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Abstract Seismic anisotropy, observed in the lowermost mantle near Large Low‐Shear‐Velocity Provinces
(LLSVPs), is likely caused by strong deformation from mantle flow interacting with these regions and/or plume
formation. This study explores slab‐induced plume generation from LLSVPs under the assumption that LLSVPs
are thermochemical piles and resulting flow behavior using 3‐D regional‐scale mantle convection models in
ASPECT, coupled with mantle fabric simulations in ECOMAN. We tested various models with different
LLSVP density and viscosity. The modeling of the crystallographic‐preferred orientation with predominant
activity of the slip system [001](100) for Bridgmanite and [100](001) for post‐Perovskite reveals that substantial
seismic anisotropy develops in the lowermost mantle, and specifically (a) at the margins of the rheologically
stiffer LLSVP piles where deformation and upwelling of the surrounding mantle take place and fast horizontally
polarized shear waves (Vsh) transition to fast Vsv and (b) within plume roots and conduits where vertically
polarized shear waves (Vsv) are faster.

Plain Language Summary In the deepest part of the Earth's mantle, seismic wave speeds depend on
propagation and/or polarization direction of the wave. This phenomenon, known as seismic anisotropy, has been
found to increase toward Large Low‐Shear‐Velocity Province (LLSVP) edges in multiple regional studies. The
anisotropy observed in these regions may result from the deformation of mantle material interacting with the
edges of these LLSVPs or the formation of mantle plumes. In this study, we simulate how mantle plumes are
generated from these LLSVPs due to the downwelling of cold material and how the mantle flows and deforms in
response. Our geodynamic simulations test different scenarios with varying densities and viscosities for the
LLSVPs, as well as different deformation mechanisms of lowermost mantle minerals. The results show that the
lowermost mantle is mostly isotropic except in regions where plumes rise and slabs subduct. Consistent with
seismological observations, we observe vertically polarized shear waves travel faster within plume conduits and
horizontally polarized shear waves travel faster near the core‐mantle boundary below slabs. At LLSVP
boundaries, a transition occurs where mantle upwelling is driven by contrasts in LLSVP and surrounding mantle
properties, with faster horizontally polarized shear wave outside and faster vertically polarized shear wave at the
margins.

1. Introduction
The D″ region at the base of the mantle is a heterogeneous region which is a host of subducted slab accumulation,
continent‐sized heterogeneities (i.e., Large Low‐Shear‐Velocity Provinces or LLSVPs) and is a source of up-
welling mantle flow. This region is mainly composed of bridgmanite, post‐perovskite, and ferropericlase (Creasy
et al., 2020). Seismic observations revealed that structures such as mantle plumes (Stern et al., 2020) and LLSVPs
(Ford et al., 2015) in D″ can generate seismic wave velocity dependency on propagation direction and/or po-
larization (seismic anisotropy) in the lowermost mantle. However, there is no geodynamic study that examines in
detail how these processes, specifically plume generation from these piles, affect seismic anisotropy in D″. Our
effort here is toward bridging constraints from mineral physics, measurements of seismic anisotropy and models
of flow.

The most notable large‐scale features in the lower mantle are the two antipodal LLSVPs beneath the Pacific and
Atlantic Oceans, which exhibit shear velocity reductions of up to 4% compared to the mantle average (Dzie-
wonski et al., 2010; French & Romanowicz, 2014). While the exact nature of these large features remains a
subject of ongoing research (Davaille & Romanowicz, 2020; Davies et al., 2015; Koelemeijer et al., 2017), they
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are thought to play an important role in Earth's evolution (Burke et al., 2008; Steinberger et al., 2019; Wolf &
Evans, 2022). Several studies have revealed that the LLSVPs are distinct structures with different physical
properties. Seismic tomography specifically tidal tomography (Lau et al., 2017) and Stoneley modes analysis
(Koelemeijer et al., 2017) addressed the density of LLSVP material. LLSVPs are thought to represent piles of
either recycled oceanic crust, including mid‐ocean ridge basalt (Christensen & Hofmann, 1994; Li & McNa-
mara, 2013; Li et al., 2014; Mulyukova et al., 2015) or iron‐rich cumulates (Li, 2015; McNamara & Zhong, 2004,
2005; Nakagawa & Tackley, 2011) that crystallized at a relatively late stage from the basal magma ocean
(Labrosse et al., 2007), or rather bundles of plumes (Davaille & Romanowicz, 2020). Deep‐seated plumes are
typically associated with the margins of the two LLSVPs at the CMB and possibly entrain materials from LLSVPs
(Burke et al., 2008) resulting in ocean‐island basalts that may have nebular components (Mukhopadhyay, 2012).

