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A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, 
star forest or disjoint union of vertices and edges, respectively. The corresponding decision 
problems are Acyclic Colouring, Star Colouring and Injective Colouring. We give almost 
complete complexity classifications for Acyclic Colouring, Star Colouring and Injective 
Colouring on H-free graphs (for each of the problems, we have one open case). Moreover, 
we give full complexity classifications if the number of colours k is fixed, that is, not part 
of the input. From our study it follows that for fixed k, the three problems behave in the 
same way, but this is no longer true if k is part of the input. To obtain several of our results 
we prove stronger complexity results that in particular involve the girth of a graph and the 
class of line graphs of multigraphs.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study the complexity of three classical colouring problems. We do this by focusing on hereditary graph classes, i.e., 
classes closed under vertex deletion. Examples of well-known hereditary graph classes are the classes of bipartite graphs, 
chordal graphs, claw-free graphs, perfect graphs, planar graphs and so on. Hereditary graph classes are exactly those graph 
classes that can be characterized by a (possibly infinite) set F of forbidden induced subgraphs. For example, for the class 
of bipartite graphs, the set F consists of all odd cycles. Ideally, we would like to determine the complexity of a problem 
for every hereditary graph class. However, as evidenced by numerous complexity studies in the literature, even the case 
where |F | = 1 is often already highly challenging but at the same time also captures a rich family of graph classes suitably 
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* Corresponding author.
E-mail addresses: bok@iuuk.mff.cuni.cz (J. Bok), jedlickova@kam.mff.cuni.cz (N. Jedličková), barnaby.d.martin@durham.ac.uk (B. Martin), ochem@lirmm.fr
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interesting to develop general methodology. Hence, we usually first set F = {H} and consider the class of H-free graphs, 
i.e., graphs that do not contain H as an induced subgraph. We then investigate how the complexity of a problem restricted 
to H-free graphs depends on the choice of H and try to obtain a complexity dichotomy. This is also the approach we follow 
in this paper.

To give a well-known and relevant example, the Colouring problem is to decide, given a graph G and integer k ≥ 1, 
if G has a k-colouring, i.e., a mapping c : V (G) → {1, . . . ,k} such that c(u) �= c(v) for every two adjacent vertices u and v . 
Král’ et al. [49] proved that Colouring on H-free graphs is polynomial-time solvable if H is an induced subgraph of P4 or 
P1 + P3 and NP-complete otherwise. Here, Pn denotes the n-vertex path and G1 + G2 = (V (G1)∪ V (G2), E(G1)∪ E(G2)) the 
disjoint union of two vertex-disjoint graphs G1 and G2. If k is fixed (not part of the input), then we obtain the k-Colouring 
problem. No complexity dichotomy is known for k-Colouring if k ≥ 3. In particular, the complexities of 3-Colouring for 
Pt -free graphs for t ≥ 8 and k-Colouring for (P4+sP2)-free graphs for s ≥ 1 and k ≥ 4 are still open. Here, we write sG for 
the disjoint union of s copies of G . We refer to the survey of Golovach et al. [35] for further details and to [18,19,47] for 
updated summaries.

For a colouring c of a graph G , a colour class consists of all vertices of G that are mapped by c to a specific colour i. We 
consider the following special graph colourings. A colouring of a graph G is acyclic if the union of any two colour classes 
induces a forest. The (r +1)-vertex star K1,r is the graph with vertices u, v1, . . . , vr and edges uvi for every i ∈ {1, . . . , r}. An 
acyclic colouring is a star colouring if the union of any two colour classes induces a star forest, that is, a forest in which each 
connected component is a star. A star colouring is injective (or an L(1,1)-labelling or a distance-2 colouring) if the union of 
any two colour classes induces an sP1 + t P2 for some integers s ≥ 0 and t ≥ 0. An alternative definition is to say that all the 
neighbours of every vertex of G are uniquely coloured. For example, the 4-vertex cycle C4 has a k-colouring for 2 ≤ k ≤ 4; 
an acyclic k-colouring and star k-colouring for 3 ≤ k ≤ 4 and an injective k-colouring for k = 4, whereas the 4-vertex path 
P4 has a k-colouring and acyclic k-colouring for 2 ≤ k ≤ 4; and a star k-colouring and injective k-colouring for 3 ≤ k ≤ 4. 
The above definitions lead to the following three well-known decision problems:

Acyclic Colouring

Instance: A graph G and an integer k ≥ 1
Question: Does G have an acyclic k-colouring?

Star Colouring

Instance: A graph G and an integer k ≥ 1
Question: Does G have a star k-colouring?

Injective Colouring

Instance: A graph G and an integer k ≥ 1
Question: Does G have an injective k-colouring?

If k is fixed, we write Acyclic k-Colouring, Star k-Colouring and Injective k-Colouring, respectively. We note that in 
the literature on the Injective Colouring problem it is often assumed that two adjacent vertices may be coloured alike 
by an injective colouring (see, for example, [38,39,44]). However, in our paper, we do not allow this; as reflected in their 
definitions we only consider colourings that are proper. This enables us to compare the results for the three different kinds 
of colourings with each other.

All three colouring variants have been extensively studied, as they form a framework in which natural additional condi-
tions are imposed on the bipartite subgraph introduced by two colour classes corresponding to some graph colouring; see 
also the paper of Grünbaum [37], who introduced the notions of acyclic colouring and star colouring in 1973.

However, so far, systematic studies for the latter two variants mainly focused on structural characterizations, exact values, 
lower and upper bounds on the minimum number of colours in an acyclic colouring or star colouring (i.e., the acyclic and 
star chromatic number); see, e.g., [4,13,26,28,29,45,46,63,64,66], to name just a few papers. Injective colourings (and the 
injective chromatic number) were mainly considered in the context of the distance constrained labelling framework related 
to frequency assignment (see the survey [16] and Section 6 therein). Nevertheless, the three colouring variants have also 
been studied from a complexity perspective, but apart from a study on Acyclic Colouring for graphs of bounded maximum 
degree [59], known results are scattered and relatively sparse. We therefore perform a systematic and comparative complexity 
study by focusing on the following research question both for k part of the input and for fixed k:

What are the computational complexities of Acyclic Colouring, Star Colouring and Injective Colouring for H-free graphs?

Known Results 

Before discussing our new results and techniques, we first briefly discuss some known results, several of which will play 
an important role in our paper.
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Known Hardness Results. We first present some relevant NP-completeness results for Acyclic Colouring, Star Colouring 
and Injective Colouring, respectively.

Coleman and Cai [20] proved that for every k ≥ 3, Acyclic k-Colouring is NP-complete for bipartite graphs. Afterwards, a 
number of hardness results appeared for other hereditary graph classes. Alon and Zaks [5] showed that Acyclic 3-Colouring 
is NP-complete for line graphs of maximum degree 4. Kostochka [48] proved that Acyclic 3-Colouring is NP-complete for 
planar graphs. This result was improved to planar bipartite graphs of maximum degree 4 by Ochem [60]. Mondal et al. [59] 
proved that Acyclic 4-Colouring is NP-complete for graphs of maximum degree 5 and for planar graphs of maximum 
degree 7. Ochem [60] showed that Acyclic 4-Colouring is NP-complete for planar bipartite graphs of maximum degree 8. 
We refer to the paper of Angelini and Frati [6] for a further discussion on acyclic colourable planar graphs.

Albertson et al. [1] and recently, Lei et al. [51] proved that Star 3-Colouring is NP-complete for planar bipartite graphs 
and line graphs, respectively. Shalu and Antony [62] showed that Star Colouring is NP-complete for co-bipartite graphs.

Bodlaender et al. [9], Sen and Huson [61] and Lloyd and Ramanathan [54] proved that Injective Colouring is NP-
complete for split graphs, unit disk graphs and planar graphs, respectively. Mahdian [58] proved that for every k ≥ 4, 
Injective k-Colouring is NP-complete for line graphs, whereas Injective 4-Colouring is also known to be NP-complete for 
cubic graphs (see [16]). Observe that Injective 3-Colouring is trivial for general graphs.

Known Polynomial Results. We now state some relevant polynomial results for Acyclic Colouring, Star Colouring and 
Injective Colouring.

Lyons [56] proved that Acyclic Colouring and Star Colouring are polynomial-time solvable for P4-free graphs; in 
particular, he showed that every acyclic colouring of a P4-free graph is, in fact, a star colouring. We note that Injective 
Colouring is trivial for P4-free graphs, as every injective colouring must assign each vertex of a connected P4-free graph a 
unique colour. Afterwards, the results of Lyons have been extended to P4-tidy graphs and (q,q −4)-graphs by Linhares-Sales 
et al. [53].

Cheng et al. [17] complemented the aforementioned result of Alon and Zaks [5] by proving that Acyclic Colouring 
is polynomial-time solvable for claw-free graphs of maximum degree at most 3. Calamoneri [16] observed that Injective 
Colouring is polynomial-time solvable for comparability and co-comparability graphs. Zhou et al. [65] proved that Injective 
Colouring is polynomial-time solvable for graphs of bounded treewidth (which is best possible due to the W[1]-hardness 
result of Fiala et al. [30]).

