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Abstract
In this paper, we aim to develop the foundations of a theory of BV functions in the config-
uration space over the Euclidean space R

n equipped with the Poisson measure π . We first
construct them-codimensional Poissonmeasure—formallywritten as “(∞−m)-dimensional
Poissonmeasure”—on the configuration space.We then show that our construction is consis-
tent with potential theory induced by the infinitely many independent Brownian motions by
establishing relations between the m-codimensional Poisson measure and Bessel capacities.
Secondly, we introduce three different definitions of BV functions based on the variational,
relaxation, and semigroup approaches, and prove the equivalence of them. In the process,
we prove the p-Bakry–Émery inequality on the configuration space for any 1 < p < ∞.
Thirdly, we construct perimeter measures and introduce an appropriate notion of measure-
theoretic boundary, called the reduced boundary. We then prove that the perimeter measure
can be expressed by the 1-codimensional Poisson measure restricted to the reduced bound-
ary, which is a generalisation of De Giorgi’s identity to the configuration space. Finally,
we construct the total variation measures for functions of bounded variation, and prove the
Gauß–Green formula.
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1 Introduction

The purpose of this paper is to establish the foundations for functions of bounded variations
(BV functions) in the space of all locally finite point measures (without multiplicity) in the
Euclidean spaceR

n , denoted byϒ(Rn) and called the configuration space. The spaceϒ(Rn)

is endowed with the vague topology τv , the L2-transportation (extended) distance dϒ , which
stems from the optimal transport problem, and the Poisson measure π whose intensity mea-
sure is the Lebesgue measureLn onR

n . The resulting topological (extended) metric measure
structure (ϒ(Rn), τv,dϒ, π) plays a fundamental role to describe dynamical systems of infi-
nite particles stemming from statistical physics, random point processes, random graphs and
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integral geometry, representation theory of diffeomorphism groups on manifolds, and many
others. Instead of giving enormous numbers of related references here, we refer the reader
to [23, Section1.6] for an overview of the aforementioned subjects.

The studies of BV functions and sets of finite perimeter beyond the standard Euclidean
space have seen a thriving development in the last years, see [3–7, 9, 10, 14, 19, 36] and
references therein. However, all of these results do not cover the configuration space ϒ(Rn).
The space (ϒ(Rn), τv,dϒ, π) is known to possesses several pathological properties (see
details in [23]):

• the extended distance dϒ is not continuous with respect the topology τv ;
• dϒ -metric balls are negligible with respect to the Poisson measure π ;
• dϒ -Lipschitz functions are not necessarily π -measurable;
• the Riesz–Markov–Kakutani representation theorem does not hold.

For these reasons, the study of the configuration space (ϒ(Rn), τv,dϒ, π) does not fall into
the standard framework of metric measure geometry. Furthermore, the lack of the Riesz–
Markov–Kakutani’s representation theorem causes further complexity to construct total
variation measures supporting the Gauß–Green formula by means of standard functional-
analytic technique.

In the setting of infinite-dimensional spaces, the study of geometric measure theory has
been pioneered by Feyel and de la Pradelle [28], Fukushima [31], Fukushima and Hino [32]
and Hino [34] in the Wiener space. In [28], they constructed the finite-codimensional Gauß–
Hausdorff measure in the Wiener space and investigated its relation to capacities. In [31,
32], they developed the theory of functions of bounded variation and constructed perimeter
measures, and prove the Gauß–Green formula. Based on these results, Hino introduced in
[34] a notion of reduced boundary and investigated relations between the one-codimensional
Hausdorff–Gauß measure and the perimeter measures. Further fine properties were investi-
gated by Ambrosio and Figalli [11], Ambrosio et al. [12, 15–17]. The notion of functions
of bounded variation has been studied also in a Gelfand triple by Röckner et al. [39–41].
All of the aforementioned results rely heavily on the linear structure of the Wiener space or
the Hilbert space, which is used to perform finite-dimensional approximations. However, the
configuration space does not have a linear structure and there is no chance to apply similar
techniques.

1.1 Non-linear dimension reduction and overview of themain results

To overcome the difficulties explained above, we develop a non-linear dimensional reduction
tailored to the configuration spaceϒ(Rn). A key observation is thatϒ(Br ), the configuration
space over the Euclidean closed metric ball Br centred at the origin o with radius r > 0,
is essentially finite dimensional. More precisely, due to the compactness of Br , ϒ(Br ) can
be written as the disjoint union �k∈Nϒk(Br ) of the k-particle configuration spaces ϒk(Br ),
each of which is isomorphic to the quotient space of the k-product space B×kr by the k-th
symmetric group. In light of this observation, themain task is to lift geometricmeasure theory
on ϒ(Br ) to the infinite-dimensional space ϒ(Rn) by finite-dimensional approximations.

In this paper, we first construct them-codimensional Poissonmeasure on the configuration
space (Theorem 3.7, Definition 3.8), and study its relation to (1, p)-Bessel capacities (Theo-
rem 4.3). Secondly, we introduce three different definitions of functions of bounded variation
based on the variational, relaxation and the semigroup approaches, and prove their equiva-
lence (Theorem 5.18). In the process of showing the equivalence of these three definitions,
we prove the p-Bakry–Émery inequality (Theorem 5.16) for the heat semigroup on ϒ(Rn)
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for 1 < p < ∞, which was previously known only for p = 2 in Erbar–Huesmann [26].
Thirdly, we construct perimeter measures and introduce the notion of the reduced boundary
in Sect. 6.We then prove that the perimeter measure can be expressed by the 1-codimensional
Poisson measure restricted to the reduced boundary (Theorem 6.15). Fourthly, we construct
the total variation measures for functions of bounded variation and prove the Gauß–Green
formula (Theorem 7.7).

We now explain each result in details.

1.2 m-Codimensional Poissonmeasure

The first main result of this paper is the construction of them-codimensional Poissonmeasure
on ϒ(Rn). Since ϒ(Rn) is infinite-dimensional, it is formally written as

“(∞− m)-dimensional Poisson measure”.

In the case of finite-dimensional spaces, usually the construction of finite-codimensional
measures builds upon covering arguments, which heavily rely on the volume doubling prop-
erty of the ambient measure. However, this property does not hold for the Poisson measure
π on ϒ(Rn).

We construct the m-codimensional Poisson measure on ϒ(Rn) by passing to the limit of
finite dimensional approximations obtained by using the m-codimensional Poisson measure
onϒ(Br ). The key step in the construction is to prove themonotonicity of these finite dimen-
sional approximations with respect to the radius r , allowing us to find a unique limit measure.
More in details, based on the decomposition ϒ(Br ) = �k∈Nϒk(Br ), we build ρm

ϒ(Br )
, the

spherical Hausdorff measure of codimension m inϒ(Br ), by summing them-codimensional
spherical Hausdorff measure ρ

m,k
ϒ(Br )

on the k-particle configuration space ϒk(Br ), which is
obtained by the quotient measure of them-codimensional spherical Hausdorff measure on the
k-product space B×kr with a suitable renormalisation corresponding to the Poisson measure.
The localised m-codimensional Poisson measure ρm

r of a set A ⊂ ϒ(Rn) is then obtained
by averaging the ρm

ϒ(Br )
-measure of sections of A with the Poisson measure πBc

r
on ϒ(Bc

r ),
i.e.

ρm
r (A) :=

∫
ϒ(Bc

r )

ρm
ϒ(Br )

({γ ∈ ϒ(Br ) : γ + η ∈ A})dπBc
r
(η) .

We prove that ρm
r is well-defined on Borel sets (indeed, we prove it for all Suslin sets), and

that it is monotone increasing with respect to r (Theorem 3.7, Definition 3.8). In particular,
we can define the m-codimensional Poisson measure as

ρm := lim
r→∞ ρm

r .

We refer the readers to Sect. 3 for the detailed construction of ρm .

1.3 Bessel capacity

In Sect. 4, we compare the m-codimensional Poisson measure ρm and Capα,p , the Bessel
capacity induced by the Dirichlet form associated with infinite independent Brownian
motions constructed in Albeverio et al. [2]. We prove that zero capacity sets are ρm neg-
ligible provided α p > m (Theorem 4.3). This result, that is well-known in the case of
finite-dimensional spaces, proves that our m-codimensional Poisson measure ρm behaves
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coherently with the potential-analytic structure of ϒ(Rn). To prove it, we introduce the
(α, p)-Bessel capacity Capϒ(Br )

α,p on ϒ(Br ) and the localised (α, p)-Bessel capacity Caprα,p
on ϒ(Rn) based on the localisation argument of the L p-heat semigroup {Tt } on ϒ(Rn). We
prove that Capα,p is approximated by Caprα,p as r →∞, hence we can obtain the proof by

lifting the corresponding result for ρm
ϒ(Br )

and Capϒ(Br )
α,p inϒ(Br ) (see Proposition 4.14). We

refer the readers to Sect. 4 for the detailed arguments.
As an application, we prove in Corollary 7.4 that, if Cap1,2(A) = 0 then |DF |(A) = 0 for

every F ∈ BV(ϒ(Rn)) ∩ L2(ϒ(Rn), π), where |DF | is the total variation measure (Defini-
tion 7.2) and BV(ϒ(Rn)) is the space of functions of bounded variation (Definition 5.19).
The latter result will be fundamental for applications to stochastic analysis of infinite-particle
diffusions, which will be the subject of a forthcoming paper.

1.4 Functions of bounded variations and Caccioppoli sets

In the second part of this paper we develop the theory of functions of bounded variation and
sets of finite perimeter in ϒ(Rn). In Sect. 5 we propose three different notions of functions
with bounded variation. The first one follows the classical variational approach, the second
one is built upon the relaxation approach, while the third one relies on the regularisation
properties of the heat semigroup. It turns out that they are all equivalent, as shown in Sect. 5.5,
and the resulting class is denoted by BV(ϒ(Rn)). For F ∈ BV(ϒ(Rn)) we define a total
variation measure |DF | and prove a Gauß–Green formula (see Theorem below). We remark
that in our infinite-dimesional setting, Riesz–Markov–Kakutani’s representation theorem is
not available due to the lack of local compactness. In particular, the construction of the total
variation measure is not straightforward. We follow an unusual path to show its existence:
we first develop the theory of sets with finite perimeter relying on the non-linear dimension
reduction. We then employ the coarea formula to build the total variation measure of a
function of bounded variation as a superposition of perimeter measures.

Sets of finite perimeter are those Borel sets E such that χE ∈ BV(ϒ(Rn)), where χE

denotes the indicator function of E . In Sect. 6, we study their structure by means of the
non-linear reduction approach, a part of which uses a strategy inspired by Hino [34] for
the study of Wiener spaces. The key result in this regard is Proposition 5.5 saying that if
E has finite perimeter then the projection Eη,r := {γ ∈ ϒ(Br ) : γ + η ∈ E} has finite
localised total variation in Br , for πBc

r
-a.e. η ∈ Bc

r . Hence, we can reduce the problem to the
study of sections that are sets with finite perimeter in ϒ(Br ). As already remarked, the latter
is essentially a finite dimensional space, so we can appeal to classical tools of geometric
measure theory to attack the problem.

The reduced boundary ∂∗E of a set of finite perimeter E ⊂ ϒ(Rn) is then defined in
terms of the reduced boundary of the sections Eη,r , through a limit procedure. The resulting
object allows us to represent the perimeter measure as

‖E‖ = ρ1|∂∗E ,

which is a generalisation of the identity proven in the Euclidean setting by De Giorgi [21,
22].

Our approach to theBV theory deviates from the standard one.We define the total variation
measure |DF | of a function F ∈ BV(ϒ(Rn)) by imposing the validity of the coarea formula.
More precisely, we show that dt-a.e. level set {F > t} is of finite perimeter and we set
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|DF | :=
∫ ∞

−∞
∥∥{F > t}∥∥dt ,

taking advantage of the perimeter measure ‖{F > t}‖ that has been already defined using
finite dimensional approximations. The reason for this non-standard treatment is that we are
not able to build directly |DF | through a finite dimensional approximation, since the latter
does not have a simple expression in terms of 1-codimensional Poisson measure ρ1 restricted
to a suitable subset. Our approach is, however, consistent with the standard one, as shown in
Corollary 7.3 and in Theorem 7.7.

We summarise the main results in Sects. 6 and 7 concerning functions of bounded varia-
tions and a sets of finite perimeter. We denote by CylV(ϒ(Rn)) the space of cylinder vector
fields on ϒ(Rn) and by (Tϒ, 〈·, ·〉Tϒ) the tangent bundle to ϒ(Rn) with the pointwise inner
product 〈·, ·〉Tϒ (see Sect. 2.5).

Theorem (Theorems 6.15, 7.7) For F ∈ L2(ϒ(Rn), π)∩BV(ϒ(Rn)), there exists a unique
positive finite measure |DF | on ϒ(Rn) and a π -a.e. unique Tϒ-valued measurable function
σ on ϒ(Rn) so that |σ |Tϒ = 1 |DF |-a.e., and

∫
ϒ(Rn)

(∇∗V )Fdπ =
∫

ϒ(Rn)

〈V , σ 〉Tϒd|DF | , ∀V ∈ CylV(ϒ) .

If, furthermore, F = χE , then

|DχE | = ρ1|∂∗E .

1.5 Potential applications

Our theory of functions of bounded variation has several potential applications to related
fields such as singular boundary problems of infinite interacting diffusions. In the case of the
Euclidean space R

n—the the case of one particle Brownian motion—there is a connection
between the theory of BV functions and stochastic analysis: the (modified) reflected Brow-
nian motion on an open set A ⊂ R

n is semi-martingale if and only if A is Caccioppoli.
Furthermore, the modified reflected Brownian motion satisfies the generalised Skorokhod
equation and the generalised Itô’s formula, where the reflection at the boundary is phrased
by the local time in terms of the reduced boundary (see, [30, Theorem 7.1, 7.2]). As an infinite
dimensional counterpart, one can expect that the main results in this paper would be useful
to construct infinite particle diffusions with singular boundary conditions (cf. [32, Theorem
4.4.] in the case of the Wiener space).

1.6 Structure of the paper

In Sect. 2, we collect preliminary results regarding the the configuration space, Suslin sets and
measurability of sections. In Sect. 3, we construct the m-codimensional measure. Relations
with the Bessel capacity are studied in Sect. 4. Section 5 is devoted to the study of functions of
bounded variation. We introduce three different notion and prove the equivalence. In Sect. 6,
we introduce and study sets of finite perimeter. We build the notion of reduced boundary and
the perimeter measure, and we show an integration by parts formula. In Sect. 7, we introduce
the total variation measure of functions with bounded variations by employing the coarea
formula, and prove a Gauß–Green type integration-by-parts formula.
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2 Preliminaries

2.1 Notational convention

In this paper, the bold fonts S, L, . . . are mainly used for objects in product spaces or vector-
valued objects, while the serif fonts S,D, . . . are used for objects in the quotient space of
product spaces with respect to the k-symmetric groupSk or for objects in the configuration
space ϒ(Rn).

The lower-case fonts f , g, h, v, w, . . . are mainly used for functions on the base spaceR
n ,

while the upper-case fonts F,G, H , V ,W , . . . are used for functions on the configuration
space ϒ(Rn).

We denote by χE the indicator function of E , i.e., χE = 1 on E and χE = 0 on Ec.
Let � ⊂ R

n be a closed domain. We denote by C∞∗ (�) the space of smooth functions with
compact support in�\∂� (i.e., functions vanish at the boundary ∂�), while C∞c (�) denotes
the space of compactly supported smooth functions on� (functions do not necessarily vanish
at the boundary ∂�). Note that C∞∗ (�) ⊂ C∞c (�) in general, but these two function spaces
coincide, i.e. C∞c (Rn) = C∞∗ (Rn), when we take � = R

n .

2.2 Configuration spaces

Let R
n be the n-dimensional Euclidean space. Let Br := Br (0) ⊂ R

n be the closed ball
with radius r > 0 centred at the origin 0. Let δx denote the point measure at x ∈ R

n , i.e.
δx (A) = 1 if and only if x ∈ A.We denote byϒ(Rn) the configuration space overR

n without
multiplicity, i.e. the set of all locally finite point measures γ on R

n so that γ ({x}) ∈ {0, 1}
for every x ∈ R

n . Elements in ϒ(Rn) can be written as γ = ∑N
i=1 δxi with N ∈ N ∪ {∞}

and {xi }i∈N ⊂ R
n . Let ϒ(A) denote the configuration space over a Polish subspace A ⊂ R

n

defined analogously to ϒ(Rn), and ϒk(A) denote the space of k-configurations on a subset
A, i.e. ϒk(A) = {γ ∈ ϒ(A) : γ (A) = k}. We equip ϒ(Rn) with the vague topology τv ,
i.e., γn ∈ ϒ(Rn) converges to γ ∈ ϒ(Rn) in τv if and only if γn( f ) → γ ( f ) for any
f ∈ Cc(R

n). For a subset A ⊂ R
n , we equip ϒ(A) with the relative topology as a subset in

ϒ(Rn). LetB(ϒ(A), τv) denote the Borel σ -algebra associated with the vague topology τv .
For a set A ⊂ R

n , let prA : ϒ(Rn) → ϒ(A) be the projection defined by the restriction of
configurations on A, i.e. prA(γ ) = γ |A.

Given A ⊂ R
n , an open or closed domain, we denote by πA the Poisson measure onϒ(A)

whose intensity measure is the Lebesgue measure restricted to A, namely, πA is the unique
Borel probability measure so that, for all f ∈ Cc(A), the following holds

∫
ϒ(A)

e f ∗dπA = exp

{∫
A
(e f − 1)dLn(x)

}
. (2.1)

Here Ln denotes the n-dimensional Lebesgue measure. See [33] for a reference for the
expression (2.1). We write π = πRn . Note that πA coincides with the push-forward measure
πA = (prA)#π . Let

diagk := {(x)1≤i≤m ∈ (Rn)×k : ∃i, j s.t. xi = x j } ,
denote the set of all sub-diagonals in (Rn)×k , and letSk denote the k-symmetric group. For
any set A ⊂ R

n , we identify

ϒk(A) ∼= (A×k \ diagk)/Sk, k ∈ N.
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Let sk : A×k \ diagk → ϒk(A) be the canonical projection with respect to the action ofSk ,
i.e. sk : (xi )1≤i≤k �→ ∑k

i=1 δxi . We say that a function f : �∞k=1(Rn)×k → R is symmetric
iff f (xσk ) = f (xk) with xσk := (xσk (1), . . . , xσk (k)) for every permutation σk ∈ Sk and
every k ∈ N.

For xk, yk ∈ A×k with sk(xk) = γ ∈ ϒk(A) and sk(yk) = η ∈ ϒk(A), define the
L2-transportation distance dϒk (γ, η) on ϒk(A) by the quotient metric w.r.t. Sk :

dϒk (γ, η) = inf
σk∈Sk

|xσk − yk |Rnk . (2.2)

Here |xk − yk |Rnk denotes the standard Euclidean distance in R
nk .

Remark 2.1 (Polishness/lack of completeness)

(a) The space ϒ(Rn) equipped with the vague topology is a Polish space. The sub-
pace ϒk(A) ⊂ ϒ(Rn) is a Polish subspace for every k ∈ N if A is a Polish subspace in
R
n . This fact will play a role later in Sect. 3 to discuss Suslin sets.

(b) The metric space (ϒk(A),dϒk ) is not complete even if A is closed, due to the lack of
multiple configurations inϒk(A). This fact is, however, irrelevant to the rest of arguments.

2.3 Spherical Hausdorff measure

Let (X , d) be a metric space and n be the Hausdorff dimension of X . For m ≤ n, the
m-dimensional spherical Hausdorff measure SmX on X is defined as the restriction of the
following outer measure SmX on SmX -measurable sets (i.e., the Carathéodory measurable sets):

SmX (A) := lim
ε→0

SmX ,ε(A) := lim
ε→0

inf
{∑
i∈N

diam(Bi )
m :

Bi open ball withdiam(Bi ) < ε, A ⊂
∑
i∈N

Bi
}
. (2.3)

Here diam(Bi ) = sup{d(x, y) : x, y ∈ Bi } denotes the diameter of Bi . We call SmX ,ε the
m-dimensional ε-Hausdorff measure. If X = R

n , we simply write Sm and Smε instead of Sm
Rn

and Sm
Rn ,ε

respectively.

Remark 2.2 (Comparison with the standard Hausdorff measure) In the case of m < n, the
spherical Hausdorff measure SmX does not coincide with the standard Hausdorff measure in
general, the latter is smaller since it is defined allowing all non-empty coverings instead of
open balls. In the case of m = n and X = R

n , however, Sm coincides with the standard
n-dimensional Hausdorff measure and also with the n-dimensional Lebesgue measure ([27,
2.10.35]). Note that Sm is a Borel measure, but not σ -finite for m < n.

For a bounded set A ⊂ R
n , let Sn |A be the spherical Hausdorff measure restricted to A. The

spherical Hausdorff measure (Sn |A)⊗k on A×k can be push-forward to the k-configuration
space ϒk(A) by the projection map sk , i.e.

SkA :=
1

k! (sk)#(S
n |A)⊗k .

It is immediate by construction to see that SkA is the spherical Hausdorff measure on ϒk(A)

induced by the L2-transportation distancedϒk up to constantmultiplication.We introduce the
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m-codimensional spherical Hausdorff measure and the m-codimensional ε-spherical Haus-
dorff measure on ϒk(A) as follows

Sm,k
A = 1

k! (sk)#(S
nk−m |A×k ), Sm,k

A,ε =
1

k! (sk)#(S
nk−m
ε |A×k ). (2.4)

One can immediately see that Sm,k
A,ε is (up to constant multiplication) the m-codimensional

ε-spherical Hausdorff measure onϒk(A) associated with the L2-transportation distance dϒk .

2.4 Regularity of the spherical Hausdorff measures

In this section, we prove the upper semi-continuity of the ε-spherical Hausdorff measure on
sections of compact sets, which will be of use in Sect. 3.

Proposition 2.3 Let (X , dX ), (Y , dY ) be metric spaces, and K ⊂ X × Y be a compact set.
Then, the map Y � y �→ SmX ,ε(K

y) is upper semi-continuous. Here, K y := {x ∈ X :
(x, y) ∈ K }.