The presence of seismic anisotropy acts as a direct indicator of deformation in the Earth's mantle (Long &
Becker, 2010; Romanowicz & Wenk, 2017). Lowermost mantle anisotropy has been explained by mechanisms
such as slab‐driven flow (Asplet et al., 2023; Creasy et al., 2020; Nowacki & Cottaar, 2021; Wolf & Long, 2022)
or upwelling flow associated with mantle plumes at the base of the mantle (Ford et al., 2015; Wolf et al., 2019).
Furthermore, it has been observed that lowermost mantle anisotropy is often concentrated near the edges of the
two LLSVPs (Cottaar & Romanowicz, 2013; Deng et al., 2017; Lynner & Long, 2014; Reiss et al., 2019; Wang &
Wen, 2004). This suggests a potential shift in mantle flow direction and/or a localization of the deformation,
potentially due to mantle flow interacting with the sides of these provinces (Li & Zhong, 2019; McNamara
et al., 2010), or the generation of upwelling of mantle plumes.

In this study, we explore the generation of upwellings from three different scenarios (a) with subducted slab
impinging at the CMB, (b) without subduction, and (c) with only slab‐induced upwelling but no LLSVPs. We use
different viscosity profiles to test the robustness of our model results. Finally, we model shear wave radial
anisotropy reflecting the flow behavior in the lower mantle. To better understand Earth's lower mantle, and hence
whole‐mantle processes, we link recent observations of seismic anisotropy and examine them in their geodynamic
context.

2. Methods
We solve the equations for compressible mantle convection using an equation of state that is based on mineral
physics data and an Earth‐like rheology. Since the focus of this study is deformation in the Earth's mantle, only
viscous stresses are considered. This leads to the following equations for conservation of mass, momentum and
energy:

− ∇ · 2ηϵ + ∇p = ρg (1)

∇ · (ρu) = 0 (2)

ρCp(
∂T
∂t
+ u ·∇T) − ∇ · (k∇T ) = ρQ + 2ηϵ:ϵ + αTu ·∇p (3)

where u is the velocity, ϵ is the deviatoric strain rate tensor, p the pressure, and T the temperature field. Addi-
tionally, η is the viscosity, ρ is the density, g is the gravity vector, Cp is the specific heat capacity of the material, k
is the thermal conductivity, Q is the intrinsic specific heat production, and α is the thermal expansion coefficient.

We set up our mantle convection models using ASPECT (Heister et al., 2017) in a 3D box domain with di-
mensions of 8,700 × 2,900 × 2,900 km covering the entire mantle depth. We impose a 100 km wide, 300 km deep
vertical subduction zone in the box center from the top boundary and place two LLSVP piles (2,000 km wide and
300 km high) on both sides in the D″ (Figure S1 in Supporting Information S1). The strain‐induced
crystallographic‐preferred orientation (CPO) of Lagrangian crystal aggregates is computed using the time‐
dependent Eulerian flow field from geodynamic models using ECOMAN (Faccenda, 2024). Shear wave radial

anisotropy, defined as ξ = V2
sh

V2
sv
, is extracted from the elastic tensor, with positive ξ − 1 > 0 indicating faster