Finally, we refer to [14] for a recent complexity study of Acyclic Colouring, Star Colouring and Injective Colouring for 
graphs of bounded diameter.

Our Complexity Results and Methodology 

The girth of a graph G is the length of a shortest cycle of G (if G is a forest, then its girth is ∞). To answer our research 
question we focus on two important graph classes, namely the classes of graphs of high girth and line graphs of multigraphs, 
which are interesting classes on their own. If a problem is NP-complete for both classes, then it is NP-complete for H-free 
graphs whenever H has a cycle or a claw. It then remains to analyze the case when H is a linear forest, i.e., a disjoint union 
of paths; see [12,15,33,49] for examples of this approach, which we discuss in detail below.

The construction of graph families of high girth and large chromatic number is well studied in graph theory (see, 
e.g. [25]). To prove their complexity dichotomy for Colouring on H-free graphs, Král’ et al. [49] first showed that for 
every integer g ≥ 3, 3-Colouring is NP-complete for the class of graphs of girth at least g . This approach can be readily 
extended to any integer k ≥ 3 [24,55]. The basic idea is to replace edges in a graph by graphs of high girth and large chro-
matic number, such that the resulting graph has sufficiently high girth and is k-colourable if and only if the original graph 
is so (see also [36,41]).

By a more intricate use of the above technique we are able to prove that for every g ≥ 3 and every k ≥ 3, Acyclic 
k-Colouring is NP-complete for the class of 2-degenerate bipartite graphs of girth at least g . This implies that Acyclic 
k-Colouring is NP-complete for H-free graphs whenever H has a cycle. We are also able to prove that for every g ≥ 3, 
Star 3-Colouring remains NP-complete even for planar graphs of girth at least g and maximum degree 3. This implies that 
Star 3-Colouring is NP-complete for H-free graphs whenever H has a cycle. We prove the latter result for every k ≥ 4
by combining known results, just as we use known results to prove that Injective k-Colouring (k ≥ 4) is NP-complete for 
H-free graphs if H has a cycle.

A classical result of Holyer [40] is that 3-Colouring is NP-complete for line graphs (and Leven and Galil [52] proved the 
same for k ≥ 4). As line graphs are claw-free, Král’ et al. [49] used Holyer’s result to show that 3-Colouring is NP-complete 
for H-free graphs whenever H has an induced claw. For Acyclic k-Colouring, we can use Alon and Zaks’ result [5] for k = 3, 
which we extend to work for k ≥ 4. For Star k-Colouring we extend the recent result of Lei et al. [51] from k = 3 to k ≥ 3
(in both our results we consider line graphs of multigraphs; these graphs are claw-free and hence suffice for our study on 
H-free graphs). For Injective k-Colouring (k ≥ 4) we can use the aforementioned result on line graphs of Mahdian [58].

The above hardness results leave us to consider the case where H is a linear forest. In Section 2 we will use a result of 
Atminas et al. [7] to prove a general result from which it follows that for fixed k, all three problems are polynomial-time 
solvable for H-free graphs if H is a linear forest. Hence, we have full complexity dichotomies for the three problems when k
is fixed. However, these positive results do not extend to the case where k is part of the input. That is, for each of the three 
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Table 1
The state-of-the-art for the three problems in this paper and the original Colouring problem; both 
when k is fixed and part of the input. The unreferenced results are the results listed in Theorems 1–3. 
The only open case for Acyclic Colouring and Star Colouring is H = 2P2. The only open case for 
Injective Colouring is H = 2P1 + P4.

Polynomial time NP-complete 
Colouring [49] H ⊆i P4 or P1 + P3 else 
Acyclic Colouring H ⊆i P4 else except for 1 open case: H = 2P2

Star Colouring H ⊆i P4 else except for 1 open case: H = 2P2

Injective Colouring H ⊊i 2P1 + P4 else except for 1 open case: H = 2P1 + P4

k-Colouring (see [19,35,47]) depends on k infinitely many open cases for all k ≥ 3
Acyclic k-Colouring (k ≥ 3) H is a linear forest else 
Star k-Colouring (k ≥ 3) H is a linear forest else 
Injective k-Colouring (k ≥ 4) H is a linear forest else 

problems, we prove NP-completeness for graphs that are Pr -free for some small value of r or have a small independence 
number, i.e., that are sP1-free for some small integer s.

Our complexity results for H-free graphs are summarized in the following three theorems, proven in Sections 3–5, 
respectively; see Table 1 for a comparison. For two graphs F and G , we write F ⊆i G or G ⊇i F to denote that F is an 
induced subgraph of G .

Theorem 1. Let H be a graph. For the class of H-free graphs it holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H �⊆i P4 and H �= 2P2;
(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Theorem 2. Let H be a graph. For the class of H-free graphs it holds that:

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H �⊆i P4 and H �= 2P2;
(ii) for every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Theorem 3. Let H be a graph. For the class of H-free graphs it holds that:

(i) Injective Colouring is polynomial-time solvable if H ⊊i 2P1 + P4 and NP-complete if H �⊆i 2P1 + P4;
(ii) for every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

In Section 6 we give a number of open problems that resulted from our systematic study; in particular we will discuss the 
distance constrained labelling framework in more detail.

2. A general polynomial result

A biclique or complete bipartite graph is a bipartite graph on vertex set S ∪ T , such that S and T are independent sets and 
there is an edge between every vertex of S and every vertex of T ; if |S| = s and |T | = t , we denote this graph by Ks,t , and if 
s = t , the biclique is balanced and of order s. We say that a colouring c of a graph G satisfies the balanced biclique condition 
(BB-condition) if c uses at least k + 1 colours to colour G , where k is the order of a largest biclique that is contained in G
as a (not necessarily induced) subgraph.

Let π be some colouring property; e.g., π could mean being acyclic, star or injective. Then π can be expressed in MSO2
(monadic second-order logic with edge sets) if for every k ≥ 1, the graph property of having a k-colouring with property π
can be expressed in MSO2. The general problem Colouring (π) is to decide, on a graph G and integer k ≥ 1, if G has a 
k-colouring with property π . If k is fixed, we write k-Colouring(π ). We now prove the following result.

Theorem 4. Let H be a linear forest, and let π be a colouring property that can be expressed in MSO2 , such that every colouring with 
property π satisfies the BB-condition. Then, for every integer k ≥ 1, k-Colouring(π ) is linear-time solvable for H-free graphs.

Proof. Atminas, Lozin and Razgon [7] proved that for every pair of integers � and k, there exists a constant b(�,k) such 
that every graph of treewidth at least b(�,k) contains an induced P� or a (not necessarily induced) biclique Kk,k . Let G
be an H-free graph, and let � be the smallest integer such that H ⊆i P�; observe that � is a constant. Hence, we can use 
Bodlaender’s algorithm [8] to test in linear time if G has treewidth at most b(�,k) − 1.

First suppose that the treewidth of G is at most b(�,k) − 1. As π can be expressed in MSO2, the result of Courcelle [21] 
allows us to test in linear time whether G has a k-colouring with property π . Now suppose that the treewidth of G is at 
least b(�,k). As G is H-free, G is P�-free. Then, by the result of Atminas, Lozin and Razgon [7], we find that G contains Kk,k
as a subgraph. As π satisfies the BB-condition, G has no k-colouring with property π . �
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We now apply Theorem 4 to obtain the polynomial cases for fixed k in Theorem 1–3.

Corollary 5. Let H be a linear forest. For every k ≥ 1, Acyclic k-Colouring, Star k-Colouring and Injective k-Colouring are 
polynomial-time solvable for H-free graphs.

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as the vertices from one bipartition class of Ks,s

must receive unique colours). Hence, every acyclic, star and injective colouring of every graph satisfies the BB-condition. 
Moreover, it is readily seen that the colouring properties of being acyclic, star or injective can all be expressed in MSO2. 
Hence, we may apply Theorem 4. �
3. Acyclic colouring

In this section, we prove Theorem 1. For a graph G and a colouring c, the pair (G, c) has a bichromatic cycle C if C is a 
cycle of G with |c(V (C)| = 2, that is, the vertices of C are coloured by two alternating colours (so C is even). The notion of 
a bichromatic path is defined in a similar matter.

Lemma 6. For every k ≥ 3 and every g ≥ 3, Acyclic k-Colouring is NP-complete for 2-degenerate bipartite graphs of girth at least 
g.

Proof. We reduce from Acyclic k-Colouring, which is known to be NP-complete for bipartite graphs for every k ≥ 3 [20]. 
Recall that the arboricity of a graph is the minimum number of forests needed to partition its edge set. By counting the 
edges, a graph with arboricity at most t is (2t − 1)-degenerate and thus 2t-colourable. We start by taking a graph F that 
has no 2k(k − 1)-colouring and that is of girth at least g . By a seminal result of Erdős [25], such a graph F exists (and its 
size is constant, as it only depends on g and k which are fixed integers). Notice that F does not admit a vertex-partition 
into k subgraphs with arboricity at most k − 1, since otherwise F would be 2k(k − 1)-colourable.

