fig. 2. Each main
activity captures unique interaction patterns. Signing highlights turn-taking
behaviors amid potential occlusions, while Cheering features synchronous and
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sequential human-object actions. Teaching depicts fine-grained states (e.g.,
noting vs. listening) between a teacher and students, and Snooker focuses on
strategic turn-taking with frequent body occlusions around the table.

Leveraging the Azure Kinect SDK along with the Body Tracking SDK
(Microsoft, 2022), we acquire RGB-D videos to capture the comprehensive
dynamics of multiple individual skeletons. We offer 2D human skeletal data
and bounding boxes for both subjects and objects within each video, serving
as geometric characteristics. The integration of depth information within
our dataset further broadens its utility, such as versatile benchmarks for 3D
human pose estimation (You et al., 2023; Zhai et al., 2023) and 3D object
estimation (Fan et al., 2023; Heitzinger and Kampel, 2023), among others.

Table 1: A statistical comparison between MPHOI-120 and popular HOI datasets. CPI
denotes Concurrent Partial Interactions.

Datasets MPHOI-120 MPHOI-72 CAD-120 Bimanual Actions

No. people interacting 3 2 1 1
Total videos 120 72 120 540
Total frames 53604 26383 61585 221000
Total frames of CPI 20100 0 0 0
Video average length 15s 12s 17s 15s
No. sub-activities 17 13 10 14
No. subjects/objects 7/6 5/6 4/10 6/12
Total activities 4 3 10 9
Fps 30 30 30 30
Resolution 1920×1080 3840×2160 640×480 640×480

3.2. Statistical Comparison of Datasets

We perform a statistical comparison between MPHOI-120 and existing
popular HOI datasets, as shown in Tab. 1. MPHOI-120 includes scenarios
with three people interacting and 17 sub-activities, which is higher than any
other listed dataset, standing out for its complexity and richness. With a
total of 53,604 frames across 120 videos, nearly half (20,100 frames) capture
concurrent partial interactions, offering a unique focus on dynamic multi-
person interactions absent in other datasets. Additionally, the high video
resolution (1920×1080) ensures detailed feature capture, essential for advanced
HOI analysis. In contrast, although Bimanual Actions is large, it is limited
to dual-hand movements of an individual, leading to a more monotonic data
distribution.
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Figure 3: Overview of our bottom-up framework GeoVis-GNN. We first design a dual-
attention fusion for entity feature optimization, which embeds and fuses visual and geometric
features in a graph attention-based mechanism and channel attention module, respectively.
The enriched entity-specific representations are then inputted into the interdependent
entity graph to further model explicit interactions and implicit interdependencies. Finally,
we apply a BiGRU to capture the temporal dependencies to obtain segmentation and
recognition results.

4. Methodology

We propose a bottom-up approach to design GeoVis-GNN, which (1)
preserves fine-grained entity characteristics during feature fusion, and (2)
progressively builds from entity-specific representations to interaction-level
understanding. The bottom-up approach has been widely used in pose
estimation (Kresović and Nguyen, 2021; Wang et al., 2022a,b) and object
detection (Zhou et al., 2019; Wang et al., 2019; Samet et al., 2020) tasks
with considerable performances. It ensures a thorough understanding of
the fundamental aspects of each entity before delving into complex entity-
level interactions. This approach, starting from basic features and building
upwards, enables detailed feature integration to achieve more effective entity
interaction analysis.

Alternative designs perform suboptimally. A top-down approach (Zheng
et al., 2023), which prioritizes a broad view of entity-level relationships before
refining specific entity features, often overlooks crucial interaction details and
misaligns overarching patterns with individual interaction nuances. Besides,
a mixed-fusion method (Qiao et al., 2022) that integrates feature fusion and
entity interaction learning within a single graph entangles entity concepts,
lacking a specific feature to represent each entity, which fails to learn HOIs
explicitly. We compare these alternative architectures with our method in
Experimental Results 5.
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4.1. Dual-Attention Fusion for Feature Optimization

Previous HOI recognition approaches primarily rely on CNN or 3D-CNN
models to process visual inputs. These models extract spatio-temporal fea-
tures that capture rich appearance and contextual cues from humans and
objects (Maraghi and Faez, 2019; Le et al., 2020; Morais et al., 2021). While
effective in clean settings, these methods are highly sensitive to occlusions
and struggle when visual cues are incomplete or ambiguous. Without ex-
plicit spatial reasoning, they often fail to capture the structural context of
interactions. Incorporating geometric information is therefore critical for
improving robustness and enabling accurate recognition in real-world HOI
scenarios. Advanced methods such as 2G-GCN (Qiao et al., 2022) attempt to
integrate geometric features within a GCN framework to augment visual data.
However, their fusion of collective geometric features with individual visual
features risks hierarchical misalignment, fusion inefficiencies, and difficulties
in entity distinction. CATS (Qiao et al., 2024) also employs GCN to model
geometric features but directly combines them with visual features, which
may dilute their distinct contributions.

