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Determination of quantum defects and core polarizability of atomic cesium via terahertz
and radio-frequency spectroscopy in thermal vapor
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We present new measurements of quantum defects and core polarizabilities in cesium ('**Cs), based on transi-
tion frequency measurements between Rydberg states (14 < n < 38) obtained through THz and radio-frequency
spectroscopy in a thermal atomic vapor. We perform a global fitting of our measurements to extract quantum
defects of the 51,2, pi/2, P32, d3y2, dsy2, f5,2, f725 872, and gy, electronic states. Transitions between high angular
momentum states (4 < £ < 8) were measured to extract the Cs* dipole and quadrupole polarizabilities. We find
og = 15.729(18) @} and o, = 76.3(1.9) @ respectively. Using these results, and accounting for the covariances
between parameters in the global fit, the energies for n¢; Rydberg states can be estimated to a precision of a few

MHz or less.
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I. INTRODUCTION

High-resolution spectroscopy of atomic and molecular
states is fundamental to our understanding of the structure
of matter and allows us to refine fundamental theories and
discover new physics [1,2]. Detailed knowledge of the energy
levels of atoms and molecules is also essential for the develop-
ment of many modern atom-based quantum technologies [3,4]
with systems involving highly excited Rydberg levels showing
particular promise for quantum computing and electric-field-
sensing applications [5]. Rydberg atom-based systems are
increasingly being used for electric-field sensing [6], com-
munications [7,8], and metrology [9] applications spanning
the radio-frequency [10] to terahertz (THz) range [11,12] and
often include transitions to states with high angular momen-
tum [13,14]. To model these systems, open-source software
such as ARC [15] is widely used for calculating the properties
of alkali-metal atoms, relying on precision measurements of
constants such as quantum defects to calculate energy levels,
in order to improve predictive accuracy.

The most comprehensive measurements of the quantum
defects in Cs were made in 1987 by Weber and Sansonetti
[16]. They determined the quantum defects of the ns1,2, np12,
and nds, states, and rely on fine-structure intervals measured
by Goy et al. [17] for calculation of the nd3;» quantum de-
fects, and from Sansonetti and Lorenzen [18] for calculation
of the np;3/» quantum defects. Data were also taken for the
nfs;, and ngy,, states, with the latter having no other recent
measurements. Recently, there have been more precise mea-
surements for the nfs; 7,2 [19] and the nsy /2, npi/2,3/2, and
nds;; quantum defects [20] by millimeter-wave spectroscopy

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOL

2469-9926/2025/111(6)/062802(12)

062802-1

of ultracold Cs [21]. However, these measurements still rely
on data from older sources [16] rather than providing an
independent reference. The most recent direct measurement
for the quantum defects of the nds;, state in Cs was made
by Lorenzen and Niemax in 1984 [22]. Consequently, there
is no single independent reference for accurate values of the
quantum defects for all states with £ < 4.

The quantum defects of higher ¢ states (£ > 5) can be
calculated from the polarizability of the ionic core, as the
wave function’s penetration into the core is minimal [23].
The measurement of Rydberg high ¢ states has been used to
extract ion polarizabilities [24]. This technique is not limited
to alkali metals [25-27] and has been explored in alkaline-
earth elements [28,29] and other species [30,31]. For simpler
species, such as He and H,, comparisons between theoretical
and experimental results have further validated these methods
[32,33]. Beyond this, ionic polarizabilities have a range of
applications [34] from the study of ion-neutral and atom-
atom interactions [35-37] to addressing blackbody radiation
uncertainties in ionic and atomic clocks [38,39]. Proposals to
trap atoms using circular states [40] and improve measure-
ments of the Rydberg constant have highlighted the need for
improved ionic polarizability constants [41,42] with recent
studies identifying it as a leading uncertainty [43]. Accurate
determination of atomic polarizabilities is also critical for cal-
culating tune-out wavelengths and Stark shifts, which depend
on the contribution from the core [44,45]. In a recent Cs mea-
surement, this is the dominant source of error in determining
the ratio of the 6p reduced matrix elements [46].

In this paper, we present values for the quantum defects for
the 51,2, pj, d;, fj, and g; states of Cs, using Rydberg elec-
tromagnetically induced transparency (EIT) in conjunction
with THz and rf fields. Frequency intervals between Ryd-
berg states are measured using coherent THz and microwave
sources to couple the states. These results are compared to the
most recent measurements of the Cs quantum defects. Finally,
by using our measurements of Rydberg states with £ > 4,
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FIG. 1. Level diagram and experimental layout. DC, dichroic
mirror; OAP, off-axis parabolic mirror; PD, photodiode; MW, mi-
crowave. (a) Energy levels of Cs involved in the two-photon (green
highlight) and three-photon (red highlight) excitation methods. Once
in a Rydberg np; or nd; state, resonant THz and microwave fields are
applied to couple to neighboring states. In the two-photon scheme,
further microwave fields can then couple higher angular momentum
states. (b) Experimental layout of the two- and three-photon schemes.
Both employ counterpropagating beams to achieve Doppler-free line
shapes and couple Rydberg states to the ground state via use of
EIT. The resulting change in transmission of the probe beam after
interaction with the vapor is measured on a photodiode.

accurate values of the Cs* dipole and quadrupole polariz-
abilities can be extracted. This enables precise calculations of
states with £ > 5 leading to a complete independent set of Cs
energy levels based on the findings in this paper.