Now we consider the graph S obtained by subdividing every edge of F exactly once. The graph S is 2-degenerate and 
bipartite with the old vertices from F in one part and the new vertices of degree 2 in the other part. Moreover, S has girth 
at least g , as F has girth at least g .

We claim that S has no acyclic k-colouring. For contradiction, assume that S has an acyclic k-colouring. Assign the colour 
of every old vertex to the corresponding vertex of F and assign the colour of every new vertex to the corresponding edge 
of F . For every colour i, we consider the subgraph Fi of F induced by the vertices coloured i. For every j �= i, the subgraph 
of S induced by the colours i and j is a forest. This implies that the subgraph of Fi induces by the edges coloured j is a 
forest. So the arboricity of Fi is at most k − 1, that is, the number of colours distinct from i. By previous discussion, the 
chromatic number of Fi is at most 2(k − 1), so that F is 2k(k − 1)-colourable. This contradiction shows that S has no acyclic 
k-colouring.

We repeatedly remove new vertices from S until we obtain a graph S ′ that is acyclically k-colourable. Note that S ′ has 
girth at least g and is 2-degenerate, as S has girth at least g and is 2-degenerate. Let x2 be the last vertex that we removed 
and let x1 and x3 be the neighbours of x2 in S . By construction, S ′ is acyclically k-colourable and every acyclic k-colouring 
c of S ′ is such that:

• c(x1) = c(x3), since otherwise setting c(x2) �∈ {c(x1), c(x3)} would extend c to an acyclic k-colouring of the larger graph, 
which is not possible by construction. Without loss of generality, c(x1) = c(x3) = 1.

• For every colour i �= 1, S ′ contains a bichromatic path coloured 1 and i between x1 and x3, since otherwise setting 
c(x2) = i would extend c to an acyclic k-colouring of the larger graph again.

We are ready to describe the reduction. Let G be a bipartite instance of Acyclic k-Colouring. We construct an equivalent 
instance G ′ with girth at least g as follows. For every vertex z of G , we fix an arbitrary order on the neighbours of z. We 
replace z of G by d vertices z1, z2, . . . , zd , where d is the degree of z. Then for 1 ≤ i ≤ d − 1, we take a copy of S ′ and we 
identify the vertex x1 of S ′ with zi and the vertex x3 of S ′ with zi+1. Now for every edge uv of G , say v is the ith neighbour 
of u and u is the jth neighbour of v , we add the edge ui v j in G ′ . See also Fig. 1.

Given an acyclic k-colouring of G , we assign the colour of z to z1, . . . , zd and extend the colouring to the copies of 
F ′ , which gives an acyclic colouring of G ′ . Given an acyclic k-colouring of G ′ , the copies of F ′ force the same colour on 
z1, . . . , zd and we assign this common colour to z, which gives an acyclic k-colouring of G .

Finally, notice that since G and S ′ are bipartite, G ′ is bipartite. As S ′ is 2-degenerate and has girth at least g , we find 
that G ′ is 2-degenerate and has girth at least g . �
The line graph of a graph G has vertex set E(G) and an edge between two vertices e and f if and only if e and f share an 
end-vertex of G . We now modify the construction of [5] for line graphs from k = 3 to k ≥ 3.

Lemma 7. For every k ≥ 3, Acyclic k-Colouring is NP-complete for line graphs of multigraphs.

5 
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Fig. 1. An example of part of a graph G (left) and the corresponding part in G ′ (right). In the part of G ′ corresponding to vertex u, vertex u1 is identified 
with x1 of the left copy of S ′; vertex u2 with x3 of the left copy of S ′ and x1 of the middle copy of S ′; vertex u3 with x3 of the middle copy of S ′ and x1

of the right copy of S ′; and u4 with x3 of the right copy of S ′ .

Fig. 2. The gadget multigraph Fk . The labels on edges are multiplicities. 

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V , E) is a mapping c : E → {1, . . . ,k} such that c(e) �= c( f )
whenever the edges e and f share an end-vertex. A colour class consists of all edges of G that are mapped by c to a specific 
colour i. For a fixed integer k ≥ 1, the Acyclic k-Edge Colouring problem is to decide if a given graph has an acyclic k-edge 
colouring. Alon and Zaks proved that Acyclic 3-Edge Colouring is NP-complete. We note that a graph has an acyclic k-edge 
colouring if and only if its line graph has an acyclic k-colouring. Hence, it remains to generalize the construction of Alon and 
Zaks [5] from k = 3 to k ≥ 3. Our main tool is the gadget graph Fk , depicted in Fig. 2, about which we prove the following 
two claims.

(i) The edges of Fk can be coloured acyclically using k colours, with no bichromatic path between v1 and v14 .

(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2 the same colour.

We first prove (ii). We assume, without loss of generality, that v1 v2 is coloured by 1, v2 v4 by 2 and the edges between v2
and v3 by colours 3, . . . ,k. The edge v3 v5 has to be coloured by 1, otherwise we have a bichromatic cycle on v2 v3 v5 v4. 
This necessarily implies that

• the edges between v4 and v5 are coloured by 3, . . . ,k,
• the edge v5 v7 is coloured by 2,
• the edge v4 v6 is coloured by 1,
• the edges between v6 and v7 are coloured by 3, . . . ,k, and
• the edge v7 v8 is coloured by 1.

Now assume that the edge v8 v9 is coloured by a ∈ {2, . . . ,k} and the edges between v8 and v10 by colours from the set A, 
where A = {2, . . . ,k} \ a. The edge v10 v11 is either coloured a or 1. However, if it is coloured 1, v9v11 is assigned a colour 
b ∈ A and necessarily we have either a bichromatic cycle on v8 v9 v11 v13 v12 v10, coloured by b and a, or a bichromatic cycle 
on v10 v11 v13 v12, coloured by a and 1. Thus v10 v11 is coloured by a. To prevent a bichromatic cycle on v8 v9 v11 v10, the 
edge v9 v11 is assigned colour 1. The rest of the colouring is now determined as v10 v12 has to be coloured by 1, the edges 
between v11 and v13 by A, v12 v13 by a, and v13 v14 by 1. We then have a k-colouring with no bichromatic cycles of size at 
least 3 in Fk for every possible choice of a. This proves that v1 v2 and v13 v14 are coloured alike under every acyclic k-edge 
colouring.

We prove (i) by choosing a different from 2. Then there is no bichromatic path between v1 and v14.
We now reduce from k-Edge-Colouring to Acyclic k-Edge Colouring as follows. Given an instance G of k-edge Colour-

ing we construct an instance G ′ of Acyclic k-Edge Colouring by replacing each edge uv in G by a copy of Fk where u is 
identified with v1 and v is identified with v14.

If G ′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring c of G by setting c(uv) = c′(e1) where e1
belongs to the gadget Fk corresponding to the edge uv . If G has a k-edge colouring c then we obtain an acyclic k-edge 
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colouring c′ of G ′ by setting c′(e1) = c(uv) where e1 belongs to the gadget corresponding to the edge uv . The remainder of 
each gadget Fk can then be coloured as described above. �
In our next result, k is part of the input. Recall that a graph is co-bipartite if it is the complement of a bipartite graph. As 
bipartite graphs are C3-free, co-bipartite graphs are 3P1-free.

Lemma 8. Acyclic Colouring is NP-complete for co-bipartite graphs.

Proof. Alon et al. [3, Theorem 3.5] proved that deciding if a balanced bipartite graph on 2n vertices has a connected 
matching of size n is NP-complete (the reduction in the proof of Theorem 3.5 in [3] works for every integer k, but in this 
proof, Theorem 3.1 from [3] must be replaced by Theorem 1.1 from [2].) A matching is called connected if no two edges of 
the matching induce 2K2 in the given graph. We shall reduce from this problem to prove our theorem.

To this end, we claim that a balanced bipartite graph G with parts A and B such that |A| = |B| = n has a connected 
matching of size n if and only if its complement has an acyclic colouring with n colours.

Suppose that there is an acyclic colouring c of G with n colours. Clearly, such colouring uses n colours on A and n colours 
on B . Vertices coloured with the same colour do not have an edge between them in G and thus are connected by an edge 
in G . Let us take the set of edges formed by each of the n colour classes. By the property of colouring, this is a matching in 
G and it is of size n. To see that it is also connected, suppose for a contradiction that there are two edges of the matching, 
say a1b1 and a2b2, forming an induced 2K2 in G . Without loss of generality, c(a1) = c(b1) = 1 and c(a2) = c(b2) = 2. Now 
the induced 2K2 in G corresponds to a 4-cycle in G coloured with two colours, a contradiction with c being an acyclic 
colouring.