We propose a dual-attention fusion mechanism to optimize multimodal
feature integration for entity representations (Fig. 3). We first apply a graph
attention mechanism to geometric features, enabling the model to learn
structured spatial representations by capturing the varying importance of
neighboring entities. With these enriched geometric embeddings, we then
employ a channel attention module to adaptively fuse geometric and visual
features, selectively emphasizing informative channels while suppressing less
relevant ones. This sequence ensures that spatial reasoning is established
before feature fusion and allows the model to balance modality contributions
more effectively. If channel attention is applied before relational modeling, it
would risk fusing less informative geometric features and weaken the spatial
reasoning capability. As a result, we obtain a well-contextualized entity
representation that effectively blends geometric and visual cues, providing a
robust foundation for subsequent entity interaction graph learning.

4.1.1. Graph Attention-Based Feature Embedding

Previous research (Qiao et al., 2022; Zhou et al., 2022; Qiao et al., 2024)
learns geometric features using GCNs, which typically apply the same convo-
lution operation to all neighbors of a node. This approach fails to account
for the different roles or importance that neighbors may have in the context
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of multi-person HOIs. This may lead to a homogenization of features that
fails to capture the complexity of multi-entity dynamics.

We propose a Graph Attention Network (GAT) (Brody et al., 2021) based
embedding to capture the evolving significance of interactions. It learns multi-
entity geometric features, adaptively weighting the importance of each entity’s
geometric features through an attention mechanism. This enables the model
to expertly handle occlusions and dynamic environments for multi-person
HOI recognition.

For feature representation, we concatenate the position and velocity of all
entities into keypoint channels, forming geometric features G = {ge,kt }T,E,K

t=1,e=1,k=1 ∈
R4 with ge,kt as the k-th type features for entity e at frame t, where T denotes
the total number of frames in the video, E and K denote the total number of
entities and keypoints of an entity in a frame, respectively. Human joints and
object bounding box diagonals are extracted as keypoints.

We adaptively infer spatial correlations with our GAT among keypoints
k1 and k2 for a single timestep among entities as follows:

gs
t = αk1,k1Θgt,k1 +

∑

k2∈K
αk1,k2Θgt,k2 , (1)

and the attention coefficients αk1,k2 are computed as:

αk1,k2 =
exp

(
Γ
(
a⊤[Θgk1 ∥Θgk2 ]

))
∑

k3∈K∪{k3} exp (Γ (a⊤[Θgk1 ∥Θgk3 ]))
, (2)

where Θ and Γ are the transformation function and LeakyReLU activation,
respectively.

To efficiently integrate spatial and temporal information, we further pro-
cess the attention-enhanced geometric features. In particular, gs

t is then fused
with a 1 × 1 convolution along the temporal channel to form spatial-temporal
geometric features gst

t ∈ RT×NK×C1 , effectively summarizing temporal dynam-
ics while avoiding the complexities of 3D convolutions. It is then reshaped to
gst
t ∈ RT×N×KC1 and embedded by a Multi-Layer Perceptron (MLP) to get

entity geometric features g′
t ∈ RT×N×C2 .

Unlike geometric features, visual features in videos contain rich contextual
information and fundamental feature representations. Following (Morais
et al., 2021; Qiao et al., 2024), we extract entity visual features vt,n ∈
R2048 from ROI pooled 2D bounding boxes of humans and objects in videos,
utilizing a pre-trained Faster R-CNN (Ren et al., 2016) module on the Visual
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Genome (Krishna et al., 2017). They are subsequently aligned dimensionally
with geometric features to v′

t ∈ RT×N×C2 through an MLP with learnable
embeddings.

4.1.2. Geo-Vis Channel Attention-Based Feature Fusion

Incorporating geometric and visual features poses a significant challenge
due to their inherent representation and scale discrepancies. Prior approaches
have attempted multimodal fusion by element-wise addition (Zhou et al.,
2022) or feature concatenation (Wan et al., 2019; Qiao et al., 2024). However,
such direct operations are infeasible for our task as they do not account for the
disparate nature of feature spaces, leading to suboptimal learning outcomes.

We propose a novel geometry-visual channel attention-based feature fusion
to effectively integrate geometric and visual features of all humans and objects,
which achieves selective feature enhancement and encourages complementarity
between multimodal features. We exploit channel attention mechanisms (Hu
et al., 2018) in geometry-visual channels of all entities. This allows the
model to adaptively emphasize informative features while suppressing less
relevant ones, which is especially beneficial for learning more representative
visual and geometric features in diverse HOI scenarios. For instance, visual
features often suffer in noisy backgrounds but thrive in scenarios with small
backgrounds. Geometric features demonstrate strength in addressing partial
occlusions (Qiao et al., 2022), which is a common situation in multi-person
HOI scenarios.

Specifically, as shown in Fig. 3, our channel attention based feature fusion
module first concatenates g′

t and v′
t along the entity dimension to entity

geometry-visual features gvt ∈ RT×2N×C2 , and compute a channel attention
A as:

A = σ (W2δ (W1 (GAP (gvt)))) , (3)

where GAP denotes Global Average Pooling (Lin et al., 2013), δ and σ
represent the ReLU and Sigmoid activation. W1 and W2 are weights of Fully-
Connected (FC) layers, shared across all entities and timesteps to ensure
consistent transformation and improved generalization with fewer parameters.
Apply these values to original features for attended geometry-visual fusion
features:

gv′
t = A · gvt. (4)

Finally, we enhance the feature representation of each entity. In particular,
after assigning distinct weights to each geometry-visual channel of an entity,
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the weighted features are strategically split into separate geometric and
visual streams. These are then adeptly fused back together, producing a new
enriched entity representation g̃vt ∈ RT×N×C3 . This refined feature fusion
set, being a weighted and well-contextualized blend of geometric and visual
cues, sets the stage for more discerning entity interaction graph learning.