Proof Let usfix y ∈ Y and a sequence yn → y. The family of compact sets (K yn×{yn})n∈N ⊂
K is precompactwith respect to theHausdorff topology in K endowedwith the productmetric
(e.g., [20, Theorem 7.3.8]). In particular, we can take a (non-relabeled) subsequence so that
K yn × {yn} → K̄ × {y} ⊂ K , as n → ∞ in the Hausdorff topology, and K̄ ⊂ K y by the
definition of K y .

Let us fix δ > 0 and a family of open balls B1, . . . , B� ⊂ X with radius smaller than
ε(1− δ) > 0 so that

K̄ ⊂
�⋃

i=1
Bi ,

and

SmX ,ε(K̄ ) ≥ c(m)

�∑
i=1

rmi − δ. (2.5)

Here c(m) denotes the constant depending on m such that Lm(Bi ) = c(m)rmi . Note that
we can always take � = �(δ) to be finite for any δ > 0 by the compactness of K̄ . Let
r = r(δ) := min{ri : 1 ≤ i ≤ l(δ)} > 0 be the minimum radius among {Bi }1≤i≤l .

We claim that there exists k̄ = k̄(δ) ∈ N so that K ynk ⊂ ∪�
i=1B(xi ,

1
1−δ

ri ) for any k ≥ k̄.
Here xi and ri are the centre and the radius of Bi .

Indeed, by the Hausdorff convergence of K ynk to K̄ , there exists k̄ := k̄(δ) ∈ N such that,
for any k > k̄, it holds that K ynk ⊂ Brδ(K̄ ). Here, Brδ(K̄ ) denotes the rδ-neighbourhood
of K̄ in X , i.e., Brδ(K̄ ) := {x ∈ X : d(x, K̄ ) < rδ}. Hence, for any z ∈ K ynk , we can
always find x ∈ K̄ such that d(x, z) < rδ. Since x ∈ Bi for some i = 1, . . . , �, we conclude
z ∈ B(xi ,

1
1−δ

ri ) by noting that 1
1−δ

ri − ri = δ
1−δ

ri ≥ δr .
By using the claim in the previous paragraph, the monotonicity SmX ,a ≥ SmX ,b whenever

a ≤ b, and (2.5), we obtain that

SmX ,ε(K
ynk ) ≤ c(m)(1+ δ)m

�∑
i=1

rmi ≤ (1+ δ)mSmX ,ε(1−δ)(K̄ )+ δ(1+ δ)mc(m), (2.6)
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for any k ≥ k̄(δ). By taking δ → 0 after taking k →∞, we conclude that

lim sup
k→∞

SmX ,ε(K
ynk ) ≤ SmX ,ε(K̄ ) ≤ SmX ,ε(K

y), (2.7)

which is the sought conclusion. ��

2.5 Differential structure on configuration spaces

In this section,� ⊂ R
n will denote either a closed domainwith smooth boundary or thewhole

Euclidean space R
n . Below we review the natural differential structure of ϒ(�), obtained

by lifting the Euclidean one on �. We follow closely the presentation in [2].
Cylinder functions, vector fields and divergence.

Definition 2.4 (Cylinder functions) We define the class of cylinder functions as

CylF(ϒ(�)) := {�( f ∗1 , . . . , f ∗k ) : � ∈ C∞b (Rk), fi ∈ C∞c (�), k ∈ N} , (2.8)

where f ∗(γ ) := ∫
�

f dγ for every γ ∈ ϒ(�). We call fi inner function and � outer
function.

The tangent space Tγ ϒ(�) at γ ∈ ϒ(�) is identified with the Hilbert space of measurable
γ -square-integrable vector fields V : � → T (Rn) equipped with the scalar product: for γ -
measurable V ,W : �→ T (Rn),

〈V ,W 〉Tϒ =
∫

�

〈V (x),W (x)〉TRn dγ (x) ,

|V |2Tϒ =
∫

�

〈V (x), V (x)〉TRn dγ (x) .

We define the tangent bundle of ϒ(�) by Tϒ(�) := �γ∈ϒ(�)Tγ ϒ(�).

Definition 2.5 (Cylinder vector fields) We define two classes of cylinder vector fields as

CylV(ϒ(�)) :=
{
V (γ, x) =

k∑
i=1

Fi (γ )vi (x) : Fi ∈ CylF(ϒ(�)), vi ∈ C∞c (�;Rn), k ∈ N

}
,

CylV∗(ϒ(�)) :=
{
V (γ, x) =

k∑
i=1

Fi (γ )vi (x) : Fi ∈ CylF(ϒ(�)), vi ∈ C∞∗ (�;Rn), k ∈ N

}
.

Notice that CylV∗(ϒ(�)) ⊂ CylV(ϒ(�)), and CylV∗(ϒ(�)) = CylV(ϒ(�)) when � =
R
n . Using the tensorial notation, we can write

CylV(ϒ(�)) = CylF(ϒ(�))⊗R C∞c (�;Rn)

CylV∗(ϒ(�)) = CylF(ϒ(�))⊗R C∞∗ (�;Rn) .
(2.9)

Let p ∈ [1,∞). For V ∈ CylV(ϒ(�)), we define

‖V ‖pL p(Tϒ(�)) := ‖V ‖pL p(ϒ(�)→Tϒ(�),π�) :=
∫

ϒ(�)

|V (γ )|pTγ ϒdπ�(γ ) , (2.10)

and introduce the associated Banach space by

L p(Tϒ(�), π�) := the completion of CylV(ϒ(�))with respect to ‖ · ‖L p(Tϒ(�)) .

See [1, the fifth displayed formula on p. 23] in the case of p = 2.
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Remark 2.6 When p = 2, the closure L p(Tϒ(�), π�) coincides with the L2-section of
vector fields L2(ϒ(�) → Tϒ(�), π�) defined as the direct integral of the Hilbert spaces
(Tγ ϒ(�), 〈·, ·〉Tϒ) with respect to π�. See, for instance, the proof of [25, p. 165, 3rd bullet
point].

Proposition 2.7 Let 1 ≤ p <∞. Then,

‖V ‖L p(Tϒ(�)) < ∞ , V ∈ CylV(ϒ(�)) . (2.11)

Moreover, CylV∗(ϒ(�)) is dense in L p(Tϒ(�), π�).

Proof Let V (γ, x) =∑k
i=1 Fi (γ )vi (x). Then, we have that

∫
ϒ(�)

|V |pTγ ϒ(�)dπ�(γ ) ≤ max
1≤i≤k ‖F‖L∞

k∑
i, j=1

∫
ϒ(�)

(∫
�

|vi ||v j |dγ

)p/2

dπ�(γ ).

By the exponential integrability implied by (2.1), we obtain that the function γ �→ G(γ ) :=∫
�
|vi ||v j |dγ is L p(ϒ(�), π�) for any 1 ≤ p <∞, which concludes the first assertion.
The density of CylV∗(ϒ(�)) in L p(Tϒ(�), π�) follows from the density ofC∞∗ (�;Rn)

in L p(�;Rn). More precisely, we check that for any V ∈ CylV(ϒ(Rn)) and ε > 0 there
exists W ∈ CylV∗(ϒ(�)) such that

∫
ϒ(�)

|V − W |pTγ ϒdπ� ≤ ε. To this aim we write

V = ∑k
i=1 Fivi and pick wi ∈ C∞∗ (�) such that

∑k
i=1 ‖vi − wi‖L p < ε and set W :=∑k

i=1 Fiwi . It is straightforward to see that W satisfies the needed estimate. By noting that
L p(Tϒ(�), π�) is defined as the completion of CylV(ϒ(�)) with respect to the norm
‖V ‖L p(Tϒ(�)), the proof is complete. ��
Definition 2.8 (Directional derivatives. [2, Def. 3.1]) Let F = �( f ∗1 , . . . , f ∗k ) ∈
CylF(ϒ(�)) and v ∈ C∞∗ (�, R

n). We denote by φ the flow associated to v, i.e.

d

dt
φt (x) = v(φt (x)), φ∗(x) = x ∈ � .

The directional derivative ∇vF(γ ) ∈ Tγ ϒ(�) is defined as

∇vF(γ ) := d

dt
F(φt (γ ))

∣∣∣
t=0 ,

where φt (γ ) :=∑
x∈γ δφt (x).

Definition 2.9 (Gradient of cylinder functions. [2, Def. 3.3]) The gradient ∇ϒ(�)F of F ∈
CylF(ϒ(�)) at γ ∈ ϒ(�) is defined as the unique vector field ∇ϒ(�)F so that

∇vF(γ ) = 〈∇ϒ(�)F, v〉Tγ ϒ(�), γ ∈ ϒ(�), v ∈ C∞∗ (�, R
n).

By the expression (2.8), the gradient ∇ϒ(�)F can be written as

∇ϒ(�)F(γ ) =
k∑

i=1
∂i�( f ∗1 , . . . , f ∗k )(γ )∇Rn fi ∈ Tγ ϒ(�) , (2.12)

where ∇Rn is the gradient operator in R
n . When � = R

n , we simply write ∇ := ∇ϒ(Rn) in
the rest of the paper when no confusion occurs.

Notice that ∇ϒ(�)F ∈ CylV(ϒ(�)) for any F ∈ CylF(ϒ(�)) by (2.12). In particular,
for any F ∈ CylF(�), it holds that ∇ϒ(�)F ∈ L p(Tϒ(�), π�) for any 1 ≤ p < ∞ by
Proposition 2.7.
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Remark 2.10 (Ampleness of L∞-vector fields) By Proposition 2.7, CylV∗(ϒ(�)) ⊂
L p(Tϒ(�), π�) for any p ∈ [1,∞), while the inclusion is false for p = ∞. See [23,
Example 4.35] for a counterexample. However, CylV∗(ϒ(�)) can be approximated by the
subspace of bounded cylinder vector fields with respect to the pointwise convergence and
the convergence in the L p(ϒ(�) → Tϒ(�))-norm for 1 ≤ p < ∞. Indeed, given ε > 0
and V =∑k

i=1 Fi (γ )vi (x) ∈ CylV∗(ϒ(�)) it holds

|V |2Tγ ϒ =
k∑

i, j=1
Fi (γ )Fj (γ )

∫
ϒ(�)

vi (x) · v j (x)dγ (x) ,
1

1+ ε|V |2Tγ ϒ

∈ CylF(ϒ(�)) ,

hence

Vε := 1

1+ ε|V |2Tγ ϒ(�)

V ∈ CylV(ϒ(�)) .

Finally, notice that for γ ∈ ϒ(�) it holds

|V − Vε|Tγ ϒ(�) = ε
|V |3Tγ ϒ(�)

1+ ε|V |2Tγ ϒ(�)

≤ ε|V |3Tγ ϒ(�) → 0 , as ε → 0 .

Moreover, for every 1 ≤ p <∞ we have

‖V − Vε‖L p(Tϒ(�)) ≤ ε‖V ‖3L3p(Tϒ(�))
→ 0 , as ε → 0 .

We now define the adjoint operator of the gradient ∇ϒ(�).

Definition 2.11 (Divergence. [2, Def. 3.5]) Let 1 < p < ∞. We say that V ∈
L p(Tϒ(�), π�) is in the domainD(∇∗ϒ(�)) of the divergence if there exists a unique function∇∗ϒ(�)V ∈ L p(ϒ(�), π�) such that

∫
ϒ(�)

〈V ,∇ϒ(�)F〉Tγ ϒdπ�(γ ) = −
∫

ϒ(�)

F(∇∗ϒ(�)V )dπ� , F ∈ CylF(ϒ(�)).(2.13)

When � = R
n , we simply write ∇∗ := ∇∗

ϒ(Rn)
in the rest of the paper when no confusion

occurs.

Proposition 2.12 The following inclusion holds:

CylV∗(ϒ(�)) ⊂ D(∇∗ϒ(�)) .

Furthermore, for V (γ, x) =∑m
i=1 Fi (γ )vi (x) ∈ CylV∗(ϒ(�)),

∇∗ϒ(�)V (γ ) =
m∑
i=1
∇vi Fi (γ )+

m∑
i=1

Fi (γ )(∇∗
Rnvi )

∗γ , (2.14)

where ∇∗
Rn is the divergence operator in R

n. In particular, ∇∗ϒ(�)V ∈ L p(ϒ(�), π�) for
every p ∈ [1,∞).

Proof Let r > 0 be such that supp(vi ) ⊂ �r := {x ∈ � : d(x, ∂�) > r}. For any
ε < r/2 we define φε ∈ C∞∗ (�) satisfying φ = 1 on �ε . For any i = 1, . . . ,m we write
Fi = �i ( f ∗1,i , . . . , f ∗ki ,i ) and set Fε

i := �i ((φε f1,i )∗, . . . , (φε fki ,i )
∗). Observe that Vε :=∑m

i=1 Fε
i (γ )vi ∈ CylV∗(ϒ(�)) and also Vε ∈ CylV(ϒ(Rn)) by construction. Furthermore,

we note that F ∈ CylF(ϒ(�)) can be extended to F̃ ∈ CylF(ϒ(Rn)) with F = F̃ on ϒ(�)
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by extending each inner function fi ∈ C∞c (�) to f̃i ∈ C∞c (Rn) with fi = f̃i on � (e.g., by
Whitney’s extension theorem). Thus, ∇∗ϒ(�) and ∇∗ϒ(Rn)

defined in (2.13) are consistent, so
that ∇∗ϒ(�)Vε(γ ) = ∇∗

ϒ(Rn)
Vε(γ ). By [2, Prop. 3.1], therefore, we have

∇∗ϒ(�)Vε(γ ) = ∇∗ϒ(Rn)Vε(γ ) =
m∑
i=1
∇vi F

ε
i (γ )+

m∑
i=1

Fε
i (γ )(∇∗

Rnvi )
∗γ

=
m∑
i=1
∇vi Fi (γ )+

m∑
i=1

Fε
i (γ )(∇∗

Rnvi )
∗γ .

Here we used the fact that Fi (γ ) = Fε
i (γ ) for any γ concentrated on the support of vi .

The sought conclusion (2.14) follows from the observation that Fε
i → Fi in L p(ϒ(�), π�)

and Vε → V in L p(Tϒ(�), π�) combined with (2.13). The last assertion is then a direct
consequence from Proposition 2.7 and (2.14). ��
Sobolev spaces. We now introduce the (1, p)-Sobolev space. The operator

∇ϒ(�) : CylF(ϒ(�)) ⊂ L p(ϒ(�), π�)→ CylV(ϒ(�)) (2.15)

is densely defined and closable. The latter fact is a direct consequence of the integration-
by-parts formula (2.14). Indeed, we observe that, if Fn ∈ CylF(ϒ(�)), Fn → 0 in
L p(ϒ(�), π�), and ∇ϒ(�)Fn → W in L p(Tϒ(�), π�), then for any V ∈ CylV∗(ϒ(�)),
it holds ∫

ϒ(�)

〈V ,W 〉Tγ ϒdπ�(γ ) = lim
n→∞

∫
ϒ(�)

〈V ,∇ϒ(�)Fn〉Tγ ϒdπ�(γ )

= − lim
n→∞

∫
ϒ(�)

(∇∗ϒ(�)V )Fndπ�(γ ) = 0 ,

yielding W = 0 as a consequence of the density of CylV∗(ϒ(�)) in L p(Tϒ(�), π�) by
Proposition 2.7. The above argument justifies the following definition.

Definition 2.13 (H1,p-Sobolev spaces) Let 1 < p < ∞. We define H1,p(ϒ(�), π�) as
the closure of CylF(ϒ(�)) in L p(ϒ(�), π�) with respect to the following (1, p)-Sobolev
norm:

‖F‖p
H1,p(ϒ(�))

:= ‖F‖pL p(ϒ(�)) + ‖∇ϒ(�)F‖pL p(Tϒ(�)) .

We set ‖F‖H1,p := ‖F‖H1,p(ϒ(Rn)). When p = 2, we write the corresponding Dirichlet form
(i.e., a closed form satisfying the unit contraction property [35, Def. 4.5]) by

Eϒ(�)(F,G) :=
∫

ϒ(�)

〈∇ϒ(�)F,∇ϒ(�)G
〉
Tγ ϒ(�)

dπ�(γ ), F,G ∈ H1,2(ϒ(�), π�) .

We set E := Eϒ(Rn).

Remark 2.14 (The case of p = 1) As is indicated by (2.14), it is not true in general that
∇∗ϒ(�)V ∈ L∞(ϒ(�), π�) since arbitrarily many finite particles can be concentrated on the
supports of inner functions of F ∈ CylF(ϒ(�)) and vector fields vi . See [23, Example 4.35]
for more detail. Due to this fact, the standard integration by part argument for the closability
of the operator ∇ϒ(�) : CylF(ϒ(�)) → CylV(ϒ(�)) ⊂ L p(Tϒ(�), π�) does not work in
the case of p = 1. For this reason, we restricted the definition of the H1,p-Sobolev spaces
to the case 1 < p <∞ in Definition 2.13.
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Once the closed form Eϒ(�) on L2(ϒ(�), π�) is constructed, one can define the infinites-
imal generator on L2(ϒ(�), π�) as the unique non-positive definite self-adjoint operator

Definition 2.15 (Laplace operator [2, Theorem 4.1]) The L2(ϒ(�), π�)-Laplace operator
�ϒ(�) with domain D(�ϒ(�)) is defined as the unique non-positive definite self-adjoint
operator �ϒ(�) so that

Eϒ(�)(F,G) = −
∫

ϒ(�)

(�ϒ(�)F)Gdπ�, F ∈ D(�ϒ(�)), G ∈ D(Eϒ(�)) .

In the case of � = R
n , employing (2.12) and (2.14), one can compute that

�ϒ(Rn)F := ∇∗ϒ(Rn)∇ϒ(Rn)F, F ∈ CylF(ϒ(Rn)) .

When � = R
n , we shortly write � = �ϒ(Rn) in the rest of the paper when no confusion

occurs.
Let {Tϒ(�)

t } and {Gϒ(�)
α } be the strongly continuous Markovian L2-semigroup and

resolvent, respectively, corresponding to the energy Eϒ(�). We set Gα := Gϒ(Rn)
α and

Tt := Tϒ(Rn)
t . By the Riesz–Thorin Interpolation Theorem, Tϒ(�)

t and {Gϒ(�)
α } can be

uniquely extended to L p strongly continuous Markovian semigroup and resolvent, respec-
tively, for every 1 ≤ p <∞ (see e.g. [43, Section 2, p. 70]).

2.6 Product semigroups and exponential cylinder functions

In this section, we relate the finite-product semigroup on �×k and the semigroup on ϒk(�)

when � ⊂ R
n is a bounded closed domain with smooth boundary. To this aim we introduce

a class of test functions, which is suitable to compute the semigroups.

Definition 2.16 (Exponential cylinder functions. [2, (4.12)]) Let� ⊂ R
n be a bounded closed

domain with smooth boundary, or � = R
n . The class ECyl(ϒ(�)) of exponential cylinder

functions is defined as the vector space spanned by
{
exp

{
log(1+ f )∗

} : f ∈ D(��) ,�� f ∈ L1(�), −δ ≤ f ≤ 0 for some δ ∈ (0, 1)
}

.

Here (��,D(��)) denotes the L2-Neumann Laplacian on � when � � R
n .

The space ECyl(ϒ(�)) is dense in L p(ϒ(�), π�) for any 1 ≤ p < ∞ (see [2, p. 479]).
Noting that �� is essentially self-adjoint on the core C∞c (�) ∩ { ∂ f

∂n = 0 in ∂�}, where ∂
∂n

is the normal derivative on ∂�, and the corresponding L2-semigroup {T�
t } is conservative,

we can apply the same argument in the proof of [2, Prop. 4.1] to obtain the following:
Tϒ(�)
t ECyl(ϒ(�)) ⊂ ECyl(ϒ(�)) and

Tϒ(�)
t exp

{
log(1+ f )∗

} = exp
{
log

(
1+ (T�

t f )
)∗}

. (2.16)

Let T�,⊗k
t be the k-tensor semigroup of T�

t , i.e. the unique semigroup in L p(�×k)
satisfying

T�,⊗k
t f (x1, . . . , xk) := T�

t f1(x1) · · · T�
t fk(xk) , for every k ∈ N , (2.17)

whenever f (x1, . . . , xk) = f1(x1) · · · fk(xk) with fi ∈ L∞(�) for i = 1, . . . , k.
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Proposition 2.17 Let � ⊂ R
n be a bounded closed domain with smooth boundary and

1 ≤ p < ∞. For F ∈ L p(ϒk(�), π�|ϒk (�)), it holds

T�,⊗k
t (F ◦ sk) = (Tϒk (�)

t F) ◦ sk, Skn
�×k -a.e. (2.18)

Proof Since ECyl(ϒk(�)) is dense in L p(ϒk(�)) for any 1 ≤ p < ∞, it suffices to show
(2.18) only for F ∈ ECyl(ϒk(�)). Furthermore, we can reduce the argument to the case
F = exp

{
log(1+ f )∗} by using the linearity of semigroups. From (2.17) and (2.16) we get

T�,⊗k
t (F ◦ sk)(x1, . . . , xk) = T�,⊗k

t (exp
{
log(1+ f )∗} ◦ sk)(x1, . . . , xk)

= T�,⊗k
t

( k∏
i=1

(1+ f )(·i )
)
(x1, . . . , xk)

=
k∏

i=1

(
1+ T�

t f (xi )
)

= exp
{
log

(
1+ (T�

t f )∗
)} ◦ sk(x1, . . . , xk)

= Tϒ(�)
t exp

{
log(1+ f )∗

} ◦ sk(x1, . . . , xk) .��

2.7 Suslin sets

Let X be a set. We denote by N
N the space of all infinite sequences {ni }i∈N of natural

numbers. For φ ∈ N
N, we write φ|l ∈ N

l for the restriction of φ to the first l elements, i.e.,
φ|l := (φi : 1 ≤ i ≤ l). Let S := ∪l∈NN

l , and for σ ∈ S, we denote the length of the
sequence σ by #σ := #{σi }. Let E ⊂ 2X be a family of subsets in X . We write S(E ) for the
family of sets expressible in the following form:⋃

φ∈NN

⋂
l≥1

Eφ|l ,

for some family {Eσ }σ∈S in E . A family {Eσ }σ∈S is called Suslin scheme; the corresponding
set ∪φ∈NN ∩l≥1 Eφ|l is its kernel; the operation

{Eσ }σ∈S �→
⋃

φ∈NN

⋂
l≥1

Eφ|l ,

is called Suslin’s operation. We denote by S(E ) the family of sets generated from sets in E
by Suslin’s operation, whose elements are called an E -Suslin set (or simply Suslin set). It is
known that S(E ) is closed under Suslin’s operation ([44], and e.g., [29, 421D Theorem]). If
Eσ is compact for all σ ∈ S, we call {Eσ }σ∈S a compact Suslin scheme.We say that {Eσ }σ∈S
is regular if Eσ ⊂ Eτ whenever #τ ≤ #σ and σi ≤ τi for any i < #σ ([29, 421X (n) &
422H Theorem (b)]).