In the opposite direction, let us have a connected matching of size n in G . Colour the n vertices in A by 1, . . . ,n. Let 
us colour the vertices of B with respect to the connected matching so that each vertex of B gets the colour of the vertex 
in A it is matched to. Indeed, this is a colouring of G by n colours. It remains to prove that it is acyclic. Any cycle in G
having more than five vertices has by the definition of our colouring at least three colours. Therefore, a possible bichromatic 
cycle in G must be of size 4. The only possibility for such 4-cycle is that it is formed by two pairs of vertices, each one 
forming an edge of the connected matching in G . However, this implies that these two matching edges induce 2K2 in G , a 
contradiction with the connectedness of the original matching. This finishes the proof our claim. �
We combine the above results with a result of Lyons [56] to prove Theorem 1.

Theorem 1 (restated). Let H be a graph. For the class of H-free graphs it holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H �⊆i P4 and H �= 2P2;
(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced cycle C p . Then we use Lemma 6. Now assume H has 
no cycle so H is a forest. If H has a vertex of degree at least 3, then H has an induced K1,3. As every line graph of a 
multigraph is K1,3-free, we can use Lemma 7. Otherwise H is a linear forest and we use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then we use the result of Lyons [56] 
that states that Acyclic Colouring is polynomial-time solvable for P4-free graphs. Now suppose 3P1 ⊆i H . By Lemma 8, 
Acyclic Colouring is NP-complete for co-bipartite graphs and thus for 3P1-free graphs. It remains to consider the case 
where H = 2P2, but this case was excluded from the statement of the theorem. �
4. Star colouring

In this section we prove Theorem 2. We first prove the following lemma.

Lemma 9. For every g ≥ 3, Star 3-Colouring is NP-complete for planar graphs of girth at least g and maximum degree 3.

Proof. We reduce from 3-Colouring, which is NP-complete even for planar graphs with maximum degree 4 [34]. Let G be 
an instance of this restricted version of 3-Colouring. The vertex gadget V contains

• a cycle of length 12g with vertices d1, . . . ,d12g ,
• 12g independent vertices e1, . . . , e12g such that ei is adjacent to di for every 1 ≤ i ≤ 12g , and
• four independent vertices f1, f2, f3, f4 such that f i is adjacent to e3ig for every 1 ≤ i ≤ 4.

We construct an instance G ′ of Star 3-Colouring from G as follows. We consider a planar embedding of G and for every 
vertex x, we order the neighbours of x in a clockwise way. Then we replace x by a copy V x of V . Now for every edge mn of 
G , say n is the ith neighbour of m and m is the jth neighbour of n, we add the edge between the vertex f i of Vm and the 
vertex f j of Vn , see Fig. 3.
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Fig. 3. A star 3-colouring of the graph G ′ obtained from a 3-colouring of G = K3. Only part of G ′ is displayed. 

Fig. 4. The gadget Fk in the proof of Lemma 11. 

It is not hard to check that in every star 3-colouring of V , the four vertices f i get the same colour. Moreover, there is no 
bichromatic path between any two vertices f i .

Suppose that G admits a 3-colouring c of with colours in {0,1,2}. For every vertex x in G , we assign c(x) to the vertices 
f i in V x and we assign (c(x) + 1) (mod 3) to the vertices e3ig . Then we extend this pre-colouring into a star 3-colouring of 
V x . This gives a star 3-colouring of G ′ . Given a star 3-colouring of G ′ , we assign to every vertex x in G the colour of the 
vertices f i in V x , which gives a 3-colouring of G .

Finally, as G is planar with maximum degree 4, it holds that G ′ is planar with maximum degree 3. Moreover, by con-
struction, G ′ has girth at least g . �
Now we begin our development for Theorem 2.

Lemma 10. Let p ≥ 4 be a fixed integer. Then, for every k ≥ 3, Star k-Colouring is NP-complete for C p-free graphs.

Proof. The case k = 3 follows from Lemma 9. We obtain NP-completeness for k ≥ 4 by a reduction from Star 3-Colouring 
for C p -free graphs by adding a dominating clique of size k − 3. �
In Lemma 11 we extend the recent result of Lei et al. [51] from k = 3 to k ≥ 3.

Lemma 11. For every k ≥ 3, Star k-Colouring is NP-complete for line graphs of multigraphs.

Proof. Recall that for an integer k ≥ 1, a k-edge colouring of a graph G = (V , E) is a mapping c : E → {1, . . . ,k} such that 
c(e) �= c( f ) whenever the edges e and f share an end-vertex. Recall also that the notions of a colour class and bichromatic 
subgraph for colourings have their natural analogue for edge colourings. A proper edge k-colouring c is a star k-edge 
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colouring if the union of any two colour classes does not contain a path or cycle of on four edges. For a fixed integer k ≥ 1, 
the Star k-Edge Colouring problem is to decide if a given graph has a star k-edge colouring. Lei et al. [51] proved that Star 
3-Edge Colouring is NP-complete. Dvořák et al. [22] observed that a graph has a star k-edge colouring if and only if its 
line graph has a star k-colouring. Hence, it suffices to follow the proof of Lei et al. [51] in order to generalize the case k = 3
to k ≥ 3. As such, we give a reduction from k-Edge Colouring to Star k-Edge Colouring which makes use of the gadget Fk
in Fig. 4. First we consider separately the case where the edges e1 = v4 v9 and e2 = v5 v10 are coloured alike and the case 
where they are coloured differently to show that in any star k-edge colouring of the gadget Fk shown in Fig. 4, v1 v2 and 
v7 v8 are assigned the same colour.

Assume c(e1) = c(e2) = 1. We may then assume that the edge v4 v5 is assigned colour 2 and the remaining k − 2 colours 
are used for the multiple edges v3 v4 and v5 v6. The edge v2 v3, and similarly v6 v7, must then be assigned colour 1 to avoid 
a bichromatic P5 on the vertices {v2, v3, v4, v5, v6} using any two of the multiple edges in a single colour. The edge v1 v2, 
and similarly v7 v8 must then be assigned colour 2 to avoid a bichromatic P5 on the vertices {v1, v2, v3, v4, v9}.

Next assume e1 and e2 are coloured differently. Without loss of generality, let c(e1) = 1, c(e2) = 2 and c(v4 v5) = 3. 
The multiple edges v3 v4 must then be assigned colours 2 and 4 . . .k and v5 v6 colour 1 and colours 4 . . .k. To avoid a 
bichromatic P5 on the vertices {v2, v3, v4, v5, v6}, v2 v3 must be coloured 1. Similarly, v6 v7 must be assigned colour 2. 
Finally, to avoid a bichromatic P5 on the vertices {v1, v2, v3, v4, v9}, v1 v2 must be coloured 3. By a similar argument, v7 v8
must also be coloured 3, hence v1 v2 and v7 v8 must be coloured alike.

We can then replace every edge e in some instance G of k-Edge-Colouring by a copy of Fk , identifying its endpoints 
with v1 and v8, to obtain an instance G ′ of Star k-Edge-Colouring. If G is k-edge-colourable we can star k-edge-colour 
G ′ by setting c′(v1 v2) = c′(v7 v8) = c(e). If G ′ is star k-edge-colourable, we obtain a k-edge-colouring of G by setting 
c(e) = c′(v1 v2). �
We now combine the above results with results of Albertson et al. [1], Lyons [56] and Shalu and Anthony [62] to prove 
Theorem 2.

Theorem 2 (restated). Let H be a graph. For the class of H-free graphs it holds that:

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H �⊆i P4 and H �= 2P2;
(ii) for every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced odd cycle. Then the class of bipartite graphs is con-
tained in the class of H-free graphs. Lemma 7.1 in Albertson et al. [1] implies, together with the fact that for every k ≥ 3, 
k-Colouring is NP-complete, that for every k ≥ 3, Star k-Colouring is NP-complete for bipartite graphs. If H contains an 
induced even cycle, then we use Lemma 10. Now assume H has no cycle, so H is a forest. If H contains a vertex of degree at 
least 3, then H contains an induced K1,3. As every line graph of a multigraph is K1,3-free, we can use Lemma 11. Otherwise 
H is a linear forest, in which case we use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then we use the result of 
Lyons [56] that states that Star Colouring is polynomial-time solvable for P4-free graphs. Now suppose 3P1 ⊆i H . Shalu 
and Antony [62] who proved that Star Colouring is NP-complete for co-bipartite graphs and thus for 3P1-free graphs. It 
remains to consider the case where H = 2P2, but this case was excluded from the statement of the theorem. �
5. Injective colouring

In this section we prove Theorem 3. We first show a hardness result for fixed k.4

Lemma 12. For every k ≥ 4, Injective k-Colouring is NP-complete for bipartite graphs.