Compared to our attention-based feature fusion, Zhang et al. (2022); Tu
et al. (2023) apply Transformer to fuse geometric and visual features in
image-based HOI detection, which is constrained in processing video data
due to memory inefficiency. Graph-based feature fusion treats multimodal
features as graph nodes (Liang et al., 2020; Gao et al., 2020), which is heavily
reliant on the design of graph representation. As HOI is a dynamic process,
it is non-trivial to manually define an appropriate representation.

4.2. Interdependent Entity Graph

In HOI analysis, the majority of approaches (Wang et al., 2021; Morais
et al., 2021; Wang et al., 2023) construct an independent entity graph that
assumes a fixed structure to decipher spatial interactions between entities
focusing solely on visual features. For example, 2G-GCN (Qiao et al., 2022)
represents geometric features of all entities as a single entity linked with visual
features of object entities, failing to explicitly model interactions between all
entities. CATS (Qiao et al., 2024) learns interactions between human and
object categories but neglects relationships between entities within the same
category, which is particularly limiting in multi-person HOI scenarios.

Our insight is that an effective entity interaction graph should not only
capture explicit interactions among independent entities, but also concurrently
discern the implicit interdependencies that exist among neighboring entities
surrounding a specific entity. These complementary focuses are crucial for
understanding the intricate graph network of relations that exist around any
specific entity within the scene.

To this end, we propose an interdependent entity graph to capture the
interdependencies among all neighboring nodes around a particular entity with
fused geometric and visual features. To improve the precision of interaction
modeling and the representation of relational dynamics, we further refine it
by employing attention weights between the entity in focus and its neighbors
(Fig. 3 right). This entity-level graph offers a richer representation of spatial
interactions in multi-person HOI scenarios, advancing the understanding of
complex behavioral patterns beyond the reach of previous methods.
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Figure 4: In the interdependent entity graph, we first model neighbor features ① before
aggregating them to the target entity ②.

Specifically, as illustrated in Fig. 4, given a specific entity e at each frame
t, we first calculate the features from its neighbor u to itself as follows:

Su
t = λ× g̃vu

t + (1− λ)× (GAP(W3(g̃v
u
t )))

N − 1
, (5)

where λ controls the contextual fusion threshold and is fixed to 0.5. This
value is selected based on preliminary validation experiments, and we find
that the model’s performance remains stable despite small variations in this
setting. W3 is the weight of a FC layer. These neighboring features are
then aggregated into a robust representation that encapsulates the collective
attributes of the neighboring group:

Se
t = STACKu∈N,u ̸=e(S

u
t ⊙M(Su

t )), (6)

where M(·) is the mask indicator for valid neighbors and ⊙ denotes element-
wise multiplication. Meanwhile, we employ a dot-product attention mechanism
(Vaswani et al., 2017; Morais et al., 2021) to obtain the attention weights
between node e and its neighbors as:

W e
t =

∑
u∈N,u̸=eSoftmax(

Se
t (S

u
t )

T

√
d

), (7)

where d is the feature dimension. Finally, the refined feature representation
of the entity is F e

t = W e
t ⊙ Se

t , ensuring a contextually aware integration of
features that strengthens the entity’s representation within its surroundings.

To enable precise and adaptable delineation of sub-event lengths in video
sequences, after obtaining the fused features of each entity at each time
step, we employ a Gumbel-Softmax module (Jang et al., 2016) to F e

t . It
efficiently facilitates gradient-based learning and ensures probabilistically
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coherent segmentation, essential for handling the dynamic nature of video
data. Finally, we apply a Bi-directional Gated Recurrent Unit (BiGRU)
(Chung et al., 2014) to capture the temporal dependencies between each
sub-action and then use the output features to recognize sub-activities for
humans and object affordances for objects, varying according to the dataset.

5. Experimental Results

5.1. Datasets

We evaluate GeoVis-GNN on multiple datasets: MPHOI-120, MPHOI-72
(Qiao et al., 2022), CAD-120 (Koppula et al., 2013), and Bimanual Actions
(Dreher et al., 2020), showcasing the superior results on concurrent partial
HOI, two-person, single-person and two-hand HOI recognition.

The MPHOI-72 dataset is valuable for two-person HOI recognition tasks.
It contains 72 videos of 8 pairs of people performing 3 distinct activities
(Cheering, Hair cutting and Co-working) with 13 human sub-activities (e.g .,
Sit, Approach, Pour). Each video showcases two participants interacting with
2-4 objects from 3 unique angles. Geometric features and human sub-activity
labels are frame-wise annotated.

CAD-120 is a prominent dataset for single-person HOI recognition. It
contains 120 RGB-D videos, capturing 10 distinct activities executed by 4
participants, each repeated three times. In each video, a participant interacts
with 1-5 objects. The dataset provides frame-wise annotations for 10 human
sub-activities (e.g ., opening, cleaning, placing) and 12 object affordances (e.g .,
openable, cleanable, placeable).

The Bimanual Actions dataset is a large-scale collection of 540 RGB-D
videos capturing HOIs using both hands. It documents the actions of 6
subjects who engage in 9 varied bimanual tasks, with each task performed
10 times. The dataset assigns 14 unique action labels to each hand, with
frame-wise annotations for each entity within the videos.

