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Abstract

In this paper, we aim to develop the foundations of a theory of BV functions in the config-
uration space over the Euclidean space R” equipped with the Poisson measure 7. We first
construct the m-codimensional Poisson measure—formally written as *“(co—m)-dimensional
Poisson measure”—on the configuration space. We then show that our construction is consis-
tent with potential theory induced by the infinitely many independent Brownian motions by
establishing relations between the m-codimensional Poisson measure and Bessel capacities.
Secondly, we introduce three different definitions of BV functions based on the variational,
relaxation, and semigroup approaches, and prove the equivalence of them. In the process,
we prove the p-Bakry—Emery inequality on the configuration space for any 1 < p < oo.
Thirdly, we construct perimeter measures and introduce an appropriate notion of measure-
theoretic boundary, called the reduced boundary. We then prove that the perimeter measure
can be expressed by the 1-codimensional Poisson measure restricted to the reduced bound-
ary, which is a generalisation of De Giorgi’s identity to the configuration space. Finally,
we construct the total variation measures for functions of bounded variation, and prove the
GauB3—Green formula.
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1 Introduction

The purpose of this paper is to establish the foundations for functions of bounded variations
(BV functions) in the space of all locally finite point measures (without multiplicity) in the
Euclidean space R", denoted by Y (R") and called the configuration space. The space YT (R")
is endowed with the vague topology T, the L>-transportation (extended) distance dy, which
stems from the optimal transport problem, and the Poisson measure = whose intensity mea-
sure is the Lebesgue measure L” on R". The resulting ropological (extended) metric measure
structure (Y (R"), 1y, dv, ) plays a fundamental role to describe dynamical systems of infi-
nite particles stemming from statistical physics, random point processes, random graphs and
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integral geometry, representation theory of diffeomorphism groups on manifolds, and many
others. Instead of giving enormous numbers of related references here, we refer the reader
to [23, Section1.6] for an overview of the aforementioned subjects.

The studies of BV functions and sets of finite perimeter beyond the standard Euclidean
space have seen a thriving development in the last years, see [3-7, 9, 10, 14, 19, 36] and
references therein. However, all of these results do not cover the configuration space Y (R").
The space (Y (R"), t,, dy, ) is known to possesses several pathological properties (see
details in [23]):

e the extended distance d+ is not continuous with respect the topology t;
e dvy-metric balls are negligible with respect to the Poisson measure 7;
e dvy-Lipschitz functions are not necessarily 7 -measurable;

o the Riesz—Markov—Kakutani representation theorem does not hold.

For these reasons, the study of the configuration space (Y (R"), 7y, dv, 7) does not fall into
the standard framework of metric measure geometry. Furthermore, the lack of the Riesz—
Markov—Kakutani’s representation theorem causes further complexity to construct total
variation measures supporting the Gau3—Green formula by means of standard functional-
analytic technique.

In the setting of infinite-dimensional spaces, the study of geometric measure theory has
been pioneered by Feyel and de la Pradelle [28], Fukushima [31], Fukushima and Hino [32]
and Hino [34] in the Wiener space. In [28], they constructed the finite-codimensional Gauf3—
Hausdorff measure in the Wiener space and investigated its relation to capacities. In [31,
32], they developed the theory of functions of bounded variation and constructed perimeter
measures, and prove the Gaul—Green formula. Based on these results, Hino introduced in
[34] a notion of reduced boundary and investigated relations between the one-codimensional
Hausdorff—Gaufl measure and the perimeter measures. Further fine properties were investi-
gated by Ambrosio and Figalli [11], Ambrosio et al. [12, 15-17]. The notion of functions
of bounded variation has been studied also in a Gelfand triple by Rockner et al. [39—41].
All of the aforementioned results rely heavily on the linear structure of the Wiener space or
the Hilbert space, which is used to perform finite-dimensional approximations. However, the
configuration space does not have a linear structure and there is no chance to apply similar
techniques.

1.1 Non-linear dimension reduction and overview of the main results

To overcome the difficulties explained above, we develop a non-linear dimensional reduction
tailored to the configuration space Y (R"). A key observation is that Y (B, ), the configuration
space over the Euclidean closed metric ball B, centred at the origin o with radius r > 0,
is essentially finite dimensional. More precisely, due to the compactness of B, Y (B,) can
be written as the disjoint union Uken YX(B,) of the k-particle configuration spaces Y5(B,),
each of which is isomorphic to the quotient space of the k-product space Ber by the k-th
symmetric group. In light of this observation, the main task is to lift geometric measure theory
on Y (B,) to the infinite-dimensional space Y (R") by finite-dimensional approximations.
In this paper, we first construct the m-codimensional Poisson measure on the configuration
space (Theorem 3.7, Definition 3.8), and study its relation to (1, p)-Bessel capacities (Theo-
rem 4.3). Secondly, we introduce three different definitions of functions of bounded variation
based on the variational, relaxation and the semigroup approaches, and prove their equiva-
lence (Theorem 5.18). In the process of showing the equivalence of these three definitions,
we prove the p-Bakry—Emery inequality (Theorem 5.16) for the heat semigroup on Y (R")
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for 1 < p < oo, which was previously known only for p = 2 in Erbar—Huesmann [26].
Thirdly, we construct perimeter measures and introduce the notion of the reduced boundary
in Sect. 6. We then prove that the perimeter measure can be expressed by the 1-codimensional
Poisson measure restricted to the reduced boundary (Theorem 6.15). Fourthly, we construct
the total variation measures for functions of bounded variation and prove the Gaul—Green
formula (Theorem 7.7).

We now explain each result in details.

1.2 m-Codimensional Poisson measure

The first main result of this paper is the construction of the m-codimensional Poisson measure
on Y (R"). Since YT (R") is infinite-dimensional, it is formally written as

“(co0 — m)-dimensional Poisson measure”.

In the case of finite-dimensional spaces, usually the construction of finite-codimensional
measures builds upon covering arguments, which heavily rely on the volume doubling prop-
erty of the ambient measure. However, this property does not hold for the Poisson measure
7 on Y (R™).

We construct the m-codimensional Poisson measure on Y (R") by passing to the limit of
finite dimensional approximations obtained by using the m-codimensional Poisson measure
on Y (B,). The key step in the construction is to prove the monotonicity of these finite dimen-
sional approximations with respect to the radius r, allowing us to find a unique limit measure.
More in details, based on the decomposition Y (B,) = Uren YX(B,), we build p%Br), the
spherical Hausdorff measure of codimension m in Y (B,), by summing the m-codimensional
spherical Hausdorff measure p?igr) on the k-particle configuration space Y¥(B,), which is
obtained by the quotient measure of the m-codimensional spherical Hausdorff measure on the
k-product space B** with a suitable renormalisation corresponding to the Poisson measure.
The localised m-codimensional Poisson measure p)' of a set A C Y (R") is then obtained
by averaging the o/ (B,)~Measure of sections of A with the Poisson measure e on Y'(By),
ie.