Proof. We reduce from Injective k-Colouring; recall that this problem is NP-complete for every k ≥ 4. Let G = (V , E) be a 
graph. We construct a graph G ′ as follows. For each edge uv of G , we remove the edge uv and add two vertices u′

v , which 
we make adjacent to u, and v ′

u , which we make adjacent to v . Next, we place an independent set Iuv of k − 2 vertices 
adjacent to both u′

v and v ′
u (Fig. 5). Note that G ′ is bipartite: we can let one partition class consist of all vertices of V (G)

and the vertices of the Iuv -sets and the other one consist of all the remaining vertices (that is, all the “prime” vertices we 
added). It remains to show that G ′ has an injective k-colouring if and only if G has an injective k-colouring.

First assume that G has an injective k-colouring c. Colour the vertices of G ′ corresponding to vertices of G as they are 
coloured by c. We can extend this to an injective k-colouring c′ of G ′ by considering the gadget corresponding to each 
edge uv of G . Set c′(u′

v ) = c′(v) and c′(v ′
u) = c′(u). We can now assign the remaining k − 2 colours to the vertices of the 

independent sets. Clearly c′ creates no bichromatic P3 involving vertices in at most one edge gadget. Assume there exists 

4 We note that Janczewski et al. [42] proved that L(p,q)-Labelling is NP-complete for planar bipartite graphs, but in their paper they assumed that 
p > q.
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Fig. 5. The edge gadget used in the proof of Lemma 12. 

a bichromatic P3 involving vertices in more than one edge gadget, then this path must consist of a vertex u of G together 
with two gadget vertices u′

v and u′
w which are coloured alike. This is a contradiction since it implies the existence of a 

bichromatic path v, u, w in G .
Now assume that G ′ has an injective k-colouring c′ . Let c be the restriction of c′ to those vertices of G ′ which correspond 

to vertices of G . To see that c is an injective colouring of G , note that we must have c′(u′
v ) = c′(v) and c′(v ′

u) = c′(u) for any 
edge uv . Therefore, if c induces a bichromatic P3 on u, v, w , then c′ induces a bichromatic P3 on v ′

u, v, v ′
w . We conclude 

that c is injective. �
We now turn to the case where k is part of the input and first prove a number of positive results. The complement of a graph 
G is the graph G with vertex set V (G) and an edge between two vertices u and v if and only if uv / ∈ E(G). An injective 
colouring c of a graph G is optimal if G has no injective colouring using fewer colours than c. An injective colouring c is 
�-injective if every colour class of c has size at most �. An �-injective colouring c of a graph G is �-optimal if G has no 
�-injective colouring that uses fewer colours than c. We start with a useful lemma for the case where � = 2 that we will 
also use in our proofs.

Lemma 13. An optimal 2-injective colouring of a graph G can be found in polynomial time.

Proof. Let c be a 2-injective colouring of G . Then each colour class of size 2 in G corresponds to a dominating edge of 
G (an edge uv of a graph is dominating if every other vertex in the graph is adjacent to at least one of u, v). Hence, the 
end-vertices of every non-dominating edge in G have different colours in G . Algorithmically, this means we may delete 
every non-dominating edge of G from G; note that we do not delete the end-vertices of such an edge.

Let μ∗ be the size of a maximum matching in the graph obtained from G after deleting all non-dominating edges of G . 
The edges in such a matching will form exactly the colour classes of size 2 of an optimal 2-injective colouring of G . Hence, 
the injective chromatic number of G is equal to μ∗ + (|V (G)| − 2μ∗). It remains to observe that we can find a maximum 
matching in a graph in polynomial time by using a standard algorithm. �
We can now prove our first positive result.

Lemma 14. Injective Colouring is polynomial-time solvable for (P1 + P4)-free graphs.

Proof. Let G be a (P1 + P4)-free graph. Since connected P4-free graphs have diameter at most 2, no two vertices can be 
coloured alike in an injective colouring. Hence, the injective chromatic number of a P4-free graph is equal to the number 
of its vertices. Consequently, Injective Colouring is polynomial-time solvable for P4-free graphs. From now on, we assume 
that G is not P4-free.

We first show that any colour class in any injective colouring of G has size at most 2. For contradiction, assume that c
is an injective colouring of G such that there exists some colour, say colour 1, that has a colour class of size at least 3. Let 
P = x1x2x3x4 be some induced P4 of G .

We first consider the case where colour 1 appears at least twice on P . As no vertex has two neighbours coloured with 
the same colour, the only way in which this can happen is when c(x1) = c(x4) = 1. By our assumption, G − P contains a 
vertex u with c(u) = 1. As G is (P1 + P4)-free, u has a neighbour on P . As every colour class is an independent set, this 
means that u must be adjacent to at least one of x2 and x3. Consequently, either x2 or x3 has two neighbours with colour 1, 
a contradiction.

Now we consider the case where colour 1 appears exactly once on P , say c(xh) = 1 for some h ∈ {1,2,3,4}. Then, by our 
assumption, G − P contains two vertices u1 and u2 with colour 1. As G is (P1 + P4)-free, both u1 and u2 must be adjacent 
to at least one vertex of P , say u1 is adjacent to xi and u2 is adjacent to x j . Then xi �= x j , as otherwise G has a vertex with 
two neighbours coloured 1. As every colour class is an independent set, we have that xh / ∈ {xi, x j}, and hence, xh , xi , x j are 
distinct vertices. Moreover, xh is not a neighbour of xi or x j , as otherwise xi or x j has two neighbours coloured 1. Hence, 
we may assume without loss of generality that h = 1, i = 3 and j = 4. As every colour class is an independent set, u1 and 
u2 are non-adjacent. However, now {x1, u1, x3, x4, u2} induces a P1 + P4, a contradiction.

Finally, we consider the case where colour 1 does not appear on P . Let u1, u2, u3 be three vertices of G − P coloured 1. 
As before, {u1, u2, u3} is an independent set and each ui has a different neighbour on P . We first consider the case where 
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Fig. 6. The partition of V (G) from Lemma 15. The squares inside each Ti , i ∈ {1,2,3}, represent the sets of 0-clique-adjacent, 1-clique-adjacent and 2-
clique-adjacent vertices in Ti , respectively.

x1 or x4, say x4 is not adjacent to any ui . Then we may assume without loss of generality that u1x1 and u2x2 are edges. 
However, now {x4, u1, x1, x2, u2} induces a P1 + P4, which is not possible. Hence, we may assume without loss of generality 
that u1x1, u2x2 and u4x4 are edges of G . Again we find that {x4, u1, x1, x2, u2} induces a P1 + P4, a contradiction.

From the above, we find that each colour class in an injective colouring of G has size at most 2. This means we can use 
Lemma 13. �
We use the next lemma in the proofs of the results for H = 2P1 + P3 and H = 3P1 + P2.

Lemma 15. Injective Colouring is polynomial-time solvable for 4P1-free graphs.

Proof. Let G = (V , E) be a 4P1-free graph on n vertices. We first analyze the structure of injective colourings of G . Let 
c be an optimal injective colouring of G . As G is 4P1-free, every colour class of c has size at most 3. From all optimal 
injective colourings, we choose c such that the number of size-3 colour classes is as small as possible. We say that c is 
class-3-optimal.

Suppose c contains a colour class of size 3, say colour 1 appears on three distinct vertices u1, u2 and u3 of G . As G is 
4P1-free, {u1, u2, u3} dominates G . As c is injective, this means that every vertex in G − {u1, u2, u3} is adjacent to exactly 
one vertex of {u1, u2, u3}. Hence, we can partition V \ {u1, u2, u3} into three sets T1, T2 and T3, such that for i ∈ {1,2,3}, 
every vertex of Ti is adjacent to ui and not to any other vertex of {u1, u2, u3}. If two vertices t, t′ in the same Ti , say T1, 
are non-adjacent, then {t, t′, u2, u3} induces a 4P1, a contradiction. Hence, we partitioned V into three cliques Ti ∪ {ui}. We 
call the cliques T1, T2, T3, the T -cliques of the triple {u1, u2, u3}.

Let t ∈ Ti for some i ∈ {1,2,3}. For i ∈ {0,1,2} we say that t is i-clique-adjacent if t has a neighbour in zero, one or 
two cliques of {T1, T2, T3} \ Ti , respectively. By the definition of an injective colouring and the fact that every Ti is a clique, 
a 1-clique-adjacent vertex of T1 ∪ T2 ∪ T3 belongs to a colour class of size at most 2, and a 2-clique-adjacent vertex of 
T1 ∪ T2 ∪ T3 belongs to a colour class of size 1. Hence, all the vertices that belong to a colour class of size 3 are 0-clique-
adjacent. The partition of V (G) is illustrated in Fig. 6.

We now use the fact that c is class-3-optimal. Let t ∈ V \ {u1, u2, u3}, say t ∈ T1, be i-clique-adjacent for i = 0 or i = 1. 
Then we may assume without loss of generality that t has no neighbours in T2. If t belongs to a colour class of size 1, then 
we can set c(u2) := c(t) to obtain an optimal injective colouring with fewer size-3 colour classes, contradicting our choice 
of c.