horizontal shear waves. Detailed setup and methodology are in Texts S1, S2, Figures S3, S8, and Table S3 in
Supporting Information S1.
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3. Results
Using the time‐dependent pressure, temperature, and velocity fields of the geodynamic models, we computed
mantle fabrics and associated radial and azimuthal anisotropy. We assume the easy slip system [001](100) of
Bridgmanite and [100](001) of post‐Perovskite in the computation. The selection of these slip systems is based on
the microstructural (Text S3 in Supporting Information S1) and large scale analysis (Text S4 in Supporting In-
formation S1) as a function of Bridgmanite and post‐Perovskite CPO. Our strategy here to compute seismic
anisotropy is to initially set it to zero throughout the lower mantle, allowing it to develop only when material
enters the D″ layer (the bottom 300 km of the mantle). This approach ensures that any observed seismic
anisotropy in the lowermost mantle arises solely from processes occurring within this region, consistent with
seismological observations of the Earth.

Radial anisotropy was calculated based on the timing of plume surfacing events. After the initial plume pulse, we
evaluated radial anisotropy by assessing strain‐induced CPO fabrics, computed over the subsequent
20 million years (Myr), and then presented the resulting radial anisotropy (Figure 1, left panels). We also compute
radial anisotropy taking into account the plume pulse in the later stage of plume evolution (Figure 1, right panels).
The 20 Myr time window is chosen because, after the pulses arrive in the uppermost mantle, it takes approxi-
mately 20 Myr for them to spread through the upper mantle and reach a transient steady‐state. We also chose a
short time window (20 Myr) since the lowermost mantle seismic anisotropy appears to be mainly sensitive to the
present day mantle flow field (Ward et al., 2024).

Several model variations have been tested (Figure 1) and their geodynamic descriptions are listed in Tables S1 and
S2 in Supporting Information S1. Details of the models in the context of mechanisms of thermochemical plume
generation are described in Roy (2024) and Steinberger et al. (2025). In the following, we briefly describe the
models. In Figure 1, anisotropy development due to plume generation has been shown together with the
boundaries of plumes (shown by black curve), piles (shown by green curve), and slab material (shown by purple
curve) along‐with the Bridgmanite to post‐perovskite phase transition boundary (shown by pink curve), in order
to illustrate their relationship. Since our focus is modeling lower mantle anisotropy, we show the radial anisotropy
development in the lower mantle (660–2,900 km) with evolution of plumes, piles, and slab for the whole mantle.

• Reference model: The reference model has been constructed with LLSVPs 2% denser (density profile in
Figure S2c in Supporting Information S1, red curve) and 10 times more viscous (viscosity profile in Figure
S2e in Supporting Information S1, cyan curve) than ambient mantle (density profile in Figure S2c in Sup-
porting Information S1, black curve and viscosity profile in Figure S2e in Supporting Information S1, black
curve). The spreading apart of the piles is prevented by the sinking slab, resulting in the plumes remaining
located at the pile edges (Figure S4 in Supporting Information S1 left panel). The first plume pulse occurred at
85 Myr for the left plume and 90 Myr for the right plume. Following these initial pulses, the strain‐induced
CPO fabrics were computed over the subsequent 100–120 Myr, after which we show radial anisotropy
(Figure 1, reference model, left panel). Additionally, radial anisotropy was calculated over the subsequent
230–250 Myr after the plumes' second pulse hit at 220 Myr (Figure 1, reference model, right panel). Toward
the base of the slab near the CMB, there is enhanced positive anisotropy (earlier stage) which is related to the
deformation of post‐perovskite at the lowermost mantle. As the slab reaches this region, anisotropy gets
widespread around it (later stage). However, inside of the slab is almost isotropic everywhere. LLSVPs exhibit
subtle positive anisotropy. Plume roots exhibit negative anisotropy near the CMB and negative anisotropy
continues through the plume conduits in the lowermost mantle. Surrounding the plume roots, strong positive
anisotropy is observed, spreading more broadly on the slab side and more narrowly on the LLSVP side (later
stage). In plume generation zones within the D″ region, the PPv layer thins as it transforms to Brd/Pv at larger
depths, consistent with Ward et al. (2024), who also found a thinner PPv layer in upwelling, high‐temperature
regions, consistent with the positive Clapeyron slope for the Brd to PPv phase transition (Tateno et al., 2009).
In the later stages, as more cold slab material accumulates in the lowermost mantle, the thickness of the bottom
PPv layer increases where slab impinges the D″ as a result of enhanced Brd to PPv phase transition and the
strength of anisotropy has increased just below the impinging slab consistent with Chandler et al. (2021).