II. EXPERIMENTAL METHOD

Throughout this paper, Rydberg EIT is used to measure
the response of a thermal Cs vapor to applied fields [47].
Resonant laser fields are used to excite atoms to Rydberg
states, enabling dipole-allowed transitions to nearby states
via resonant THz and/or microwave fields. By monitoring
the absorption of the probe (first excitation) laser, the detun-
ing of the THz or microwave field from resonance can be
determined, allowing precise measurements of the transition
frequency. In this paper, two different excitation schemes are
used to excite Rydberg states in Cs: a two-photon scheme to
reach nd; states, and a three-photon scheme for accessing np;
states. The energy levels involved in both schemes are shown
in Fig. 1(a), and the corresponding experimental layouts are
shown in Fig. 1(b). The initial (probe) laser at 852 nm is
common to both schemes and addresses the 6s;/,, F =4 —
6p3/2, F " =5 transition and is stabilized to <1 MHz using
ground-state polarization spectroscopy. In the three-photon

scheme (red shading) a second (coupling) laser at 1470 nm
copropagates with the probe and is frequency stabilized to
the 6p32, F' =5 — Ts12, F” = 4 transition via excited-state
polarization spectroscopy [48]. To reach Rydberg states a
third (Rydberg) laser between 780 and 840 nm counterprop-
agates with the other two beams. This laser is not frequency
stabilized and is instead scanned over the transition of interest.
To couple from np; to nearby ns;,, and nd; states, a coherent
THz field is incident on the vapor cell.

The linearly polarized THz beam is emitted from a diago-
nal horn antenna, collimated by a polytetrafluoroethylene lens,
and focused into the cell using an off-axis parabolic (OAP)
mirror. The OAP contains a 2-mm through-hole to allow the
Rydberg beam to copropagate with the THz beam. The THz
beam is derived from a Virginia Diodes amplifier multiplier
chain with powers ranging from 5 to 50 uW depending on the
frequency emitted and a beam waist of approximately 1.5 mm
within the cell. The two THz sources used cover frequencies
of >~ 450-800 GHz and 1.01-1.06 THz limiting the number
of transitions that could be addressed.

In the two-photon scheme (green shading), the second
(Rydberg) laser at 515-520 nm counterpropagates with the
probe beam. As in the three-photon case, the Rydberg laser
is scanned over the transition of interest. The coherent THz
field now couples to nf; states, from which additional applied
microwave fields can be used to reach higher ¢ states. Be-
yond g we omit the fine-structure subscript but assume that
the j =€+ % state is coupled. Microwave tones are emitted
from pyramidal horn antennas for frequencies >20 GHz and
various dipole whip antennas for <10 GHz. The microwave
fields, estimated to have powers of ~ 10 uW within the vapor
cell, are applied perpendicular to the propagation direction
of the laser and THz fields. In the absence of any applied
THz or microwave fields, the transmission of the probe laser
exhibits a single Lorentzian EIT peak as the frequency of
the Rydberg laser is varied. When THz or microwave fields
are applied, Autler-Townes (AT) splitting occurs, dividing the
single EIT feature into two Lorentzian peaks, as shown in the
upper panel of Fig. 2. For a resonant applied THz field in
the absence of multiphoton couplings [49], the line shape is
symmetric with equal peak heights. When the field is detuned
from resonance asymmetry develops and, for small values
of detuning (< 10 MHz), the relative peak heights depend
linearly on the sign and magnitude of the detuning. By fitting a
sum of Lorentzian line shapes to the spectra we are able to de-
termine the heights of the peaks. Then by fitting straight lines
to the heights of the blue and red detuned peaks separately we
are able to determine the resonant frequency of the transition
by finding the point at which these lines intersect, shown in
the lower panel of Fig. 2. For states with ¢ > 3, additional
microwave fields introduce couplings between subsequent £
states, increasing absorption or transmission near the line
center [50]. These additional fields are similarly detuned to
identify transition frequencies. For an even number of levels,
an applied rf field induces AT splitting, producing two distinct
spectral peaks, and resonance is determined as in Fig. 2. For an
odd number of levels, the field creates a central transparency
peak, the relative detuning of which from the previous AT
peaks varies linearly and can similarly be used to determine
resonance.
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FIG. 2. Dependence of EIT line shape on THz detuning. Top:
Examples of the two-photon Rydberg EIT signal with an applied THz
field that is approximately 0.7 MHz below (solid line) and 0.4 MHz
above (dashed line) resonance. When the THz field is resonant with
the transition, we expect the height of the two Autler-Townes peaks
to be equal. As the THz field is detuned, we see clear asymmetry
in the peaks. Bottom: Height of the blue detuned (blue) and red
detuned peak (red) as a function of THz frequency—the above
peaks corresponding the first and last pair of data points. By fitting
straight lines to these points, we can find the resonant transition
frequency as the point at which the lines intersect. In this example
we measure the frequency of the 18ds,, — 16f;,, transition to be
730.406 83(6) GHz, indicated by the shaded region.