We now consider the 0-clique-adjacent vertices again. Recall that these are the only vertices, other than u1, u2 and u3, 
that may belong to a colour class of size 3. As every Ti is a clique, every colour class of size 3 (other than {u1, u2, u3}) 
has exactly one vertex of each Ti . Let {w1, w2, w3} be another colour class of size 3 with wi ∈ Ti for every i ∈ {1,2,3}. 
Let x ∈ T1 \ {w1} be another 0-clique-adjacent vertex. Then swapping the colours of w1 and x yields another class-3-
optimal injective colouring of G . Hence, we derived the following claim, which summarizes the discussion above and where 
statement (iv) follows from (i)–(iii).

Claim. Let c be a class-3-optimal injective colouring of G with c(u1) = c(u2) = c(u3) for three distinct vertices u1, u2, u3 and with 
p ≥ 0 other colour classes of size 3. Then the following four statements hold:

(i) All 0-clique-adjacent and 1-clique-adjacent vertices belong to a colour class of size at least 2.
(ii) Let S = {y1, . . . , ys} be the set of 2-clique-adjacent vertices. Then {y1}, . . . , {ys} are exactly the size-1 colour classes.
(iii) For i ∈ {1,2,3}, let xi

1, . . . , xi
qi

be the 0-clique-adjacent vertices of Ti and assume without loss of generality that q1 ≤ q2 ≤
q3 . Then p ≤ q1 and if p ≥ 1, we may assume without loss of generality that the size-3 classes, other than {u1, u2, u3}, are 
{x1

1, x2
1, x3

1}, . . . , {x1
p, x2

p, x3
p}.

(iv) The number of colours used by c, or equivalently, the number of colour classes of c is equal to 1 + s + p + 1
2 (n − s − 3(p + 1)) =

1
2 n + 1

2 s − 1
2 p − 1

2 .

We are now ready to present our algorithm. We first find, in polynomial time, an optimal 2-injective colouring of G by 
Lemma 13. We remember the number of colours used. Recall that the colour classes of every injective colouring of G have 
size at most 3. So, it remains to compute an optimal injective colouring for which at least one colour class has size 3.
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We consider each triple u1, u2, u3 of vertices of G and check if {u1, u2, u3} can be a colour class. That is, we check 
if {u1, u2, u3} is an independent set and has corresponding T -cliques T1, T2, T3. This takes polynomial time. If not, then 
we discard {u1, u2, u3}. Otherwise we continue as follows. Let S = {y1, . . . , ys} be the set of 2-clique adjacent vertices in 
T1 ∪ T2 ∪ T3. Exactly the vertices of S will form the size-1 colour classes by Claim (ii). For i ∈ {1,2,3}, let xi

1, . . . , xi
qi

be the 
0-clique-adjacent vertices of Ti , where we assume without loss of generality that q1 ≤ q2 ≤ q3. By Claim (iii), any injective 
colouring of G which has {u1, u2, u3} as one of its colour classes has at most q1 other colour classes of size 3 besides 
{u1, u2, u3}. As can be seen from Claim (iv), the value 1

2 n + 1
2 s − 1

2 p − 1
2 is minimized if the number p of size-3 colour 

classes is maximum.
From the above we can now do as follows. For p = q1, . . . ,1, we check if G has an injective colouring with exactly p

colour classes of size 3. We stop as soon as we find a yes-answer or if p is set to 0. We first set {x1
1, x2

1, x3
1}, . . . , {x1

p, x2
p, x3

p}
as the colour classes of size 3 by Claim (iii). Let Z be the set of remaining 0-clique-adjacent and 1-clique-adjacent vertices. 
We use Lemma 13 to check in polynomial time if the subgraph of G induced by S ∪ Z has an injective colouring that uses 
s + 1

2 (n − s − 3(p + 1)) colours (which is the minimum number of colours possible). If so, then we stop and note that after 
adding the size-3 colour classes we obtained an injective colouring of G that uses 1

2 n + 1
2 s − 1

2 p − 1
2 colours, which we 

remember. Otherwise we repeat this step after first setting p := p − 1.
As the above procedure for a triple u1, u2, u3 takes polynomial time and the number of triples we must check is O (n3), 

our algorithm runs in polynomial time. We take the 3-injective colouring that uses the smallest number of colours and 
compare it with the number of colours used by the optimal 2-injective colouring that we computed at the start. Our 
algorithm then returns a colouring with the smallest of these two values as its output. �
We use the above lemma for proving our next lemma.

Lemma 16. Injective Colouring is polynomial-time solvable for (2P1 + P3)-free graphs.

Proof. Let G = (V , E) be a (2P1 + P3)-free graph. We may assume without loss of generality that G is connected and by 
Lemma 15 that G has an induced 4P1. We first show that any colour class in any injective colouring of G has size at most 
2. For contradiction, assume that c is an injective colouring of G such that there exists some colour, say colour 1, that has a 
colour class of size at least 3. Let U = {u1, . . . , up} for some p ≥ 3 be the set of vertices of G with c(ui) = 1 for i ∈ {1, . . . , p}.

As c is injective, every vertex in G − U has at most one neighbour in U . Hence, we can partition G − U into (possibly 
empty) sets T0, . . . , T p , where T0 is the set of vertices with no neighbour in U and for i ∈ {1, . . . , p}, Ti is the set of vertices 
of G − U adjacent to ui .

We first claim that T0 is empty. For contradiction, assume v ∈ T0. As G is connected, we may assume without loss of 
generality that v is adjacent to some vertex t ∈ T1. Then {u2, u3, u1, t, v} induces a 2P1 + P3, a contradiction. Hence, T0 = ∅.

We now prove that every Ti is a clique. For contradiction, assume that t and t′ are non-adjacent vertices of T1. Then 
{u2, u3.t, u1, t′} induces a 2P1 + P3, a contradiction. Hence, every Ti and thus every Ti ∪ {ui} is a clique.

We now claim that p = 3. For contradiction, assume that p ≥ 4. As G is connected and U is an independent set, we may 
assume without of generality that there exist vertices t1 ∈ T1 and t2 ∈ T2 with t1t2 ∈ E . Then {u3, u4, u1, t1, t2} induces a 
2P1 + P3, a contradiction. Hence, p = 3.

Now we know that V can be partitioned into three cliques T1 ∪ {u1}, T2 ∪ {u2} and T3 ∪ {u3}. However, then G is 4P1-
free, a contradiction. We conclude that every colour class of every injective colouring of G has size at most 2. This means 
we can use Lemma 13. �
We also use Lemma 15 in the proof of our next result.

Lemma 17. Injective Colouring is polynomial-time solvable for (3P1 + P2)-free graphs.

Proof. Let G be a (3P1 + P2)-free graph on n vertices. We may assume without loss of generality that G is connected and 
by Lemma 15 that G has an induced 4P1. As before, we will first analyze the structure of injective colourings of G . We will 
then exploit the properties found algorithmically.

Let c be an injective colouring of G that has a colour class U of size at least 3. So let U = {u1, . . . , up} for some p ≥ 3 be 
the set of vertices of G with, say colour 1. As c is injective, every vertex in G − U has at most one neighbour in U . Hence, 
we can partition G − U into (possibly empty) sets T0, . . . , T p , where T0 is the set of vertices with no neighbour in U and 
for i ∈ {1, . . . , p}, Ti is the set of vertices of G − U adjacent to ui .

Assume that p ≥ 4. As G is connected, there exists a vertex v / ∈ U but that has a neighbour in U , say v ∈ T1. Then 
{u2, u3, u4, u1, v} induces a 3P1 + P2, a contradiction. Hence, we have shown the following claim.

Claim 1. Every injective colouring of G is �-injective for some � ∈ {1,2,3}.

We continue as follows. As p = 3 by Claim 1, we have V (G) = U ∪ T0 ∪ T1 ∪ T2 ∪ T3. Suppose T0 contains two adjacent 
vertices x and y. Then {u1, u2, u3, x, y} induces a 3P1 + P2, a contradiction. Hence, T0 is an independent set. As G is 
connected, this means each vertex in T0 has a neighbour in T1 ∪ T2 ∪ T3.

12 
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Fig. 7. The situation in Lemma 17 where T 2
1 contains two vertices s and t . We show that this situation cannot happen, as it would lead to a forbidden 

induced 3P1 + P2. Note that each ui is adjacent to all vertices of Ti and not to any vertices of T j for j �= i. There may exist edges between vertices of 
different sets, but these are not drawn.

Suppose T0 contains two vertices x and y with the same colour, say c(x) = c(y) = 2. Let v ∈ T1 ∪ T2 ∪ T3, say v ∈ T1
be a neighbour of x. Then, as c(x) = c(y) and c is injective, v is not adjacent to y. As T0 is independent, x and y are not 
adjacent. However, now {u2, u3, y, x, v} induces a 3P1 + P2, a contradiction. Hence, every vertex in T0 has a unique colour. 
Suppose T0 contains a vertex x and T1 ∪ T2 ∪ T3 contains a vertex v such that c(x) = c(v). We may assume without loss of 
generality that v ∈ T1. Then {u2, u3, x, v, u1} induces a 3P1 + P2, a contradiction.