P(A) = /T o PRl €TB v € ADdr .
By

We prove that p" is well-defined on Borel sets (indeed, we prove it for all Suslin sets), and
that it is monotone increasing with respect to r (Theorem 3.7, Definition 3.8). In particular,
we can define the m-codimensional Poisson measure as

p™ = lim p.
r—00

We refer the readers to Sect. 3 for the detailed construction of p™.

1.3 Bessel capacity

In Sect. 4, we compare the m-codimensional Poisson measure p™ and Capa’ o the Bessel
capacity induced by the Dirichlet form associated with infinite independent Brownian
motions constructed in Albeverio et al. [2]. We prove that zero capacity sets are p”* neg-
ligible provided ap > m (Theorem 4.3). This result, that is well-known in the case of
finite-dimensional spaces, proves that our m-codimensional Poisson measure p™ behaves
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coherently with the potential-analytic structure of Y (R"). To prove it, we introduce the
(o, p)-Bessel capacity Capl(pB’) on Y (B,) and the localised (e, p)-Bessel capacity Capj, ,
on Y (R") based on the localisation argument of the L”-heat semigroup {7;} on YT (R"). We

prove that Cap,, ,, is approximated by Capy, pasr — oo, hence we can obtain the proof by

lifting the corresponding result for o/t (5, and Capgg 5,8”) in Y (B,) (see Proposition 4.14). We

refer the readers to Sect. 4 for the detailed arguments.

As an application, we prove in Corollary 7.4 that, if Cap; ,(A) = 0 then |DF|(A) = 0 for
every F € BV(TY(R")) N L2(Y(R"), 7r), where |DF| is the total variation measure (Defini-
tion 7.2) and BV(Y(IR™)) is the space of functions of bounded variation (Definition 5.19).
The latter result will be fundamental for applications to stochastic analysis of infinite-particle
diffusions, which will be the subject of a forthcoming paper.

1.4 Functions of bounded variations and Caccioppoli sets

In the second part of this paper we develop the theory of functions of bounded variation and
sets of finite perimeter in Y (R"). In Sect. 5 we propose three different notions of functions
with bounded variation. The first one follows the classical variational approach, the second
one is built upon the relaxation approach, while the third one relies on the regularisation
properties of the heat semigroup. It turns out that they are all equivalent, as shown in Sect. 5.5,
and the resulting class is denoted by BV(Y (R")). For F € BV(Y(R")) we define a total
variation measure |DF| and prove a Gaufi—Green formula (see Theorem below). We remark
that in our infinite-dimesional setting, Riesz—Markov—Kakutani’s representation theorem is
not available due to the lack of local compactness. In particular, the construction of the total
variation measure is not straightforward. We follow an unusual path to show its existence:
we first develop the theory of sets with finite perimeter relying on the non-linear dimension
reduction. We then employ the coarea formula to build the total variation measure of a
function of bounded variation as a superposition of perimeter measures.

Sets of finite perimeter are those Borel sets E such that xz € BV(Y(R")), where xg
denotes the indicator function of E. In Sect. 6, we study their structure by means of the
non-linear reduction approach, a part of which uses a strategy inspired by Hino [34] for
the study of Wiener spaces. The key result in this regard is Proposition 5.5 saying that if
E has finite perimeter then the projection E) , := {y € Y(B,) : y +n € E} has finite
localised total variation in B, for Tpe-a.e. 1 € B¢ . Hence, we can reduce the problem to the
study of sections that are sets with finite perimeter in Y (B, ). As already remarked, the latter
is essentially a finite dimensional space, so we can appeal to classical tools of geometric
measure theory to attack the problem.

The reduced boundary 9*E of a set of finite perimeter E C YT (R") is then defined in
terms of the reduced boundary of the sections Ej, ,, through a limit procedure. The resulting
object allows us to represent the perimeter measure as

1
IEN = p lo<E

which is a generalisation of the identity proven in the Euclidean setting by De Giorgi [21,
22].

Our approach to the BV theory deviates from the standard one. We define the total variation
measure |[DF| of a function F € BV(Y (R")) by imposing the validity of the coarea formula.
More precisely, we show that dt-a.e. level set { FF > ¢t} is of finite perimeter and we set
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o0
IDF| ::/ [{F > t}||dt,
-0

taking advantage of the perimeter measure ||{F > t}| that has been already defined using
finite dimensional approximations. The reason for this non-standard treatment is that we are
not able to build directly [DF| through a finite dimensional approximation, since the latter
does not have a simple expression in terms of 1-codimensional Poisson measure p! restricted
to a suitable subset. Our approach is, however, consistent with the standard one, as shown in
Corollary 7.3 and in Theorem 7.7.

We summarise the main results in Sects. 6 and 7 concerning functions of bounded varia-
tions and a sets of finite perimeter. We denote by CylV (T (IR")) the space of cylinder vector
fields on Y (R") and by (T'Y, (-, -)7r) the tangent bundle to Y (R") with the pointwise inner
product (-, -)7y (see Sect. 2.5).

Theorem (Theorems 6.15,7.7) For F € L2(Y(R"), 1) NBV (Y (R")), there exists a unique
positive finite measure |DF| on Y (R") and a w-a.e. unique T Y -valued measurable function
o on Y (R") so that |o|ry = 1 |DF|-a.e., and

/ (V*V)Fdn:/ (V,o)rrd|DF|, YV e CylV(Y).
T (R?) T (R?)

If, furthermore, F = xpg, then

IDxel = p'loek.

1.5 Potential applications

Our theory of functions of bounded variation has several potential applications to related
fields such as singular boundary problems of infinite interacting diffusions. In the case of the
Euclidean space R"—the the case of one particle Brownian motion—there is a connection
between the theory of BV functions and stochastic analysis: the (modified) reflected Brow-
nian motion on an open set A C R” is semi-martingale if and only if A is Caccioppoli.
Furthermore, the modified reflected Brownian motion satisfies the generalised Skorokhod
equation and the generalised Ito’s formula, where the reflection at the boundary is phrased
by the local time in terms of the reduced boundary (see, [30, Theorem 7.1, 7.2]). As an infinite
dimensional counterpart, one can expect that the main results in this paper would be useful
to construct infinite particle diffusions with singular boundary conditions (cf. [32, Theorem
4.4.] in the case of the Wiener space).

1.6 Structure of the paper

In Sect. 2, we collect preliminary results regarding the the configuration space, Suslin sets and
measurability of sections. In Sect. 3, we construct the m-codimensional measure. Relations
with the Bessel capacity are studied in Sect. 4. Section 5 is devoted to the study of functions of
bounded variation. We introduce three different notion and prove the equivalence. In Sect. 6,
we introduce and study sets of finite perimeter. We build the notion of reduced boundary and
the perimeter measure, and we show an integration by parts formula. In Sect. 7, we introduce
the total variation measure of functions with bounded variations by employing the coarea
formula, and prove a GauB3—Green type integration-by-parts formula.
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2 Preliminaries
2.1 Notational convention

In this paper, the bold fonts S, L, . . . are mainly used for objects in product spaces or vector-
valued objects, while the serif fonts S, D, ... are used for objects in the quotient space of
product spaces with respect to the k-symmetric group &y or for objects in the configuration
space T (R").