III. QUANTUM DEFECT MEASUREMENTS

The frequency of a transition vy between two states de-
scribed by the quantum numbers n, ¢, j and »', ¢, is
given by

1 1
=R - .
"0 C(m—&mm2 w—&mmmJ A

where c is the speed of light and Rc, is the Rydberg constant
(in m~") corrected for the mass of the relevant species (Cs in
this case). The quantum defects, §; ;j(n), can be parametrized
using the modified Rydberg-Ritz equation as [51]

oo n S¢
=802 o) s T
®)

where the values for 8p4 . are coefficients that are dis-
tinct for different £ and j. Using the most recent reported
values of the coefficients 8¢ 4. (detailed in Table I) from
Eq. (2), the predicted transition frequencies differed signifi-
cantly from those measured in this paper, especially for states
where n < 20. Figure 3 illustrates the difference between the
predicted and measured transition frequencies as a function
of the average principal quantum number of the transition,
Nave = (n +n')/2, where n and ' correspond to the initial and
final states of each transition respectively. The plot reveals
a distinct structure, with each data point corresponding to a
different measured transition. For all series considered, the
differences are more apparent at lower n. Since the value
of the quantum defect &, ; depends inversely on n, we posit
that inaccuracies in the underlying empirical coefficients 8o 2 4
are responsible for the observed difference between exper-
iment and theory. These differences are not correlated with
frequency, so are not due to any frequency-dependent effects
in the terahertz or microwave generation. While there may be
slight shifts in our measurements caused by external effects
such as for example a dc electric field, any such shifts would
typically increase with n and so are unlikely to be the cause of
the differences seen here. The three largest discrepancies are
for measurements of the p; — d; transitions at low n where a
difference of over 100 MHz is observed between our intervals
and those predicted by the collated quantum defects. As n
increases the observed discrepancy is less apparent, on the
order of several MHz at higher n, with np3,, — n'ds;, tran-
sitions showing discrepancies of up to 4 MHz. The 51, — p;
series measurements show a systematic discrepancy of several
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FIG. 3. Predicted values of transition frequencies from recent literature compared to our measurements. The difference (A,) between our
observed transition frequencies and those calculated using quantum defect values from the most recent measurements for each £; state. The
marker style denotes the change in j with A; = +1 (filled) or A; = 0 (empty). The colors of the points correspond to the different £ series
considered. Error bars are derived from the determination of the crossing point as shown in Fig. 2. The gray shading indicates the zoom region
shown in the subsequent panel. The yellow shading highlights the range in which our optimized values lie.
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TABLE I. Quantum defect values found in this paper compared to a collation of the most recent measurements. Quantum defect coefficients are shown for all spectral series up to ¢
4, both our optimized values and the most recent literature values. The error in the optimized coefficients was calculated from the covariance matrix generated during the fit. Errors on the

literature values are given where available.

89/2
0.007049(4)
—0.0512(16)

87/2
0.007057(5)
—0.054(2)
0.5(3)

f7/2
0.033570(3)
~0.2016(11)
0.45(11)

fsp
0.033429(3)
—0.2025(12)

ds)»
2.466327(4)
0.0101(14)
0.06(16)

ds)n

2.475474(4)
0.0051(14)
—0.06(16)

P32
3.559091(3)
0.3657(13)

P12
3.591606(3)
0.3569(13)

0.81(14)

S1/2
4.049368(3)
0.2333(14)

0.8(2)

8o

1)

This paper

0.20(19)

0.69(13)

1.17(14)
3.5590676(3)

0.37469(14)

84

0.00703865(70)

—0.049252
0.01291

0.0335646(13)
—0.2052(29)

0.03341537(70)
—0.2014(16)

2.466 3144(6)
0.01381(15)

~0.392(12)

~1.9(3)

2.4754562
0.009320
—0.43498
—0.76358
—18.0061

3.5915871(3)
0.36273(16)

4.0493532(4)
0.2391(5)
0.06(10)

8o

1)

84

Collated works?*

11(7)
—209(150)

86

s

4The s1,2, P12, P32, and ds > quantum defects are from [20], the d3/, quantum defect is from [22], the f5/, and f7,, quantum defects are from [19], and the g7,» quantum defect is from [16]. No

89,2 literature value was found.

MHz throughout, suggesting some inaccuracy present in the
d¢ coefficient of the 51,2, p1/2, or p3/» quantum defects. Given
that the p; — d; set of intervals describes the data well at
high n, and that there is no structure when comparing the
s1/2 = pi1s2 and 512 — p32 intervals, the most likely source
of this discrepancy lies in the 51/, quantum defects. For the
d; — f; and f; — g; transitions, discrepancies on the order
of tens of MHz are observed with a clear n dependence. This
suggests that the f-state defects from [19] are inaccurate at
low n. When accounting for this in our g-state analysis, and
comparing to transition frequencies based on the g7/, defects
from [16], we find that the latter overestimates the transitions
by several MHz relative to our measurements.

We use our measured transition frequencies to extract
measurements of the quantum defect parameters 8¢ 2 4 in Cs
for all states with £ < 4 without relying on any data from
other sources. By using THz frequencies, measuring intervals
at significantly lower n than other publications is possible,
increasing our sensitivity to changes in quantum defects. A
global fit was performed, optimizing the values of all quan-
tum defects simultaneously. We use Eqgs. (1) and (2) as a
theoretical model to calculate the transition frequencies for
initial values of 8¢ » 4 for all relevant states. A least-squares x>
minimization method, implemented via the SCIPY OPTIMISE
package in PYTHON, varied the values of 4 to minimize
the differences between the predicted and measured transition
frequencies. Table I shows our optimized values of the coef-
ficients from Eq. (2) and the residuals of the fit are shown in
Fig. 4. While the series expansion in Eq. (2) could be con-
tinued to arbitrarily high order, including coefficients higher
than 84 was not found to significantly improve the minimized
value of x?2 in this paper. Therefore the expansion is truncated
at fourth order and three parameters (8¢ 2.4) are quoted. Our
values for the parameters 8¢, 4 largely agree with the val-
ues reported in [16] but, in contrast to the work presented
there, do not rely on data from other sources. The error in
their measurements is likely underestimated, especially for
the higher-order quantum defects where values are quoted to
a superfluous number of significant figures. While our mea-
surements are of a lower precision than [20], they agree within
error.