• Thermal/no LLSVP: A comparative model was constructed with the same parameters as the reference model
but without the presence of LLSVPs. The plumes generated in this model can be classified as slab‐
triggered, purely thermal plumes (Figure S4 in Supporting Information S1 middle panel). In the earlier
stage (115–135 Myr) significant fast Vsh anomalies have been developed on both sides of the plume bases
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Figure 1.
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(indicated by dark blue regions), while strong fast Vsv anomalies are observed at the plume roots (indicated by
dark red regions) in the lowermost mantle (Figure 1, Thermal). The plume conduits show more pronounced
vertical anisotropic signature than the reference case. At a later stage (225–245 Myr), the fast Vsh anomaly at
the base of the slab becomes stronger and the width of the plume conduits becomes narrower leading to narrow
fast Vsv anomalies inside conduits in the lowermost mantle.

• No slab: The next variation involves the absence of a slab, with the presence of LLSVPs (Figure 1, No slab).
This scenario can be considered as thermochemical plumes originating from LLSVPs without any slab in-
fluence (Figure S4 in Supporting Information S1 right panel). In this case, the anisotropy developed in the
plumes is similar, but the slab‐triggered anisotropy in the lower mantle is absent resulting in very shallow
positive anisotropy near the CMB in the earlier stage. As the plume roots come close to each other in the later
stage due to the spread of piles from opposite sides, fast Vsv anomalies replace fast Vsh anomalies where PPv
transforms to Brd. Mild positive anisotropy is observed away from the plume roots. Inside the LLSVPs are
mostly isotropic except for some regions where small scale upwellings produce negative anisotropy at their
bases and positive anisotropy at their tops, more prominent in the later stage.

• Strong LLSVP: In the next case the viscosity of the LLSVPs is 100 times greater (Figure S2e in Supporting
Information S1, green curve) than that of the ambient mantle (Figure S5 in Supporting Information S1 left
panel). In this case earlier and mature stages have been considered as 110–130 and 230–250 Myr, respectively
(Figure 1, Strong LLSVP). The anisotropy developed is similar to the reference case, with the exception that
weak positive anisotropy developed at the LLSVP edges (earlier stage) but plume roots can still produce
strong fast Vsv anomalies (earlier and later). A strong LLSVP inhibits any small‐scale features to form inside it
and becomes almost isotropic to very weakly positively anisotropic.

• Weakmantle: The next case considers that the ambient lower mantle has a viscosity that is half of the reference
case (Figure S2d in Supporting Information S1, red curve and Figure S5 in Supporting Information S1 middle
panel). While the development of anisotropy is similar to the reference scenario, the shape of the anisotropic
regions can vary depending on the plume conduit structure. In this instance, the conduits tend to become more
curvilinear (Figure 1, Weak mantle). Since the mantle is weak, plume generation is quick and temporal stages
become 60–80 and 160–180 Myr. We observe a clear strong positive anisotropy where the slab touches the
CMB at the later stage.

• Stress exponent 2.5: Another variation has weaker depth dependence of viscosity, described by lower mantle
stress exponent 2.5 (Figure S2d in Supporting Information S1, blue curve and Figure S5 in Supporting In-
formation S1 right panel). Given the D″ becomes stronger and the lower mantle above it becomes weaker in
this case, deformation and hence anisotropy is less focused into the D″ layer. The positive anisotropy at the
very base of the slab becomes less strong. Plume roots are significantly negatively anisotropic (Figure 1, Stress
exponent 2.5) since strong localized deformation is accumulated at the edges of the more viscous LLSVPs.