The lower-case fonts f, g, i, v, w, ... are mainly used for functions on the base space R",
while the upper-case fonts F, G, H, V, W, ... are used for functions on the configuration
space T (R").

We denote by xg the indicator function of E, i.e., xzg = 1 on E and xg = 0 on E*.
Let Q C R” be a closed domain. We denote by C2°(€2) the space of smooth functions with
compact support in \9€2 (i.e., functions vanish at the boundary 9€2), while C2°(£2) denotes
the space of compactly supported smooth functions on €2 (functions do not necessarily vanish
at the boundary 9£2). Note that C°(€2) C C2°(2) in general, but these two function spaces
coincide, i.e. C°(R") = C°(R"), when we take 2 = R”.

2.2 Configuration spaces

Let R” be the n-dimensional Euclidean space. Let B, := B,-(0) C R”" be the closed ball
with radius r > 0 centred at the origin 0. Let §, denote the point measure at x € R”, i.e.
8y (A) = lifandonlyif x € A. We denote by Y (R") the configuration space over R" without
multiplicity, i.e. the set of all locally finite point measures y on R” so that y ({x}) € {0, 1}
for every x € R". Elements in Y (IR") can be written as y = Z,N=1 8y, with N € NU {oo}
and {x;}iey C R". Let Y (A) denote the configuration space over a Polish subspace A C R”
defined analogously to Y (R"), and TX(A) denote the space of k-configurations on a subset
A, ie. YK(A) = {y € Y(A) : y(A) = k}. We equip Y (R") with the vague topology 7,,
ie., ¥, € T(R") converges to y € Y(R") in 7, if and only if y,(f) — y(f) for any
f € C.(R™). For asubset A C R", we equip Y (A) with the relative topology as a subset in
T(R"). Let Z(T(A), 1) denote the Borel o-algebra associated with the vague topology t,,.
Foraset A C R", letpr, : T(R") — Y (A) be the projection defined by the restriction of
configurations on A, i.e. pry(y) = y|a.

Given A C R", an open or closed domain, we denote by 7 4 the Poisson measure on Y (A)
whose intensity measure is the Lebesgue measure restricted to A, namely, w4 is the unique
Borel probability measure so that, for all f € C.(A), the following holds

/ el“dmy :exp{[(ef - l)dL”(x)}. 2.1
Y(A) A

Here L” denotes the n-dimensional Lebesgue measure. See [33] for a reference for the
expression (2.1). We write 7 = . Note that 4 coincides with the push-forward measure
A = (pry)am. Let

diagy := {(*)1<i<m € R")* 13, j st x; = x;},

denote the set of all sub-diagonals in (R")**, and let &; denote the k-symmetric group. For
any set A C R”, we identify

Y5(A) = (A*K\ diag;) /S, k € N.
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Let s, : AX%\ diag, — Y*(A) be the canonical projection with respect to the action of &y,
Le. sg (xXi)i<i<k — Zle 8y, We say that a function f : u,fozl(R")Xk — R is symmetric
iff f(Xo,) = f(Xk) with Xg, 1= (Xo, (1) - - - » Xop (k) fOr every permutation o, € &y and
every k € N.

For X, yx € A with sp(xx) = ¥ € YTX(A) and sp(yx) = n € YX(A), define the
Lz—transportation distance d~« (y, n) on Tk(A) by the quotient metric w.r.t. Sg:

dyi(y,m) = inf X, — Ylgnk - (2.2)
0 €Sy

Here |x; — yk|gn« denotes the standard Euclidean distance in R,
Remark 2.1 (Polishness/lack of completeness)

(a) The space Y (R") equipped with the vague topology is a Polish space. The sub-
pace T¥(A) c Y (R") is a Polish subspace for every k € N if A is a Polish subspace in
R”. This fact will play a role later in Sect. 3 to discuss Suslin sets.

(b) The metric space (T*(A), d~x) is not complete even if A is closed, due to the lack of
multiple configurations in Y* (A). This factis, however, irrelevant to the rest of arguments.

2.3 Spherical Hausdorff measure

Let (X, d) be a metric space and n be the Hausdorff dimension of X. For m < n, the
m-dimensional spherical Hausdorff measure S’y on X is defined as the restriction of the
following outer measure S’y on S'y-measurable sets (i.e., the Carathéodory measurable sets):

e am o . o
(4) = lim S} . (4) = Elgnomf[Zduam(B,) :
ieN
B; open ball withdiam(B;) < ¢, A C Z Bi}. 2.3)
ieN

Here diam(B;) = sup{d(x, y) : x,y € B;} denotes the diameter of B;. We call S’)'},g the
m-dimensional e-Hausdorff measure. If X = R", we simply write " and S}’ instead of Sg,
and Sg, . Tespectively.

Remark 2.2 (Comparison with the standard Hausdorff measure) In the case of m < n, the
spherical Hausdorff measure S¥ does not coincide with the standard Hausdorff measure in
general, the latter is smaller since it is defined allowing all non-empty coverings instead of
open balls. In the case of m = n and X = R”, however, S coincides with the standard
n-dimensional Hausdorff measure and also with the n-dimensional Lebesgue measure ([27,
2.10.35]). Note that S is a Borel measure, but not o -finite for m < n.

For a bounded set A C R", let S"|4 be the spherical Hausdorff measure restricted to A. The
spherical Hausdorff measure (S"[4)®* on A** can be push-forward to the k-configuration
space YX(A) by the projection map sy, i.e.
1
S = 1 G0# S %

It is immediate by construction to see that S’; is the spherical Hausdorff measure on Y (A)
induced by the L>-transportation distance d~« up to constant multiplication. We introduce the
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m-codimensional spherical Hausdorff measure and the m-codimensional e-spherical Haus-
dorff measure on Y¥(A) as follows

k

1 1
sk = ﬁ(sk)#(S”k‘"’uxk), Siy = E(su#(sz"—’"w). (2.4)

One can immediately see that S'X’f is (up to constant multiplication) the m-codimensional
e-spherical Hausdorff measure on Y¥(A) associated with the L>-transportation distance dryr.

2.4 Regularity of the spherical Hausdorff measures

In this section, we prove the upper semi-continuity of the e-spherical Hausdorff measure on
sections of compact sets, which will be of use in Sect. 3.

Proposition 2.3 Ler (X, dx), (Y, dy) be metric spaces, and K C X x Y be a compact set.
Then, the map Y > y +— S% (K?) is upper semi-continuous. Here, K¥ := {x € X :
(x,y) € K}.

Proof Letusfixy € Y andasequence y, — y. The family of compactsets (K" X {y,})nen C
K is precompact with respect to the Hausdorff topology in K endowed with the product metric
(e.g., [20, Theorem 7.3.8]). In particular, we can take a (non-relabeled) subsequence so that
K¥ x {y,} = K x {y} C K, as n — oo in the Hausdorff topology, and K C K? by the
definition of K.