In the minimization it was found that there are strong cor-
relations between the optimum values of the g » 4 coefficients
for each &, ;. Whereas this would not affect the optimum value
of the fit parameters, it does put bounds on the precision for
each coefficient. Additionally, as the fitting minimizes transi-
tions between pairs of states, quantum defects for a specific
¢ are correlated to those with £ £ 1. Further details of the
correlations between parameters can be found in Appendix A.
One of the main use cases for quantum defect measurements
is to calculate the frequency of a specific atomic transition
through Eq. (1). In this case the precision of the quantum
defect parameters is the dominant source of error and must
be accounted for. In the simplest case all parameters (5o 2.4)
can be considered as independent (uncorrelated) and the error
in the transition frequency can be calculated by summing
the contributions from the uncertainty on each parameter in
quadrature [52]. Using the optimized values and their preci-
sion as quoted in Table I we can calculate values of transition
frequencies at the MHz level for n > 30. Incorporating the
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FIG. 4. Residuals from a global fit to all quantum defects using
the transition frequency data. Measured minus calculated transition
frequencies as a function of n,, = (n+ n")/2 for optimized values
of 80.2,.4. The marker style denotes a transition with initial state n¢;
to a final state n’ﬁ’i, where Aj = +1 (filled) or Aj = 0 (empty). The
lighter (darker) points indicate transitions from the higher (lower)
fine-structure state, as in Fig. 3.

correlations between fit parameters in the calculation of the
error on the predicted transition frequencies is nontrivial but
possible; details of two methods are given in Appendix B.
Doing so increases the precision of transition frequencies
calculated using our quoted parameters by up to an order of
magnitude. This means that we can predict transition frequen-
cies with a similar precision as those calculated using more
precise measurements of 8o 2 4 such as quoted in Table I. The
entire 27 x 27 covariance matrix derived from our global fit
can be found in [53].

IV. CS CORE POLARIZABILITY

For states with increasing angular momentum, the total
energy becomes increasingly dominated by the long-range
polarization potential, and can be accurately calculated us-
ing measured ionic core polarizabilities rather than deriving
empirical quantum defects for each distinct £; state, as done
in the previous section. Here, we use our measured transition
frequencies between high ¢ states to determine the dipole (¢ty)
and quadrupole () polarizabilities of the Cs ionic core, Cs™.
These constants are used to model the energies of states with
angular momentum £ > 5, where short-range interactions,
such as exchange and penetration effects, become negli-
gible. This approach provides a systematic framework for

determining the quantum defects of all higher £ states [23]
without their direct measurement.

Previous studies of core polarization in alkali metals typi-
cally relied on atomic beam experiments, where multiphoton
microwave and rf transitions populate excited n¢ states, which
were subsequently detected via field ionization [54,55]. Tech-
niques like resonant excitation Stark ionization spectroscopy
have observed ¢ states as high as 14, though significant dc
Stark corrections are required [56]. Here we use our mea-
sured Cs Rydberg high ¢ transitions to extract the dipole and
quadrupole polarizabilities of the Cs ionic core.

The energy of a Rydberg state E,,; can be expressed as a
sum of contributions:

hCRCS
n2

— AEy —

Enj = Ej, — — AEp — AEg

AEpen - AErel' (3)

Here, E;. is the ionization energy, and Rcs is the re-
duced Rydberg constant for Cs. The terms AE,,, AEg,
AEe, AEp,, and AEg correspond to polarization energy,
fine-structure corrections, exchange energy, penetration en-
ergy, and relativistic corrections, respectively [57]. For states
with high £ (€ > 4), the penetration and exchange contribu-
tions are minimal, so the total energy primarily arises from
the polarization energy. The measured energy intervals, E,,; —
E,y, predominantly reflect differences in polarization energy,
which can be expressed in terms of ag4, oy, n, and €. The
remaining corrections are based on well-known constants.
For ¢ > 4, we assume hydrogenic fine-structure and analyze
transitions at the center of mass of the state. Penetration and
exchange energies are estimated following the treatment in
[58], which shows good agreement with other calculations of
g states [27,57]. While penetration and exchange corrections
for g states are small (>~ 15 MHz), they are not negligible
compared to experimental errors. For ¢ > 5, these correc-
tions are <100 kHz, well below measurement uncertainty
but included for completeness. This transition from quantum
defect to polarizability-based modeling not only reflects the
underlying physics but also enables the grouping of our sparse
high ¢ data into a single framework, allowing predictions of
unmeasured states.

We analyze core polarization energies using both adiabatic
and nonadiabatic models. The former has historical prece-
dence and enables comparison with prior experimental results,
while the latter provides greater accuracy in determination of
the Cs™ polarizabilities as it uses a more complete description
of the polarization potential [32].

A. Adiabatic model

The adiabatic polarization energy AE,,, in atomic units, is
given by [59]

AEp, = —%a;(rn_“) — %a;(rn_;), (@))

where o, and 0‘; are the effective dipole and quadrupole
polarizabilities of the Cs™ ion, and (rnp) are the radial mth
power expectation values of the hydrogenic wave function
|n€) [60]. For transitions n¢ — n{’ (of equal n) differences
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energy of a state is described as a series of contributions from the
fine-structure, relativistic, exchange, and penetration corrections.

in polarization energy can be linearized through

ALpoine = Abpolne _ i o (re’) = {rae’)

o B R i

where AEp) .0 — AEpo e are polarization energies extracted

from the measured transitions and the gradient and intercept

correspond to the effective quadrupole and dipole polarizabil-
ity respectively.