• P‐T conductivity: The P‐T dependent conductivity model produces anisotropy results similar to the reference
case. Temporal stages become 95–115 and 230–250 Myr (Figure 1 P‐T Conductivity). However, P‐T
dependent conductivity leads to higher temperature in the lowermost mantle (Figure S2a in Supporting In-
formation S1, blue curve) than in the reference case (Figure S2a in Supporting Information S1, black curve),
which causes a massive plume that can reach the surface quicker than the slab sinks to the lower mantle. This
allows us to reduce the bottom thermal boundary age from 200 Myr (Figure S6 in Supporting Information S1
right panel) to 100 Myr (Figure S6 in Supporting Information S1 middle panel) leading to results becoming
similar again to the reference case.

• Less entrainment: Another model variation involves LLSVP viscosity 10,000 times more (Figure S2e in
Supporting Information S1, blue curve) and density 3% higher (Figure S2c in Supporting Information S1,
orange curve) than ambient mantle. The very high viscosity and high density of piles make them strong and
hard to deform (Figure S6 in Supporting Information S1 left panel). Consequently plume conduits become
more vertical and robust. The lateral extent of the region with positive radial anisotropy at the base of the slab

Figure 1. Temporal evolution of shear wave radial anisotropy shown in a 2D slice taken at the middle of the 3D box. From top to bottom panels, results are showing the
radial anisotropy development at an earlier (left) and later (right) stage of plume evolution. Plumes are tracked by the 300 K non adiabatic temperature isosurface
(black), slabs and Large Low‐Shear‐Velocity Provinces are identified by a compositional threshold of ≥0.25 and ≥0.45 and colored by purple and green colors,
respectively. The bridgmanite to post‐perovskite phase transition boundary is shown as pink curve for the post‐perovskite compositional threshold 0.5. At each panel,
the end time of the 20 Myr period during which radial anisotropy is computed, is given. The crystallographic‐preferred orientation evolution and the resulting radial
anisotropy development are computed in the bottom 300 km of the mantle only.
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becomes larger, as the positions of plume roots become more stable since highly viscous LLSVP piles can not
spread (Figure S7 in Supporting Information S1, Less entrainment). Temporal stages become 110–130 and
230–250 Myr for earlier and later, respectively.

The average radial anisotropy of the plumes has been plotted in Figure 2 for different model variations. Plumes
have been tracked by an isotropic shear wave velocity anomaly (dVs) threshold of ≤− 1.5% and in this context, we
have considered tracking the left plume. For comparison with seismic tomography, the whole mantle tomography
model SEMUCBWM1 (French & Romanowicz, 2014) which is shown as black thick lines and also
SEMUCBWM1 tomography where dVs is <0 shown as black dashed lines in Figure 2 are considered. While the
former one can be used for ambient mantle anisotropy, the second one can be considered for anisotropy caused by
high temperature anomaly. Most of our models show positive anisotropy at the base of the mantle (positive when
ξ − 1 > 0 and negative when ξ − 1 < 0), which changes to negative at around 2,800 km depth. Above 2,600 km, ξ
is close to 1 for the rest of the lower mantle. The strength of negative radial anisotropy ranges from 0.97 to 1
(meaning within the range of − 3%) and that of positive radial anisotropy is within the range of +8% for earlier
stage and slightly higher than this in the later stage.

Now, if we compare different model variations, we see that the Stress exponent 2.5 model has stronger viscosity
(Figure S2d in Supporting Information S1, blue curve) than the reference model (Figure S2d in Supporting In-
formation S1, black curve) in the lowermost mantle. As a result the Stress exponent 2.5 model produces negligible
anisotropy at the base of the mantle. In the earlier stage, the No slab model produces the strongest negative
anisotropy in the D″. The strongest positive anisotropy is observed in the less entrainment model in the D″. Just
above CMB, at the depth of around 2,750 km, only the thermal/No LLSVP model produces positive anisotropy
whereas all of the other models show negative anisotropy. In the later stage, the strongest positive anisotropy is
developed in the thermal model in D″. The reference model and P‐T conductivity model show relatively strong
negative anisotropy just above 2,800 km.