Let us fix § > 0 and a family of open balls By, ..., By C X with radius smaller than
e(1 —8) > 0 so that

¢
IE C U B;,
i=1
and

12
%K) =cm)> it =8 (2.5)

i=1

Here ¢(m) denotes the constant depending on m such that L”(B;) = c(m)rim. Note that
we can always take ¢ = £(8) to be finite for any § > 0 by the compactness of K. Let
r=r(8) =min{r;, : 1 <i <1(8)} > 0 be the minimum radlus among {B H<i<i-

We claim that there exists k = k(8) € N so that K> C U 1B(xi, 1= ar,) for any k > k.
Here x; and r; are the centre and the radius of B;.

Indeed, by the Hausdorff convergence of K to K, there exists k := k(§) € N such that,
for any k > k, it holds that K7 C BKB(IZ ). Here, B, (K) denotes the ré-neighbourhood
of K in X, ie., B,s(K) := {x € X : d(x,K) < r8}. Hence, for any z € K*", we can
always find x € K such thatd(x, z) < ré.Sincex € B; forsomei =1, ..., £, we conclude
z € B(x;, llar,) by noting that llsr, ri = ]‘sar, > ér.

By using the claim in the previous paragraph, the monotonicity S% , > S , whenever
a < b, and (2.5), we obtain that

e
%K) < c(m)(1+8)" Y r" < (148)"S ,1_g)(K) + 8(1+8)"c(m), (2.6)
i=1
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for any k > k(8). By taking § — 0 after taking k — oo, we conclude that

limsup 8%, (K”) < 8% (K) < S% (KY), Q2.7)
k— 00 ' ’ ’
which is the sought conclusion. O

2.5 Differential structure on configuration spaces

In this section, 2 C R” will denote either a closed domain with smooth boundary or the whole
Euclidean space R”. Below we review the natural differential structure of Y (£2), obtained
by lifting the Euclidean one on 2. We follow closely the presentation in [2].

Cylinder functions, vector fields and divergence.

Definition 2.4 (Cylinder functions) We define the class of cylinder functions as
CylF(Y () :={@(ff, ..., fi) : P € C;?O(Rk), fi € CZ(Q), k e N}, (2.8)

where f*(y) = fQ fdy for every y € Y (). We call f; inner function and ® outer
function.

The tangent space T, Y (2) at y € Y (£2) is identified with the Hilbert space of measurable
y-square-integrable vector fields V : @ — T (R") equipped with the scalar product: for y-
measurable V, W : Q — T(R"),

(V. Wyry = /Q(V(X), W) rredy (x)

Vizy = / (V(x), V(X)) rredy (x) .
Q
We define the tangent bundle of Y (2) by TY(£2) := Uyey @)1y YT (L2).

Definition 2.5 (Cylinder vector fields) We define two classes of cylinder vector fields as

k
CylV(T(Q)) = {V(y, ) =Y F()uik): F e CyIF(T(Q), v € CO( R, k € N},
i=1
k
CylV,(T()) := {V(y, )=y F()uik): F e CyIF(Y(Q), v € C(Q R, k € N}.
i=1
Notice that CylV_ (Y (£2)) C CylV(Y(£2)), and CylV (T (2)) = CylV(T(2)) when Q =
R”". Using the tensorial notation, we can write

CyIV(T () = CyIF(T(2)) ®r C7(2; R")

2.9
CylV,(T(R)) = CyIF(Y(Q)) ®r C° (2 R").
Let p € [1, 00). For V e CylV(Y(2)), we define
”V”iP(TT(Q)) = ||V||[LJP(T(Q)—>TT(Q),7TQ) = A(Q) |V(V)|§'yyd779(y) > (2.10)

and introduce the associated Banach space by
LP(TY (), mg) := the completion of CylV (Y (€2)) with respect to || - || Lr(7r (@) -

See [1, the fifth displayed formula on p. 23] in the case of p = 2.
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Remark2.6 When p = 2, the closure LP(TY(2), wq) coincides with the L2-section of
vector fields L2(Y(Q) — TY (), wg) defined as the direct integral of the Hilbert spaces
(T, Y (£2), (-, -)rr) with respect to . See, for instance, the proof of [25, p. 165, 3rd bullet
point].

Proposition 2.7 Let 1 < p < oo. Then,
IViLrrr@) <oo, V eCylvV(T(R2)). (2.11)
Moreover, CylV (Y (R2)) is dense in LP (T Y (R2), mq).

Proof Let V(y,x) = Zle F; (y)v; (x). Then, we have that

k P2
VI v < Fllz i|lvjld d :
[Vl vdmat) = max 171 ijzlﬁ(g)(/S?|vl||v,| v) draw)

By the exponential integrability implied by (2.1), we obtain that the function y — G(y) :=
fQ [villvjldy is LP(Y(2), mg) forany 1 < p < oo, which concludes the first assertion.
The density of CylV (Y (2)) in L? (T Y (L2), 7g) follows from the density of C2°(€2; R™)
in L?(2; R"). More precisely, we check that for any V € CylV(T(R"?)) and ¢ > 0 there
exists W e CylV, (YT (2)) such that fY(Q) |V — W|%Td7m < ¢&. To this aim we write

V = Zle F;v; and pick w; € C°(£2) such that Zle lvi — willLr < € and set W :=

ZLI F;w;. It is straightforward to see that W satisfies the needed estimate. By noting that

LP(TY(R2), mq) is defined as the completion of CylV (T (£2)) with respect to the norm
IVIzr(rr (), the proof is complete. o
Definition 2.8 (Directional derivatives. [2, Def. 3.1]) Let F = @(f,..., f) €
CylF(Y(£2)) and v € C°(2, R™). We denote by ¢ the flow associated to v, i.e.

d

Efﬁz(x) =v(P(x)), ¢(x) =x€Q.

The directional derivative V, F (y) € T, Y (L) is defined as

d
VuF(y) == EF(@(V)) 0"

where ¢ (y) := 3¢, 8¢, x)-

Definition 2.9 (Gradient of cylinder functions. 2, Def. 3.3]) The gradient Vo) F of F €
CylF(Y(£2)) at y € T (£2) is defined as the unique vector field Vy(q) F so that

VyF(y) = (Vy@F,v)1,v@), ¥ €TY(Q), vel(Q,R").

By the expression (2.8), the gradient Vy (o) F' can be written as

k
Vr@F () =Y 5P OO Ve fi € T,T(Q), (2.12)
i=1

where Vs is the gradient operator in R”. When = R", we simply write V := Vy(gn) in
the rest of the paper when no confusion occurs.