In the following remark, we list basic properties of Suslin sets in a Polish space and
relations to Choquet capacities and Borel measures. In the rest of this section, we assume
that

(X , τ ) is a Polish space, c is a Choquet capacity on X , μ is a bounded Borel measure,

E := C(X) := {C : closed set in X} . (2.19)

We refer the readers to, e.g., [29, 432I Definition] for the definition of Choquet capacity.
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Remark 2.18 Under the assumption (2.19), the following hold:

(i) Every Borel set is a Suslin set, i.e., B(τ ) ⊂ S(E ) (e.g., [29, 423B(a) and 423F(a)]);
(ii) Every Suslin set is μ-measurable, i.e., S(E ) ⊂ Bμ

(τ) (e.g., [29, 431B Corollary]);
(iii) Let A be a Suslin set in X . Then, A is the kernel of a compact regular Suslin scheme

{Eσ }σ∈S. Furthermore, it holds that

c(A) = sup
ψ∈NN

c(Aψ), Aψ =
⋃
φ≤ψ

⋂
l≥1

Eφ|l , (2.20)

whereby φ ≤ ψ means that φ(l) ≤ ψ(l) for all l ∈ N (e.g., [29, 423B Theorem &
the proof of 432J Theorem]). By the regularity of {Eσ }σ∈S, (2.20) can be reduced to
the following form:

c(A) = sup
ψ∈NN

c(Aψ), Aψ =
⋂
l≥1

Eψ |l , ψ ∈ N
N; (2.21)

(iv) A subset A ⊂ X is Suslin iff A is analytic iff A is K -analytic ([29, 423E Theorem (b)].
See [29, 422F, 423A Definitions] for the definitions of K-analyticity and analyticity
respectively). As every K -analytic set is capacitable (e.g., [29, 432J]), in particular,
we have that c(A) is well-defined for every Suslin set A as

c(A) = sup{c(K ) : K ⊂ A compact} . (2.22)

3 Finite-codimensional Poissonmeasures

In this section, we construct finite-codimensional Poisson measures onϒ(Rn). As a first step
we prove measurability results for sections of Suslin subsets of the configuration space.

3.1 Measurability of sections of Suslin sets

Let B ⊂ R
n . For A ⊂ ϒ(Rn) and η ∈ ϒ(B), the section Aη,B ⊂ ϒ(Bc) of A at η is defined

as

Aη,B = {γ ∈ ϒ(Bc) : γ + η ∈ A}. (3.1)

The subset of Aη,B consisting of k-particle space ϒk(Bc) is denoted by Ak
η,B := Aη,B ∩

ϒk(Bc). To shorten the notation we often write Aη,r in place of Aη,Bc
r
, where Br is the closed

ball centred at the origin.

Lemma 3.1 Let B ⊂ R
n be a Borel set. If A is Suslin inϒ(Rn) then Ak

η,B is Suslin inϒk(Bc)

for every η ∈ ϒ(B), k ∈ N and r > 0.

Proof We can express Aη,B = prBc

(
pr−1B (η) ∩ A

)
. The set pr−1B (η) ∩ A is Suslin in ϒ(Rn)

whenever A is Suslin. Set ϒη,B(Rn) = pr−1B (η) ∩ ϒ(Rn), which is Suslin. The map prBc :
ϒη,B(Rn) → ϒ(Bc) is continuous. Thus, Aη,B is the continuous image prBc

(
pr−1B (η) ∩ A

)
of the Suslin set pr−1B (η)∩ A in the Suslin Hausdorff space ϒη,B(Rn). Hence, Aη,B is Suslin
([29, 423B Proposition (b)& 423ETheorem (b)]). Since Ak

η,B = Aη,B∩ϒk(Bc) andϒk(Bc)

is Borel in ϒ(Bc), we conclude that Ak
η,B is Suslin. ��

123



BV functions and sets of finite perimeter on configuration… Page 17 of 57   177 

Lemma 3.2 Let B ⊂ R
n be an open set. Let A ⊂ ϒ(Rn) be the kernel of a compact Suslin’s

scheme {Eσ }σ∈S, i.e., A = ∪φ∈NN ∩l≥1 Eφ|l with Eσ compact for any σ ∈ S. Then, Aη,B is
the kernel of the compact Suslin scheme {(Eσ )η,r }σ∈S.

Proof By expressing (Eσ )η,B = prBc

(
ϒη,B(Rn) ∩ Eσ

)
, where ϒη,B(Rn) = pr−1B (η) ∩

ϒ(Rn), we see that (Eσ )η,B is compact since ϒη,B(Rn) is closed, Eσ is compact by the
hypothesis, prBc is continuous on ϒη,B(Rn) and every continuous image of a compact set is
compact. To see that Aη,B is the kernel of {(Eσ )η,r }σ∈S,

Aη,B = pr
(
ϒη,B(Rn) ∩ A

) = pr

(
ϒη,B(Rn) ∩

⋃
φ∈NN

⋂
l≥1

Eφ|l
)

= pr

( ⋃
φ∈NN

⋂
l≥1

ϒη,B(Rn) ∩ Eφ|l
)

=
⋃

φ∈NN

⋂
l≥1

pr
(
ϒη,B(Rn) ∩ Eφ|l

) = ⋃
φ∈NN

⋂
l≥1

(Eσ )η,B . ��

3.2 Localised finite-codimensional Poissonmeasures

In this section, we construct a localised version of them-codimensional Poissonmeasure ρm
r ,

whichwill be used to construct them-condimensional Poissonmeasure by taking the limit for
r →∞.We also show that Suslin sets are contained in the domain of the finite-codimensional
Poisson measure.

Let A ⊂ ϒ(Rn) be a Suslin subset. By Lemma 3.1, the set Ak
η,r = Ak

η,Bc
r
is Suslin. Since

Sm,k
Br

is a Choquet capacity, the expression Sm,k
Br

(Ak
η,r ) is well-defined and satisfies (2.22),

which in particular implies that Ak
η,r is a S

m,k
Br

-measurable set. We define the domain Dm of
the m-codimensional measures by

Dm :=
⋂
r>0

Dm
r , (3.2)

where the localised domain Dm
r is defined by

Dm
r := {A ⊂ ϒ(Rn) : the mapϒ(Bc

r ) � η �→ Sm,k
Br

(Ak
η,r ) isπBc

r
-measurable for every k} .

We first introduce the m-codimensional Poisson measure on the configuration space ϒ(Br )
over the ball Br .

Definition 3.3 The m-codimensional Poisson measure ρm
ϒ(Br )

on ϒ(Br ) is defined as

ρm
ϒ(Br )

(A) := e−Sn(Br )
∞∑
k=1

Sm,k
Br

(Ak) for every Suslin set A inϒ(Br ) , (3.3)

where Ak = A ∩ϒk(Br ).

Remark 3.4 Notice that ρ0
ϒ(Br )

= πBr , in other words the 0-codimension Poisson measure

ρ0
ϒ(Br )

on ϒ(Br ) is the Poisson measure πBr on ϒ(Br ). It can be shown by noting that the
m-dimensional spherical Hausdorff measure Sm and the n-dimensional Lebesgue measure
Ln coincide when m = n (see Remark 2.2).
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We introduce the localised m-codimensional Poisson measure on ϒ(Rn) by averaging the
m-codimensional Poisson measure ρm

ϒ(Br )
by means of πBc

r
.

Definition 3.5 The localised m-codimensional Poisson measure ρm
r on ϒ(Rn) is defined by

ρm
r (A) =

∫
ϒ(Bc

r )

ρm
ϒ(Br )

(Aη,r )dπBc
r
(η), A ∈ Dm . (3.4)

Before investigating the main properties of ρm
r , we check that sufficiently many sets are

contained inDm , i.e. we show that all Suslin sets are contained in the domainDm form ≤ n.

Proposition 3.6 Any Suslin set in ϒ(Rn) is contained in Dm for m ≤ n.

Proof Let A ⊂ ϒ(Rn) be a Suslin set. Let {Eσ }σ∈S be a Suslin scheme whose kernel is
A. Noting that ϒ(Bc

r ) is Polish, by applying (i) of Remark 2.18 with X = ϒ(Bc
r ) and

μ = πBc
r
, any Suslin set is πBc

r
-measurable. Hence, it suffices to show that every super-level

set {η : Sm,k
Br

(Ak
η,r ) > a} is Suslin for any a ∈ R, r > 0, k ∈ N and m ≤ n. Note that Ak

η,r

is Suslin by Lemma 3.1, whence the expression {η : Sm,k
Br

(Ak
η,r ) > a} is well-defined as was

discussed in the paragraph before (3.2).
Since ϒ(Rn) is Polish, by using (iii) in Remark 2.18, we may assume that {Eσ }σ∈S is

a compact regular Suslin scheme. By Lemma 3.2 and ϒ(Br ) = �k∈Nϒk(Br ), we see that
Ak

η,r ⊂ ϒk(Br ) is the kernel of the compact regular Suslin scheme {(Eσ )kη,r }σ∈S, whereby
(Eσ )kη,r := (Eσ )η,Bc

r
∩ϒk(Br ). Since S

m,k
Br

is an outer measure on ϒk(Br ) by construction,

Sm,k
Br

is a Choquet capacity on ϒk(Br ). Hence, by applying (2.21) in (iii) of Remark 2.18

with X = ϒk(Br ) and c = Sm,k
Br

, we obtain that

Sm,k
Br

(Ak
η,r ) = sup

ψ∈NN

Sm,k
Br

((Ak
η,r )ψ), (Ak

η,r )ψ =
⋂
l≥1

(Eψ |l )kη,r , ψ ∈ N
N.

Thus, noting the monotonicity Sm,k
Br ,ε

≤ Sm,k
Br ,δ

(δ ≤ ε) of the ε-Hausdorff measure defined in

(2.3), the super-level set {η : Sm,k
r (Ak

η,r ) > a} can be expressed in the following way:

{η : Sm,k
Br

(Ak
η,r ) > a} =

⋃
ε>0

⋃
ψ∈NN

{η : Sm,k
Br ,ε

(
(Ak

η,r )ψ
)

> a}.

Since the space S(E ) of Suslin sets is closed under Suslin’s operation, it suffices to show that
{η : Sm,k

Br ,ε

(
(Ak

η,r )ψ
)

> a} is Suslin.
We equip ϒk(Br ) with the L2-transportation distance dϒk as defined in (2.2), and

equip ϒ(Bc
r ) with some distance d generating the vague topology. By Proposition 2.3

and noting that (Ak
η,r )ψ is compact and that Sm,k

Br ,ε
is (up to constant multiplication) the

m-codimensional ε-spherical Hausdorff measure on ϒk(Br ) associated with dϒk , we con-
clude that {η : Sm,k

Br ,ε

(
(Ak

η,r )ψ
)

> a} is open in ϒ(Bc
r ) for any a ∈ R, r > 0, k ∈ N and

m ≤ n. ��

3.3 Finite-codimensional Poissonmeasures

In this section, we construct the m-codimensional Poisson measure on ϒ(Rn), which is the
first main result of this paper. By Proposition 3.6, the set function ρm

r given in (3.4) turned
out to be well-defined in the sense that the space S(E ) of all Suslin sets inϒ(Rn) is contained
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in its domain Dm . We show the following monotonicity result which allows us to pass to the
limit of ρm

r as r →∞.

Theorem 3.7 The map r �→ ρm
r (A) is monotone non-decreasing for any A ∈ S(E ).

The proof of Theorem 3.7 is given at the end of this section. We can now introduce the
m-codimensional Poisson measure onϒ(Rn) as the monotone limit of ρm

r on the space S(E )

of Suslin sets:

ρm(A) = lim
r→∞ ρm

r (A), ∀A ∈ S(E ). (3.5)

Definition 3.8 (m-codimensional Poisson Measure) Let Dm be the completion of S(E )

with respect to ρm . The measure (ρm,Dm) is called the m-codimensional Poisson measure
on ϒ(Rn).

Remark 3.9 We give two remarks below:

(i) Note ρ0 = π , i.e. 0-codimensional Poissonmeasure ρ0 onϒ(Rn) is the Poissonmeasure
π on ϒ(Rn) by noting that the m-dimensional spherical Hausdorff measure Sm and the
n-dimensional Lebesgue measure Ln coincide when m = n (see Remark 2.2).

(ii) The construction of ρm , a priori, depends on the choice of the exhaustion {Br } ⊂ R
n .

However, in Proposition 3.13, we will see that it is not the case.

The rest of this section is devoted to the proof of Theorem 3.7. Let us begin with a
definition.

Definition 3.10 (Section of functions, multi-section) Let M, N ⊂ R
n be two disjoint sets and

L = M � N . For every F : ϒ(L)→ R and ξ ∈ ϒ(M), define Fξ,M : ϒ(N )→ R as

Fξ,M (ζ ) := F(ζ + ξ), ζ ∈ ϒ(N ). (3.6)

For a set A ⊂ ϒ(Rn), let Aξ,η,M,N denote themulti-sectionboth at ξ ∈ ϒ(M) and ζ ∈ ϒ(N ):

Aξ,ζ,M,N :={γ ∈ ϒ(Lc) : γ+ξ+ζ ∈ A}, and Ak
ξ,ζ,M,N=Aξ,ζ,M,N ∩ϒk(Lc). (3.7)

Lemma 3.11 Let A be a Suslin set in ϒ(Rn). Let M, N ⊂ R
n be two disjoint Borel sets. Set

L = M � N. Let F : ϒ(L)→ R be defined by γ �→ F(γ ) := Sm,k
Lc (Ak

γ,L). Then,

Fξ,M (ζ ) = Sm,k
Lc (Ak

ζ,ξ,N ,M ), ∀ξ ∈ ϒ(M), ∀ζ ∈ ϒ(N ). (3.8)

Proof The set Ak
ζ,ξ,N ,M is Suslin by the same argument as in Lemma 3.1. Thus,

Sm,k
Lc (Ak

ζ,ξ,N ,M ) is well-defined. By Definition 3.10, we have that

Fξ,M (ζ ) = F(ζ + ξ) = Sm,k
Lc (Ak

ζ+ξ,L)

= Sm,k
Lc

({γ ∈ ϒ(Lc) : γ + ξ + ζ ∈ A}) = Sm,k
Lc (Ak

ζ,ξ,N ,M ) .��
The next lemma is straightforward since the Poisson measures πM and πN are mutually
singular.

Lemma 3.12 With the same notation M, N and L as in Lemma 3.11. For any bounded
measurable function G on ϒ(L),∫

ϒ(L)

G(η)dπL(η) =
∫

ϒ(N )

∫
ϒ(M)

Gξ,M (ζ )dπM (ξ)dπN (ζ ). (3.9)
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Proof of Theorem 3.7 Let Ar ,ε := Br+ε \ Br be the annulus of width ε and radius r . Fix
A ∈ S(E ), r > 0, ε > 0 and ζ ∈ ϒ(Bc

r+ε). We claim that

Sm,k
Br+ε

(Ak
ζ,Bc

r+ε
) ≥

k∑
j=0

∫
ϒ(Ar,ε)

Sm,k
Br

(
Ak− j

ζ,ξ,Bc
r+ε,Ar,ε

)
dS j

Ar,ε
(ξ). (3.10)

Let us first show how (3.10) concludes the proof. For simplicity of notation, we setM = Ar ,ε,
N = Bc

r+ε and L = M � N . Then, (3.10) is reformulated as follows:

Sm,k
Nc (Ak

ζ,N ) ≥
k∑
j=0

∫
ϒ(M)

Sm,k
Lc (Ak− j

ζ,ξ,N ,M )dS j
M (ξ).

Then, by using Lemmas 3.12 and 3.11 we deduce

ρm
r (A) = e−Sn(Lc)

∞∑
k=0

∫
ϒ(L)

Sm,k
Lc (Ak

η,L)dπL(η)

= e−Sn(Lc)
∞∑
k=0

∫
ϒ(N )

∫
ϒ(M)

(
Sm,k
Lc (Ak

ζ,L)
)
ξ,MdπM (ξ)dπN (ζ )

= e−Sn(Lc)
∞∑
k=0

∫
ϒ(N )

∫
ϒ(M)

Sm,k
Lc (Ak

ζ,ξ,N ,M )dπM (ξ)dπN (ζ )

= e−Sn(Lc)e−Sn(M)
∞∑
k=0

k∑
j=0

∫
ϒ(N )

∫
ϒ(M)

Sm,k− j
Lc (Ak− j

ζ,ξ,N ,M )dS j
M (ξ)dπN (ζ )

≤ e−Sn(Nc)
∞∑
k=0

∫
ϒ(N )

Sm,k
Nc (Ak

ζ,N )dπN (ζ )

= ρm
r+ε(A) .

To show (3.10), it is enough to verify that, for any boundedmeasurable function F onϒ(Rn),

∫
ϒ(Nc)

Fζ,N (γ )dSm,k
Nc (γ ) ≥

k∑
j=0

∫
ϒ(M)

∫
ϒ(Lc)

(Fζ,N )ξ,M (γ )dSm,k− j
Lc (γ )dS j

M (ξ).(3.11)

By the definition of Sm,k
Nc , the L.H.S. of (3.11) can be deduced as follows:∫

ϒ(Nc)

Fζ,N (γ )dSm,k
Nc (γ ) = 1

k!
∫

(Nc)⊗k
(Fζ,N ◦ sk)(xk)dSnk−mNc (xk),

whereby xk := (x∗, . . . , xk−1) and x∗ = x∗. Furthermore, by the definition of (Fζ,N )ξ,M ,
the R.H.S. of (3.11) can be deduced as follows:∫

ϒ(M)

∫
ϒ(Lc)

(Fζ,N )ξ,M (γ )dSm,k− j
Lc (γ )dS j

M (ξ)

=
∫

ϒ(M)

∫
ϒ(Lc)

(Fζ,N )(γ + ξ)dSm,k− j
Lc (γ )dS j

M (ξ)

= 1

j !(k − j)!
∫
M× j

∫
(Lc)×(k− j)

(Fζ,N ◦ sk)(xk− j , y j )dS
n(k− j)−m
Lc (xk− j )dS

nj
M (y j ),
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whereby (xk− j , y j ) = (x∗, . . . , xk− j−1, y∗, . . . , y j−1). Hence, in order to conclude (3.11),
it suffices to show the following inequality: for any bounded measurable symmetric function
f on (Rn)×k ,

∫
B×kr+ε

f (xk)dS
nk−m
Br+ε

(xk) ≥
k∑
j=0

k!
j !(k − j)!

∫
B×(k− j)
r

∫
A× j
r,ε

f (xk− j , y j )dS
n(k− j)−m
Ar,ε

(xk− j )dS
nj
Br

(y j ).

By using the symmetry of f and a simple combinatorial argument, we obtain

∫
B×kr+ε

f (xk)dS
nk−m
Br+ε

(xk) =
k∑
j=0

k!
j !(k − j)!

∫
B×(k− j)
r

∫
A× j
r,ε

f (xk− j , y j )dS
nk−m
Br+ε

(xk− j , y j ),

while [27, 2.10.27, p. 190] implies
∫
B×(k− j)
r

∫
A× j
r,ε

f (xk− j , y j )dS
nk−m
Br+ε

(xk− j , y j )

≥
∫
B×(k− j)
r

∫
A× j
r,r+ε

f (xk− j , y j )dS
n(k− j)−m
Ar,ε

(xk− j )dS
nj
Br

(y j ). ��

3.4 Independence of�m from the exhaustion

So far we have built the m-codimensional measure ρm by passing to the limit a sequence of
finite dimensionalmeasuresρm

r . The latter have been constructed by relying on the exhaustion
{Br }r>0 of R

n . Hence, a priori, ρm depends on the chosen exhaustion. In this subsection we
make a remark that this is actually not the case.

Let � ⊂ R
n be a compact set. Following closely the proof in Sect. 3.3 we can prove that

ρm
�(A) := e−Sn(�)

∞∑
k=1

∫
ϒ(�c)

Sm,k
� (Ak

η,�c ) dπ�c (η). (3.12)

is well defined for any Suslin set A.
The next proposition can be proven by arguing as in Theorem 3.7. We omit the proof.

Proposition 3.13 (Independence from exhaustion) Let 0 < r < R < ∞ and � ⊂ R
n be a

compact subset satisfying Br ⊂ � ⊂ BR. Then

ρm
r (A) ≤ ρm

�(A) ≤ ρm
R (A) , for every Suslin set A . (3.13)

In particular ρm does not depend on the choice of the exhaustion.

4 Bessel capacity and finite-codimensional Poissonmeasure

In this section, we discuss a relation between Bessel capacities and finite-codimensional
Poisson measures ρm . This will play a significant role to develop fundamental relations
between potential analysis induced by (E,D(E)) and theory of BV functions in Sects. 5 and
7.
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Definition 4.1 (Bessel operator) Let α > 0 and 1 ≤ p < ∞. We set

Bα,p := 1

�(α/2)

∫ ∞

∗
e−t tα/2−1T (p)

t dt , (4.1)

where T (p)
t is the L p-heat semigroup, see Sect. 2.5.

Notice that Bα,p is well defined for F ∈ L p(ϒ(Rn), π) and satisfies

‖Bα,pF‖L p ≤ ‖F‖L p , (4.2)

due to the contractivity of T (p)
t in L p(ϒ(Rn), π).

Definition 4.2 (Bessel capacity) Let α > 0 and 1 ≤ p < ∞. The (α, p)-Bessel capacity is
defined as

Capα,p(E) := inf{‖F‖pL p : Bα,pF ≥ 1 on E, F ≥ 0} , (4.3)

for any E ⊂ ϒ(Rn).

We are now ready to state the main theorem of this section.

Theorem 4.3 Let α p > m. Then, Capα,p(E) = 0 implies ρm(E) = 0 for any E ∈ S(E ).