Figure 2 shows notable differences between modeled and observed anisotropy in D″. This is expected, as the
models represent plumes only, while observations include the broader lowermost mantle (everywhere and regions
with dVs < 0). Within plumes, dominant vertical flow leads to a stronger negative extremum. Near the CMB,
stronger horizontal flow near plumes (where material flows into them), enhances the positive maximum. As
plumes are smaller‐scale, the transition from positive to negative anisotropy occurs closer to the boundary.
Observed anisotropy is also less positive in regions with dVs < 0, possibly due to plume fabrics. Evaluating D″
anisotropy from global S‐wave models requires caution due to sensitivity imbalances and trade‐offs (Chang
et al., 2015; French & Romanowicz, 2014; Kustowski et al., 2008).

Figure 2. 1D average radial anisotropy of plumes for different model variations, corresponding to the earlier (top figure) and later stages (bottom figure) of the mantle
plumes in the lower mantle. The black solid line shows the 1D average radial anisotropy of ambient mantle from the SEMUCB‐WM1 tomography model and the black
dashed line shows the same restricted to regions where dVs < 0. The black dotted line represents ξ = 1.
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4. Discussion
Our modeled anisotropy reveals that Vsv > Vsh inside plume conduits and Vsh > Vsv surrounding plume conduits in
the lowermost mantle (Figure 3) which is well aligned with previous seismic observations. Russell et al. (1998)
found out there is a transition from horizontal to vertical flow causing ScSV (longitudinal components of motion)
waves to travel faster than ScSH (tangential components of motion) waves at the root of the Hawaiian mantle
plume at the CMB due to vertically sheared fabric. The ScS splitting measurements done by Wolf et al. (2019),
influenced by lowermost mantle anisotropy, demonstrate a shift in the fast splitting direction at the root of the
Iceland plume. For two sets of paths sampling outside the low‐velocity region, the direction is nearly horizontal
(indicating Vsh > Vsv). However, for paths sampling directly beneath Iceland, the direction rotates to nearly
vertical (indicating Vsv > Vsh). From our simulation, the strong negative anisotropy of the plume root is associated
with the edges of the LLSVP piles most prominently observed in our Strong LLSVP and Less entrainment
models, which are well consistent with the seismic anisotropy observation in the lowermost mantle south of Papua
New Guinea by Xu et al. (2024). Additionally, the correlation of mantle plumes with LLSVP edges and the
resulting Vsv > Vsh at LLSVP edges from our findings are consistent with multiple seismic observations (Fouch
et al., 2001; Ritsema et al., 1998; Vinnik et al., 1995; Wolf & Long, 2023). Strong modeled anisotropy at the
plume roots can also be compared with observed stronger seismic anisotropy toward the presumed plume root
than away from it (Reiss et al., 2019; Wolf et al., 2024). Comparison with azimuthal anisotropy data further
validates our numerical results (Text S5 and Figures S13–S15 in Supporting Information S1).

Creasy et al. (2021) obtained models incorporating post‐perovskite (with either a [100](010) or [100](001)
dominant slip system) offer the best agreement with the observations in the lowermost mantle beneath Siberia
where slab remnants are detected. Chandler et al. (2021) found out post‐perovskite (PPv) with either dominant
(001) or (010) slip plane can both explain the seismically observed anisotropy in colder regions where
downwellings turn to horizontal flow, but only a model with dominant (001) slip plane is matched to seismic
observations at the root of hotter large‐scale upwellings. Observations of radial anisotropy and splitting in
subhorizontal seismic phases are largely consistent with models of postperovskite with (001)‐slip (Cottaar
et al., 2014). For bridgmanite/perovskite (Brd/Pv), experimental textures are consistent with deformation
mechanisms that produce dominant slip on [001](100) (Tsujino et al., 2016). Hence, our selection of the easy slip
systems (Figure S11 and S12 in Supporting Information S1) for the most anisotropic phases is supported by the
seismic observations and numerical and experimental simulations.