Notice that Vy ) F € CylV(Y(R)) for any F € CylF(Y(£2)) by (2.12). In particular,
for any F € CylF(2), it holds that Vy(q)F € LP(TY(2), mo) forany 1 < p < oo by
Proposition 2.7.
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Remark 2.10 (Ampleness of L*-vector fields) By Proposition 2.7, CylV (Y (R2)) C
LP(TY(R2), mq) for any p € [1, 00), while the inclusion is false for p = oco. See [23,
Example 4.35] for a counterexample. However, CylV (T (€2)) can be approximated by the
subspace of bounded cylinder vector fields with respect to the pointwise convergence and
the convergence in the L? (Y (2) — TY(2))-norm for 1 < p < oo. Indeed, given ¢ > 0
and V = Z?:l Fi(y)vi(x) € CylV,(T(£2)) it holds

1
V7 x = Z Fi(y)Fj(y) / vi(x) v dy(x), ———s— € CyIF(T(Q)),
! i 1 1+ 8|V|T T
J= 14
hence
1
Vo= ————V e CylV(Y(R2)).
¢ L+elVIE v

Finally, notice that for y € Y (£2) it holds

|V |TVT(Q)

—_— 8|V|;~YQ — 0, ase—0.
1+ﬂthm) @

IV = Velr, v =

Moreover, for every 1 < p < oo we have
IV = Vellrarr@y < elVIgspgr@, = 00 ase = 0.
We now define the adjoint operator of the gradient Vy(q).

Definition 2.11 (Divergence. [2, Def. 3.5]) Let 1| < p < oo. We say that V €
LP(TY (), mg) is in the domain D(V3 (Q)) of the divergence if there exists a unique function
V;‘r(Q)V € LP(Y(R2), mg) such that

/ (V. Vyr@F)r,vdrna(y) = —/ F(Vy@V)drg, F e CylF(Y(Q))(2.13)
T(Q) T(€)

When Q@ = R”, we simply write V* := V. (rny 1 the rest of the paper when no confusion
occurs.

Proposition 2.12 The following inclusion holds:
CylV,.(T(Q)) C D(Vi}(m).

Furthermore, for V(y, x) = Z;n:] F;i(y)vi(x) € CylV,(T(2)),

m m
ViV =Y VuFi) + Y F@)(Viv)*y (2.14)
i=1 i=1

where VR,, is the divergence operator in R". In particular, VT(Q)V € LP(Y (), q) for
every p € [1, 00).

Proof Let r > 0 be such that supp(v;) C @, = {x € Q : d(x,9R) > r}. For any
e < r/2 we define ¢, € C°(R) satisfying ¢ = 1 on Q.. Forany i = 1, ..., m we write
Fi = @; (fl*l, .. fk* ;) and set FP = ®;((¢e f1,0)*, ..., (@ fi;,i)™). Observe that V, :=
Zl | FE (v € CylV (Y(2)) and also V, € CylV(T(R”)) by construction. Furthermore
we note that F € CylF(T (£2)) can be extended to Fe CylF(Y(R™)) with F = Fon T(Q2)
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by extending each inner function f; € C°(2) to ﬁ € CX(R™) with f; = ﬁ on Q (e.g., by
Whitney’s extension theorem). Thus, V;"r @ and V§ ®") defined in (2.13) are consistent, so
that V%?@) Ve(y) = V;‘NR,,)VE()/). By [2, Prop. 3.1], therefore, we have

m m
Vi V@) = Vg Ve) = YV Ff () + > Ff () (Viavi)*y
i=1 i=1

m
Vo Fi(v) + Y FF () (Viavi)*y -
1 i=1

I
.Ms

1

Here we used the fact that F;(y) = F7(y) for any y concentrated on the support of v;.
The sought conclusion (2.14) follows from the observation that F — F; in L7 (Y (R2), 7o)
and V, — V in LP(TY(2), mq) combined with (2.13). The last assertion is then a direct
consequence from Proposition 2.7 and (2.14). O

Sobolev spaces. We now introduce the (1, p)-Sobolev space. The operator
Vr@) : CyIF(T(R2)) C L? (Y (), mq) — CylV(T () (2.15)

is densely defined and closable. The latter fact is a direct consequence of the integration-
by-parts formula (2.14). Indeed, we observe that, if F, € CylF(Y(R)), F, — 0 in
LP(Y(2), mq), and Vy(q)F, — W in LP(TY(R2), mg), then for any V € CylV (T (R)),
it holds

/ (V,W)r,vrdrq(y) = lim (V, Vy@ Fa)r,vdra(y)
T(Q) =0 Jy(Q)

_— 1 * —

= nlggo T(Q)(VT(Q)V)Fnd”Q(V) 0,
yielding W = 0 as a consequence of the density of CylV, (Y (2)) in L”(TY(R2), 7q) by
Proposition 2.7. The above argument justifies the following definition.

Definition 2.13 (H!'7-Sobolev spaces) Let 1 < p < oo. We define H''?(Y(Q), 7q) as
the closure of CylF(Y(2)) in LP (Y (R2), mg) with respect to the following (1, p)-Sobolev
norm:

P - P p
”F”HLP(T(Q)) = ”F”LF(T(Q)) + ||VT(Q)F||L])(T’Y’(Q)) .

Weset | Fll g1p := | Fll gr.peyny)- When p = 2, we write the corresponding Dirichlet form
(i.e., a closed form satisfying the unit contraction property [35, Def. 4.5]) by

Er@)(F,G) = / (Vy@F, VY(Q)G>TVT(Q)d7TQ(V)a F,G e H"*(T(Q), mq).
T

We set £ := E’Y‘(R")-

Remark 2.14 (The case of p = 1) As is indicated by (2.14), it is not true in general that
Vi @ V € L*®(Y (), mq) since arbitrarily many finite particles can be concentrated on the
supports of inner functions of F € CylF(Y (£2)) and vector fields v;. See [23, Example 4.35]
for more detail. Due to this fact, the standard integration by part argument for the closability
of the operator Vy(q) : CylF(T(2)) — CylV(Y(2)) C LP(TY (L), mg) does not work in
the case of p = 1. For this reason, we restricted the definition of the H'-”-Sobolev spaces
to the case 1 < p < oo in Definition 2.13.
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Once the closed form £y (q) on L2(Y(R), mq) is constructed, one can define the infinites-
imal generator on L?(Y(2), 7q) as the unique non-positive definite self-adjoint operator

Definition 2.15 (Laplace operator [2, Theorem 4.1]) The L2(Y (), wq)-Laplace operator
A~v(q) with domain D(A~y(q)) is defined as the unique non-positive definite self-adjoint
operator Ay (g) so that

Ex(F,G) = —/ (Ay@)F)Gdng, F € D(Av), G € D(Eyq)-
T(Q)

In the case of 2 = R”, employing (2.12) and (2.14), one can compute that
AY(]RH)F = V—?(Rn)VY(Rn)F, F € CylF(T(R”)) .

When Q = R”, we shortly write A = A~y gn) in the rest of the paper when no confusion
occurs.