We briefly explain the heuristic idea of proof. In view of the identities

ρm(E) = lim
r→∞ ρm

r (E) ,

ρm
r (E) = e−Sn(Br )

∞∑
k=1

∫
ϒ(Bc

r )

Sm,k
Br

(Ek
η,r )dπBc

r
(η) ,

it is enough to prove that Sm,k
Br

(Ek
η,r ) = 0 for πBc

r
-a.e. η, all k ∈ N and r > 0. This, together

with the implication

Capα,p(E) = 0 �⇒ Capη,r
α,p(E

k
η,r ) = 0, forπBc

r
-a.e. η and all k ∈ N and r > 0 , (4.4)

where Capη,r
α,p is the Bessel (α, p)-capacity on ϒk(Br ), reduces the problem to the corre-

sponding problem in the finite dimensional setting. To be more precise, we will show that

Capη,r
α,p(E

k
η,r ) = 0 �⇒ Sm,k

Br
(Ek

η,r ) = 0 .

In the rest of this section, we implement the aforementioned idea. The key point is to show
(4.4), for which we introduce localisations of functional-analytic objects in Sects. 4.1 and
4.2.We then introduce localised Bessel operators and localised Bessel capacities in Sect. 4.3.

4.1 Localisation of sets and functions

Lemma 4.4 Let A ⊂ ϒ(Rn) be a π -measurable set. Let B ⊂ R
n be a Borel set. Then, Aη,B

is πBc -measurable for πB-a.e. η ∈ ϒ(B). Moreover, if π(A) = 0, then πBc (Aη,B) = 0 for
a.e. η ∈ ϒ(B).

Proof By hypothesis, there exist Borel sets A ⊂ A ⊂ A so that π(A\A) = 0. By (i) in
Remark 2.18, A and A are Suslin. By Lemma 3.1, Aη,B and Aη,B are Suslin. By the standard
disintegration argument as in Lemma 3.12, it holds that

0 = π(A \ A) =
∫

ϒ(B)

πBc ((A \ A)η,B)dπB(η). (4.5)
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Therefore, there exists a πB-measurable set � ⊂ ϒ(B) so that πBc ((A\A)η,B) = 0 for any
η ∈ �. By noting that Aη,B ⊂ Aη,B ⊂ Aη,B , we conclude that Aη,B is πB -measurable since,
up to πB negligible sets, it coincides with a Suslin set and every Suslin set is πB -measurable
by (ii) in Remark 2.18. The proof of the first assertion is complete.

If π(A) = 0 the disintegration

0 = π(A) =
∫

ϒ(B)

πBc (Aη,B)dπB(η) , (4.6)

immediately gives the second assertion. ��
Corollary 4.5 Let A ⊂ ϒ(Rn) be a π -measurable set, B ⊂ R

n a Borel set, and let g be a
π-measurable function on ϒ(Rn) with g ≥ 1 π -a.e. on A. Then, for πB-a.e. η it holds

gη,B ≥ 1, πBc -a.e. onAη,B . (4.7)

Proof Taking Ã = A \ {g ≥ 1} and applying Lemma 4.4 with Ã in place of A, we obtain the
conclusion. ��
Lemma 4.6 Let 1 ≤ p < ∞ and r > 0. Let Fn, F ∈ L p(ϒ(Rn), π) such that Fn → F in
L p(ϒ(Rn), π) as n →∞. Then, there exists a subsequence (non-relabelled) of (Fn) and a
measurable set Ar ⊂ ϒ(Rn) so that πBc

r
(Ar ) = 1 and

Fn
η,r → Fη,r , in L p(πBr ), for any η ∈ Ar .

Note that Fη,r := Fη,Bc
r
was defined in Definition 3.10.

Proof By Lemma 3.12, we have that
∫

ϒ(Bc
r )

(∫
ϒ(Br )

|Fn
η,r − Fη,r |pdπBr

)
dπBc

r
(η) =

∫
ϒ(Rn)

|Fn − F |pdπ → 0, as n →∞ .

(4.8)

In particular, up to subsequence
∫
ϒ(Br )

|Fn
η,r − Fη,r |pdπBr → 0 for πBc

r
-a.e. η, which

completes the proof. ��

4.2 Localisation of energies, resolvents and semigroups

In this section, we localise differential operators and related objects introduced in Sect. 2.5.
Let r > 0. The localised energy (Er ,D(Er )) is defined as the following direct integral

Er (F) =
∫

ϒ(Bc
r )

Eϒ(Br )(Fη,r )dπBc
r
(η) , D(Er ) := {F ∈ L2(ϒ(Rn), π) : Er (F) <∞} .

(4.9)

The form is closed by [18, Proposition V.3.1.1]. For F ∈ CylF(ϒ(Rn)),

Er (F) =
∫

ϒ(Rn)

|∇r F |2Tϒdπ F ∈ CylF(ϒ(Rn)), (4.10)

where

∇r F(γ, x) := χBr (x)∇F(γ, x) . (4.11)
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See e.g., [45, Prop. 3.9]. We denote by {Gr
α}α>0 and {T r

t }t>0 the L2-resolvent opera-

tor and the semigroup associated with (Er ,D(Er )), respectively. Recall that {Gϒ(Br )
α }α

and {Tϒ(Br )
t } denote the L2-resolvent operator and the semigroup corresponding to

(Eϒ(Br ), H
1,2(ϒ(Br ), π)). The relation between {Gr

α}α>0, {T r
t }t>0 and {Gϒ(Br )

α }α , {Tϒ(Br )
t }

is given below.

Proposition 4.7 ([46, Corollary 4.11]) Let α > 0, t > 0, and r > 0 be fixed. Then, for any
bounded measurable function F, it holds that

Gr
αF(γ ) = Gϒ(Br )

α Fγ |Bcr ,r (γ |Br ) , (4.12)

T r
t F(γ ) = Tϒ(Br )

t Fγ |Bcr ,r (γ |Br ) , (4.13)

for π-a.e. γ ∈ ϒ(Rn).

Remark 4.8 Although Proposition 4.7 provides the statement only for the L2-semigroups
and resolvents, it is straightforward to extend it to the L p-semigroups and resolvents for any
1 ≤ p < ∞.

Proposition 4.9 The form (Er ,D(Er )) is monotone non-decreasing in r , i.e. for any s ≤ r ,

D(Er ) ⊂ D(Es), Es(F) ≤ Er (F), F ∈ D(Er ).
Furthermore, the following two forms coincide: letting Ē(F) := limr→∞ Er (F) andD(Ē) =
{F ∈ ∩r>0D(Er ) : limr→∞ Er (F) < ∞},

(Ē,D(Ē)) = (E, H1,2(ϒ(Rn), π)).

Proof The monotone increasing property is a direct application of [46, Proposition 4.13].
The second assertion follows from the fact that (�,CylF(ϒ(Rn))) is essentially self-adjoint
by [2, Theorem 5.3] and that Ē and E coincide on CylF(ϒ(Rn)). ��
Remark 4.10 In [46, Corollary 4.11, Proposition 4.13], the statements deal with the case
where the reference measure is the law of the sineβ point process. The case of the Poisson
point process corresponds to β = 0, and the same proofs there apply to the case of the Poisson
point process in this paper.

The next proposition shows the monotonicity property for the resolvent operator Gr
α and

the semigroup T r
t .

Proposition 4.11 The resolvent operator {Gr
α}α and the semigroup {T r

t }t are monotone non-
increasing on non-negative functions, i.e.,

Gr
αF ≤ Gs

αF, T r
t F ≤ T s

t F, for every non-negative F ∈ L2(ϒ(Rn), π), s ≤ r .
(4.14)

Furthermore, limr→∞ Gr
αF = GαF and limr→∞ T r

t F = Tt F for F ∈ L2(ϒ(Rn), π) and
α, t > 0.

Proof Thanks to the identity

Gr
α =

∫ ∞

∗
e−αt T r

t dt ,

it suffices to show (4.14) only for T r
t . By a direct application of [37, Theorem 3.3] and the

monotonicity of the Dirichlet form in Proposition 4.9, we obtain the monotonicity of the
semigroup. The second part of the statement follows from the monotone convergence Er ↑ E
combined with [38, S.14, p.372]. ��
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4.3 Localised Bessel operators

Let Br
α,p and Bϒ(Br )

α,p be the (α, p)-Bessel operators corresponding to {T r
t }t>0 and

{Tϒ(Br )
t }t>0, respectively defined in the analogous way as in (4.1). The corresponding (α, p)-

Bessel capacities are denoted by Caprα,p and Capϒ(Br )
α,p defined in the analogous way as in

(4.3)

Lemma 4.12 Caprα,p(E) ≤ Capα,p(E) for every E ⊂ ϒ(Rn) and r > 0.

Proof It suffices to show that Br
α,pF ≤ Bα,pF for any F ≥ 0 with F ∈ L p(ϒ(Rn), π),

which immediately follows from Proposition 4.11 and (4.1). ��

Lemma 4.13 If Capα,p(E) = 0, then Capϒ(Br )
α,p (Eη,r ) = 0 for πBc

r
-a.e. η and every r > 0.

Proof By Lemma 4.12 we may assume Caprα,p(E) = 0 for any r > 0. Let {Fn} ⊂
L p(ϒ(Rn), π) be a sequence so that Fn ≥ 0, Br

α,pFn ≥ 1 on E , and ‖Fn‖pL p → 0. By
Lemma4.5, (Fn)η,r ≥ 0 forπBc

r
-a.e.η. Furthermore, byLemma4.6, there exists Ar ⊂ ϒ(Bc

r )

and a (non-relabelled) subsequence (Fn)η,r so that πBc
r
(Ar ) = 1, and for every η ∈ Ar ,

(Fn)η,r → 0, in L p(ϒ(Br ), πBr ) . (4.15)

By Proposition 4.7 and Remark 4.8, we have that

(Br
α,pFn)η,r =

(
1

�(α/2)

∫ ∞

∗
e−t tα/2−1T r

t Fndt

)
η,r

= 1

�(α/2)

∫ ∞

∗
e−t tα/2−1(T r

t Fn
)
η,r dt

= 1

�(α/2)

∫ ∞

∗
e−t tα/2−1Tϒ(Br )

t (Fn)η,r dt

= Bϒ(Br )
α,p (Fn)η,r . (4.16)

Note that we dropped the specification of p in the semigroups for notational simplicity in
(4.16).

Since Br
α,pFn ≥ 1 on E , by applying Corollary 4.5, we obtain that (Br

α,pFn)η,r ≥ 1 on

Eη,r for πBc
r
-a.e. η. Thus, by (4.16), Bϒ(Br )

α,p (Fn)η,r ≥ 1 on Eη,r for πBc
r
-a.e. η. By (4.15),

we conclude that Capϒ(Br )
α,p (Eη,r ) = 0 for πBc

r
-a.e. η and any r > 0. ��

4.4 Finite-dimensional counterpart

In this section, we develop the finite-dimensional counterpart of Theorem 4.3. The goal is to
prove the following proposition.

Proposition 4.14 Let α p > m. If Capϒk (Br )
α,p (E) = 0, then Sm,k

Br
(E) = 0 for any k ∈ N.

Proof Recall that T�,⊗k
t is the k-tensor semigroup of T�

t as defined in (2.17). Let B
B×kr
α,p

be the corresponding Bessel operator defined analogously as in (4.1), and Cap
B×kr
α,p be the

corresponding (α, p)-capacity.
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Let {Fm} ⊂ L p(ϒ(Br ), πBr ) be a sequence so that Fm ≥ 0 and Bϒk (Br )
α,p Fm ≥ 1 on

E ⊂ ϒk(Br ), and ‖Fm‖L p → 0. By Proposition 2.17 and the definition of Bessel operator,
we have

Bϒk (Br )
α,p Fm ◦ sk = B

B×kr
α,p (Fm ◦ sk) ,

hence Fm ◦ sk ≥ 0, B
B×kr
α,p (Fm ◦ sk) ≥ 1 on s−1k (E). Furthermore,

‖Fm ◦ sk‖L p(B×kr )
= C(k, n, r)‖Fm‖L p(ϒk (Br )) → 0 , asm →∞ ,

where C(k, n, r) > 0 comes from the constant appearing in front of the Hausdorff measure

in the definition of πBr . This implies that Cap
B×kr
α,p (s−1k (E)) = 0.We can now rely on standard

capacity estimates in the Euclidean setting (see, e.g. [47, Theorem 2.6.16]) to conclude that
Snk−m(s−1k (E)) = 0. Recalling (2.4), we have that

Sm,k
Br

(E) = 1

k! (sk)#S
nk−m(E) = 1

k!S
nk−m(s−1k (E)) = 0 .��

4.5 Proof of Theorem 4.3

Let E ∈ S(E ) such that Capα,p(E) = 0. Thanks to Lemma 4.13 we have Capϒ(Br )
α,p (E) = 0

for any r > 0, hence Sm,k
Br

(Ek
η,r ) = 0 for any k ∈ N as a consequence of Proposition 4.14. It

implies

ρm
r (E) = e−Sn(Br )

∞∑
k=1

∫
ϒ(Bc

r )

Sm,k
Br

(Ek
η,r )dπBc

r
(η) = 0 ,

for any r > 0. Recalling that ρm
r (E) ↑ ρm(E) by (3.5), we obtain the sought conclusion.

5 Functions of bounded variation

In this section, we introduce functions of bounded variations (called BV functions) onϒ(Rn)

following three different approaches: the variational approach (Sect. 5.1), the relaxation
approach (Sect. 5.2), and the semigroup approach (Sect. 5.3). In Sect. 5.5, we prove that they
all coincide.

5.1 Variational approach

Let us begin by introducing a class of BV functions through integration by parts. We then
discuss localisation properties.

Definition 5.1 (BV functions I: variational approach) Let� ⊂ R
n be either a closed domain

with smooth boundary or R
n . For F ∈ ∪p>1L p(ϒ(�), π�), we define the total variation as

Vϒ(�)(F) := sup

{∫
ϒ(�)

(∇∗ϒ(�)V )Fdπ� : V ∈ CylV∗(ϒ(�)), |V |Tϒ(�) ≤ 1

}
. (5.1)

When � = R
n , we simply write V(F) := Vϒ(Rn)(F). We say that F is BV in the variational

sense if V(F) <∞.
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Remark 5.2 The assumption F ∈ ∪p>1L p(ϒ(�), π�) plays an important role in Defini-
tion 5.1, ensuring that

∫
ϒ(�)

(∇∗ϒ(�)V )Fdπ� is well defined for any V ∈ CylV(ϒ(�)).
Indeed, one can easily prove that ∇∗ϒ(�)V ∈ ∪1≤p<∞L p(ϒ(�), π�) for any V ∈
CylV∗(ϒ(�)), but it is not L∞(ϒ(�), π�) in general.

Remark 5.3 As it was shown in Remark 2.10, the set of V ∈ CylV∗(ϒ(�)) with |V |Tϒ ≤ 1
is dense in CylV∗(ϒ(�)) with respect to the topology of point-wise convergence and the
L p(ϒ(�) → Tϒ(�), π�) topology for 1 ≤ p <∞.

In order to localise the total variation we employ a family of cylinder vector fields con-
centrated on Br , for some r > 0.

Definition 5.4 For F ∈ ∪p>1L p(ϒ(Rn), π), we define the localised total variation as

Vr (F) := sup

{∫
ϒ(Rn)

(∇∗V )Fdπ : V ∈ CylVr∗(ϒ(Rn)), |V |Tϒ(Rn) ≤ 1

}
, (5.2)

where

CylVr∗(ϒ(Rn)) :=
{
V (γ, x) =

k∑
i=1

Fi (γ )vi (x) : Fi ∈ CylF(ϒ(Rn)), vi ∈ C∞∗ (Br ;Rn), k ∈ N

}
.

The next result shows that Vϒ(Br )(Fη,r ) < ∞ for πBc
r
-a.e. η whenever Vr (F) < ∞. It

is the key step to perform our nonlinear dimension reduction. Indeed it allows to reduce the
study of BV functions on ϒ(Rn) to their sections, which live on the finite dimensional space
ϒ(Br ).

Proposition 5.5 Let r > 0 and p > 1. For F ∈ L p(ϒ(Rn), π) with Vr (F) < ∞, it holds∫
ϒ(Bc

r )

Vϒ(Br )(Fη,r )dπBc
r
(η) = Vr (F) . (5.3)

Let us begin with a simple technical lemma.

Lemma 5.6 Let r > 0. For V ∈ CylVr∗(ϒ(Rn)), and F ∈ CylF(ϒ(Rn)) it holds
∫

ϒ(Bc
r )

(∫
ϒ(Br )

Fη,r (γ )∇∗ϒ(Br )Vη,r (γ )dπBr (γ )

)
dπBc

r
(η) =

∫
ϒ(Rn)

F∇∗Vdπ . (5.4)

Proof of Lemma 5.6 Recall that for r > 0 and η ∈ ϒ(Bc
r ) we have Vη,r ∈ CylV∗(Br ). By

the divergence formula (2.14) and the disintegration Lemma 3.12, we have that∫
ϒ(Bc

r )

(∫
ϒ(Br )

Fη,r (γ )∇∗ϒ(Br )Vη,r (γ )dπBr (γ )

)
dπBc

r
(η)

= −
∫

ϒ(Bc
r )

(∫
ϒ(Br )

Fη,r (γ )
( k∑
i=1
∇vi (Fi )η,r (γ )

+
k∑

i=1
(Fi )η,r (γ )(∇∗

Rnvi )
∗(γ )

)
dπBr (γ )

)
dπBc

r
(η)

= −
∫

ϒ(Bc
r )

∫
ϒ(Br )

(
F

( k∑
i=1
∇vi Fi +

k∑
i=1

Fi (∇∗Rnvi )
∗))

η,r
(γ )dπBr (γ )dπBc

r
(η)

123



  177 Page 28 of 57 E. Brué, K. Suzuki

= −
∫

ϒ(Rn)

F
( k∑
i=1
∇vi Fi +

k∑
i=1

Fi (∇∗Rnvi )
∗)dπ

=
∫

ϒ(Rn)

F∇∗Vdπ .��

Proof of Proposition 5.5 We first prove that∫
ϒ(Bc

r )

Vϒ(Br )(Fη,r )dπBc
r
(η) ≥ Vr (F) . (5.5)

Let Vi ∈ CylVr∗(ϒ(Rn)) with |Vi |Tϒ ≤ 1 so that

Vr (F) = lim
i→∞

∫
ϒ(Rn)

(∇∗Vi )Fdπ.

Observe that (Vi )η,r ∈ CylV∗(ϒ(Br )), then by definition of Vϒ(Br )(Fη,r ) we get∫
ϒ(Br )

((∇∗Vi )F)η,r dπBr =
∫

ϒ(Br )
(∇∗ϒ(Br )(Vi )η,r )Fη,r dπBr ≤ Vϒ(Br )(Fη,r ), i ∈ N .

Therefore, by Lemma 5.6,

Vr (F) = lim
i→∞

∫
ϒ(Rn)

(∇∗Vi )Fdπ

= lim
i→∞

∫
ϒ(Bc

r )

∫
ϒ(Br )

(∇∗ϒ(Br )(Vi )η,r )Fη,r dπBr dπBc
r
(η)

≤
∫

ϒ(Bc
r )

Vϒ(Br )(Fη,r )dπBc
r
(η) ,

which completes the proof of (5.5).
Let us now pass to the proof of the opposite inequality∫

ϒ(Bc
r )

Vϒ(Br )(Fη,r )dπBc
r
(η) ≤ Vr (F) . (5.6)

The idea of the proof is inspired by [34, Proposition 3.2] in the case of the Wiener space. We
divide it into three steps.

Step 1. We show the existence of {Vi : i ∈ N} ⊂ CylV∗(ϒ(Br )) such that |Vi |Tϒ ≤ 1
and

Vϒ(Br )(G) = sup
i∈N

∫
ϒ(Br )

(∇∗ϒ(Br )Vi )GdπBr , (5.7)

for any G ∈ ∪p>1L p(ϒ(Br ), πBr ).
First we observe that there exists FF := {Gi : i ∈ N} ⊂ CylF(ϒ(Br )) such that any

cylinder function can be approximated strongly in H1,q(ϒ(Br )) for any q <∞, by elements
of FF . Let D ⊂ C∞∗ (Br ;Rn) be a countable dense subset, w.r.t. the C1-norm: ‖v‖C1(Br ) :=‖∇Rnv‖L∞(Br ) + ‖v‖L∞(Br ). We define the countable family

FV := {
βV (γ, x)φα(|V |Tγ ϒ) : V (γ, x)

=
m∑
i=1

wi (x)Gi (γ ), α, β ∈ Q
+, m ∈ N, wi ∈ D, Gi ∈ FF

}
,
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where φα ∈ C∞([0,∞)) satisfies 0 ≤ φα ≤ 1, |φ′α| ≤ 2/α and φα(t) = 1 on [0, 1 + α],
φ(t) = 0 on [1+ 2α,∞).

Fix δ > 0, q ∈ [1,∞) and V ∈ CylV∗(ϒ(Br ))with |V |Tγ ϒ ≤ 1. To prove (5.7) it suffices
to show that there existsW ∈ FV with |W |Tϒ ≤ 1 such that ‖∇∗ϒ(Br )

(V−W )‖Lq (ϒ(Br )) ≤ δ.
Fix t ∈ (q, 2q) and ε ∈ (0, 1/9). Letting V = ∑m

i=1 Fivi ∈ CylV∗(ϒ(Br )), we pick
Gi ∈ FF and wi ∈ D such that

m∑
i=1

(‖vi − wi‖C1(Br ) + ‖Fi − Gi‖Lt (ϒ(Br )) + ‖∇ϒ(Br )(Fi − Gi )‖Lt (ϒ(Br ))
)

< ε, (5.8)

and consider W̄ :=∑m
i=1 wi Gi . By using the divergence formula (2.14), we can obtain that

∫
ϒ(Br )

|∇∗ϒ(Br )(W̄ − V )|t dπBr +
∫

ϒ(Br )

∣∣|W̄ |Tγ ϒ − |V |Tγ ϒ

∣∣t dπBr ≤ Cεt , (5.9)

where C = max{‖wi‖C1 , ‖Gi‖Lt (ϒ(Br )), ‖∇Gi‖Lt (ϒ(Br )) : 1 ≤ i ≤ m} does not depend on

ε. We assume without loss of generality that ε, ε
1
10t ∈ Q and set

W := (1− 2ε
1
10t )φ

ε
1
10t

(|W̄ |2Tγ ϒ

)
W̄ ∈ FV , (5.10)

which satisfies

|W |Tγ ϒ = (1− 2ε
1
10t )φ

ε
1
10t

(|W̄ |2Tγ ϒ

)|W̄ |Tγ ϒ ≤ (1− 2ε
1
10t )(1+ 2ε

1
10t ) ≤ 1 .