Finally, suppose that T1 ∪ T2 ∪ T3 contain two distinct vertices v and v ′ with c(v) = c(v ′). Let x ∈ T0. Then x is not 
adjacent to at least one of v , v ′ , say xv / ∈ E and also assume that v ∈ T1. Then {u2, u3, x, v, u1} induces a 3P1 + P2. Hence, 
we have shown the following claim.

Claim 2. If c is 3-injective and U is a size-3 colour class such that G has a vertex not adjacent to any vertex of U , then all colour classes 
not equal to U have size 1.

We note that the injective colouring c in Claim 2 uses n − 2 distinct colours.

We continue as follows. From now on we assume that T0 = ∅. Every Ti is (P1 + P2)-free, as otherwise, if say T1 contains 
an induced P1 + P2, then this P1 + P2, together with u2 and u3, forms an induced 3P1 + P2, which is not possible. Hence, 
each Ti induces a complete ri -partite graph for some integer ri (that is, the complement of a disjoint union of ri complete 
graphs). Hence, we can partition each Ti into ri independent sets T 1

i , . . . , T ri
i such that there exists an edge between every 

vertex in T a
i and every vertex in T b

i if a �= b. See also Fig. 7.
Suppose G contains another colour class of size 3, say v1, v2 and v3 are three distinct vertices coloured 2. If two of 

these vertices, say v1 and v2, belong to the same Ti , say T1, then u1 has two neighbours with the same colour. This is not 
possible, as c is injective. Hence, we may assume without loss of generality that vi ∈ T 1

i for i ∈ {1,2,3}.
Suppose that T 2

1 contains two vertices s and t . Then, as s and t are adjacent to v1, both of them are not adjacent to v2
(recall that c(v1) = c(v2) and c is injective). Hence, {s, t, u3, v2, u2} induces a 3P1 + P2 (see Fig. 7). We conclude that for 
every i ∈ {1,2,3}, the sets T 2

i , . . . , T ri
i have size 1.

We will now make use of the fact that G contains an induced 4P1. We note that each Ti ∪ {ui} is a clique, unless 
|T 1

i | ≥ 2. As V (G) = T1 ∪ T2 ∪ T3 ∪ {u1, u2, u3} and G contains an induced 4P1, we may assume without loss of generality 
that T 1

1 has size at least 2. Recall that v1 ∈ T 1
1 . Let z �= v1 be some further vertex of T 1

1 . If z is not adjacent to v2, then 
{z, v1, u3, v2, u2} induces a 3P1 + P2, which is not possible. Hence, z is adjacent to v2. For the same reason, z is adjacent 
to v3. This is not possible, as c is injective and v2 and v3 both have colour 2. Hence, we have proven the following claim.

Claim 3. If c is 3-injective and U is a size-3 colour class such that each vertex of G − U is adjacent to a vertex of U , then c has no other 
colour class of size 3.

We are now ready to present our polynomial-time algorithm. We first use Lemma 13 to find in polynomial time an optimal 
2-injective colouring of G . We remember the number of colours it uses.

By Claim 1, it remains to find an optimal 3-injective colouring with at least one colour class of size 3. We now consider 
each set {u1, u2, u3} of three vertices. We discard our choice if u1, u2, u3 do not form an independent set or if V (G) \
{u1, u2, u3} cannot be partitioned into sets T0, . . . , T4 as described above. Suppose we have not discarded our choice of 
vertices u1, u2, u3. We continue as follows.

If T0 �= ∅, then by Claim 2 the only 3-injective colouring of G (subject to colour permutation) with colour class 
{u1, u2, u3} is the colouring that gives each ui the same colour and a unique colour to all the other vertices of G . This 
colouring uses n − 2 colours and we remember this number of colours.

Now suppose T0 = ∅. By Claim 3, we find that {u1, u2, u3} is the only colour class of size 3. Recall that no vertex in 
G − {u1, u2, u3} = T1 ∪ T2 ∪ T3 is adjacent to more than one vertex of {u1, u2, u3}. Hence, we can apply Lemma 13 on 
G − {u1, u2, u3}. This yields an optimal 2-injective colouring of G − {u1, u2, u3}. We colour u1, u2, u3 with the same colour 
and choose a colour that is not used in the colouring of G − {u1, u2, u3}. This yields a 3-injective colouring of G that is 
optimal over all 3-injective colourings with colour class {u1, u2, u3}. We remember the number of colours.

As the above procedure takes polynomial time and there are O (n3) triples to consider, we find in polynomial time an 
optimal 3-injective colouring of G that has at least one colour class of size 3 (should it exist). We compare the number 
of colours used with the number of colours of the optimal 2-injective colouring of G that we found earlier. Our algorithm 
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Fig. 8. The graph G ′ constructed in the proof of Lemma 19. 

returns the minimum of the two values as the output. Since both colourings are found in polynomial time, we conclude 
that our algorithm runs in polynomial time. �
For proving our new hardness result we first need to introduce some terminology and prove a lemma on Colouring. A 
k-colouring of G can be seen as a partition of V (G) into k independent sets. Hence, a (k-)colouring of G corresponds to 
a (k-)clique-covering of G , which is a partition of V (G) = V (G) into k cliques. The clique covering number χ(G) of G is the 
smallest number of cliques in a clique-covering of G . Note that χ(G) = χ(G).

Lemma 18. Colouring is NP-complete for graphs with χ ≤ 3.

Proof. The List Colouring problem takes as input a graph G and a list assignment L that assigns each vertex u ∈ V (G) a list 
L(u) ⊆ {1,2, . . .}. The question is whether G admits a colouring c with c(u) ∈ L(u) for every u ∈ V (G). Jansen [43] proved 
that List Colouring is NP-complete for co-bipartite graphs. This is the problem we reduce from.

Let G be a graph with a list assignment L and assume that V (G) can be split into two (not necessarily disjoint) cliques K
and K ′ . We set A1 := K and A2 := K \ K ′ . As both A1 and A2 are cliques, we have that χ(G) ≤ 2. We may assume without 
loss of generality that the union of all the lists L(u) is {1, . . . ,k} for some integer k. We now extend G by adding a clique 
A3 of k new vertices v1, . . . , vk and by adding an edge between a vertex v� and a vertex u ∈ V (G) if and only if � / ∈ L(u). 
This yields a new graph G ′ with χ(G ′) ≤ 3. It is readily seen that G has a colouring c with c(u) ∈ L(u) for every u ∈ V (G)

if and only if G ′ has a k-colouring. �
We use Lemma 18 to prove the next lemma.

Lemma 19. Injective Colouring is NP-complete for 5P1-free graphs.

Proof. The problem is readily seen to belong to NP. We reduce from Colouring. Let (G,k) be an instance of this problem. 
By Lemma 18 we may assume that V (G) can be partitioned into three cliques A1, A2 and A3 with |A1| ≤ |A2| ≤ |A3|. We 
may assume that k ≥ |A3|; otherwise (G,k) is a no-instance. Moreover, we may assume that every vertex u in every Ai has 
at least one neighbour in V \ Ai ; otherwise u has degree |Ai | − 1 ≤ k − 1 and hence, G − u is k-colourable if and only if G
is k-colourable.

We now construct a graph G ′ as follows. Let E∗ be the set of edges in G whose end-vertices belong to different cliques 
of {A1, A2, A3}. We add a clique A0 of |E∗| new vertices, so with exactly one vertex ve for each edge e = xy in E∗ . We 
replace each e ∈ E∗ by the edges xve and yve . We denote the resulting graph by G ′ (see also Fig. 8). We claim that G has a 
k-colouring if and only if G ′ has an injective (k + |E∗|)-colouring.

First suppose that G has a k-colouring c. We give each vertex of A0 a unique colour from {k + 1, . . . ,k +|E∗|}. This yields 
a (k + |E∗|)-colouring c′ of G ′ . We claim that c′ is injective. In order to see this, suppose that G ′ contains a vertex s that 
has two neighbours x and y with c′(x) = c′(y). Every vertex in A1 ∪ A2 ∪ A3 is only adjacent to vertices from its own clique 
Ai and A0 and the colour sets used on those two cliques do not intersect. Hence, s belongs to A0. Then, by definition of G ′ , 
we find that x and y must belong to different cliques Ah and Ai . By construction, xy is an edge in E . As c is a k-colouring, 
this means that c′(x) = c(x) �= c(y) = c′(y), a contradiction. We conclude that c′ is an injective (k + |E∗|)-colouring of G ′ .

Now suppose that G ′ has a (k+|E∗|)-colouring c′ . Let e ∈ A0 and suppose c′(e) = 1. We assume without loss of generality 
that e corresponds to an edge e = xy in G with x ∈ A1 and y ∈ A2. Then, in G ′ , we have that e is adjacent to x and to y. 
Hence, x and y are not coloured 1. As c′ is injective, the neighbours of x and y have different colours. As A1 and A2 are 
cliques, x is adjacent to every vertex in A1 \ {x} and y is adjacent to every vertex in A2 \ {y}. Hence, no vertex in A1 ∪ A2
can have colour 1.