Let {T,Y(Q)} and {GS(r (Q)} be the strongly continuous Markovian L2-semigroup and
resolvent, respectively, corresponding to the energy Ey(q). We set Gy = Gg & and
T; = T,Y(Rn). By the Riesz—Thorin Interpolation Theorem, TtT(Q) and {G?{ (Q)} can be
uniquely extended to L? strongly continuous Markovian semigroup and resolvent, respec-
tively, for every 1 < p < oo (see e.g. [43, Section 2, p. 70]).

2.6 Product semigroups and exponential cylinder functions

In this section, we relate the finite-product semigroup on £2** and the semigroup on Y*(£2)
when Q C R” is a bounded closed domain with smooth boundary. To this aim we introduce
a class of test functions, which is suitable to compute the semigroups.

Definition 2.16 (Exponential cylinder functions.[2,(4.12)]) Let @ C R" be abounded closed
domain with smooth boundary, or 2 = R". The class ECyl(Y (2)) of exponential cylinder
functions is defined as the vector space spanned by

{exp{log(1 + £)*} : f € D(A). Aqf € L'(Q), =8 < f <0 forsomes € (0, 1)} .
Here (Ag, D(Ag)) denotes the L2-Neumann Laplacian on € when @ C R”.
The space ECyl(Y(£2)) is dense in L? (Y (R2), mg) forany 1 < p < oo (see [2, p. 479]).
Noting that Ag is essentially self-adjoint on the core C°(£2) N {% = 0 in 92}, where %
is the normal derivative on 3%, and the corresponding L?-semigroup {7;%} is conservative,

we can apply the same argument in the proof of [2, Prop. 4.1] to obtain the following:
7," D ECyl(T(Q)) C ECyl(T(RQ)) and

TtT(Q) exp{log(1 + f)*} = exp[log(l + (ngf))*] : (2.16)

Let T,Q'®k be the k-tensor semigroup of T/, i.e. the unique semigroup in L? (%K)
satisfying

TG00 = TR fi) - TP fula), foreveryk e N, (2.17)

whenever f(xy,...,xx) = fi(x1) -« - fi(xx) with f; € L®(Q) fori =1, ..., k.
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Proposition 2.17 Let Q@ C R" be a bounded closed domain with smooth boundary and
1 < p < oo. For F € LP(YX(Q), malyi ). it holds

k
T3 (Fos) =T, PFos, S, -ae. (2.18)

Proof Since ECyl(Tk(Q)) is dense in L?(Y*(Q)) for any 1 < p < oo, it suffices to show
(2.18) only for F € ECyl(T*(2)). Furthermore, we can reduce the argument to the case
F = exp{log(l + f)*} by using the linearity of semigroups. From (2.17) and (2.16) we get

T2 (F o s (xr o) = T (expllog(1 + )} o sp)(xrs -, x0)

k
- T,Q’®k(]_[(l + N ) @)

=~

]_[(1 FT2f(x) )

_ exp{log(l n (T,Qf)*)} TS

=7,/ exp{log(1 + f)*} o sp(x1, ..., x) .0

2.7 Suslin sets

Let X be a set. We denote by NN the space of all infinite sequences {n;}icny of natural
numbers. For ¢ € NN, we write ¢|; € N for the restriction of ¢ to the first / elements, i.e.,
Ol = (¢i - 1 <i <D.LetS := UgnyN, and for 0 € S, we denote the length of the
sequence o by #0 := #{0;}. Let & C 2% be a family of subsets in X. We write S(&) for the
family of sets expressible in the following form:

U MEa

peNN />1

for some family {Ey }pesin &. A family {E; }o s is called Suslin scheme; the corresponding
set Ugenn Mi>1 Ey), is its kernel; the operation

{Esloes = U mE¢|[1

peNN =1

is called Suslin’s operation. We denote by S(&') the family of sets generated from sets in &
by Suslin’s operation, whose elements are called an &-Suslin set (or simply Suslin set). It is
known that S(&) is closed under Suslin’s operation ([44], and e.g., [29, 421D Theorem]). If
E, iscompact forall o € S, we call {E; }»cs a compact Suslin scheme. We say that {E }oes
is regular if E, C E; whenever #t < #o0 and 0; < t1; for any i < #0o ([29, 421X (n) &
422 H Theorem (b)]).

In the following remark, we list basic properties of Suslin sets in a Polish space and
relations to Choquet capacities and Borel measures. In the rest of this section, we assume
that

(X, 7)is a Polish space, cis a Choquet capacity on X, s is a bounded Borel measure,
& :=C(X) :={C : closed set in X} . (2.19)
We refer the readers to, e.g., [29, 4321 Definition] for the definition of Choquet capacity.
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Remark 2.18 Under the assumption (2.19), the following hold:

(i) Every Borel set is a Suslin set, i.e., B(t) C S(&) (e.g., [29, 423B(a) and 423F(a)]);
(ii) Every Suslin set is u-measurable, i.e., S(&) C B" () (e.g., [29, 431B Corollary]);
(iii) Let A be a Suslin set in X. Then, A is the kernel of a compact regular Suslin scheme
{Es}ses. Furthermore, it holds that

c(A) = sup c(Ay). Ay = |J[)Es (2.20)
yeNt p<v i1

whereby ¢ < ¥ means that ¢(I) < ¥ (/) forall/ € N (e.g., [29, 423B Theorem &
the proof of 432] Theorem]). By the regularity of { E; }ses, (2.20) can be reduced to
the following form:

c(A)= sup c(Ay). Ay =()Ey,. ¥ N 2.21)
yeNN I>1

(iv) Asubset A C X is Susliniff A is analytic iff A is K -analytic ([29, 423E Theorem (b)].
See [29, 422F, 423 A Definitions] for the definitions of K -analyticity and analyticity
respectively). As every K-analytic set is capacitable (e.g., [29, 432]]), in particular,
we have that c(A) is well-defined for every Suslin set A as

c(A) = sup{c(K) : K C A compact} . (2.22)

3 Finite-codimensional Poisson measures

In this section, we construct finite-codimensional Poisson measures on Y (R"). As a first step
we prove measurability results for sections of Suslin subsets of the configuration space.

3.1 Measurability of sections of Suslin sets

Let B C R".For A C Y(R")and n € Y(B), the section A, p C YT (B°) of A at 1) is defined
as

App={y € Y(BY):y +ne AL (3.1

The subset of A, p consisting of k-particle space YK(B¢) is denoted by A/f]’B = A, N

Yk (B¢). To shorten the notation we often write A, , in place of A, B, where B, is the closed
ball centred at the origin.

Lemma3.1 Let B C R" be a Borel set. If A is Suslin in Y (R") then A§ p is Suslin in T*(B°)
foreveryn € Y(B), k e Nandr > 0.