We now check that ‖∇∗ϒ(Br )
(V −W )‖Lq (ϒ(Br )) ≤ δ. From the identity

∇∗ϒ(Br )W = (1− 2ε
1
10t )φ

ε
1
10t

(|W̄ |2Tγ ϒ

)
(∇∗ϒ(Br )W̄ )

−2(1− 2ε
1
10t )φ′

ε
1
10t

(|W̄ |2Tγ ϒ

)|W̄ |2Tγ ϒ ,

and the inequality

∣∣φ′
ε

1
10t

(|W̄ |2Tγ ϒ

)∣∣|W̄ |2Tγ ϒ ≤ 2ε−
1
10t χ{1+ε

1
10t ≤|W̄ |2Tγ ϒ≤1+2ε

1
10t }|W̄ |

2
Tγ ϒ

≤ 5ε−
1
10t χ{|W̄ |2Tγ ϒ≥1+ε

1
10t } ,

we obtain

‖∇∗ϒ(Br )(W − W̄ )‖Lq ≤
∥∥∥
(
(1− 2ε

1
10t )φ

ε
1
10t

(|W̄ |2Tγ ϒ )− 1
)
(∇∗ϒ(Br )W̄ )

∥∥∥
Lq (ϒ(Br ))

+ 5ε−
1
10t

∥∥∥χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }

∥∥∥
Lq (ϒ(Br ))

≤ 5ε
1
10t ‖∇∗ϒ(Br )W̄‖Lq (ϒ(Br )) +

∥∥∥χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }(∇

∗
ϒ(Br )W̄ )

∥∥∥
Lq (ϒ(Br ))

+ 5ε−
1
10t

∥∥∥χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }

∥∥∥
Lq (ϒ(Br ))

≤ C
(
‖∇∗ϒ(Br )W̄‖Lt (ϒ(Br )), t, q

)

·
(
ε

1
10t + ε−

1
10t

∥∥∥χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }

∥∥∥
Lt (ϒ(Br ))

)
, (5.11)
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where we estimated ‖χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }(∇

∗
ϒ(Br )

W̄ )‖Lq (ϒ(Br )) bymeans of theHölder inequal-

ity and using that t < 2q . The Chebyshev inequality and (5.9) give∥∥∥χ{|W̄ |2Tγ ϒ≥1+ε
1
10t }

∥∥∥
Lt (ϒ(Br ))

≤
∥∥∥χ{|W̄ |Tγ ϒ≥1+ε

1
3t }

∥∥∥
Lt (ϒ(Br ))

≤
∥∥∥χ{||W̄ |Tγ ϒ−|V |Tγ ϒ |≥ε

1
3t }

∥∥∥
Lt (ϒ(Br ))

≤
(
ε−

1
3t

∥∥|W̄ |Tγ ϒ − |V |Tγ ϒ

∥∥
L1(ϒ(Br ))

)1/t

≤ Cε
1
t − 1

3t2 ≤ Cε
1
2t (ε < 1),

where C = max{‖wi‖C1 , ‖Gi‖L1(ϒ(Br )), ‖∇Gi‖L1(ϒ(Br )) : 1 ≤ i ≤ m} is independent of ε.
Therefore, we conclude

‖∇∗ϒ(Br )(W − V )‖Lq (ϒ(Br )) ≤ ‖∇∗ϒ(Br )(W − W̄ )‖Lq (ϒ(Br )) + ‖∇∗ϒ(Br )(W̄ − V )‖Lq (ϒ(Br ))

≤ C(ε
1
10t + ε

1
5t )+ ε ≤ δ ,

provided ε is small enough. The proof of (5.7) is complete.

Step 2. We conclude the proof of (5.6).
Note that the map γ �→ F(γ )∇∗ϒ(Br )

V (γ |Br ) is π-measurable. Furthermore, by
Lemma 4.4, Fη,Bc

r
is πBr -measurable and the map

ϒ(Bc
r ) � η �→

∫
ϒ(Br )

(∇∗ϒ(Br )V )Fη,Bc
r
dπBr

is πBc
r
-measurable. Therefore, the map η �→ Vϒ(Br )(Fη,Bc

r
) is πBc

r
-measurable.

Fix now ε > 0 and define a sequence {C j : j ∈ N} of subsets in ϒ(Bc
r ) so that C∗ = ∅,

and

C j :=
{
η ∈ ϒ(Bc

r ) : Fη,r is πBr -measurable and,

∫
ϒ(Br )

(∇∗ϒ(Br )Vj )Fη,r dπBr ≥ (1− ε)Vϒ(Br )(Fη,r ) ∧ ε−1
}
\

j−1⋃
i=1

Ci ,

where the family {Vi : i ∈ N} has been built in Step 1.
Then, C j is πBc

r
-measurable for any j and πBc

r
(ϒ(Bc

r ) \ ∪∞j=1C j ) = 0. Set

W η
n (γ ) := Wn(γ + η) :=

n∑
j=1

Vj (γ )χC j (η), γ ∈ ϒ(Br ), η ∈ ϒ(Bc
r ) .

We approximate χC j by {Fi
j }i∈N ⊂ CylF(ϒ(Bc

r )) with |Fi
j | ≤ 1 in the strong

L p′(ϒ(Bc
r ), πBc

r
) topology, where 1

p′ + 1
p = 1. Thus, settingWi

n(γ + η) :=∑n
j=1 Vj (γ )Fi

j
(η), we see that∫

ϒ(Bc
r )

‖∇∗ϒ(Br )(Wn −Wi
n)(· + η)‖L p′ (ϒ(Br ))

dπBc
r
(η) → 0 as i →∞ .

Notice that Wi
n ∈ CylVr∗(ϒ(Rn)), hence

lim
i→∞

∫
ϒ(Bc

r )

(∫
ϒ(Br )

(∇∗ϒ(Br )W
i
n(· + η)) fη,r dπBr

)
dπBc

r
(η)

123



BV functions and sets of finite perimeter on configuration… Page 31 of 57   177 

=
∫

ϒ(Bc
r )

∫
ϒ(Br )

(∇∗ϒ(Br )W
η
n ) fη,r dπBr πBc

r
(η)

=
∫

ϒ(Bc
r )

⎛
⎝ n∑

j=1
χC j (η)

∫
ϒ(Br )

(∇∗ϒ(Br )Vj ) fη,r dπBr

⎞
⎠ dπBc

r
(η)

≥ (1− ε)

∫
ϒ(Bc

r )

⎛
⎝ n∑

j=1
χC j (η)Vϒ(Br )( fη,r ) ∧ ε−1

⎞
⎠ dπBc

r

= (1− ε)

∫
∪nj=1C j

Vϒ(Br )( fη,r ) ∧ ε−1dπBc
r
(η). (5.12)

By Lemma 5.6,
∫

ϒ(Rn)

(∇∗Wi
n) f dπ =

(∫
ϒ(Br )

(∇∗ϒ(Br )W
i
n(· + η)) fη,r dπBr

)
dπBc

r
(η) , (5.13)

which along with (5.12) gives the claimed inequality by letting i →∞ and n →∞. ��

5.2 Relaxation approach

In this subsection we introduce a second notion of functions with bounded variations. We
rely on a relaxation approach.

Definition 5.7 (BV functions II: relaxation) Let F ∈ L1(ϒ(Rn), π), we define the total
variation of F by

|D∗F |(ϒ(Rn)) := inf{lim inf
n→∞ ‖∇Fn‖L1(Tϒ) :

Fn → F in L1(ϒ(Rn), π) , Fn ∈ CylF(ϒ(Rn))} . (5.14)

If |D∗F |(ϒ(Rn)) < ∞, we say that F has finite relaxed total variation.

Definition 5.8 (Total variation pre-measure) If |D∗F |(ϒ(Rn)) <∞, we define a map

|D∗F | : {G ∈ CylF(ϒ(Rn)) : G is non-negative} → R ,

|D∗F |[G] := inf

{
lim inf
n→∞

∫
ϒ(Rn)

G|∇Fn |Tϒdπ : Fn → F in L1(ϒ(Rn), π) ,

Fn ∈ CylF(ϒ(Rn))
}

. (5.15)

Notice that |D∗F |[G] ≤ ‖G‖L∞|D∗F | and |D∗F |[G1+G2] ≥ |D∗F |[G1]+ |D∗F |[G2].
By construction, |D∗F |[G] is the lower semi-continuous envelope of the functional
CylF(ϒ(Rn)) � F �→ ∫

ϒ(Rn)
G|∇F |Tϒdπ . Therefore, the map F �→ |D∗F |(G) is lower

semi-continuouswith respect to the L1-convergence for any non-negativeG ∈ CylF(ϒ(Rn)).
It will be shown in Corollary 7.4 that |D∗F | is represented by a finite measure |DF |, i.e.

|D∗F |[G] =
∫

ϒ(Rn)

Gd|DF | for any non-negativeG ∈ CylF(ϒ(Rn)) .
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5.3 Heat semigroup approach

In this subsection we present the third approach to BV functions. We employ the heat semi-
group to define the total variation of a function F ∈ L p(ϒ(Rn), π), p > 1.

Proposition 5.9 Let F ∈ ∪p>1L p(ϒ(Rn), π). Then ‖∇Tt F‖L1 < ∞ for t > 0 and the
following limit exists

T(F) := lim
t→0

‖∇Tt F‖L1 . (5.16)

Definition 5.10 (BV functions III: heat semigroup) A function F ∈ ∪p>1L p(ϒ(Rn), π) is
BV in the sense of the heat semigroup if T(F) < ∞. We define the total variation of F by
T(F).

To prove Proposition 5.9, we need the Bakry–Émery inequality with exponent q = 1, i.e. for
any t, s > 0, F ∈ ∪p>1L p(ϒ(Rn), π), it holds

∫
ϒ(Rn)

|∇Tt F |dπ <∞ , |∇Tt+s F | ≤ Tt |∇Ts F | π-a.e. . (5.17)

The inequality (5.17) will be proven in Corollary 5.16 in Sect. 5.4. Let us now use it to show
Proposition 5.9.

Proof of Proposition 5.9 Let F ∈ L p(ϒ, π) for p > 1. By (5.17), we see that

‖∇Tt F‖L1 ≤ lim inf
s→0

‖∇Tt+s F‖L1 ≤ lim inf
s→0

‖∇Ts F‖L1 .

By taking lim supt→0, we obtain lim supt→0 ‖∇Tt F‖L1 ≤ lim infs→0 ‖∇Ts F‖L1 , which
concludes the proof. ��

5.4 p-Bakry–Émery inequality

In order to complete the proof of Proposition 5.9, we show the p-Bakry–Émery inequality for
the Hodge heat flow, which implies in turn the scalar version (5.17) of the p-Bakry–Émery
inequality. It will play a significant role also in the proof of Theorem 5.18. Recall that, for
F = �( f ∗1 , . . . , f ∗k ) ∈ CylF(ϒ(Rn)),

∇F(γ, x) =
k∑

i=1
∂i�( f ∗1 γ, . . . , f ∗k γ )∇Rn fi (x) ,

�F(γ ) =
k∑

i, j=1
∂2i j�( f ∗1 γ, . . . , f ∗k γ )〈∇Rn fi ,∇Rn f j 〉Tγ ϒ

+
k∑

i=1
∂i�( f ∗1 γ, . . . , f ∗k γ )(�Rn fi )

∗γ , (5.18)

where 〈∇Rn fi ,∇Rn f j 〉Tγ ϒ := (〈∇Rn fi ,∇Rn f j 〉Txϒ)∗γ := ∫
Rn 〈∇Rn fi ,∇Rn f j 〉Rn (x)dγ (x).

See e.g., [2, (4.7)] for the proofs.
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Definition 5.11 (Hodge Laplacian) For V =∑m
k=1 Fkvk with Fk = �k(( f k1 )∗, . . . , ( f k� )∗),

define Hodge Laplacian of V as

�HV (γ, x) :=
m∑

k=1

�∑
i, j=1

∂2i j�k
(
( f k1 )∗γ, . . . , ( f k� )∗γ

)(〈∇Rn f ki ,∇Rn f kj
〉
TxRn

)∗
γ vk(x)

(5.19)

+
m∑

k=1

�∑
i=1

∂i�k
(
( f k1 )∗γ, . . . , ( f k� )∗γ

)
(�Rn fk(x))

∗γ vk(x)

+
m∑

k=1
�k

(
( f k1 )∗γ, . . . , ( f k� )∗γ

)
�H ,Rnvk(x),

+ 2
m∑

k=1

�∑
i=1

∂i�k
(
( f k1 )∗γ, . . . , ( f k� )∗γ

)
(∇Rn f ki · ∇Rn )vk(x) (5.20)

where �H ,Rnvk is the Hodge Laplacian of vk ∈ C∞(Rn;Rn), and (∇Rn f ki · ∇Rn )vk(x) is
the vector field whose i th coordinate coincides with

〈∇Rn f ki ,∇Rn (vk)i
〉
TxRn . It turns out that

�HV does not depend on the choice of both the representative of V and the inner and outer
functions of Fk (see [1, Theorem 3.5]).

For the proof of Theorem 5.13 below, we introduce the following space of exponential
cylinder functions with Schwartz inner functions:

ECylFS(ϒ(Rn)) := SpanR
{
exp

{
log(1+ f )∗

} : f ∈ S, −δ ≤ f ≤ 0 for some δ ∈ (0, 1)
}

,

where S is the space of Schwartz functions in R
n (i.e., functions in R

n whose derivatives
are all rapidly decreasing). We note that TtECylFS(ϒ(Rn)) ⊂ ECylFS(ϒ(Rn)) for every
t > 0, and that (�,ECylFS(ϒ(Rn))) is essentially self-adjoint in L2(ϒ(Rn), π) exactly by
the same proof as in [2, Theorem 4.2].

Remark 5.12 Exponential cylinder functions have been originally discussed in [2], where
they choose a larger class of inner functions. We introduced ECylFS(ϒ(Rn)) with inner
functions in the space S of Schwartz functions for the proof of Theorem 5.13, where we need
to choose a smaller class of inner functions to approximate ECylFS(ϒ(Rn)) by cylinder
functions in a sufficiently good way. See the last paragraph of the proof of Theorem 5.13.

We define the corresponding energy functional:

EH (V ,W ) := 〈−�HV ,W 〉L2(Tϒ,π)

=
∫

ϒ(Rn)

�ϒ(V ,W )dπ , V ,W ∈ CylV(ϒ(Rn)) , (5.21)

where �ϒ denotes the square field operator associated with �H . By [1, Theorem 3.5], the
form EH is closable on CylV(ϒ(Rn)) and the corresponding closure is denoted by D(EH )

and the corresponding (Friedrichs) extension of CylV(ϒ(Rn)) is denoted by D(�H ). Let
{Tt } denote the corresponding L2-semigroup. It holds that

Tt V ∈ D(EH ) , for any t ≥ 0 and V ∈ CylV(ϒ(Rn)). (5.22)

The following intertwining property holds.
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Theorem 5.13 ∇Tt F = Tt∇F for any t ≥ 0 and for any F ∈ H1,2(ϒ(Rn), π).

Proof We apply [42, Theorem 2.1] with D = CylF(ϒ(Rn)), D = ∇, A = �, Â = �H ,
T̂t = Tt , R = 0, which concludes the sought statement. To do so, we verify Conditions (i)–
(iv) of [42, Theorem 2.1]. Condition (i) and (ii) are straightforward by construction. Using
the commutation ∇Rn�Rn = �H ,Rn∇Rn and the representation (5.18) and (5.19), we can
readily verify Condition (iv), i.e., ∇�F = �H∇F for any F ∈ CylF(ϒ(Rn)).

We now verify Condition (iii), viz., (λ−�)CylF(ϒ(Rn)) ⊂ H1,2(ϒ(Rn), π) is dense for
sufficiently large λ > 0. We prove it with λ = 0, viz., �CylF(ϒ(Rn)) ⊂ H1,2(ϒ(Rn), π)

is dense. We first prove that �ECylFS(ϒ(Rn)) ⊂ H1,2(ϒ(Rn), π) is dense. Define L :=
{F ∈ �D(�) : F ∈ H1,2(ϒ(Rn), π)}. By Lemma 5.14 below, �D(�) ⊂ L2(ϒ(Rn), π) is
dense. Furthermore,

Tt�D(�) = �TtD(�) ⊂ �D(�) ∩ H1,2(ϒ(Rn), π).

In particular, Tt�D(�) ⊂ L . Combining [13, (4.26)] with the fact that E coincides with the
Cheeger energy associated with the L2-transportation distance dϒ and the Poisson measure
π (see [26, Proposition 2.3]), we have the following regularisation inequality

E(Tt F) ≤ ‖F‖
2
L2

2t
t > 0 . (5.23)

Therefore, combined with the density �D(�) ⊂ L2(ϒ(Rn), π), the space T :=
∪t>0Tt�D(�) isweaklydense inH1,2(ϒ(Rn), π).AsT is a convex subset inH1,2(ϒ(Rn), π),
by Mazur’s lemma,

T is strongly dense in H1,2(ϒ(Rn), π) . (5.24)

For every G ∈ T = ∪t>0Tt�D(�) = ∪t>0�TtD(�) with an expression G = �Tt F with
F ∈ D(�) for some t > 0, we can take Fn ∈ ECylFS(ϒ(Rn)) so that

‖�Fn −�F‖L2 + ‖Fn − F‖L2 → 0 (5.25)

by the essential self-adjointness of (�,ECylFS(ϒ(Rn))). Furthermore, it can be readily
verified that

‖�Tt Fn −�Tt F‖L2 + ‖Tt Fn − Tt F‖L2 → 0 (5.26)

by the L2-contraction property of Tt and the commutation �Tt = Tt� for t > 0. Not-
ing Tt Fn ∈ ECylFS(ϒ(Rn)) by the stability of ECylFS(ϒ(Rn)) under the action of Tt ,
the formula (5.26) particularly shows that the sequence (�Tt Fn)n∈N ⊂ �ECylFS(ϒ(Rn))

approximatesG = �Tt F ∈ T in the strong L2-topology. Furthermore, by using (5.23) again,
we have the uniform energy bound:

sup
n∈N

E(�Tt Fn) = sup
n∈N

E(Tt�Fn) ≤ sup
n∈N

1

2t
‖�Fn‖ <∞. (5.27)

For every H ∈ D(�),∫
ϒ(Rn)

〈∇(�Tt Fn − G),∇H
〉
Tγ ϒ

dπ(γ )+
∫

ϒ(Rn)

(�Tt Fn − G)Hdπ

= −
∫

ϒ(Rn)

(�Tt Fn −�Tt F)�Hdπ +
∫

ϒ(Rn)

(�Tt Fn −�Tt F)Hdπ

n→∞−−−→ 0 . (5.28)
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By the uniform bound (5.27) and the fact that D(�) is dense in H1,2(ϒ(Rn), π),
(5.28) shows that (�Tt Fn)n∈N ⊂ �ECylFS(ϒ(Rn)) converges to G = �Tt F ∈
T weakly in H1,2(ϒ(Rn), π). Thus, �ECylFS(ϒ(Rn)) approximates T in the weak
H1,2(ϒ(Rn), π) topology. By (5.24) and the fact that�ECylFS(ϒ(Rn)) is a convex subspace
in H1,2(ϒ(Rn), π), by applying Mazur’s lemma again, we conclude that �ECylFS(ϒ(Rn))

is strongly dense in H1,2(ϒ(Rn), π).
Therefore, to complete the verification of Condition (iii), it suffices to prove that

�CylF(ϒ(Rn)) approximates �ECylFS(ϒ(Rn)) in H1,2(ϒ(Rn), π). The idea of the proof
is, however, the same as in that of [2, Proposition 4.1]: for F = exp

{
log(1 + f )∗

} ∈
ECylFS(ϒ(Rn)), we can take an approximation fn ∈ C∞c (Rn) of the inner function f ∈ S
so that Fn = exp

{
log(1+ fn)∗

} ∈ CylF(ϒ(Rn)) converges to F in a sufficiently good way
to conclude that �CylF(ϒ(Rn)) approximates �ECylFS(ϒ(Rn)) in H1,2(ϒ(Rn), π). As
this proof is mostly a repetition of [2, Proposition 4.1], we omit the details here. ��
Lemma 5.14 For F ∈ L2(ϒ(Rn), π), there exists Fn ∈ D(�) so that ‖�Fn − F‖L2 → 0.

Proof We first show that �GαF → �GβF in L2(ϒ(Rn), π) for every F ∈ L2(ϒ(Rn), π)

as α → β for α, β > 0. By the resolvent equality Gα −Gβ = (β − α)GαGβ , we have that

‖�(Gα − Gβ)F‖L2 = (β − α)‖�GαGβF‖L2 = (β − α)‖Gα�GβF‖L2 .

By the L2-contraction of αGα , we obtain

(β − α)‖Gα�GβF‖L2 ≤ β − α

α2 ‖�GβF‖L2 → 0, α → β.

Thus, �GαF → �GβF as α → β in L2(ϒ(Rn), π).
We now prove the sought statement. Let Fn := (1/(α − 1))Gα+1/n F ∈ D(�). Then,

by the general identity (α − �)Gα = Id, and by the convergence �GαF → �GβF in
L2(ϒ(Rn), π) proven above, we have

�Fn= 1

α−1�Gα+1/n F
n→∞−−−→ 1

α−1�GαF= (α−1)
(α−1) F=F, F∈L2(ϒ(Rn), π). ��

Theorem 5.15 Let F ∈ D(EH ). Then |Tt F |Tϒ ≤ Tt |F |Tϒ π-a.e. for every t ≥ 0. In
particular Tt can be extended to the L p-velocity fields L p(Tϒ(�), π�) for every 1 ≤ p <

∞.

Proof By the Weitzenböck formula [1, Theorem 3.7] on ϒ(Rn), we can express �H =
∇∗∇ + Rϒ , where Rϒ is the lifted curvature tensor from the base space R

n . Since R
n is flat,

we can easily deduce Rϒ = 0.
Now, setting �(V ,W ) := �ϒ(V ,W ) + 2Rϒ(V ,W ) = �ϒ(V ,W ) we can apply [43,

Theorem 3.1] (see the proof of [43, Theorem 3.1] for p = 1) and [43, Proposition 3.5], to
get the sought conclusion of the first assertion.