We apply the adiabatic model to two different datasets.
One data set uses intervals of the form n¢ — nf’ where
the principal quantum number has not changed. However,
given the nf — n'g measurements contain information on the
energies of g states, we can neglect the need for identical n
intervals and perform a second global fit using all available
intervals. In this way, a state n¢ with £ > 4 is described by
Eq. (4) instead of unique quantum defects for each £; series.
The residuals for the adiabatic model when using all available
data are shown in Fig. 5.

The adiabatic model describes the data well and shows
good agreement with previous literature values of o/, as

shown in Table II. Conversely, the value of oz; is in

®)

TABLE 1II. Table of effective Cs™ polarizabilities compared
to previous experimental results of the effective dipole, o, and
quadrupole, o, polarizability. The fitted parameters were found by
the minimization of the reduced x? statistic and the errors by refitting
to x2., + 1.

Reference o) (ad) a, (@) xZmin
This paper (¢ > 4) 15.634(17) 59.8(13) 6.0
This paper (global fit) 15.689(17) 55.7(18) 7.3
Safinya et al. [55] (Expt.) 15.544(30) 70.7(29)
Sansonetti et al. [57] (Expt.) 15.79(1) 38.7(19)

Curtis and Ramanujam [61]* 15.759 47.990

Weber and Sansonetti [16] (Expt.) 15.770(3) 48.9(4)

*Using data from [57,62,63].

reasonable agreement considering
the significant variance between
publications.

Inspection of the global fit in Fig. 5 suggests that the nh
levels are anomalous. This is indicated by slightly elevated
g — h residuals and large & — i residuals. While the former
may be attributed to an overestimation of Ey, for the g states,
this explanation does not account for the latter measurements,
as the penetration energies are on the order of kHz. We con-
sidered that this may be the result of a large dc stray electric
field, as polarizability scales significantly with £ [59]. This
would decrease the transition frequency for successive nf —
n¢’ measurements. While this effect is observed in the & — i
dataset, it is not supported by the higher £ — ¢’ transitions,
which do not show a corresponding decrease in energy. It
is interesting to note that [54] also observed smaller 7 — i
intervals than their fit. They made similar observations, but
they do not measure as high ¢ to further clarify whether this is
the result of a stray dc electric field.

Additionally, [55] agrees well with our set of 7 — i mea-
surements within their precision. Their interval sizes are not
significantly larger, meaning they do not indicate the presence
of a stray field in our paper. Using a nonadiabatic model as
in the following section somewhat resolves this discrepancy.
Further measurements of higher ¢ states or a larger sample of
n may put more confidence on whether this is a systematic
error or an unaccounted perturbation.

B. Nonadiabatic model

A nonadiabatic model introduces corrections to Eq. (4) by
accounting for the delayed response of the core dipole to the
outer electron’s motion [64], allowing extraction of the true
static polarizabilities. This paper presents the first experimen-
tally determined values of the true static polarizabilities of the
Cs* ion, as all previously reported values have been based
on ab initio calculations. Two recent treatments addressing
adiabatic corrections are Berl et al. [54] and Peper et al.
[27]. The former corrects for nonadiabatic effects using the
method of Gallagher for measurements in Rb, introducing
correcting factors as coefficients in Eq. (4) by considering
ionic dipole and quadrupole matrix elements [59]. The latter
follows the treatment of Eissa and ()pik in ¥K [65]. However,
these analyses were not found to be readily accessible for
Cs™. In this paper, we follow the treatment given by Drake
and Swainson to extract the true polarizabilities [66]. The
polarization energy, AE,, can be written as [34]

AEpo = —daa(r ) = Loy — 6B,V +EP +.... (6)

Here, § is a nonadiabatic correction factor [64], a constant
which is estimated via extrapolation of oscillator strength sum
rules. Since this extrapolation depends on the dipole polariz-
ability «; being extracted, an iterative fitting process is used
in which fits are refined until the value of B8 converges. The
term E® represents second-order polarization effects, a cor-
rection term which is a function of «, n, and £. Higher-order
corrections depend on ionic oscillator strength sums for Cs™,
which are not well characterized.

The nonadiabatic model describes the data well and an ex-
tension of Eq. (5) to include nonadiabatic corrections is shown
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FIG. 6. Analysis of the data using the nonadiabatic model for
two sets of data. Linearization of the data by extending Eq. (5) to
include the nonadiabatic polarization energy from Eq. (6), allowing
extraction of the dipole, «,, and quadrupole, «,, polarizability. A
global fit to all data (including g; states from the nf; — n’g; inter-
vals) is included in the plot (black) for comparison to data where
only intervals of the form n¢{ — nf' (same n) are used (red). The
shaded regions show the 1o standard errors in the fitted parameters
(see Table III). Groups of data points correspond to different sets of
transitions with increasing ¢: (a) nh — ni and (b) ng — nh. In the
lower left, the transitions ni — nk and nk — nl are shown, along
with the y intercepts, which correspond to «, for the two fits. The
data sets are grouped by color similarly to Fig. 5.

in Fig. 6. We find oy = 15.729(18) ag and o, = 76.3(1.9)
a; which show good agreement with the theoretical results
shown in Table III [67—69]; the value of «; we obtain is within
0.5% of these predictions. However, we note the variance in
oy in the literature and the fact that our experimental value
is smaller than all theoretical predictions. The nonadiabatic
model somewhat resolves the anomalous 42 — i data although
there is still some discrepancy when performing a global fit
inclusive of the f — g data.