5.2. Implementation Details

We follow Morais et al. (2021) and Qiao et al. (2022, 2024) to evaluate
GeoVis-GNN on two tasks: joint segmentation and label recognition, and label
recognition given known segmentation. The first task involves segmenting the
timeline of each entity and classifying segment labels in a video. The second
task, an extension of the first, requires labeling pre-existing segments with
known ground-truth segmentation. We utilize the F1@k metric (Lea et al.,
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2017) for evaluation, applying standard thresholds of k = 10%, 25%, and
50%. This metric considers a predicted action segment correct if it achieves a
minimum Intersection over Union (IoU) overlap of k with the ground truth. It
is widely adopted in temporal segmentation research (Lea et al., 2017; Farha
and Gall, 2019; Morais et al., 2021), particularly for its ability to handle short
or partial actions commonly found in HOI scenarios by requiring a certain
overlap for each segment. As a result, it offers a more fine-grained evaluation
of segmentation quality, capturing both the correctness of segment boundaries
and the overall alignment with the ground truth.

For dataset evaluation, we use different cross-validation protocols tailored
to the characteristics of each dataset to ensure subjects in the training set
do not appear in the test set. For the single-person HOI datasets, CAD-120
and Bimanual Actions, we use leave-one-subject-out cross-validation, treating
each individual as a separate fold. For the two-person HOI dataset MPHOI-
72, we employ leave-two-subjects-out to preserve the same principle while
accounting for pairs of interacting subjects. This ensures a strict separation
of subjects (or subject pairs) between training and testing. For MPHOI-120,
our cross-validation scheme specifies three subjects not present in the training
set as the test set.

The GeoVis-GNN framework is implemented in PyTorch and trained in
two stages using the AdamW optimizer. A batch size of 16 is used across all
datasets. The learning rate is set to 0.0001 for both the MPHOI datasets
and the CAD-120 and Bimanual Actions datasets. Training MPHOI-120,
MPHOI-72, CAD-120 and Bimanual Actions on four Nvidia Titan RTX GPUs
take 6, 4, 8 hours and 7 days respectively, while testing the entire set takes
approximately 2, 2, 6 and 20 minutes respectively.

To capture increasingly complex features while keeping computational cost
reasonable, we adopt an incremental increase in dimensionality. Specifically,
we set C1 = 128, C2 = 256, and C3 = 512 based on empirical experimentation
to balance model capacity and efficiency. C1 and C2 serve as mid-level
embeddings for spatio–temporal transformations, while C3 enables deeper
representations for modeling high-level interactions. As Bimanual Actions
has a significantly more monotonic data distribution, we set C2 = 32, C3 = 64
and [Su

t = 0].
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5.3. Quantitative and Qualitative Comparison with SOTAs

5.3.1. Concurrent Partial HOIs

In the MPHOI-120 dataset, GeoVis-GNN beats ASSIGN (Morais et al.,
2021), 2G-GCN (Qiao et al., 2022) and CATS (Qiao et al., 2024) by a
considerable gap (Tab. 2). Especially under multi-person HOI conditions,
ASSIGN drops below 60% in F1 metrics due to occlusions affecting visual
features in HOI tasks. GeoVis-GNN shows an improvement of about 2% to
4% in F1@{10, 25, 50} over SOTA, demonstrating its ability to effectively
handle concurrent partial interactions. This highlights the strength of its
dual-attention fusion strategy and interdependent entity graph in capturing
essential features and modeling stable interactions, even in the presence of
unexpected occlusions and complex multi-person dynamics.

Table 2: Joined segmentation and label recognition results on MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN 58.0 ± 8.5 53.7 ± 7.9 39.1 ± 7.4
2G-GCN 60.7 ± 6.5 55.3 ± 6.9 39.6 ± 6.5
CATS 62.8 ± 2.7 56.7 ± 4.2 42.8 ± 3.9

GeoVis-GNN 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1
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Figure 5: Visualization of segmentation on MPHOI-120 for Signing activity. Red dashed
boxes highlight major segmentation errors.

Fig. 5 illustrates the visualization results of GeoVis-GNN and CATS on
MPHOI-120 comparing with Ground-truth for the Signing activity, where
red dashed boxes highlight major segmentation errors. Although both
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GeoVis-GNN and CATS make errors compared to Ground-truth, GeoVis-GNN
can contribute relatively plausible segmentation results in all three subjects.
For example, in subject 3, CATS oversegments sit in the beginning and
then completely misses pass and lift before note, while our GeoVis-GNN can
accurately segment sit and pass but miss lift. This is likely due to the lift
action of the subject being very fast and closely resembles the note action,
leading our model to misclassify lift as note. Incorporating temporal attention
mechanisms could potentially enhance performance in the short duration of
the action and its overlapping features with subsequent actions.

5.3.2. Two-person HOIs

GeoVis-GNN achieves an impressive performance on the MPHOI-72
dataset (Tab. 3), with an F1@10 score of 84.3%, significantly outstripping
the 71.3% scored by CATS (Qiao et al., 2024). Across all F1 configurations,
GeoVis-GNN exhibits substantial improvements of 13.0%, 10.8%, and 10.6%,
respectively. The advanced technique for fusing geometric and visual fea-
tures allows to capture more complex patterns in the data, while CATS and
2G-GCN cannot leverage it due to its inefficient fusion.