We now prove the second assertion. Let V ∈ L p(Tϒ(�), π�). Then, the density of
cylinder vector fields gives the existence of a sequence Vn ∈ CylF(Rn) ⊂ D(EH ) such that
|Vn − V |Tϒ → 0 in L p(ϒ(Rn), π) as n →∞. We can define

Tt V := lim
n→∞Tt Vn . (5.29)

The existence of the limit follows from

|Tt Vn − Tt Vm |Tϒ ≤ Tt |Vn − Vm |Tϒ , (5.30)

as well as the independence of the limit from the approximating sequence (Vn)n∈N. ��
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Theorem 5.16 (p-Bakry–Émery estimate) Let p > 1. The following assertions hold:

(i) Tt : H1,p(ϒ(Rn), π) → H1,p(ϒ(Rn), π) is a continuous operator for every t > 0.
(ii) For every F ∈ H1,p(ϒ(Rn), π),

|∇Tt F |pTϒ ≤ Tt |∇F |pTϒ π-a.e. . (5.31)

(iii) Let 1 < p ≤ 2. For every F ∈ L p(ϒ(Rn), π) it holds that

‖∇Tt F‖L p(Tϒ) ≤ C(p)t−1/2‖F‖L p , t > 0. (5.32)

In particular, Tt : L p(ϒ(Rn), π) → H1,p(ϒ(Rn), π) is a continuous operator for
every t > 0.

(iv) For every t, s > 0, F ∈ L p(ϒ(Rn), π), it holds that ‖∇Tt F‖L1(Tϒ(Rn)) <∞ and

|∇Tt+s F |Tϒ ≤ Tt |∇Ts F |Tϒ π-a.e. . (5.33)

Proof (i). By Theorems 5.13 and 5.15, for any F ∈ CylF(ϒ(Rn)) it holds that

|∇Tt F |Tϒ = |Tt∇F |Tϒ ≤ Tt |∇F |Tϒ π-a.e. . (5.34)

A simple application of Jensen’s inequality to (5.34) gives

|∇Tt F |pTϒ ≤ Tt |∇F |pTϒ, for F ∈ CylF(ϒ) and p ≥ 1 . (5.35)

Let Fn ∈ CylF(ϒ) be a H1,p(ϒ(Rn), π)-Cauchy sequence. Then, by (5.35) and the invari-
ance π(Tt f ) = π( f ),∫

ϒ(Rn)

|∇Tt (Fn − Fm)|pTϒdπ ≤
∫

ϒ(Rn)

Tt |∇(Fn − Fm)|pTϒdπ

=
∫

ϒ(Rn)

|∇(Fn − Fm)|pTϒdπ → 0. (5.36)

Since H1,p(ϒ(Rn), π) is the closure of CylF(ϒ) w.r.t. the norm ‖∇ · ‖L p(Tϒ)+‖ ·‖L p(ϒ,π),
by (5.36), the operator Tt is extended to H1,p(ϒ(Rn), π) continuously. The proof of the first
assertion is complete.

(ii). Let F ∈ H1,p(ϒ(Rn), π) and take Fn ∈ CylF(ϒ) converging to F in
H1,p(ϒ(Rn), π). Then, by the lower semi-continuity of |∇ · |pTϒ w.r.t. the L p-strong con-
vergence, the continuity of the L p-semigroup Tt and the inequality (5.35), we obtain

|∇Tt+s F |pTϒ = |∇Tt Ts F |pTϒ ≤ lim inf
n→∞ |∇Tt Ts Fn |pTϒ

≤ lim inf
n→∞ Tt |∇Ts Fn |pTϒ ≤ Tt |∇Ts F |pTϒ.

Here the last equality follows from the assertion (i).
(iii). Let p > 1 be fixed. For any F ∈ CylF(ϒ(Rn)) satisfying F ≥ 0, it holds

p(p − 1)
∫ t

∗

∫
ϒ(Rn)

|∇Ts F |2Tϒ |Ts F |p−2dπds =
∫

ϒ(Rn)

|F |pdπ −
∫

ϒ(Rn)

|Tt F |pdπ

≤
∫

ϒ(Rn)

|F |pdπ ,

where the first equality follows by the following argument:

d

dt

∫
ϒ(Rn)

|Tt F |pdπ = p
∫

ϒ(Rn)

|Tt F |p−1�Tt Fdπ
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= −p
∫

ϒ(Rn)

〈
∇|Tt (F)|p−1,∇Tt F

〉
Tγ ϒ

dπ(γ )

= −p(p − 1)
∫

ϒ(Rn)

〈
|Tt F |p−2∇Tt F,∇Tt F

〉
Tγ ϒ

dπ(γ )

= −p(p − 1)
∫

ϒ(Rn)

|Tt F |p−2
∣∣∇Tt F∣∣2

Tγ ϒ
dπ(γ ) .

By the contraction property of Tt , we obtain

∫ t

∗

∫
ϒ(Rn)

|∇Ts F |pTϒdπds ≤
(∫ t

∗

∫
ϒ(Rn)

|Ts F |pdπds

) 2−p
2

(∫ t

∗

∫
ϒ(Rn)

|∇Ts F |2Tϒ |Ts F |p−2dπds

) p
2

≤ Ct
2−p
2 ‖F‖pL p .

We now employ the Bakry–Émery inequality (5.35) combined with the contraction property
of Tt to show that s → ∫

ϒ(Rn)
|∇Ts F |pTϒdπ is non-increasing, which yields

t
∫

ϒ(Rn)

|∇Tt F |pTϒdπ ≤
∫ t

∗

∫
ϒ(Rn)

|∇Ts F |pTϒdπds ≤ Ct
2−p
2 ‖F‖pL p . (5.37)

This implies our conclusion for cylinder functions.We extended it to any F ∈ L p(ϒ(Rn), π)

by means of a density argument. Indeed, given F ∈ L p(ϒ(Rn), π), we can find Fn ∈
CylF(ϒ(Rn)) such that Fn → F in L p . The continuity of the semigroup Tt gives Tt Fn →
Tt F in L p , while the lower semi-continuity of the functional G → ∫

ϒ(Rn)
|∇G|pTϒ(Rn)

dπ

with respect to the L p convergence for p > 1 yields∫
ϒ(Rn)

|∇Tt F |pTϒdπ ≤ lim inf
n→∞

∫
ϒ(Rn)

|∇Tt Fn |pTϒdπ ≤ Ct−1/2‖F‖L p .

(iv). Note that the assertion in the case of 1 < p ≤ 2 implies the one in the case of
p > 2 by L p(ϒ(Rn), π) ⊂ Lq(ϒ(Rn), π) whenever 1 ≤ q ≤ p. Thus, we only need
to prove it in the case of 1 < p ≤ 2. Let F ∈ L p(ϒ(Rn), π). Then, by the assertion (iii),
Ts F ∈ H1,p(ϒ(Rn), π). TakeGn converging to Ts F in H1,p(ϒ(Rn), π). Then, up to taking
a subsequence from {Gn}, and by making use of (5.34), we conclude that

|∇Tt+s F |Tϒ = |∇Tt Ts F |Tϒ = lim
n→∞ |∇TtGn |Tϒ ≤ lim

n→∞ Tt |∇Gn |Tϒ = Tt |∇Ts F |Tϒ .��

Remark 5.17 In [26] (see also [24]), the 2-Bakry–Émery estimate was proved in the case of
the configuration space over a complete Riemannian manifold with Ricci curvature bound.
For the purpose of the current paper, however, we need a stronger estimate, i.e., the p-Bakry–
Émery estimate (5.31) for arbitrary 1 < p < ∞ and also the regularity estimate (5.32) of
the heat semigroup, both of which do not follow only from the 2-Bakry–Émery inequality.

5.5 Equivalence of BV functions

In Sect. 5, we introduced the three different definitions (the variational/the relaxation/the
semigroup approaches) of BV functions. In this section we show that the three different
definitions of BV functions are equivalent.
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Theorem 5.18 (Equivalence of BV functions) Let F ∈ L2(ϒ(Rn), π). Then,

V(F) = |D∗F |(ϒ(Rn)) = T(F) .

The proof of Theorem 5.18 will be given later in this section. Thanks to Theorem 5.18, we
can introduce a universal definition of BV functions for L2(ϒ(Rn), π)-functions.

Definition 5.19 (BV functions) A function F ∈ L2(ϒ(Rn)) belongs to BV(ϒ(Rn)) if

V(F) = |D∗F |(ϒ(Rn)) = T(F) <∞ .

We prepare several lemmas for the proof of Theorem 5.18.

Lemma 5.20 For any V ∈ CylV(ϒ(Rn)) and t ≥ 0 it holds

(∇∗Tt V ) = Tt (∇∗V ) . (5.38)

In particular (∇∗Tt V ) ∈ L p(ϒ(Rn)) for every 1 < p <∞.

Proof Let F ∈ CylF(ϒ). By the π -symmetry of Tt and Theorem 5.13, we have that
∫

ϒ(Rn)

F Tt (∇∗V )dπ =
∫

ϒ(Rn)

Tt F (∇∗V )dπ = −
∫

ϒ(Rn)

〈V (γ, ·),∇Tt F(γ )〉Tϒdπ

= −
∫

ϒ(Rn)

〈V (γ, ·),Tt∇F(γ )〉Tϒdπ

= −
∫

ϒ(Rn)

〈Tt V (γ, ·),∇F(γ )〉Tϒdπ

=
∫

ϒ(Rn)

F(∇∗Tt V )dπ,

which immediately implies (5.38). ��

Let us now introduce Dp(Tϒ(Rn), π), the space of vector fields with divergence in
L p(ϒ(Rn), π), as the closure of CylV(ϒ(Rn)) ⊂ L p(Tϒ(Rn), π) with respect to the norm
‖V ‖L p + ‖∇∗V ‖L p .

In the case p = 2, we have the following inclusion

D(EH ) ⊂ D2(Tϒ(Rn), π) , (5.39)

as a consequence of the inequality ‖∇∗V ‖L2 ≤ EH (V , V ) for every V ∈ CylV(ϒ(Rn)).

Lemma 5.21 Let 1 < p < ∞ and 1 < p′ < ∞ such that 1/p + 1/p′ = 1. If F ∈
L p′(ϒ(Rn), π) then

V(F) = sup

{∫
ϒ(Rn)

(∇∗V )Fdπ : V ∈ Dp(Tϒ(Rn), π), |V |Tϒ ≤ 1

}
. (5.40)

Proof Let V ∈ Dp(Tϒ(Rn), π) with |V |Tϒ ≤ 1, to conclude the proof we just need to
build a sequence (Wn)n∈N ⊂ CylV(ϒ(Rn)) such that |Wn | ≤ 1 and ‖∇∗V − ∇∗Wn‖L p →
0 as n → ∞. To that aim we first consider a sequence Vn ∈ CylV(ϒ(Rn)) such that
‖V − Vn‖L p + ‖∇∗V − ∇∗Vn‖L p → 0 as n → ∞, which exists by definition. We now
define Wn by cutting Vn of as we did in (5.10) in the proof of Proposition 5.5. ��
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Proof of Theorem 5.18 We first show the inequality |D∗F |(ϒ(Rn)) ≤ V(F) for F ∈
L2(ϒ(Rn), π). We assume without loss of generality that V(F) < ∞. Let F ∈
L2(ϒ(Rn), π). Set Fn = T1/n F ∈ H1,2(ϒ(Rn), π). By the symmetry of Tt in L2(Tϒ,π)

and Lemma 5.20, we have that, for any V ∈ CylV(ϒ(Rn)) with |V |Tϒ ≤ 1, it holds∫
ϒ(Rn)

Fn∇∗Vdπ =
∫

ϒ(Rn)

T1/n(∇∗V )Fdπ =
∫

ϒ(Rn)

∇∗(T1/nV )Fdπ. (5.41)

The inclusion (5.22) and (5.39) imply that T1/nV ∈ D2(Tϒ(Rn), π), while Theorem 5.15
ensures that |T1/nV |Tϒ ≤ T1/n |V |Tϒ ≤ 1.

Therefore, we can apply Lemma 5.21 to (5.41) to obtain ‖∇Fn‖L1 ≤ V(F). Since Fn ∈
H1,2(ϒ(Rn), π) and CylF(ϒ(Rn)) is dense in H1,2(ϒ(Rn), π), we have |D∗Fn |(ϒ(Rn)) ≤
‖∇Fn‖L1 , by definition. By the lower semi-continuity of |D∗F |(ϒ(Rn)) with respect to the
L2-convergence, it holds

|D∗F |(ϒ(Rn)) ≤ lim inf
n→∞ |D∗Fn |(ϒ(Rn)) ≤ lim inf

n→∞ ‖∇Fn‖L1(Tϒ,π) ≤ V(F).

We now prove T(F) ≤ |D∗F |(ϒ(Rn)). Let Fn ∈ CylF(ϒ) such that Fn → F in
L1(ϒ(Rn), π) and ‖∇Fn‖L1(Tϒ) → |D∗F |(ϒ(Rn)). Then, by the 1-Bakry–Émery inequal-
ity (5.34) on cylinder functions,

‖∇Tt F‖L1 ≤ lim inf
n→∞ ‖∇Tt Fn‖L1 ≤ lim inf

n→∞ ‖∇Fn‖L1 = |D∗F |(ϒ(Rn)).

Thus, T(F) ≤ |D∗F |(ϒ(Rn)).
Finally we prove V(F) ≤ T(F) for every F ∈ L p(ϒ(Rn)). For F ∈ L p(ϒ(Rn), π) and

V ∈ CylV(ϒ(Rn)) with |V |Tϒ ≤ 1, we have that∫
ϒ(Rn)

Tt F∇∗Vdπ =
∫

ϒ(Rn)

〈∇Tt F, V 〉dπ ≤
∫

ϒ(Rn)

|∇Tt F |Tϒdπ.

Since Tt F → F in L p(ϒ(Rn), π), we obtain that∫
ϒ(Rn)

F∇∗Vdπ ≤ lim
t→0

∫
ϒ(Rn)

|∇Tt F |Tϒdπ.

Thus, we conclude V(F) ≤ T(F).
The proof of Theorem 5.18 was given above. However, for the sake of completeness, we

include a proof of the inequality V(F) ≤ |D∗F |(ϒ(Rn)), which holds in the more general
case of F ∈ L p(ϒ(Rn), π) with 1 < p ≤ ∞.

Let F ∈ L p(ϒ(Rn), π) for some p > 1 and |D∗F |(ϒ(Rn)) < ∞. Let Fn ∈ CylF(ϒ)

such that Fn → F in L1(ϒ(Rn)) and ‖∇Fn‖L1(Tϒ) → |D∗F |(ϒ(Rn)). Let Fn,M :=
(Fn ∨ −M) ∧ M and FM := (F ∨ −M) ∧ M . Then, Fn,M → FM in L1(ϒ(Rn), π) and
‖∇Fn,M‖L1(Tϒ) ≤ ‖∇Fn‖L1(Tϒ). Thus, lim supn→∞ ‖∇Fn,M‖L1(Tϒ) ≤ |D∗F |(ϒ(Rn)).
By the integration by parts formula (2.13), it holds∫

ϒ(Rn)

Fn,M∇∗Vdπ = −
∫

ϒ(Rn)

〈V ,∇Fn,M 〉Tϒdπ ≤ ‖∇Fn,M‖L1(Tϒ) ≤ ‖∇Fn‖L1(Tϒ) ,

for any V ∈ CylV(ϒ(Rn)) with |V |Tϒ ≤ 1. By taking a (non-relabelled) subsequence from
{Fn,M } so that Fn,M → FM π -a.e.,

and using the dominated convergence theorem (note that |Fn,M∇∗V | ≤ M |∇∗V | ∈
L1(ϒ(Rn), π) uniformly in n), we obtain that∫
ϒ(Rn)

FM∇∗Vdπ = lim
n→∞

∫
ϒ(Rn)

Fn,M∇∗Vdπ ≤ lim inf
n→∞ ‖∇Fn‖L1(Tϒ) ≤ |D∗F |(ϒ(Rn)),
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for any V ∈ CylV(ϒ(Rn)) with |V |Tϒ ≤ 1. Since FM → F in L p(ϒ(Rn), π) as M →∞
by the hypothesis F ∈ L p(ϒ(Rn), π), we conclude V(F) ≤ |DF |(ϒ(Rn)). ��
Remark 5.22 The proof of all the inequalities except |D∗F |(ϒ(Rn)) ≤ V(F) remains true for
every 1 < p <∞. In order to prove the inequality |D∗F |(ϒ(Rn)) ≤ V(F) in full generality
following the same strategy we need show that Tt V ∈ Dp(Tϒ(Rn), π) for 1 < p <∞ and
V ∈ CylV(Tϒ). This should follow, for instance, from the L p-boundedness of vector-valued
Riesz transforms, and will be addressed in a future work.

6 Sets of finite perimeter

In this section we introduce and study the notion of set with finite perimeter. Let us begin
with a definition

Definition 6.1 (Sets of finite perimeter) Let � ⊂ R
n be either a closed domain or the

Euclidean space R
n . A Borel set E ⊂ ϒ(�) is said to have finite perimeter if Vϒ(�)(χE ) <

∞.

We refer the reader to Definition 5.1 for the introduction of the total variation Vϒ(�)(·).

6.1 Sets of finite perimeter in7(Br)

We first develop the necessary theory in the configuration space ϒ(Br ), in which every
argument essentially comes down to finite-dimensional geometric analysis since only finitely
many particles are allowed to belong to Br .

Let us recall the decompositionϒ(Br ) =⊔
k≥0 ϒk(Br ), where (ϒk(Br ),dϒk , πk

Br
) is the

k-particle configuration space ϒk(Br ) over Br equipped with the L2-transportation distance
dϒk and πk

Br
:= πBr |ϒk (Br ). We introduce the reduced boundary in ϒ(Br ).

Definition 6.2 (Reduced boundary in ϒ(Br )) Fix r > 0. Given E ⊂ ϒ(Br ), set Ek :=
E ∩ ϒk(Br ) and define

∂∗ϒ(Br )E :=
⊔
k≥0

∂∗
ϒk (Br )

Ek ,

∂∗
ϒk (Br )

Ek :=
{

γ ∈ ϒk(Br ) : lim sup
s→0

πk
Br

(Bks (γ ) ∩ Ek)

πk
Br

(Bks (γ ))
> 0, lim sup

s→0

πk
Br

(Bks (γ ) \ Ek)

πk
Br

(Bks (γ ))
> 0

}
,

where Bks (γ ) denotes the metric ball of radius s > 0 centred at γ ∈ ϒk(Br ) w.r.t. dϒk .

We can readily show that them-codimensional Hausdorff measure ρm
ϒk (Br )

w.r.t. dϒk coin-
cides with the push-forward measure of the m-codimensional spherical Hausdorff measure
ρm
B×kr

on B×kr w.r.t. the quotient map sk :

ρm
ϒk (Br )

= (sk)#ρm
B×kr

= (sk)#S
nk−m
B×kr

, (6.1)

where Snk−m
B×kr

is the m-codimensional spherical Hausdorff measure on B×kr and sk is the

quotient map B×kr → ϒk(Br ) as defined in Sect. 2. Having this in mind, we prove the
following Gauß–Green formula in ϒ(Br ).
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Proposition 6.3 (Gauß–Green formula in ϒ(Br )) Fix r > 0. If E ⊂ ϒ(Br ) is a set of finite
perimeter then there exists a vector field σE : ϒ(Br ) → Tϒ(Br ) such that |σE |Tϒ(Br ) = 1
ρ1

ϒ(Br )
-a.e. on ∂∗ϒ(Br )

E, and

∫
E
(∇∗V )dπBr =

∫
∂∗
ϒ(Br )

E
〈V , σE 〉dρ1

ϒ(Br ) for V ∈ CylV(ϒ(Br )). (6.2)

Moreover Vϒ(Br )(χE ) = ρ1
ϒ(Br )

(∂∗ϒ(Br )
E).

Proof Exploiting the decomposition ϒ(Br ) = ⊔
k≥0 ϒk(Br ), where each ϒk(Br ) is a con-

nected component, we reduce our analysis to the study of Ek := E ∩ϒk(Br ).
Set Ek := s−1k (Ek). Given

V =
m∑

k=1
�( f ∗1,k, . . . , f ∗nk ,k)vk ∈ CylV(ϒ(Br )) ,

we can define V ∈ C∞∗ (B×kr ;Rnk) as

V(x1, . . . , xk) =
m∑

k=1
�( f1,k(x1)+ · · · + fnk ,k(xk), . . . , fnk ,k(x1)+ · · ·

+ fnk ,k(xk))vk(x1, . . . , xk) .

Notice that |V|Rnk ≤ 1whenever |V |Tϒ ≤ 1. It is now immediate thatEk is of finite perimeter
on B×kr . Thus, standard results og geometric measure theory on the Euclidean spaceR

nk (see
e.g., [47, Thm. 5.8.2]), we obtain

∫
Ek

(∇∗V)dSnk
B×kr

=
∫

∂∗
B×kr

Ek
〈V, σEk 〉dρ1

B×kr
forV ∈ C∞∗ (B×kr ;Rnk) . (6.3)

Here σEk is a vector field σEk : B×kr → R
nk such that |σEk |Rnk = 1 ρ1

B×kr
-a.e. on ∂∗

B×kr
Ek . By

passing to the quotient by means of the map sk in both sides of (6.3) and using (6.1), we get
the sought conclusion. ��

Remark 6.4 An alternative proof of Proposition 6.3 can be given by employing the theory
of RCD spaces (see [8] and references therein). Indeed (ϒk(Br ),dk, πk

Br
) is an RCD(0, kn)

space and Ek is of finite perimeter.Hencewecan apply [19,Theorem2.2] to get the integration
by parts formula, written in terms of the total variation measure |DχEk |. From [9, Corollary
4.7] we deduce the identity |DχEk | = ρ1

ϒ(Br )
|∂∗

ϒk (Br )
Ek .

Let us now prove ameasurability statement. The proof follows arguing exactly in the same
way as in the proof of Proposition 3.6, thus, we omit it.