Now suppose that there exists a vertex z ∈ A3 with c′(z) = 1. In G each vertex in every Ai has at least one neighbour 
in a different clique A j . Hence, z has a neighbour f ∈ A0 in G ′ by construction of G ′ . However, now f has two neighbours, 
e and z, each with colour 1, contradicting the fact that c′ is injective. We conclude that the colours of A0 do not occur on 
A1 ∪ A2 ∪ A3.
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Recall that A0 is a clique of size |E∗|. Hence, c′ uses |E∗| different colours. As no colour of A0 occurs on A1 ∪ A2 ∪ A3, 
this means that |E∗| colours are not used on V (G). Hence, the restriction c of c′ to V (G) = A1 ∪ A2 ∪ A3 is a k-colouring of 
the subgraph of G ′ induced by A1 ∪ A2 ∪ A3.

We claim that c is even a k-colouring of G . Otherwise, if there exists an edge e = xy with c(x) = c(y), then e must be an 
edge in G that is not in G ′ . This means that x and y must belong to different cliques Ai and A j . By construction, G ′ then 
contains the vertex e = xy. However, then c′(x) = c(x) = c(y) = c(y′) and e′ has two neighbours with the same colour. This 
contradicts our assumption that c′ is injective. We conclude that c is a k-colouring of G . �
We combine the above results with results of Bodlaender et al. [9] and Mahdian [58] to prove Theorem 3.

Theorem 3 (restated). Let H be a graph. For the class of H-free graphs it holds that:

(i) Injective Colouring is polynomial-time solvable if H ⊊i 2P1 + P4 and NP-complete if H �⊆i 2P1 + P4;
(ii) for every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear forest and NP-complete otherwise.

Proof. We first prove (ii). If C3 ⊆i H , then we use Lemma 12. Now suppose C p ⊆i H for some p ≥ 4. Mahdian [58] proved 
that for every g ≥ 4 and k ≥ 4, Injective k-Colouring is NP-complete for line graphs of bipartite graphs of girth at least g . 
These graphs may not be C3-free but are C p -free for g ≥ p +1. Now assume H has no cycle, so H is a forest. If H contains a 
vertex of degree at least 3, then H contains an induced K1,3. As every line graph is K1,3-free, we can use the aforementioned 
result of Mahdian [58] again. Otherwise H is a linear forest, in which case we use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P1 + P4 or H ⊆i 2P1 + P3 or H ⊆i 3P1 + P2, 
then we use Lemma 14, 16, or 17, respectively. Hence, if H ⊊i 2P1 + P4, then Injective Colouring is polynomial-time 
solvable for H-free graphs. Now suppose that H �⊆i 2P1 + P4. If 2P2 ⊆i H , then the class of (2P2, C4, C5)-free graphs are 
contained in the class of H-free graphs. The latter class coincides with the class of split graphs [27]. Recall that Bodlaender 
et al. [9] proved that Injective Colouring is NP-complete for split graphs. In the remaining case it holds that 5P1 ⊆i H , and 
for this case we can use Lemma 19. �
6. Conclusions

Our complexity study led to three complete and three almost complete complexity classifications (Theorems 1–3). Due to 
our systematic approach we were able to identify a number of open questions for future research, which we collect below.

In Lemma 6 we prove that for every k ≥ 3 and every g ≥ 3, Acyclic k-Colouring is NP-complete for graphs of girth 
at least g . We would like to prove an analogous result for the third problem we considered. We recall that Injective 3-

Colouring is polynomial-time solvable for general graphs. Moreover, for every k ≥ 4, Injective k-Colouring is NP-complete 
for bipartite graphs (by Lemma 12) and thus for graphs of girth at least 4. Hence, we pose the following open problem.

Open Problem 1. For every g ≥ 5, determine the complexity of Injective Colouring and Injective k-Colouring (k ≥ 4) for 
graphs of girth at least g .

This problem has eluded us and remains open and is, we believe, challenging. We note that recently it was shown that 
Injective 4-Colouring is NP-complete for planar subcubic graphs of girth 11 [50], which improves upon a previous bound 
of 9 [23].

We have made progress for the corresponding high-girth problem for Star 3-Colouring in Lemma 9. However, we leave 
the high-girth problem for Star k-Colouring open for k ≥ 4, as follows. We believe it represents an interesting technical 
challenge. At the moment, we only know that for k ≥ 4, Star k-Colouring is NP-complete for bipartite graphs [1] and thus 
for graphs of girth at least 4.

Open Problem 2. For every g ≥ 5, determine the complexity of Star k-Colouring (k ≥ 4) for graphs of girth at least g .

Naturally we also aim to settle the remaining open cases for our three problems in Table 1. In particular, there is one case 
left for each of the problems Acyclic Colouring, Star Colouring, and Injective Colouring. We note that the graph G ′ in 
the proof of Lemma 19 contains an induced 2P1 + P4.

Open Problem 3. Determine the complexity of Injective Colouring for (2P1 + P4)-free graphs.

Open Problem 4. Determine the complexity of Acyclic Colouring and Star Colouring for 2P2-free graphs.

Recall that Injective Colouring and Colouring are NP-complete for 2P2-free graphs. However, none of the hardness con-
structions for these problems carry over to Acyclic Colouring and Star Colouring. In this context, the next open problem 
from Lyons [57] for a subclass of 2P2-free graphs is also interesting. A graph G = (V , E) is split if V = I ∪ K , where I
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is an independent set, K is a clique and I ∩ K = ∅. The class of split graphs coincides with the class of (2P2, C4, C5)-
free graphs [27] and thus Acyclic Colouring is equivalent to Colouring for split graphs, and hence it is polynomial-time 
solvable. However, for Star Colouring this equivalence is no longer true.

Open Problem 5 ([57]). Determine the complexity of Star Colouring for split graphs, or equivalently, (2P2, C4, C5)-free 
graphs.

Let ω(G) denote the clique number of G (size of a largest clique of G). Let χs(G) denote the star chromatic number of G . It 
is easily observed (see also [57]) that if G is a split graph, then either χs(G) = ω(G) or χs(G) = ω(G) + 1.

Finally, we recall that Injective Colouring is also known as L(1,1)-labelling. The general distance constrained labelling 
problem L(a1, . . . ,ap)-Labelling is to decide if a graph G has a labelling c : V (G) → {1, . . . ,k} for some integer k ≥ 1 such 
that for every i ∈ {1, . . . , p}, |c(u) − c(v)| ≥ ai whenever u and v are two vertices of distance i in G (in this setting, it is 
usually assumed that a1 ≥ . . . ≥ ap). If k is fixed, we write L(a1, . . . ,ap)-k-Labelling instead. By applying Theorem 4 we 
obtain the following result.

Theorem 20. For all k ≥ 1,a1 ≥ 1, . . . ,ak ≥ 1, the L(a1, . . . ,ap)-k-Labelling problem is polynomial-time solvable for H-free graphs 
if H is a linear forest.

We leave a more detailed and systematic complexity study of problems in this framework for future work (see, for exam-
ple, [16,31,32] for some complexity results for both general graphs and special graph classes).
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[23] Zdeněk Dvořák, Riste Škrekovski, Martin Tancer, List-coloring squares of sparse subcubic graphs, SIAM J. Discrete Math. 22 (2008) 139–159.
[24] Thomas Emden-Weinert, Stefan Hougardy, Bernd Kreuter, Uniquely colourable graphs and the hardness of colouring graphs of large girth, Comb. Probab. 

Comput. 7 (1998) 375–386.
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J. Bok, N. Jedličková, B. Martin et al. Journal of Computer and System Sciences 154 (2025) 103662 

[64] Xiao-Dong Zhang, Stanislaw Bylka, Disjoint triangles of a cubic line graph, Graphs Comb. 20 (2004) 275–280.
[65] Xiao Zhou, Yasuaki Kanari, Takao Nishizeki, Generalized vertex-coloring of partial k-trees, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83-A 

(2000) 671–678.
[66] Enqiang Zhu, Zepeng Li, Zehui Shao, Jin Xu, Acyclically 4-colorable triangulations, Inf. Process. Lett. 116 (2016) 401–408.

18 

http://refhub.elsevier.com/S0022-0000(25)00044-3/bib842F7D03A9F2AB12FE630C72A8FEEF4Fs1
http://refhub.elsevier.com/S0022-0000(25)00044-3/bibF01FE332034EACB6F14A7201504693E0s1
http://refhub.elsevier.com/S0022-0000(25)00044-3/bibF01FE332034EACB6F14A7201504693E0s1
http://refhub.elsevier.com/S0022-0000(25)00044-3/bibEA3DC3D6E5892497D26E939EEDF12EF8s1

	Acyclic, star and injective colouring: A complexity picture for H-free graphs
	1 Introduction
	2 A general polynomial result
	3 Acyclic colouring
	4 Star colouring
	5 Injective colouring
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