Table 3: Joined segmentation and label recognition results on MPHOI-72.

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0
2G-GCN 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5
CATS 71.3 ± 5.0 65.8 ± 3.9 48.8 ± 5.3

GeoVis-GNN 84.3 ± 5.5 76.6 ± 4.5 59.4 ± 4.9

Fig. 6 shows the visualization of segmentation and labeling on the MPHOI-
72 dataset with the two advanced models for the Cheering activity comparing
with Ground-truth. GeoVis-GNN presents more reasonable and robust seg-
mentation results in all sub-activities, while CATS provides some unexpected
abnormal results in certain sub-activities, such as pour and place. Interest-
ingly, CATS directly recognizes the static action sit rather than the ongoing
action retreat following place at the end of the activity for subject 1. This
may result from the dominant role of visual features, as these two actions
appear similar in the front view.
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Figure 6: Visualization of segmentation on MPHOI-72 for Cheering activity. Red dashed
boxes highlight major segmentation errors.

5.3.3. Single-person HOIs

Table 4: Joined segmentation and label recognition results on CAD-120.

Model
Sub-activity Object Affordance

F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

rCRF 65.6 ± 3.2 61.5 ± 4.1 47.1 ± 4.3 72.1 ± 2.5 69.1 ± 3.3 57.0 ± 3.5
Independent BiRNN 70.2 ± 5.5 64.1 ± 5.3 48.9 ± 6.8 84.6 ± 2.1 81.5 ± 2.7 71.4 ± 4.9

ATCRF 72.0 ± 2.8 68.9 ± 3.6 53.5 ± 4.3 79.9 ± 3.1 77.0 ± 4.1 63.3 ± 4.9
Relational BiRNN 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5 82.3 ± 2.3 78.5 ± 2.7 68.9 ± 4.9

ASSIGN 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8 92.0 ± 1.1 90.2 ± 1.8 82.4 ± 3.5
2G-GCN 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8 92.4 ± 1.7 90.4 ± 2.3 82.7 ± 2.9
CATS 89.6 ± 2.1 87.3 ± 1.5 76.0 ± 3.5 90.2 ± 1.5 89.1 ± 2.4 80.5 ± 2.8

GeoVis-GNN 89.9 ± 2.0 87.8 ± 1.9 76.7 ± 3.1 92.7 ± 0.4 90.4 ± 0.6 83.3 ± 1.8

Tab. 4 shows the effectiveness of GeoVis-GNN in CAD-120 evaluated
by sub-activity and object affordance labels. GeoVis-GNN beats previous
visual-based (Sener and Saxena, 2015; Koppula and Saxena, 2016; Morais
et al., 2021) and geometry-informed (Qiao et al., 2022, 2024) networks for
both labels and achieves the highest F1 scores of mean in every configuration.
Notably, the two geometry-informed networks show comparable performance
in human sub-activity recognition, but CATS performs poorly in object
affordance recognition. This may be due to two main factors: an imbalance in
feature representation, with fewer keypoints for objects than humans, reducing
object emphasis in the scene graph, while the dual-attention feature fusion
in GeoVis-GNN helps mitigate this. Additionally, our task requires both
segmentation and label recognition, a two-stage process that does not align
well with the end-to-end framework of CATS, which may struggle with such
distinct processing stages. Although CATS performs well in multi-person HOI
scenarios, empirical results indicate that it is less suited for single-person HOI
tasks. Therefore, in the subsequent HOI recognition comparisons involving a
single individual, we use 2G-GCN as the state-of-the-art benchmark.
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Fig. 7 presents the visualization outcomes for the Cleaning Objects ac-
tivity in CAD-120, depicting a scene where a person uses a cloth to clean
a microwave. The qualitative analysis shows that GeoVis-GNN surpasses
2G-GCN in recognizing human sub-activities and object affordances, notably
reachable and movable for the microwave, closely matching the Ground-truth.
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Figure 7: Visualization of segmentation on CAD-120 for Cleaning objects activity. Red
dashed boxes highlight major segmentation errors.

5.3.4. Two-hand HOIs

Table 5: Joined segmentation and label recognition results on Bimanual Actions.

Model
Sub-activity

F1@10 F1@25 F1@50

Dreher et al. (2020) 40.6 ± 7.2 34.8 ± 7.1 22.2 ± 5.7
Independent BiRNN 74.8 ± 7.0 72.0 ± 7.0 61.8 ± 7.3
Relational BiRNN 77.7 ± 3.9 75.0 ± 4.2 64.8 ± 5.3

ASSIGN 84.0 ± 2.0 81.2 ± 2.0 68.5 ± 3.3
2G-GCN 85.0 ± 2.2 82.0 ± 2.6 69.2 ± 3.1

GeoVis-GNN 85.8 ± 2.2 82.7 ± 2.8 69.7 ± 3.0

GeoVis-GNN achieves the superior performance on the large-scale Biman-
ual Actions dataset (Tab. 5), with near 1% improvement in the same standard
deviation at F1@10. The slight improvement is partly due to the limited hand
pose estimation that OpenPose (Cao et al., 2018) uses for the hand skeleton
of the dataset, which may introduce noise, especially in occlusions. Fig. 8
presents the visualization outcomes for the Pouring activity in Bimanual
Actions. The qualitative analysis demonstrates that GeoVis-GNN has out-
standing performance in segmenting and recognizing actions of both hands,
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which almost overlaps the Ground-truth, while 2G-GCN oversegments some
sub-activities like pour.
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Figure 8: Visualization of segmentation on Bimanual Actions for Pouring activity. Red
dashed boxes highlight major segmentation errors.