Lemma 6.5 Fix r > 0. If F : ϒ(Rn)→ R is a Borel function, then

ϒ(Bc
r ) � η →

∫
ϒ(Br )

Fη,r dρ1
ϒ(Br ) isπBc

r
-measurable .
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6.2 Sets of finite perimeter on7(Rn)

We now study sets of finite perimeter on the configuration space ϒ(Rn) by employing the
already developed theory for the space ϒ(Br ). The main idea is to reduce a set E ⊂ ϒ(Rn)

to its sections Eη,r ⊂ ϒ(Br ) and apply the results for sets of finite perimeter in ϒ(Br ),
combined with the disintegration argument. We finally let r →∞ to recover the information
on the perimeter of the original set E .

Let us begin by introducing the definition of the reduced boundary in ϒ(Rn).

Definition 6.6 (Reduced boundary in ϒ(Rn)) Let E ⊂ ϒ(Rn) be a Borel set. For every
r > 0 we set

∂∗r E := {γ ∈ ϒ(Rn) : γ |Br ∈ ∂∗ϒ(Br )Eγ |Bcr ,r } . (6.4)

The reduced boundary of E is defined as

∂∗E := lim inf
i→∞, i∈N ∂∗i E =

⋃
i>0

⋂
j>i, j∈N

∂∗j E . (6.5)

Remark 6.7 We defined ∂∗E by taking the liminf along the sequence {∂∗i E}i∈N. This choice
is completely arbitrary and, as we will see in the sequel (cf. Theorem 6.15), if we change the
defining sequence, then the reduced boundary can change, but only up to an ‖E‖-negligible
set, where ‖E‖ is the perimetermeasure that will be defined later. Thus, the reduced boundary
is well-defined up to ‖E‖-negligible sets.

Notice that, for every η ∈ ϒ(Bc
r ) it holds

(∂∗r E)η,r = ∂∗ϒ(Br )Eη,r . (6.6)

Lemma 6.8 If E is a Borel subset of ϒ(Rn), then ∂∗r E and ∂∗E are Borel.

Proof Since ∂∗E = lim infr→∞ ∂∗r E , it suffices to show the Borel measurability of ∂∗r E for
every r > 0.

Step 1:We prove the following statement: for every k ∈ N and s > 0 the function

{γ ∈ ϒ(Rn) : γ (Br ) = k} � γ �→
πk
Br

(Bks (γ |Br ) ∩ Ek
γ |Bcr ,r )

πk
Br

(Bks (γ |Br ))
(6.7)

is Borel.
Since the Borel measurability of the map γ �→ πk

Br
(Bks (γ |Br )) is easy, we only give a

proof of the Borel measurability of the map γ �→ πk
Br

(Bks (γ |Br ) ∩ Ek
γ |Bcr ,r ).

Let us identify {γ ∈ ϒ(Rn) : γ (Br ) = k}  ϒk(Br )×ϒ(Bc
r ). It allows us to introduce

the product topology τp on {γ ∈ ϒ(Rn) : γ (Br ) = k}, that is coarser than the vague topology
τv as a consequence of the following observation: since Bc

r is open, the vague topology τv on
ϒ(Bc

r ) coincides with the relative topology induced by ϒ(Rn). Thus, it suffices to see that
the vague topology on ϒ(Br ) is coarser than the relative topology induced by ϒ(Rn). For
this purpose, we only need to show that, for any φ ∈ Cc(Br ) (note that φ does not necessarily
vanish at the boundary of Br ), there exists an extension φ̃ ∈ Cc(R

n) so that φ̃ = φ on Br .
Given φ ∈ Cc(Br ), we take� ∈ C(Rn)which is the extension of φ to R

n given by the Tietze
extension theorem. Let us now pick κ ∈ Cc(R

n) such that κ = 1 on Br and κ = 0 on Bc
2r .

Then, it holds φ̃ := κ� ∈ Cc(R
n) and φ̃ = φ in Br , which concludes the sought statement.
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By the inclusion τp ⊂ τv of the topologies, we have the inclusion of the corresponding
Borel σ -algebras B(τp) ⊂ B(τv). Since the map

ϒk(Br )× ϒk(Br )× ϒ(Bc
r ) � (γ1, γ2, η) → χE (γ1 + η)χBks (γ2)

(γ1) , (6.8)

is B(τp)-measurable, it is also B(τv)-measurable. Hence, Fubini’s theorem gives that

ϒk(Br )× ϒ(Bc
r ) � (γ2, η) →

∫
ϒk (Br )

χE (γ1 + η)χBks (γ2)
(γ1)dπk

Br (γ1)

= πk
Br (B

k
s (γ2|Br ) ∩ Ek

η,r ) , (6.9)

is B(τv)-measurable as well.
Step 2: Fix k ∈ N and set

Ak,r
1 :=

⎧⎨
⎩γ ∈ ϒ(Rn) : lim sup

s→0

πk
Br

(Bks (γ |Br ) ∩ Ek
γ |Bcr ,r )

πk
Br

(Bs(γ |Br ))
> 0

⎫⎬
⎭ ,

Ak,r
2 :=

⎧⎨
⎩γ ∈ ϒ(Rn) : lim sup

j→∞

πk
Br

(Bk
2− j (γ |Br ) ∩ Ek

γ |Bcr ,r )

πk
Br

(Bk
2− j (γ |Br ))

> 0

⎫⎬
⎭ .

Then Ak,r
1 = Ak,r

2 .

Observe that Ak,r
2 ⊂ Ak,r

1 . The converse inequality follows from the followingobservation.
If 2− j ≤ s ≤ 2− j+1 then

πk
Br

(Bks (γ |Br ) ∩ Ek
γ |Bcr ,r )

πk
Br

(Bks (γ |Br ))
≥

πk
Br

(Bk
2− j (γ |Br ) ∩ Ek

γ |Bcr ,r )

πk
Br

(Bk
2− j (γ |Br ))

πk
Br

(Bk
2− j (γ |Br ))

πk
Br

(Bks (γ |Br ))

≥ C(k, n)

πk
Br

(Bk
2− j (γ |Br ) ∩ Ek

γ |Bcr ,r )

πk
Br

(Bk
2− j (γ |Br ))

,

where we used the estimate C(n, k)−1e−Ln(Br )snk ≤ πk
Br

(Bks (γ )) ≤ C(n, k)e−Ln(Br )snk for
any s < r/5, γ ∈ ϒ(Br ) and some constant C(n, k) ≥ 1 depending only on n and k. Indeed,
the latter estimate can be obtained by the following observation: letting γ = {x1, . . . , xk},
we have

B×kr ∩ s−1k (Bks (γ )) = B×kr ∩
⋃

σk∈Sk

Bs(xσk ) ,

hence

πk
Br (B

k
s (γ )) = e−Ln(Br )

k! Lkn(B×kr ∩ s−1k (Bks (γ ))) ≤ e−Ln(Br )C(n, k)snk ,

recall that Ln denotes the n-dimensional Lebesgue measure. The opposite inequality follows
from

πk
Br (B

k
s (γ )) = e−Ln(Br )

k! Lkn(B×kr ∩ s−1k (Bks (γ )))

≥ e−Ln(Br )

k! Lkn(B×kr ∩ Bs(xσk )) ≥ e−Ln(Br )C(n, k)snk .
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Step 3: We conclude the proof. Thanks to Step 1 and Step 2 we know that Ak,r
1 is Borel

for every k ∈ N and r > 0. The same arguments as in Step 1 and Step 2 apply to the Borel
measurability for the following set:⎧⎨

⎩γ ∈ ϒ(Rn) : lim sup
s→0

πk
Br

(Bks (γ |Br ) \ Ek
r ,γ |Bcr

)

πk
Br

(Bks (γ |Br ))
> 0

⎫⎬
⎭ , (6.10)

hence, ∂∗r E is a Borel set. ��

6.3 Perimeter measures

In this subsection, based on the variational approach,we introduce the perimetermeasure ‖E‖
for a set E ⊂ ϒ(Rn) satisfying V(χE ) < ∞. In order to construct ‖E‖, we first introduce a
localised perimeter measure ‖E‖r onϒ(Rn), and show themonotonicity of ‖E‖r as r →∞.

Definition 6.9 For every Borel set E ⊂ ϒ(Rn) with Vr (χE ) <∞, we define

‖E‖r := ρ1
ϒ(Br )|(∂∗r E)η,r ⊗ πBc

r
(η) on ϒ(Rn) , (6.11)

which is equivalently defines as follows: for every bounded Borel measurable function F on
ϒ(Rn),

∫
ϒ(Rn)

Fd‖E‖r :=
∫

ϒ(Bc
r )

(∫
ϒ(Br )

Fη,r dρ1
ϒ(Br )|∂∗ϒ(Br )

Eη,r

)
dπBc

r
(η). (6.12)

Lemma 6.10 Let r > 0. For every Borel set E ⊂ ϒ(Rn) with V(χE ) < ∞, ‖E‖r is a
well-defined finite Borel measure.

Proof Let us first show that ‖E‖r is well-defined. The map γ �→ Fη,r (γ ) is ρ1
ϒ(Br )

|∂∗Eη,r -
measurable by Lemma 3.1. On account of the definition (6.12), we only need to show that
the map

ϒ(Bc
r ) � η →

∫
ϒ(Br )

Fη,r dρ1
ϒ(Br )|∂∗ϒ(Br )

Eη,r , (6.13)

is πBc
r
-measurable for any Borel function F : ϒ(Rn) → R. To show it, we use (6.6) and

rewrite∫
∂∗
ϒ(Br )

Eη,r

Fη,r dρ1
ϒ(Br ) =

∫
(∂∗r E)η,r

Fη,r dρ1
ϒ(Br ) =

∫
ϒ(Br )

(χ∂∗r E F)η,r dρ1
ϒ(Br ) .

Now, the claimed conclusion follows from Lemma 6.5 by observing that χ∂∗r E F is a Borel
function.

The finiteness of the measure ‖E‖r is immediate by Propositions 6.3 and 5.5, indeed

‖E‖r (ϒ(Rn)) =
∫

ϒ(Bc
r )

Vϒ(Br )((χE )η,r )dπBc
r
(η) = Vr (χE ) ≤ V(χE ) <∞. ��

Lemma 6.11 Let r > 0. For every Borel set E ⊂ ϒ(Rn) with Vr (χE ) < ∞, there exists a
vector field σE,r : ϒ(Rn) → Tϒ(Rn) such that

(i) σE,r (γ ) ∈ Tγ ϒ(Rn) satisfies σE,r (γ, x) = 0 for x ∈ Bc
r ;

(ii) |σE,r |Tϒ = 1, ‖E‖r -a.e.;
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(iii) for every V ∈ CylVr∗(ϒ(Rn)),∫
E
(∇∗V )dπ =

∫
ϒ(Rn)

〈V , σE,r 〉Tϒd‖E‖r . (6.14)

(iv) Vr (χE ) = ‖E‖r (ϒ(Rn)), and for every non-negative function F ∈ CylF(ϒ(Rn)) it
holds∫

ϒ(Rn)

Fd‖E‖r = sup

{∫
E
(∇∗FV )dπ : V ∈ CylVr∗(ϒ(Rn)), |V |Tϒ ≤ 1

}
.

(6.15)

Proof By Proposition 5.5, there exists a measurable set �r ⊂ ϒ(Bc
r ) so that πBc

r
(�r ) = 1

and Vϒ(Br )(χEη,r ) <∞ for every η ∈ �r . By Proposition 6.3, for every η ∈ �r , there exists
a unique Tϒ(Br )-valued Borel measurable map ση,r on ϒ(Br ) so that |ση,r |Tϒ(Br ) = 1
ρ1

ϒ(Br )
|∂∗Eη,r -a.e., and∫

Eη,r

(∇∗Vη,r )dπBr =
∫

∂∗
ϒ(Br )

Eη,r

〈Vη,r , ση,r 〉Tϒ(Br )dρ1
ϒ(Br ), V ∈ CylVr∗(ϒ(Rn)) ,

(6.16)

where we used Vη,r ∈ CylV∗(ϒ(Br )) whenever V ∈ CylVr∗(ϒ(Rn)). By taking the integral
with respect to πBc

r
, and arguing as in (4.9) we obtain

∫
E
(∇∗V )dπ =

∫
ϒ(Bc

r )

∫
Eη,r

(∇∗r Vη,r )dπBr dπBc
r
(η)

=
∫

ϒ(Bc
r )

∫
∂∗
ϒ(Br )

Eη,r

〈Vη,r , ση,r 〉Tϒ(Br )dρ1
ϒ(Br )dπBc

r
(η) . (6.17)

Note that the map η �→ ∫
∂∗
ϒ(Br )

Eη,r
〈Vη,r , ση,r 〉Tϒ(Br )dρ1

ϒ(Br )
is πBc

r
-measurable since, in

view of (6.16), it is equal to a πBc
r
-measurable function, and therefore, the argument (6.17)

is justified. For γ ∈ ϒ(Rn) we define

σE,r (γ ) :=
{

σγ |Bcr ,r (γ |Br ) if γ |Bc
r
∈ �r ,

σr (γ ) = 0 otherwise .
(6.18)

Let us now observe that, for any V ∈ CylV(ϒ(Rn)), we have

(〈V , σE,r 〉Tϒ(Rn))η,r = 〈Vη,r , ση,r 〉Tϒ(Br ) . (6.19)

By combining the definition (6.11) of ‖E‖r with (6.17), (6.18) and (6.19), we deduce the
assertion (iii).

The assertion (i) follows from the definition (6.18), and the assertion (ii) follows from

(|σE,r |Tϒ(Rn))η,r = |ση,r | = 1, ρ1
ϒ(Br )|∂∗Eη,r -a.e..

We now prove (iv). We first prove the equality Vr (χE ) = ‖E‖r (ϒ(Rn)). From (iii) and
(ii) we deduce

Vr (χE ) = sup

{∫
ϒ(Rn)

(∇∗V ) f dπ : V ∈ CylVr (ϒ(Rn)), |V |Tϒ(Rn) ≤ 1

}

= sup

{∫
ϒ(Rn)

〈V , σE,r 〉Tϒd‖E‖r : V ∈ CylVr (ϒ(Rn)), |V |Tϒ(Rn) ≤ 1

}
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≤ ‖E‖r (ϒ(Rn)) .

Furthermore, Proposition 5.5 and Lemma 6.3 imply

Vr (χE ) ≥
∫

ϒ(Bc
r )

Vϒ(Br )((χE )η,r )dπBc
r
(η)

=
∫

ϒ(Bc
r )

ρ1
ϒ(Br )(∂

∗
ϒ(Br )Eη,r )dπBc

r
(η) = ‖E‖r (ϒ(Rn)) . (6.20)

Thus, the proof of the equality Vr (χE ) = ‖E‖r (ϒ(Rn)) is complete.
Let us finally address (6.15). From the equality Vr (χE ) = ‖E‖r (ϒ(Rn)), we deduce the

existence of a sequence Vk ∈ CylVr∗(ϒ(Rn)) such that |Vk |Tϒ ≤ 1, and

lim
k→∞

∫
ϒ(Rn)

〈Vk, σE,r 〉Tϒd‖E‖r =
∫

ϒ(Rn)

d‖E‖r ,

hence,

lim
k→∞

∫
ϒ(Rn )

|Vk − σE,r |2Tϒd‖E‖r = lim
k→∞

∫
ϒ(Rn )

(|Vk |2Tϒ + |σE,r |2Tϒ − 2〈Vk , σE,r 〉Tϒ)d‖E‖r

≤ lim
k→∞ 2

∫
ϒ(Rn )

(1− 〈Vk , σE,r 〉Tϒ)d‖E‖r = 0 .

Therefore, for every F ∈ CylF(ϒ)

lim
k→∞

∫
ϒ(Rn)

F〈Vk, σE,r 〉Tϒd‖E‖r =
∫

ϒ(Rn)

F d‖E‖r ,

in particular, by making use of (6.14) with V = FVk , it holds that∫
ϒ(Rn)

F d‖E‖r ≤ sup

{∫
E
(∇∗FV )dπ : V ∈ CylVr∗(ϒ(Rn)), |V |Tϒ ≤ 1

}
. (6.21)

The converse inequality follows form |σE,r |Tϒ = 1 ‖E‖r -a.e. and the fact that F is non-
negative: ∫

E
(∇∗FV )dπ =

∫
ϒ(Rn)

F〈Vk, σE,r 〉Tϒd‖E‖r

≤
∫

ϒ(Rn)

|F |d‖E‖r =
∫

ϒ(Rn)

Fd‖E‖r . (6.22)

��
Corollary 6.12 If V(χE ) < ∞, then r �→ ‖E‖r (A) is monotone non-decreasing for every
Borel measurable set A.

Proof In view of the density of cylinder functions on L2(ϒ(Rn), π) it is enough to check
that

r →
∫

ϒ(Rn)

Fd‖E‖r is non-decreasing ,

for every non-negative F ∈ CylF(ϒ(Rn)), which easily follows from (6.15) and the inclusion
CylVs∗(ϒ(Rn)) ⊂ CylVr∗(ϒ(Rn)) for s ≤ r . ��

By the monotonicity of r �→ ‖E‖r in Corollary 6.12, we may define the limit measure as
follows:
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Definition 6.13 (Perimeter measure) Given E ⊂ ϒ(Rn) with V(χE ) < ∞, we define the
perimeter measure as

‖E‖(A) := lim
r→∞‖E‖r (A) for every Borel set A . (6.23)

We finally obtain the Gauß–Green formula for the perimeter measure ‖E‖. For a Borel
set E ⊂ ϒ(Rn) with V(χE ) < ∞, let L2(Tϒ, ‖E‖) be the completion of CylV(ϒ) with
respect to ‖ · ‖L2(Tϒ,‖E‖) analogously in (2.10).

Theorem 6.14 (Gauß–Green formula for ‖E‖)For a Borel set E ⊂ ϒ(Rn)withV(χE ) < ∞,
there exists a unique element σE ∈ L2(Tϒ, ‖E‖) such that |σE |Tϒ = 1 ‖E‖-a.e. and∫

E
∇∗Vdπ =

∫
ϒ(Rn)

〈V , σE 〉Tϒd‖E‖ V ∈ CylV(ϒ(Rn)). (6.24)

Proof Note that, for any V ∈ CylV(ϒ(Rn)), there exists r > 0 so that V ∈ CylVr∗(ϒ(Rn)).
Thus, by (iii) in Lemma 6.11, for any V ∈ CylV(ϒ(Rn)), there exists r > 0 and σE,r :
ϒ(Rn)→ Tϒ so that |σE,r | = 1 ‖E‖-a.e., and∫

E
∇∗Vdπ =

∫
ϒ(Rn)

〈V , σE,r 〉Tϒd‖E‖r
≤ ‖E‖(ϒ(Rn))1/2‖V ‖L2(Tϒ,‖E‖r )
≤ ‖E‖(ϒ(Rn))1/2‖V ‖L2(Tϒ,‖E‖).

The last inequality followed from the monotonicity in Corollary 6.12.
In particular, the linear operator L defined as

L : L2(Tϒ(Rn), ‖E‖)→ R , L2(Tϒ(Rn), ‖E‖) � V �→ L(V ) :=
∫
E
∇∗Vdπ ,

(6.25)

is a well-defined continuous operator on the Hilbert space L2(Tϒ(Rn), ‖E‖) and satisfies
‖L‖ ≤ ‖E‖(ϒ(Rn))1/2. Therefore, the Riesz representation theorem in the Hilbert space
L2(Tϒ(Rn), ‖E‖) gives the existence of σE ∈ L2(Tϒ(Rn), ‖E‖) so that

‖σE‖L2(Tϒ,‖E‖) ≤ ‖E‖(ϒ(Rn))1/2 ,∫
E
∇∗Vdπ =

∫
ϒ(Rn)

〈V , σ 〉d‖E‖ V ∈ CylV(ϒ(Rn)) .

It suffices to show that |σ |Tϒ = 1 ‖E‖-a.e. By (iv) in Lemma 6.11 and Corollary 6.12, we
deduce that

‖E‖(ϒ(Rn)) = lim
r→∞‖E‖r (ϒ(Rn)) = lim

r→∞Vr (χE )

= lim
r→∞ sup

V∈CylVr
r (ϒ(Rn)) ,|V |Tϒ≤1

∫
E
∇∗Vdπ

≤
∫

ϒ(Rn)

|σ |Tϒd‖E‖ ≤ ‖E‖(ϒ(Rn))1/2‖σ‖L2(Tϒ,‖E‖)

≤ ‖E‖(ϒ(Rn)) ,

which yields |σ |Tϒ = 1 ‖E‖-a.e. as a consequence of the characterisation of the equality
for the Hölder inequality. ��
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6.4 Perimeters and one-codimensional Poissonmeasures

In this subsection, we prove one of the main results in this paper. Namely, the perime-
ter measure ‖E‖ based on the variational approach (Definition 6.13) coincides with the
1-codimensinal Poisson measure ρ1 (Definition 3.8) restricted to the reduced boundary ∂∗E
of E (Definition 6.6).

Theorem 6.15 Let E ⊂ ϒ(Rn) be a set with V(χE ) <∞. Then,

‖E‖ = ρ1|∂∗E .

Before giving the proof, we prove a lemma.

Lemma 6.16 Let E ⊂ ϒ(Rn) be a set with V(χE ) <∞. Then, for any r > 0, ε > 0, it holds

(∂∗r E)η,r ⊂ (∂∗r+εE)η,r up to ρ1
ϒ(Br )-negligible sets forπBc

r
-a.e. η. (6.26)

Namely, there exists a measurable set �r ,ε ⊂ ϒ(Rn) so that πBc
r
(�r ,ε) = 1 and for any

η ∈ �r ,ε, it holds that

ρ1
ϒ(Br )

(
(∂∗r E)η,r \ ∂∗r+εE)η,r

)
= 0 . (6.27)

Proof By (6.6) and the definition (6.11) of the perimeter measure ‖E‖r , we see that

∞ > ‖E‖(A) ≥ ‖E‖r+ε(A) =
∫

ϒ(Bc
r+ε)

ρ1
ϒ(Br+ε)

(∂∗ϒ(Br+ε)
Eη,r+ε ∩ Aη,r+ε)dπBc

r+ε
(η)

=
∫

ϒ(Bc
r+ε)

ρ1
ϒ(Br+ε)

(
(∂∗r+εE)η,r+ε ∩ Aη,r+ε

)
dπBc

r+ε
(η)

=
∫

ϒ(Bc
r+ε)

ρ1
ϒ(Br+ε)

(
(∂∗r+εE ∩ A)η,r+ε

)
dπBc

r+ε
(η) . (6.28)

By the monotonicity ‖E‖r+ε(A) ≥ ‖E‖r (A) in Corollary 6.12, we obtain that∫
ϒ(Bc

r+ε)

ρ1
ϒ(Br+ε)

(
(∂∗r+εE ∩ A)η,r+ε

)
dπBc

r+ε
(η) ≥

∫
ϒ(Bc

r )

ρ1
ϒ(Br )

(
(∂∗r E ∩ A)η,r

)
dπBc

r
(η).