Figure 3. Radial anisotropic signature of 3D thermochemical mantle plumes in the lower mantle. Plumes are tracked by the isosurface of shear wave velocity anomaly
dVs ≤ − 1.5% and colored by radial anisotropy. The slab (in a 2D slice) and Large Low‐Shear‐Velocity Provinces are identified by a compositional threshold of ≥0.25
and ≥0.55 and colored purple and green, respectively. Radial anisotropy scale is the same as in Figure 1. Snapshots are taken after 250 Myr model evolution and radial
anisotropy is computed based on the last 20 Myr (230–250 Myr) crystallographic‐preferred orientation evolution.
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In our geodynamic simulation, we use the reference radial viscosity profile from Steinberger and Calder-
wood (2006) since we consider this viscosity profile more realistic in terms of fitting with geoid and dynamic
topography observations. However, using this viscosity profile does not allow to distinguish between dislocation
and diffusion creep. The simulated mantle fabrics and related seismic anisotropy are upper‐bound estimates
where our model considers deformation in dislocation creep regime. To maintain consistency between the
geodynamic and mantle fabric simulations, we limit the anisotropy development to the bottom 300 km of the
mantle ensuring the anisotropy has only been developed within the lowermost mantle where deviatoric stresses
are relatively high and deformation can be accommodated by dislocation creep processes (Liu et al., 2024;
McNamara et al., 2002; Wenk et al., 2006). Simulations where we have relaxed this limitation indicate that the
subducted slab can produce positive radial anisotropy on its way down to the lower mantle and negative radial
anisotropy inside the plume conduits can continue developing throughout the lower mantle (Text S6 and Figures
S16–S18 in Supporting Information S1).

The relation between the sign of radial anisotropy and horizontal versus vertical mantle flow depends on the
dominant slip system accommodating deformation (Figures S9 and S10 in Supporting Information S1). Ac-
cording to our results that have been constrained by comparison with seismological observations, positive
(negative) radial anisotropy corresponds to horizontal (vertical) flow in the lowermost mantle. This is consistent
with previous studies of seismic anisotropy modeling in the lower mantle (e.g., Chang et al., 2016; Ferreira
et al., 2019; Mainprice et al., 2008; Sturgeon et al., 2019), and compatible with radial anisotropy associated with
the common olivine A‐type fabric found in the upper mantle. With the exception of the upper mantle transition
zone where wadsleyite fabrics may not follow this general trend (Faccenda, 2014), the correlation between the
sign of radial anisotropy and mantle flow direction appears to be homogeneous.

We are also extending our work to global‐scale anisotropy modeling within a spherical geometry in an upcoming
publication since recent global studies (Li et al., 2024; Peng & Liu, 2022), offer important insights in their ability
to match observations.

5. Conclusions
We have tested several properties like temporal evolution of plume surfacing events in the form of earlier versus
later stages of plume formation, effect of thermal conductivity, stress exponent, strength of LLSVP, viscosities of
ambient mantle, influence of the presence of a slab, morphological differences between thermochemical (pres-
ence of LLSVP) and thermal (no LLSVP) plumes and their effects on the anisotropic signature of mantle plumes.
After testing rheological and density variations, sensitivity of the anisotropic parameters to different slip systems
activities has also been explored. The key findings are the following: For the active slip systems tested, mantle
plumes are robust structures in generating fast Vsv anomalies in the lowermost mantle. We observe widespread
and strong positive radial anisotropy toward the slab side, and narrow positive radially anisotropic regions toward
the pile side near the CMB. We find pile‐side anisotropy to vary from positive radial anisotropy to isotropy
depending on the rheological constrast between piles and ambient mantle. When the subducted slab has reached
the lowermost mantle, strong positive radial anisotropy has been generated at the CMB surrounding the slab
material. Our findings provide important insights into locating slab positions and upwelling zones, while also
helping to constrain the rheological properties of chemical piles in the lowermost mantle.

Data Availability Statement
The input data and the specific version of codes required to reproduce the models in this study are available from
Zenodo (Roy et al., 2024) and are distributed under a Creative Commons Attribution license. The modeling
software ASPECT (Heister et al., 2017) was used to compute the geodynamic models and is available under a
GPLv2 or newer license. The mantle fabric simulator code ECOMAN (Faccenda, 2024) was used to compute
seismic anisotropy and is available under the MIT license.
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