5.4. Scenario-Based Performance and Error Analysis

Table 6: GeoVis-GNN performance across different HOI scenarios. The rightmost column
indicates the performance gap relative to MPHOI-120.

Dataset Scenario Difference (F1@10)

CAD-120 Single-person (General) +24.8%
Bimanual Actions Single-person (Bimanual) +20.7%
MPHOI-72 Two-person (Full) +19.2%
MPHOI-120 Multi-person (Partial) –

Tab. 6 summarizes GeoVis-GNN’s performance across different HOI scenar-
ios with performance gaps of MPHOI-120 at F1@10. It arranges the datasets
from single-person to multi-person partial, revealing a progressive increase in
complexity. In single-person scenarios, CAD-120 shows the largest gap rela-
tive to MPHOI-120 at +24.8%, indicating that single-participant tasks with
clear sub-activity boundaries are relatively straightforward. Similarly, Biman-
ual Actions follows with a +20.7% gap, reflecting simpler interactions than
multi-person scenarios. GeoVis-GNN generally distinguishes between left-
and right-hand movements effectively. Furthermore, Fig. 9 shows an example
of sub-activity segmentation by GeoVis-GNN compared to the ground-truth,
with corresponding RGB screenshots for visual reference. The segmentation
error in the red box occurs because the model misclassifies part of the moving
phase as placing, likely due to the smooth transition and similar motion
patterns between the two sub-activities. This suggests that the model lacks
sensitivity to subtle temporal boundaries. Improving temporal modeling or
introducing boundary-aware supervision could help address this issue.
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Ground-truth

GeoVis-GNN

reaching              moving                placing  

Human 
Sub-activity

Figure 9: Example of sub-activity segmentation error on the CAD-120 dataset for Mi-
crowaving Food activity. Corresponding RGB frames are provided for visual context.

In multi-person settings, the challenges are more pronounced. MPHOI-72
focuses on two fully engaged participants and has a +19.2% advantage. Al-
though moderate occlusions and overlapping actions are present, the model
generally maintains good performance. In contrast, MPHOI-120, which fea-
tures partial engagements, idle participants, and concurrent interactions,
yields a significantly lower score of 65.1% due to heavy occlusions and ambigu-
ous sub-activity boundaries. These results highlight the difficulty of accurately
segmenting short actions and managing overlapping activities in crowded,
dynamic scenes. Fig. 10 shows an over-segmentation error by GeoVis-GNN
on the MPHOI-72 dataset during the Hair Cutting activity. As highlighted
in the red box, the model incorrectly inserts a sit action between place and
approach. This likely results from short-term pose ambiguity, causing the
model to misinterpret a brief motion pause as a distinct sub-activity. This
suggests the need for improved temporal smoothing to reduce false segment
boundaries.

Ground-truth

GeoVis-GNN

Human Sub-
activity: Male

cut            place                           lift

retreat    approach

sit

Figure 10: Example of sub-activity segmentation error on the MPHOI-72 dataset for Hair
Cutting activity. Corresponding RGB frames are provided for visual context.
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5.5. Cross-Dataset Zero-Shot Study

In real-world applications, models usually perform reliably on unseen data
distributions without the luxury of extensive retraining or domain-specific
adaptations. To demonstrate the robustness and generalization capabilities of
our proposed GeoVis-GNN, we conduct a cross-dataset zero-shot evaluation,
as detailed in Table 7. This study involves training GeoVis-GNN exclusively
on the concurrent partial interaction dataset and subsequently testing it on
the two-person HOI dataset.

Our results show that GeoVis-GNN significantly outperforms the existing
baselines, ASSIGN, 2G-GCN and CATS, achieving an improvement of 3.6% in
the F1@10 score. This substantial performance gain underscores the stronger
generalization ability of GeoVis-GNN compared to state-of-the-art methods.
The ability to effectively transfer learned features from a more complex
concurrent partial HOI scenario to a simpler two-person setting highlights
the model’s adaptability and transferability across diverse multi-person HOI
datasets.

Table 7: Zero-shot results of training on concurrent partial interaction dataset (MPHOI-120)
and testing on two-person HOI dataset (MPHOI-72).

Model
Sub-activity

F1@10 F1@25 F1@50

ASSIGN 33.7 31.5 28.2
2G-GCN 36.2 33.3 30.4
CATS 38.5 35.6 33.2

GeoVis-GNN 42.1 40.3 34.5

Additionally, in many real-world scenarios, target domain fine-tuning or
transfer learning is often employed to adapt models to specific environments.
However, our zero-shot results, while not reaching the performance levels
achievable when training and testing on the same two-person dataset, are
achieved without any such fine-tuning, relying solely on training with one
dataset and testing on another that do not necessarily share a direct rela-
tionship. This suggests that GeoVis-GNN has the potential to generalize
across different datasets with varying characteristics, even without extensive
retraining. Although there is room for improvement, the results are promising
and indicate that our approach can still be valuable in scenarios where labeled
data for every possible situation may not be readily available.
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5.6. Ablation Study and Alternative Architecture

Figure 11: Different designs to combine geometric and visual features in channel attention-
based feature fusion.