Taking A = ϒ(Rn) \ ∂∗r+εE , we have that

0 =
∫

ϒ(Bc
r+ε)

ρ1
ϒ(Br+ε)

(
(∂∗r+εE ∩ A)η,r+ε

)
dπBc

r+ε
(η)

≥
∫

ϒ(Bc
r )

ρ1
ϒ(Br )

(
(∂∗r E ∩ A)η,r

)
dπBc

r
(η) .

Thus, ρ1
ϒ(Br )

(
(∂∗r E ∩ A)η,r

) = 0 for πBc
r
-a.e. η, which implies that

(
∂∗r E ∩ (ϒ(Rn) \ ∂∗r+εE)

)
η,r = (∂∗r E)η,r \

(
(∂∗r+εE)η,r ∩ (∂∗r E)η,r

)

is ρ1
ϒ(Br )

-negligible for πBc
r
-a.e. η. ��

Proof of Theorem 6.15 Fix r > 0 and η ∈ ϒ(Bc
r ). It holds

(∂∗E)η,r :=
⎛
⎝⋃

i>0

⋂
j>i

∂∗j E

⎞
⎠

η,r

=
⋃
i>0

⋂
j>i

(∂∗j E)η,r . (6.29)
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The monotonicity formula (6.27) in Lemma 6.16 gives the existence of �r , j ⊂ ϒ(Rn) so
that πBc

r
(�r , j ) = 1, and for any η ∈ �r , j

(∂∗r E)η,r ⊂ (∂∗j E)η,r j ≥ r up to a ρ1
ϒ(Br )-negligible set .

Take �r = ∩ j≥r , j∈N�r , j . Then πBc
r
(�r ) = 1, and by using (6.6), we obtain that for any

η ∈ �r ,

∂∗ϒ(Br )Eη,r = (∂∗r E)η,r ⊂ (∂∗E)η,r up to a ρ1
ϒ(Br )-negligible set .

This implies that for any Borel set A ⊂ ϒ(Rn),

ρ1
ϒ(Br )(∂

∗
ϒ(Br )Eη,r ∩ Aη,r ) ≤ ρ1

ϒ(Br )((∂
∗E ∩ A)η,r ), η ∈ �r .

Thus, by noting that πBc
r
(�r ) = 1 and recalling Definitions 6.13 and 3.8, we obtain

‖E‖(A) := lim
r→∞‖E‖r (A)

= lim
r→∞

∫
ϒ(Bc

r )

ρ1
ϒ(Br )(∂

∗
ϒ(Br )Eη,r ∩ Aη,r )dπBc

r
(η)

≤ lim
r→∞

∫
ϒ(Bc

r )

ρ1
ϒ(Br )((∂

∗E ∩ A)η,r )dπBc
r
(η)

= ρ1(A ∩ ∂∗E) .

In order to conclude the proof, it is enough to check that

‖E‖(ϒ(Rn)) ≥ ρ1(∂∗E) . (6.30)

Indeed, given any Borel set A, bymaking use of the already proven inequality ‖E‖ ≤ ρ1|∂∗E ,
we obtain

‖E‖(ϒ(Rn)) = ‖E‖(A)+ ‖E‖(Ac) ≤ ρ1(A ∩ ∂∗E)+ ρ1(Ac ∩ ∂∗E)

= ρ1(∂∗E) ≤ ‖E‖(ϒ(Rn)) .

Thus, ‖E‖(A) + ‖E‖(Ac) = ρ1(A ∩ ∂∗E) + ρ1(Ac ∩ ∂∗E) for any Borel set A. Assume
that there exists a Borel set A so that ‖E‖(A) < ρ1(A ∩ ∂∗E). Since ‖E‖ ≤ ρ1(· ∩ ∂∗E), it
implies

‖E‖(A)+ ‖E‖(Ac) < ρ1(A ∩ ∂∗E)+ ρ1(Ac ∩ ∂∗E),

which is a contradiction.
We now prove (6.30). Let s < r . By recalling Definitions 6.9, 3.5 of ‖E‖r and ρ1

r
respectively and using the monotonicity of ρ1

r in Theorem 3.7, we have

‖E‖r (ϒ(Rn)) =
∫

ϒ(Bc
r )

ρ1
ϒ(Br )((∂

∗
r E)η,r )dπBc

r
(η) = ρ1

r (∂
∗
r E) ≥ ρ1

s (∂
∗
r E) ,

hence

‖E‖(ϒ(Rn)) = lim
i→∞‖E‖i (ϒ(Rn)) ≥ lim inf

i→∞ ρ1
s (∂

∗
i E) ≥ ρ1

s (lim inf
i→∞ ∂∗i E) = ρs(∂

∗E) .

Passing to the limit s →∞, we conclude (6.30). ��
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7 Total variation and Gauß–Green formula

In this section, we prove a relation between the coarea with respect to the perimeter measure
‖E‖ and the variation |D∗F | obtained via relaxation of Cylinder functions. As an application,
we introduce the total variationmeasure |DF | for BV functions F , and prove theGauß–Green
formula.

7.1 Total variationmeasures via coarea formula

Recall that, for F ∈ BV(ϒ(Rn)), the map CylF(ϒ(Rn)) � G �→ |D∗F |[G] is defined by
the relaxation approach in Definition 5.7. The main result of this subsection is the following
formula:

Theorem 7.1 Let F ∈ L2(ϒ(Rn), π) ∩ BV(ϒ(Rn)). Then,

V(χ{F>t}) <∞ a.e. t ∈ R, (7.1)

and the following formula holds:∫ ∞

−∞

(∫
ϒ(Rn)

Gd
∥∥{F > t}∥∥

)
dt = |D∗F |[G], for any non-negative G ∈ CylF(ϒ(Rn)) .

(7.2)

The proof of Theorem 7.1 will be given later in this section. Before discussing the proof,
we study several consequences of Theorem 7.1. By (7.1), the left-hand side of (7.2) makes
sense with G ≡ 1 since the right-hand side |D∗F |[1] < ∞ is finite due to F ∈ BV(ϒ(Rn))

and Theorem 5.18. This leads us to provide the following definition of the total variation
measure.

Definition 7.2 (Total variation measure) For F ∈ L2(ϒ(Rn), π) ∩ BV(ϒ(Rn)), define the
total variation measure |DF | as follows:

|DF | :=
∫ ∞

−∞
∥∥{F > t}∥∥dt . (7.3)

We now investigate relations between the total variation measure |DχE | and the perimeter
measure ‖E‖ defined in Definition 6.13 and the (1, 2)-capacity Cap1,2 defined in Defini-
tion 4.2.

Corollary 7.3 (Total variation and perimeters) Let E ⊂ ϒ(Rn) satisfy |DχE |(ϒ(Rn)) < ∞.
Then,

|DχE | = ‖E‖ as measures .

Proof By Theorem 5.18, V(χE ) < ∞ and ‖E‖ is well-defined. Noting that

{χE > t} =

⎧⎪⎨
⎪⎩

ϒ(Rn) t ≤ 0;
E 0 < t ≤ 1;
∅ t > 1,

and ‖ϒ(Rn)‖ = 0 and ‖∅‖ = 0, we obtain that

|DχE |(A) =
∫ ∞

−∞
∥∥{χE > t}∥∥(A)dt = 0+ ‖E‖(A)+ 0 = ‖E‖(A) for every Borel set A .��
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Corollary 7.4 (Total variation and capacity) Let F ∈ L2(ϒ(Rn), π) ∩ BV(ϒ(Rn)). For any
Borel set A ⊂ ϒ(Rn),

Cap1,2(A) = 0 �⇒ |DF |(A) = 0.

Proof Let Cap1,2(A) = 0. By Theorems 7.1 and 6.15, we can write

|DF |(A) =
∫ ∞

−∞
‖{F > t}‖(A)dt =

∫ ∞

−∞
ρ1(∂∗{F > t} ∩ A)dt , (7.4)

hence it suffices to show that ρ1(∂∗{F > t} ∩ A) = 0. This follows from the absolute
continuity of ρ1 with respect to Cap1,2 obtained in Theorem 4.3. ��

7.2 Proof of Theorem 7.1

This subsection is devoted to the proof of Theorem 7.1. Let us begin with two propositions.

Proposition 7.5 Let E ⊂ ϒ(Rn) be a set with V(χE ) < ∞. Then, for every non-negative
function G ∈ CylF(ϒ(Rn)) it holds

∫
ϒ(Rn)

Gd‖E‖ = sup

{∫
E
(∇∗GV )dπ : V ∈ CylV(ϒ(Rn)), |V |Tϒ ≤ 1

}
. (7.5)

In particular, the following hold:

(i) if Fk ∈ CylF(ϒ(Rn)), and Fk → χE in L1(ϒ(Rn), π) as k →∞, then

lim inf
k→∞

∫
ϒ(Rn)

G|∇Fk |Tϒdπ ≥
∫

ϒ(Rn)

Gd‖E‖ , for non-negative G ∈ CylF(ϒ(Rn)) ;

(ii) if χEk → χE in L1(ϒ(Rn), π) as k →∞, where (Ek)k are sets of finite perimeter, then

lim inf
k→∞

∫
ϒ(Rn)

Gd‖Ek‖ ≥
∫

ϒ(Rn)

Fd‖E‖ , for non-negative G ∈ CylF(ϒ(Rn)) .

Proof Fix ε > 0.We pick r > 0 such that
∫
ϒ(Rn)

Gd‖E‖r ≥
∫
ϒ(Rn)

Gd‖E‖−ε. From (6.15)
we deduce the existence of V ∈ CylVr∗(ϒ(Rn)) with |V |Tϒ ≤ 1 such that

∫
E (∇∗GV )dπ ≥∫

ϒ(Rn)
Gd‖E‖r − ε, yielding

∫
ϒ(Rn)

Gd‖E‖ ≤
∫
E
(∇∗GV )dπ + 2ε

≤ sup

{∫
E
(∇∗GV )dπ : V ∈ CylV(ϒ(Rn)), |V |Tϒ ≤ 1

}
+ 2ε .

By taking ε → 0, the one inequality is proved.
We now prove the converse inequality. Take a representative G = �( f ∗1 , . . . , f ∗k ) and

take r > 0 so that ∪ki=1supp[ fi ] ⊂ Br . By the divergence formula (2.14), we can easily see

sup

{∫
E
(∇∗GV )dπ : V ∈ CylVr∗(ϒ(Rn)), |V |Tϒ ≤ 1

}

= sup

{∫
E
(∇∗GV )dπ : V ∈ CylV(ϒ(Rn)), |V |Tϒ ≤ 1

}
.
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By combining itwith the formula (6.15) and themonotonicity of r �→ ‖E‖r inCorollary 6.12,
the converse inequality is proved.

Let us now prove (i) and (ii). Fix ε > 0. By Theorem 6.14, we can take V ∈ CylV(ϒ(Rn))

such that |V |Tϒ ≤ 1 and
∫
E
(∇∗GV )dπ ≥

∫
ϒ(Rn)

Gd‖E‖ − ε .

Let k j be a subsequence such that lim j→∞
∫
ϒ(Rn)

G|∇Fk j |Tϒdπ = lim infk→∞
∫
ϒ(Rn)

G|∇Fk |Tϒdπ , it holds
∫

ϒ(Rn)

Gd‖E‖ − ε ≤
∫
E
(∇∗GV )dπ = lim

j→∞

∫
ϒ(Rn)

Fk j (∇∗GV )dπ

= lim
j→∞

∫
ϒ(Rn)

G〈∇Fk j , V 〉Tϒdπ

≤ lim inf
k→∞

∫
ϒ(Rn)

G|∇Fk |Tϒdπ .

Furthermore, by using Theorem 6.14 with V being GV , we deduce that
∫

ϒ(Rn)

Gd‖E‖ − ε ≤
∫
E
(∇∗GV )dπ = lim

j→∞

∫
Ek j

(∇∗GV )dπ

= lim
j→∞

∫
ϒ(Rn)

G〈V , σEk j
〉Tϒd‖Ek j ‖

≤ lim inf
k→∞

∫
ϒ(Rn)

Gd‖Ek j ‖ .��

Proposition 7.6 For any F ∈ CylF(ϒ(Rn)) it holds
∫ ∞

−∞

∫
ϒ(Rn)

G d
∥∥{F > t}∥∥dt

=
∫

ϒ(Rn)

G |∇F |Tϒdπ , for non-negative G ∈ CylF(ϒ(Rn)) . (7.6)

Proof The map

R � t → m(t) :=
∫
{F>t}

G|∇F |Tϒdπ (7.7)

is monotone and finite since |∇F |Tϒ ∈ L1(ϒ(Rn)). Let t ∈ R be a point on which the map
t �→ m(t) is differentiable and set

gε(s) :=

⎧⎪⎨
⎪⎩
1 s ≤ t

ε−1(t − s)+ 1 t ≤ s ≤ t + ε

0 s > t + ε .

(7.8)

Notice that gε ◦ F → χ{F>t} in L p(ϒ(Rn)) for any p ∈ [1,∞) as ε → 0. Indeed,
∫

ϒ(Rn)

|gε ◦ F − χ{F>t}|pdπ ≤ 2pπ({t ≤ F ≤ t + ε}) → 0, as ε → 0 . (7.9)
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Standard calculus rules give∫
ϒ(Rn)

G|∇(gε ◦ F)|Tϒdπ ≤ ε−1
∫
{t<F≤t+ε}

G|∇F |Tϒdπ ≤ m(t + ε)− m(t)

ε
,(7.10)

while (7.5) in Proposition 7.5 implies∫
ϒ(Rn)

G d‖{F > t}‖ ≤ lim inf
ε→0

∫
ϒ(Rn)

G|∇(gε ◦ F)|Tϒdπ = m′(t) . (7.11)

Since m is differentiable for a.e. t ∈ R, the one inequality comes by integrating (7.11).
Let us prove the converse inequality. Let V ∈ CylV(ϒ(Rn)) such that |V |Tϒ ≤ 1. Then,

by Theorem 6.14, we deduce∫
ϒ(Rn)

F(G∇∗V )dπ =
∫ ∞

−∞

∫
{F>t}

(G∇∗V )dπdt

≤
∫ ∞

−∞

∫
ϒ(Rn)

Gd‖{F > t}‖dt ,

which easily yields the sought conclusion. ��
Proof of Theorem 7.1 Let F ∈ L2(ϒ(Rn), π) such that |DF |(ϒ(Rn)) < ∞ and G ∈
CylF(ϒ(Rn)) be non-negative. By definition there exists a sequence (Fn) ⊂ CylF(ϒ) such
that Fn → F in L1(ϒ(Rn), π) and

∫
ϒ(Rn)

G|∇Fn |Tϒdπ → |D∗F |[G]. From Proposi-
tion 7.6 we get ∫ ∞

−∞

∫
ϒ(Rn)

Gd‖{Fn > t}‖dt =
∫

ϒ(Rn)

G|∇Fn |Tϒdπ , (7.12)

and passing to the limit for n →∞ we deduce∫ ∞

−∞

∫
ϒ(Rn)

Gd‖{F > t}‖dt ≤ |D∗F |[G] , (7.13)

as a consequence of (ii) in Proposition 7.5 and Fatou’s Lemma. In particular {F > t} is of
finite perimeter for a.e.-t ∈ R.

Let us nowfix ε > 0 and considerV ∈ CylV(ϒ(Rn)) such that |V |Tϒ ≤ 1 andV(F)−ε ≤∫
ϒ(Rn)

F(∇∗V )dπ . By Theorem 6.14, we have

|D∗F |(ϒ(Rn))− ε = V(F)− ε ≤
∫

ϒ(Rn)

F(∇∗V )dπ =
∫ ∞

−∞

∫
{F>t}

(∇∗V )dπdt

≤
∫ ∞

−∞

∫
ϒ(Rn)

d‖{F > t}‖dt ,

which easily yields∫ ∞

−∞

∫
ϒ(Rn)

d‖{F > t}‖dt ≥ |D∗F |(ϒ(Rn)) = |D∗F |[1] .

The sought conclusion follows now by recalling that |D∗F |[G1 + G2] ≥ |D∗F |[G1] +
|D∗F |[G2] and by the same argument in the paragraph after (6.30). Indeed,

|D∗F |[G] + |D∗F |[1− G] ≤ |D∗F |[1] ≤
∫ ∞

−∞

∫
ϒ(Rn )

d‖{F > t}‖dt

=
∫ ∞

−∞

∫
ϒ(Rn )

Gd‖{F > t}‖dt +
∫ ∞

−∞

∫
ϒ(Rn )

(1− G)d‖{F > t}‖dt
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≤ |D∗F |[G] + |D∗F |[1− G] ,
for any 0 ≤ G ≤ 1, G ∈ CylF(ϒ(Rn)). ��

7.3 Gauß–Green formula

Weprove theGauß–Green formula. For F ∈ L2(ϒ(Rn), π)∩BV(ϒ(Rn)), let L2(Tϒ, |DF |)
denote the completion of CylV(ϒ) with respect to ‖ · ‖L2(Tϒ,|DF |) analogously in (2.10).

Theorem 7.7 (Gauß–Green formula) For F ∈ L2(ϒ(Rn), π) ∩ BV(ϒ(Rn)), there exists a
unique element σF ∈ L2(Tϒ, |DF |) such that |σF |Tϒ = 1 |DF |-a.e., and∫

ϒ(Rn)

(∇∗V )Fdπ =
∫

ϒ(Rn)

〈V , σF 〉Tϒd|DF |, ∀V ∈ CylV(ϒ(Rn)) . (7.14)

Proof We assume without loss of generality that |DF |(ϒ(Rn)) = 1. By Theorems 6.14 and
7.1, it holds that∫

ϒ(Rn)

(∇∗V )Fdπ =
∫ ∞

−∞

∫
{F>t}

(∇∗V )dπdt

=
∫ ∞

−∞

∫
ϒ(Rn)

〈V , σ{F>t}〉Tϒd
∥∥{F > t}∥∥dt

≤
∫

ϒ(Rn)

|V |Tϒd|DF |
≤ ‖V ‖L2(Tϒ,|DF |),

for every V ∈ CylV(ϒ). In particular, the map L defined by

L : L2(Tϒ, |DF |)→ R , L2(Tϒ, |DF |) � V �→ L(V ) :=
∫

ϒ(Rn)

(∇∗V )Fdπ ,

(7.15)

is a well-defined continuous operator on the Hilbert space L2(Tϒ, |DF |) and satisfies ‖L‖ ≤
1. Therefore, the Riesz representation theorem on the Hilbert space L2(Tϒ, |DF |) gives the
existence of σF ∈ L2(Tϒ, |DF |) so that

‖σF‖L2(Tϒ,|DF |) ≤ 1 ,

∫
ϒ(Rn )

(∇∗V )Fdπ =
∫

ϒ(Rn )

〈V , σF 〉d|DF | V ∈ CylV(ϒ(Rn)) .

From Theorems 5.18 and 7.1, we deduce

1 = |DF |(ϒ(Rn)) = |D∗F |[1] = V(F) = sup
V∈CylV ,|V |Tϒ≤1

∫
ϒ(Rn)

(∇∗V )Fdπ

≤
∫

ϒ(Rn)

|σF |Tϒd|DF | ≤ ‖σF‖L2(Tϒ,|DF |) ≤ 1 ,

which yields ‖σF‖L1(Tϒ,|DF |) = ‖σF‖L2(Tϒ,|DF |) = 1, and therefore |σF |Tϒ = 1 |DF |-a.e.
as a consequence of the characterisation of the equality in Jensen’s inequality. ��

7.4 BV and Sobolev functions

In this subsection, we discuss the consistency of the just developed theory of BV functions
with the (1, 2)-Sobolev space H1,2(ϒ(Rn), π).
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Proposition 7.8 Let F ∈ L2(ϒ(Rn), π) ∩ BV(ϒ(Rn)). Suppose |DF | # π with |DF | =
H · π and H ∈ L2(ϒ(Rn), π). Then F ∈ H1,2(ϒ(Rn), π) and

H = |∇F | , σF = ∇F

|∇F | · χ{|∇F |$=0} ,

where σF is the unique element in L2(Tϒ, |DF |) in the Gauß–Green formula (7.14).

Proof By Theorem 7.7 and recalling Tt V ∈ D(EH ) ⊂ D2(Tϒ(Rn), π) for V ∈
CylV(ϒ(Rn)) by (5.39), the approximation of Tt V by CylV(ϒ(Rn), π) implies that

∫
ϒ(Rn)

(∇∗G)Fdπ =
∫

ϒ(Rn)

〈G, σF 〉Tϒ Fdπ ∀G ∈ TtCylV(ϒ(Rn)) ∀t > 0 , (7.16)

where TtCylV(ϒ(Rn)) := {G = Tt F : F ∈ CylV(ϒ(Rn))} for t > 0. By Lemma 5.20 and
the π-symmetry of Tt , for any U ∈ CylV(ϒ(Rn)), setting G = TtU , we obtain

∫
ϒ(Rn)

〈U ,∇Tt F〉dπ =
∫

ϒ(Rn)

(∇∗U )Tt Fdπ

=
∫

ϒ(Rn)

Tt (∇∗U )Fdπ =
∫

ϒ(Rn)

(∇∗G)Fdπ

=
∫

ϒ(Rn)

〈G, σF 〉Tϒd|DF | =
∫

ϒ(Rn)

〈G, σF 〉Tϒ Hdπ

=
∫

ϒ(Rn)

〈U ,Tt (HσF )〉Tϒdπ .

Thus, Tt (HσF ) = ∇Tt F . Letting t → 0, Tt (HσF ) converges to HσF in L2(Tϒ,π), which
implies that∇Tt F converges to HσF in L2(Tϒ(Rn), π). Since Tt F → F in L2(ϒ(Rn), π),
we conclude that F ∈ H1,2(ϒ(Rn), π), and ∇F = HσF . Therefore, H · π = |DF | =
|∇F | · π , and

σF = ∇F

H
χ{H $=0} = ∇F

|∇F |χ{|∇F |$=0} .��
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