Proof We can express A, p = prpe (prgl(n) n A). The set prgl(n) N A is Suslin in T (R")
whenever A is Suslin. Set Y, p(R") = prgl(n) N YT (R™), which is Suslin. The map prpe :
Y, 8(R") — Y(BC) is continuous. Thus, A, g is the continuous image pr g (prgl(n) N A)
of the Suslin set prg1 (n) N A in the Suslin Hausdorff space Y, g(R"). Hence, A, p is Suslin
([29, 423B Proposition (b) & 423E Theorem (b)]). Since Aﬁ’B = Ay BN Yk(B¢) and Y (BC)
is Borel in Y (B¢), we conclude that Af]’B is Suslin. ]
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Lemma3.2 Let B C R" be an open set. Let A C Y (R") be the kernel of a compact Suslin’s
scheme {Egloes, i.e, A =Uyenn Ni>1 Eg), with Eq compact for any o € S. Then, A, p is
the kernel of the compact Suslin scheme {(Eq )y r}oes.

Proof By expressing (Eq)y,5 = prae(Yy 8(R") N Ey), where Y, g(R") = prg' () N
T(R"), we see that (Es);,, p is compact since 1 g(R") is closed, E; is compact by the
hypothesis, pr g is continuous on Y, g(R") and every continuous image of a compact set is
compact. To see that A, p is the kernel of {(Es);,}oes,

Apg = pr (TR NA) = p, (Tn,B(R") nUnN E¢|I)

peNN =1
=pr< U ﬂTn,B(R")ﬂEw)
¢eNN[>1
= U Nrr(s®)NEg) = | [ Eo)ns. O
¢eNN[>1 $eNN [>1

3.2 Localised finite-codimensional Poisson measures

In this section, we construct a localised version of the m-codimensional Poisson measure p;",
which will be used to construct the m-condimensional Poisson measure by taking the limit for
r — 00. We also show that Suslin sets are contained in the domain of the finite-codimensional
Poisson measure.

Let A € T(R") be a Suslin subset. By Lemma 3.1, the set A',‘” = A’f]’B;» is Suslin. Since
S'gr'k is a Choquet capacity, the expression S’gr’k(A’,;’,) is well-defined and satisfies (2.22),

which in particular implies that A’,‘N isa S'gr’k—measurable set. We define the domain 2™ of
the m-codimensional measures by

7" =\ 2", (3.2)

r>0

where the localised domain 2" is defined by
2" :={ACYT@R") : themap Y(By) >3+ S'g’jk(A/f”) is 7w gc-measurable for every k} .

We first introduce the m-codimensional Poisson measure on the configuration space Y (B,)
over the ball B,.

Definition 3.3 The m-codimensional Poisson measure p$( B,) 0N Y (B,) is defined as

oo
,og'r’(Br)(A) = ¢ S"(B) Z S'gr’k(Ak) for every Suslin set Ain Y (B;), 3.3)
k=1

where A = AN Tk(B,).

Remark 3.4 Notice that ,o% 8,) = 7B, in other words the 0-codimension Poisson measure

p%(B,_) on Y'(B,) is the Poisson measure 7g. on Y (B,). It can be shown by noting that the
m-dimensional spherical Hausdorff measure S”* and the n-dimensional Lebesgue measure
L" coincide when m = n (see Remark 2.2).
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We introduce the localised m-codimensional Poisson measure on Y (R") by averaging the
m-codimensional Poisson measure p%’r‘( p,) by means of 7pc.
-

Definition 3.5 The localised m-codimensional Poisson measure p!* on Y (R") is defined by

PIA) = / Py Ay e (), A€ 9. (3.4)
Y (BS)

r

Before investigating the main properties of p/", we check that sufficiently many sets are
contained in 2™, i.e. we show that all Suslin sets are contained in the domain 2" form < n.

Proposition 3.6 Any Suslin set in Y (R") is contained in 2™ for m < n.

Proof Let A C Y(R™) be a Suslin set. Let {E,}ses be a Suslin scheme whose kernel is
A. Noting that Y(By) is Polish, by applying (i) of Remark 2.18 with X = Y (Bf) and
= 1pe, any Suslin set is 7w gc-measurable. Hence, it suffices to show that every super-level
set {n : S'gr’k(A/,‘],,.) > a} is Suslin foranya € R, r > 0,k € N and m < n. Note that A’,‘”

is Suslin by Lemma 3.1, whence the expression {1 : S'gr’k(A/,‘”) > a} is well-defined as was
discussed in the paragraph before (3.2).

Since Y (R") is Polish, by using (iii) in Remark 2.18, we may assume that {E; },cs is
a compact regular Suslin scheme. By Lemma 3.2 and Y (B,) = Lren YX(B,), we see that

AI,‘N c YX(B,) is the kernel of the compact regular Suslin scheme {(Ea)lr‘w}geg, whereby
(E(,)gr = (Eg),],g,c; N Tk(B,). Since S'g;k 1S an outer measure on Tk(B,) by construction,
S'gr’k is a Choquet capacity on Y*(B,). Hence, by applying (2.21) in (iii) of Remark 2.18

with X = Y*(B,) and c = Smr’k, we obtain that

St(Ar ) = sup. SEEA D). (AL Dy = EyE .. v eNY
Y eN >1

Thus, noting the monotonicity S’g'jkg < S'g’jk(S (8 < &) of the e-Hausdorff measure defined in

(2.3), the super-level set {n : ST’k(A’,‘,A’ ) > a} can be expressed in the following way:

syl >ar=J | tn:Sph(al,)y) > al

e>0 ‘//eNN

Since the space S(&) of Suslin sets is closed under Suslin’s operation, it suffices to show that
n: ngs((A/,‘w)v,) > a} is Suslin.

We equip TK(B,) with the Lz—transportation distance dy« as defined in (2.2), and
equip Y (BS) with some distance d generating the vague topology. By Proposition 2.3
and noting that (A]rcz,r)‘/f is compact and that S'gr’{‘e is (up to constant multiplication) the
m-codimensional e-spherical Hausdorff measure on Tk (B,) associated with d~x, we con-
clude that {1 : SZ’;Z((A’,‘]’,),/,) > a} is open in Y(BS) forany a € R, r > 0,k € N and
m < n. O

3.3 Finite-codimensional Poisson measures
In this section, we construct the m-codimensional Poisson measure on Y (R"), which is the

first main result of this paper. By Proposition 3.6, the set function p" given in (3.4) turned
out to be well-defined in the sense that the space S(&") of all Suslin sets in Y (R”) is contained
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in its domain 2™. We show the following monotonicity result which allows us to pass to the
limit of p]" as r — oo.

Theorem 3.7 The map r +— p"' (A) is monotone non-decreasing for any A € S(&).

The proof of Theorem 3.7 is given at the end of this section. We can now introduce the
m-codimensional Poisson measure on Y (R") as the monotone limit of p/" on the space S(&)
of Suslin sets:

p"(A) = lim p"(A), VA € S(&). (3.5)

Definition 3.8 (m-codimensional Poisson Measure) Let ©™ be the completion of S(&)

with respect to p™. The measure (p™, ©™) is called the m-codimensional Poisson measure
on Y (R").

Remark 3.9 We give two remarks below:

(i) Note po = 7, 1i.e. 0-codimensional Poisson measure po on Y (R") is the Poisson measure
7 on YT (R") by noting that the m-dimensional spherical Hausdorff measure S”* and the
n-dimensional Lebesgue measure L* coincide when m = n (see Remark 2.2).