We extensively evaluate the design of channel attention-based feature
fusion. Fig. 11 shows four design strategies, in which: (a): Separately
concatenate human features hv, hg and object features ov, og on feature-
channel with attentions; (b): Separately concatenate human features hv, hg
and object features ov, og on entity-channel with attentions; (c): Separately
concatenate visual features hv, ov and geometric features hg, og on entity-
channel with attentions; (d) Ours: Concatenate all features hv, hg, ov, og
on entity-channel with a unified attention. The results of the comparison
are shown in Tab. 8. Our design (d) presents the highest F1 score with
a significant improvement gap w.r.t. other designs. Notably, design (a)
shows the lowest score, indicating the importance of entity-channel fusion.
Although (b) and (c) contribute relatively high score, they still show 3.7%
and 6% performance degradation in F1@10, respectively. This demonstrates
the efficiency of our holistic entity-channel attention in selectively enhancing
the most crucial visual or geometric features among all entities.
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Table 8: Results of different strategies in channel attention-based feature fusion on
MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

(a) ho feature-channel attention 58.2 ± 4.0 50.7 ± 4.2 38.4 ± 3.6
(b) ho entity-channel attention 61.4 ± 5.7 56.5 ± 5.3 40.4 ± 4.7
(c) vg entity-channel attention 59.1 ± 5.3 50.4 ± 6.0 39.9 ± 4.8

(d) GeoVis-GNN (ours) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

Table 9: Architecture alternative and ablation study on MPHOI-120. CAF and IEG denote
the channel attention-based fusion and the interdependent entity graph, respectively.

Model
Sub-activity

F1@10 F1@25 F1@50

(1) GAT, w CAF, w/o IEG 61.2 ± 6.0 55.7 ± 5.2 45.4 ± 4.6
(2) GAT, w/o CAF&IEG 59.3 ± 6.1 52.5 ± 5.7 39.4 ± 4.3
(3) GCN, w/o CAF&IEG 58.6 ± 6.4 51.5 ± 5.3 38.3 ± 5.7
(4) Top-down architecture 62.8 ± 5.7 56.7 ± 5.2 42.8 ± 4.9

(5) GeoVis-GNN (ours) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

To further validate the effectiveness and complementary roles of each
module, we conduct ablation studies on MPHOI-120, where CAF and IEG
refer to the channel attention-based fusion and the interdependent entity
graph, respectively (Tab. 9). Specifically, variant (1) removes IEG, variant
(2) removes both CAF and IEG, variant (3) removes CAF and IEG while
replacing the GAT-based geometric embedding with GCN, and variant (4)
adopts an alternative top-down design instead of our bottom-up architecture.

Our results show that removing any module leads to a significant perfor-
mance drop, confirming that each component not only addresses a specific
challenge but also enhances the entire pipeline. For instance, variant (1) sees
a 3.9% decline in F1@10, highlighting the critical role of IEG in modeling
complex entity interactions. Likewise, variants (2) and (3) drop by 5.8%
and 6.5%, respectively, underscoring the importance of CAF for effectively
merging geometric and visual features, and the GAT for generating expressive
geometric embeddings. Moreover, comparing the top-down approach (variant
(4)) to our final method (5) reveals that the bottom-up framework better
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integrates multimodal information and preserves fine-grained entity details.
These findings collectively demonstrate the synergy among GAT, CAF, and
IEG, where each module contributes to robust HOI recognition by providing
refined features that the subsequent modules further leverage, resulting in
more accurate segmentation and interaction understanding.

5.7. HOI Attention Analysis

Cheering

Cheering

Cheering

Output

Approaching

Approaching

Lifting

Output

Figure 12: Visualization of HOI attention maps for GeoVis-GNN and 2G-GCN during a
“Cheering” activity. Correct and incorrect recognition results are highlighted in green and
orange, respectively.

To enhance the interpretability of our model, we deep into the attention
analysis in the HOI graph. We compare GeoVis-GNN with the recent ad-
vanced method that constructs entity-level HOI graphs. Fig. 12 presents a
comparative analysis of HOI attention maps in entity-level graphs generated
by GeoVis-GNN and 2G-GCN for a Cheering activity involving three subjects,
each holding a cup, with two bottles placed on the table. In the left attention
map, our GeoVis-GNN model demonstrates its superior interpretability by
accurately focusing on all three cups, even effectively handling occlusions,
such as Cup2 being partially hidden behind Cup1. This targeted attention
enables the model to correctly recognize the Cheering sub-activity for all
three subjects (highlighted in green).

In contrast, the 2G-GCN model exhibits less precise attention, incorrectly
focusing on Cup3 and Bottle1, leading to erroneous sub-activity predictions
such as Approaching and Lifting (highlighted in orange). This comparison
highlights GeoVis-GNN’s ability to maintain robust attention across relevant
entities, even in occluded or cluttered environments, thereby ensuring more
accurate HOI recognition. The clear distinction in attention focus between
the two models underscores the effectiveness of our bottom-up approach in
capturing the essential elements of complex interactions, which is critical for
accurate activity recognition in multi-person scenarios.
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5.8. Analysis of Varying Number of Objects

Tab. 10 presents a comprehensive analysis of our model’s performance
when varying the number of objects considered on the MPHOI-120 dataset.
Notably, MPHOI-120 contains 2-5 objects in total, even when using only
2 objects, our model outperforms the 2G-GCN baseline, demonstrating its
robustness and highlighting its capability to extract meaningful interactions
even from a limited set of objects.