Quantum defects for states with £ > 5 can then be directly
determined from expansions of Eq. (4) [66], or their energies
can be expressed using Eq. (3) where their penetration and

TABLE III. Table of true Cs™ polarizabilities compared to var-
ious theoretical results of the dipole, a,, and quadrupole, «,
polarizability.

Reference ay (a3) a, (a)) XZ min
This paper (£ > 4) 15.696(16) 78.6(12) 4.2
This paper (global fit) 15.729(18) 76.3(19) 5.6
Safronova et al. [69] (Theor.) 15.84

Johnson et al. [67] (Theor.) 15.81 86.4

Lim et al. [68] (Theor.) 15.8(1)

Sternheimer [70] (Theor.) 118.26

Mahan [71] (Theor.) 15.9 108

exchange effects are negligible. The resulting expression is
given in Appendix C.

V. DISCUSSION

The set of quantum defects presented here for the s, p, d, f,
and g states and the determination of core polarizabilities will
allow more accurate energy levels for reference databases, for
Rydberg atom interaction potentials, and in the calculation of
long-range Rydberg molecules [72-74]. Appendix C details
the expressions for estimating energies of £ > 5 states using a
core polarizability approach.

Since performing the analysis presented in this paper and
tabulating the quantum defects listed in Table I, more precise
measurements for the sy,,, d3/2, and ds/, states have been
made [75]. Using the updated values to compute theoretical
transition frequencies did not significantly reduce the discrep-
ancies with our data, particularly the >10-MHz shifts at low
nave and the consistent 1-2-MHz offsets at higher n,,, seen in
Fig. 3. Notably, [75] excludes states with n < 20, where most
of the large deviations occur.

In previous studies of the core polarizability of Cs [57]
and other alkali-metal atoms [23,26,27], f; has been included
as a nonpenetrating state. For [57], this gave results for oy
and «, that were not in agreement with their ng; energies.
For other species and treatments [23,26,27], inclusion of pen-
etration and exchange effects for nf states has given good
results. This is most likely due to the significantly smaller
core penetration experienced by the lighter species, i.e., Na
and K. Regardless, the inclusion of our f states in a core
polarization analysis would place better bounds on the value
of ay and only slightly change our value of a;. We note the
importance of including high ¢ states beyond f and g states
in core polarizability analyses as they allow the deduction of
the dipole and quadrupole polarizabilities without reliance on
calculation of the exchange and penetration energies.

Extending measurements to higher ¢ yields diminishing
returns, as the reduced transition frequencies lead to larger
relative uncertainties, and these states primarily constrain o
with limited sensitivity to o,. In contrast, a broader range
of principal quantum numbers n offers greater leverage for
improving the accuracy of both polarizabilities. In our exper-
iment, we are limited both by the range of the THz sources
and the two-photon Rydberg laser, which dictate the Rydberg
transitions we can measure. A three-photon scheme reaching
f Rydberg states would omit the need for a THz source and al-
low couplings to g states and higher ¢ states with microwaves
and mm waves.

Laser power fluctuation is a large source of error in de-
termining the peak heights; this could be reduced by the
inclusion of amplitude stabilization techniques. In the ladder
scheme, the error caused by any detuning of the previous
transitions was minimized by measuring each resonance se-
quentially, and associated shifts were found to be negligible
compared to the dominant fitting uncertainty. Ac Stark shifts
from earlier rf fields were also negligible at the low field
strengths used. Electric-field nonuniformity would cause dis-
tortion of the line shape [76], however such distortions are
symmetric and were not observed with the rf powers used in
this paper. The global fit residuals of £2 MHz in Fig. 4 for
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s1;2 — pj and p; — d; transitions at n,e = 35 are consis-
tent with a small (<10 mV/cm) dc electric field. However,
most measurements are in the lower n = 15-30 range or
involve higher ¢, where any resulting shifts are smaller than
our measurement uncertainties (10—100 s kHz). Inclusion of
electrodes in the cell would allow for compensation of small
electric fields, especially if measurements were carried out at
higher n. The frequency separation of the Autler-Townes split-
ting itself could be used to determine resonance. However, this
approach is nonlinear in detuning and sensitive to laser scan
calibration. Additionally, the small detuning range used in this
paper results in near-constant splitting. Fitting relative peak
heights could reduce common-mode noise, but it introduces
correlations that add to the error. Ideally, normalization of
peak height using background scans would be preferred, but
rapid laser power fluctuations occur on timescales shorter
than our rf-THz switching, limiting the practicality of this
approach.

A full list of the intervals measured in this paper, and
their corresponding transition frequencies, is provided in
Appendix D.