Increasing the number of objects from 2 to 5 improves performance across
all F1 metrics, but also increases memory cost. This trade-off suggests that
while more objects provide richer interaction contexts, leading to better
recognition accuracy, the memory requirements scale with the number of
objects included. However, in highly cluttered environments with potentially
hundreds of objects, our design offers an advantage by enabling the selection
of a fixed number of objects to avoid a linear increase in memory consumption.

Table 10: Results of different number of object usage on MPHOI-120.

Model
Sub-activity

F1@10 F1@25 F1@50

2 objects only 61.4 ± 3.4 55.4 ± 2.0 40.1 ± 3.2
3 objects only 62.6 ± 6.9 56.2 ± 8.2 41.8 ± 9.1
4 objects only 63.1 ± 6.4 56.7 ± 7.5 43.2 ± 8.7

GeoVis-GNN (5 objects) 65.1 ± 5.2 59.8 ± 4.7 46.6 ± 5.1

5.9. Parameter Size and Inference Time Analysis

Table 11: Comparison of parameter size (M), inference time (millisecond per frame) and
performance between GeoVis-GNN and state-of-the-arts on MPHOI-120.

Model
Param Time Sub-activity

(M) (ms/f) F1@10

ASSIGN 121 79 58.0 ± 8.5

2G-GCN 148 84 60.7 ± 6.5

CATS 132 137 62.8 ± 2.7

GeoVis-GNN 130 119 65.1 ± 5.2
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To verify the efficiency of our approach, Tab. 11 compares GeoVis-GNN
against 2G-GCN, CATS, and ASSIGN, all of which represent recent state-of-
the-art HOI recognition frameworks, on the MPHOI-120 dataset. Specifically,
2G-GCN and CATS combine geometric and visual cues, while ASSIGN only
focuses on visual features. GeoVis-GNN demonstrates greater efficiency
with a smaller parameter size (130M) compared to 2G-GCN (148M) and
CATS (132M), while achieving competitive interactive times of 119 ms/f.
Additionally, GeoVis-GNN achieves a notable performance improvement,
underscoring its capability to balance efficiency and accuracy effectively in
multi-person HOI recognition tasks.

6. Conclusion and Discussion

Our bottom-up GeoVis-GNN framework for video-based multi-person HOI
recognition introduces a novel dual-attention fusion mechanism. It optimizes
feature integration by embedding and fusing visual and geometric features
using a graph attention mechanism followed by a channel attention module.
These enhanced entity-specific representations are then fed into an interde-
pendent entity graph, enabling the modeling of both explicit interactions
and implicit interdependencies for a more comprehensive understanding of
multi-person HOI. Additionally, we propose a challenging concurrent partial
interaction dataset and GeoVis-GNN sets new benchmarks across various
HOI scenarios.

Our attention-based feature fusion effectively handles scenes with multiple
entities by discerning dynamic relevance and underlying connections among
individuals. In highly cluttered environments — where dozens of people
or objects may overlap — the root issue is that key interactions, whether
contact-based or not, risk being overwhelmed by irrelevant visual clutter.
For instance, a person watching TV in a room filled with other objects and
people may go unnoticed if the system cannot separate important cues from
background noise. This interplay between partial interactions and large-scale
clutter underscores a deeper need for efficient extraction of both in-contact
and non-contact interactions (Jiang et al., 2013; Hassan et al., 2021; Nie et al.,
2022). Identifying the most probable HOIs in such scenarios requires robust
methods for filtering out extraneous information and focusing on contextually
meaningful entities.

While our concurrent partial interaction dataset closely reflects real-world
multi-person HOIs, its controlled indoor settings do not fully mirror the unpre-

31

                  



dictability of in-the-wild situations. The underlying cause is that real-world
environments often introduce variables like inconsistent lighting, unpredictable
occlusions, diverse camera angles, and partially missing objects (Tripathi et al.,
2023; Yang et al., 2024; Ye et al., 2023). These factors, compounded by more
fluid participant behaviors, lead to greater data ambiguity and annotation
difficulty. Although we capture significant variation in our dataset, future
work will extend to in-the-wild HOI videos. Tackling these unstructured
real-world contexts requires innovative strategies to handle sudden motion,
incomplete viewpoints, and other complexities beyond the scope of indoor,
well-annotated data.

Contemporary HOI recognition often depends on precise, frame-level
annotations (Li et al., 2021), which become costly and inconsistent when
interactions are frequent and subtle — common traits in multi-person environ-
ments. The core problem is that a large volume of overlapping sub-activities
escalates labeling complexity, amplifying human errors and making the label-
ing process time-consuming. Moreover, ambiguous transitions (e.g., partial
engagement or fleeting interactions) make it hard for annotators to decide
when a sub-activity starts or ends. Weakly-supervised learning (Ren et al.,
2023; Rizve et al., 2023) mitigates this challenge by using approximate or
high-level labels, allowing models to generalize without requiring every frame
to be manually annotated. As a result, this approach offers a scalable path-
way for handling diverse, real-world HOI data, where precise and exhaustive
annotations may be neither feasible nor reliable.
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