VI. CONCLUSION

We have carried out THz and microwave spectroscopy in
thermal vapor in order to determine a complete set of quantum
defects for Cs and present the first true static polarizability val-
ues for the Cs™ ion. Our results improve previous sets of data
to allow the estimation of energy levels of Cs to a precision
of a few MHz or less. This set of quantum defects will allow
a more accurate database for the extensive experimental and
theoretical work that relies on such data particularly at lower
principal quantum number where transition frequencies lie in
the terahertz range [77,78]
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APPENDIX A: CORRELATION OF FIT PARAMETERS

When performing the global fit to extract the quantum
defects we observe significant correlation between fit param-
eters which led to larger uncertainties in the reported values.
Figure 7 shows the absolute value of the correlation matrix |p|
where each element is given by

o = U

iy — T a0
VCiCijj

with C;; being elements of the covariance matrix extracted

from the fit [52]. These large correlations are somewhat due to
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FIG. 7. Correlation matrix of quantum defects used in the min-
imized fit. A color map shows the absolute value of the correlation
coefficient |p| between pairs of fit parameters.

the method used—by measuring intervals between two states,
the quantum defects associated with the initial state in the
transition are necessarily correlated to the quantum defects
that describe the final state. This is seen by inspecting each
row in Fig. 7. Some level of correlation is seen for each ¢;
state across all other states except from the 51/, which shows
little. This is most likely attributed to the fact that the lowest
n interval measured with 51/, is 20 compared to 13, 14, and
15 for the p,d, and f states, meaning that the fit is not as
sensitive to a change in the 51/, quantum defects as the other
states. Secondly, the only £ state accessible from s/, states
is the p; state, which limits the correlation to other states.
Large correlation is seen between the coefficients ¢ 4 for
each electronic state as a change in one can almost entirely be
compensated by a change in the other. Lastly, there is notably
larger correlation between the py/; and d3,; quantum defects
and similarly between the p3 /> and ds/; quantum defects. This
is likely due to the large number of measurements between
these respective intervals.

APPENDIX B: ERRORS IN TRANSITION
FREQUENCY CALCULATIONS

As the optimum parameters for 8, 4 are strongly corre-
lated, these correlations need to be taken into account when
using the optimized values to predict transition frequencies.
Here we will give two methods for doing so. First, taking
an analytic approach, the variance in the calculated transition

frequency crvzo as found using Eq. (1) can be expressed as

op =JCJ" (BI)
where
_ |2 Sw 9w Ew (B2)
38 38,777 98, 08,
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FIG. 8. Precision of calculated transition frequencies for
np3p — (n+ 1)ds;, transitions and errors on the transition fre-
quency of np3;» — (n+ 1)ds;, transitions as a function of average
principal quantum number n,,,. The dashed lines show the result of
ignoring covariance for the quantum defects quoted in this paper
(blue) and recent literature values from Table IV (red). Including
covariances between parameters (purple line and points) improves
the precision of the calculated value, even surpassing the more pre-
cise literature for n > 16. The solid line/points represent the analytic
Jacobian method [Eq. (B1)] and the Monte Carlo approach [Eq. (B4)]
respectively.

is the Jacobian of Eq. (1) with respect to the parameters &y 2 4
and &, , 4, and C is the covariance matrix of the form

o cov(do, 32) cov(8o, 8})
cov(8z, 8o) o5 o cov(8y, 8))
C= .
cov(8),80,) cov(8),8,) - o2
(B3)

with cov(a, b) indicating the covariance between the parame-
ters a and b. The six terms of the Jacobian can be evaluated
analytically but are cumbersome to deal with. An alternative
approach is to use a Monte Carlo simulation to estimate the

variance of the predicted frequencies. In order to do this, input
parameters must have the same covariance as the measured fit
parameters. One method to create such a vector of correlated
normally distributed random variables Y is through evaluating

Y =p+3Z (B4)

where Z is a vector of uncorrelated Gaussian random vari-
ables and X is the Cholesky decomposition of the covariance
matrix C such that XXT = C. Using either of these methods
to evaluate the error on frequencies predicted using Egs. (1)
and (2) results in a significant reduction in the error, meaning
that frequencies can be calculated with sub-MHz precision
as low as n = 15. An example of the variation in the error
of predicted transition frequencies for nps3;, — (n+ 1)ds;»
transitions is shown in Fig. 8, and the entire covariance matrix
can be found in [53].

APPENDIX C: FULL EXPRESSION FOR ENERGY
OF HIGH ¢ STATES

The energies of states with ¢ > 5, neglecting exchange
and penetration contributions, can be expressed as a sum of
various components. For completeness, we provide the full
expressions in this Appendix. We adopt the adiabatic model
for polarization energy, which offers an accurate prediction of
energies while maintaining a simple form. The energy E,; is
given by

/’lCRCS

Enj = Ei, — 2 AEy — AE — AE (CD)
where AE, is given as
AEpy = —hcRcs (oe:i(rn_[‘) + ot;(rn_f’)), (C2)

with o) and o being the effective dipole and quadrupole
polarizabilities found in this paper. The expectation values of
the hydrogenic wave functions, (7,), are given as

3n* — L+ 1)

(ra’)

The fine-structure correction (spin-orbit coupling), AEFs, is given by

where « is the fine-structure constant. The relativistic correction, AE., is given by

—4\ _
') = 25 (€ — 5)L(L+ )L+ D)(€+3) ©
and
|

350t = n?[300(€ + 1) — 251 + 3(¢ — DE( + D(€ +2) )

STt =) -DEe- e+ e+ D+ e +2)(e+3)

ST T2+ D+ ow Y 4
_ a?hcRes 1 3

AErel—T(g_’_%_E)- (Co)
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APPENDIX D: TABLES OF TRANSITION FREQUENCIES

The 0.5-MHz uncertainty in Table IV reflects the fit uncertainty from the intersection of two lines from the three-photon
experiment. Tables IV and V include results from the two-photon scheme, which use different scan ranges and differing number
of data points, leading to differing uncertainties.

TABLE IV. Tabulated values of the p — s, p — d, and d — f transition frequencies measured using the two- and three-photon method.
The p — s and p — d measurements have errors of 0.5 MHz unless otherwise specified. The d — f measurements have separate errors given
for each measurement. A negative sign indicates that the final state lies lower in energy than the initial state.

np — n's measurements np — n'd measurements nd — n'f measurements
Transition Frequency v (GHz) Transition Frequency v (GHz) Transition Frequency v (GHz)
20p1, — 2081, —710.9264 14p1, — 13dsp 685.8714 18ds, — 15fs), —1034.94423(7)
20p1, — 2lsip 770.1388 15p3, — 14ds), 548.6153 18ds, — 16f5)2 746.66404(9)
20p32 — 2ls1p 721.8937 15pi, — 14d3), 519.0775 18ds;, — 15f5p —1050.97405(8)
18ds;, — 15f7 —1051.24888(9)
21pip — 21 —593.8743 22p3; — 20ds); —1025.9229(2) 18ds;, — 16f5), 730.63472(8)
21pip = 2251 646.5781 18ds;, — 16f7) 730.40683(6)
21[)3/2 g 22S|/2 606.1677 24]71/2 — 22d3/2 —730.6733
2psp — 2lsip —634.2831 24ps, — 22ds) —747.7028 19d5, — 17fs)2 620.57851(8)
19ds;, — 17fsp 607.2809(1)
22pi1y —> 2251 —501.1722 25p1, — 23d3 —631.0236 19ds;, — 17f7 607.09149(5)
22[)1/2 — 2351/2 548.1043 25[71/2 — 25d3/2 694.2632
22p3pn — 2381 513.9218 25p3; — 23ds), —645.8232 20d3, — 17fsp —715.18566(9)
22p3n — 281 —535.3544 25p3 — 25ds) 677.7750 20ds, — 18fs) 521.36182(9)
20ds, — 17fsp —726.3370(1)
23p3;n — 23512 —455.9748 26p1, — 24d3) —548.7019 20ds;, — 17fip —726.52729(8)
26]71/2 — 26d3/2 607.3581 20d5/2 g 18f5/2 5102102(1)
27p3y — 2951, 702.8132 26p3, — 26ds) 593.0072
28p1, — 2Tsip ~723.7312 2p1y — 27ds 534.3773
28p3, — 3051, 622.2992 2Tpsp — 25ds) —491.4822 2dy, — 19f5) —514.6726(1)
28p3;n — 2512 —738.4080 27p3p, — 27ds), 521.8114 22ds;, — 19f7)2 —522.87675(9)
29[71/2 — 31Sl/2 566.6445 30]71/2 — 31d3/2 674.1317
29p12 — 28512 —639.1752 30p3, — 3ldsp 665.1313
29p3, — 3lsip 553.6318
29p3 — 2851, —652.1882 31psy — 32ds 597.3845
30[)1/2 — 2951/2 —567.2976 32]71/2 — 33d3/2 545.7370
30p3, — 32512 494.7101 32p3p — 33dsp, 538.5382
30])3/2 — 29S1/2 —578.8893
30ps, — 301, ~516.1775 33p1y — 34dsp 493.6529
34[)1/2 d 3251/2 —653.2059 33]71/2 d 35d3/2 694.0853
35p1, — 3351, —590.2641 33psy — 35ds; 687.4378
35ps — 33sip ~597.1567
36[)3/2 g 3451/2 —541.4330 34p3/2 — 36d5/2 624.7619
35p12 — 37d3) 574.9137
35ps, — 37dsp 569.4835
36ps, — 38ds) 520.5438
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TABLE V. Tabulated values of the f — g, ¢ — h, h — i,i — k, and k — [ transition frequencies measured using an EIT ladder scheme.
The fine structure beyond f is not resolved but we label the g states for completeness and for the dipole allowed transitions. Beyond g we omit
the fine structure but assume that the j = ¢ + % is coupled. A negative sign indicates that the final state lies lower in energy than the initial

state.

nf —>n'g(t=4) ng — n'h nh — n'i ni — 'k uk — 1l
Transition v (GHz) Transition v (MHz) Transition v (MHz) Transition v (MHz) Transition v (MHz)
15fs, — 1570 50.3241(2) 15g9, — 15h 8700.8(4) 15h — 15i 2675.1(5) 15i — 15k 1016(1) 15k — 151 439(1)
15f72 — 15g9;2  50.6009(1)
16f5, — 16g7, 41.5844(2) 16go, — 16h  7190.5(5) 16h — 16i 2206.9(5) 16/ — 16k 840(1) 16k — 16/ 365(1)
16f7, — 16g9,  41.8139(1)
17fsp — 1772 34.7509(1) 17goy — 17h  6007.2(5) 17h — 17i 1851.3(4) 17i — 17k 705(1) 17k — 171 306(1)
17f10 — 17g9pp  34.9430(1)
18fs;2 — 18g72  29.3321(1)  18g9, — 18h 5071.8(5) 18h — 18i 1563.4(5) 18i — 18k 594(1)
18f12 — 18g9;s  29.4946(1)
18f72 — 19g9,0 1071.33778(7) 18g9;, — 19k 1046163.2(3) 18h — 19i 1042424.5(4)
19f52 — 19g70  24.981(1)  19g9; — 19h 4320.6(5)
19f72 — 19892 25.1200(8)
19f1, — 18g9, —1016.7236(1)
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