(i) The construction of p™, a priori, depends on the choice of the exhaustion {B,} C R”".
However, in Proposition 3.13, we will see that it is not the case.

The rest of this section is devoted to the proof of Theorem 3.7. Let us begin with a
definition.

Definition 3.10 (Section of functions, multi-section) Let M, N C R" be two disjoint sets and
L=MUN.Forevery F : Y(L) — Rand § € T (M), define Fg p : T(N) — Ras

Fem(@)=F(@E+§), ¢€T(N). (3.6)
Foraset A C YT(R"),let A¢ ;, m,n denote the multi-sectionbothaté € Y(M)and¢ € Y (N):
Acemn=ly € T(L) 1 y+&+s € A}, and AL,y y=Az .m0 YHL). (B.7)

Lemma 3.11 Let A be a Suslin set in Y (R"). Let M, N C R" be two disjoint Borel sets. Set
L=MUN.Let F:Y(L)— R bedefinedby y — F(y) := S’Zr’k(Af,,L)- Then,

Fen(¢) = SPM(A ey ). Y6 € T(M), Y2 € Y(N). (3.8)

Proof The set Alg,s,N,M is Suslin by the same argument as in Lemma 3.1. Thus,
S'ng (Alg,gquM) is well-defined. By Definition 3.10, we have that

Fem(8) = F(C+8) =S[M AL )
=Sy e YO 1y +E+¢ e A) =SiFal vy 0

The next lemma is straightforward since the Poisson measures 7y and 7wy are mutually
singular.

Lemma 3.12 With the same notation M, N and L as in Lemma 3.11. For any bounded
measurable function G on Y (L),

/ G(n)dnL(n)=/ / Gem()dmy (§)dmn(S). (3.9
T(L) T(N) JY (M)
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Proof of Theorem 3.7 Let A, . := By, \ B, be the annulus of width ¢ and radius r. Fix
AeS(&),r>0,e>0and ¢ € YT(B/,,). We claim that

Srgrfa ? B( ) = Z/ Sm)k g, E{Br(Jrs’Ar,s) “A’E(E) (310)

Let us first show how (3.10) concludes the proof. For simplicity of notation, we set M = A, ,,
N =B/, and L = M U N. Then, (3.10) is reformulated as follows:

k
Sk (ak ) = Z/ﬂ Sp (AL a)dSh ©).
=0
Then, by using Lemmas 3.12 and 3.11 we deduce

o0
p:.n(A) — efs”(L‘) Z/ Slzl k(Ak L)dnL(n)
—o Y Y(L)

e Z /

T(N) /T(M> (Srzgk(Alg»L))g,Md”M(é)an(;)

=t spk(a dry (§)d
) Z/(N)/T(M) e ( éENM) mpm(§)dry (8)

oS (L) s"(M)ZZ /

k=0 j=0" T

oSN Z/ S’]’\’ﬂ (AC NN (©)

= pr+£ (A).

[ Sit sl @@
(M)

To show (3.10), it is enough to verify that, for any bounded measurable function F on Y (R"),

[ oo |

/ (Fe,N)e, M(J/)dSLr ](J/)ds (6).3.1D
Y(M) JY (L)

By the definition of S%’Ck, the L.H.S. of (3.11) can be deduced as follows:

m 1 nNK—m
/ Fen()dSulky) = o / (Fe v 080 (x)dSly. KM xp),
T(N) s J(N

whereby X := (x4, ..., xx—1) and X, = x,. Furthermore, by the definition of (F¢ ny)¢ M,
the R.H.S. of (3.11) can be deduced as follows:

/ f (Fe)ent (S5 ()dsi ()
(M) JY L)
/ / (Fen)(y + E)S™5 (1)dS], (&)
T(M) T(L)

(k=j)— j
B ‘(k - ! /]1/[><J / cyx (k= J)(FgN © 8i) (K- 7 YJ)dsn ' m(inj)dsrli/][(yj)’
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whereby (x¢—;,y;) = (X, ..., Xx—j—1, Y, ..., yj—1). Hence, in order to conclude (3.11),
it suffices to show the following inequality: for any bounded measurable symmetric function
£ on (R,
k !
nk—m :
fB LSOOI 2 Y S

j=0

/w l)f Ok, y ST T ST (v)).

By using the symmetry of f and a simple combinatorial argument, we obtain

k
k!
FxOAS X)) =Y / _ / ke, Y )ASE T (e, ¥ ),
/B e gjwk—n! g0 Japg T e TR

while [27, 2.10.27, p. 190] implies

fx(k J)/ f(Xx— j’yj)dSB,+E (X — Js YJ)

/x(k J)/xj (Xk - yj)dsn(k J) m(xk_/)ds’gr(yj) m}

3.4 Independence of p™ from the exhaustion

So far we have built the m-codimensional measure p” by passing to the limit a sequence of
finite dimensional measures p;". The latter have been constructed by relying on the exhaustion
{B,},>0 of R". Hence, a priori, p” depends on the chosen exhaustion. In this subsection we
make a remark that this is actually not the case.

Let Q@ C R” be a compact set. Following closely the proof in Sect. 3.3 we can prove that

pG(A) = e 5@ Z / S (AL o) dmae (). (3.12)

T(Q0)

is well defined for any Suslin set A.
The next proposition can be proven by arguing as in Theorem 3.7. We omit the proof.

Proposition 3.13 (Independence from exhaustion) Let 0 < r < R < oo and Q C R" be a
compact subset satisfying B, C 2 C Bg. Then

Pl (A) < pS(A) < pR(A), forevery Suslin set A . (3.13)

In particular p™ does not depend on the choice of the exhaustion.

4 Bessel capacity and finite-codimensional Poisson measure

In this section, we discuss a relation between Bessel capacities and finite-codimensional
Poisson measures p™. This will play a significant role to develop fundamental relations
between potential analysis induced by (€, D(£)) and theory of BV functions in Sects. 5 and
7.
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Definition 4.1 (Bessel operator) Leta > 0and 1 < p < oo. We set

1 o0
Bypi=—— ~1e 2Py 4.1
= ram ). ’ @D

where T,(p ) is the L”-heat semigroup, see Sect. 2.5.
Notice that By, is well defined for F € L? (T (R"), ) and satisfies

IBa,pFliLe = IFllLr . (4.2)
due to the contractivity of Tt(p )in LP (TR, ).

Definition 4.2 (Bessel capacity) Let« > 0 and 1 < p < oo. The («, p)-Bessel capacity is
defined as

Capa,p(E) = inf{||F||€p :BypF >1onkE, F >0}, 4.3)
forany E C T(R").
We are now ready to state the main theorem of this section.
Theorem4.3 Let ap > m. Then, Capayp(E) = 0 implies p" (E) = 0 for any E € S(&).
We briefly explain the heuristic idea of proof. In view of the identities
p"(E) = lim p,"(E),

pr(E) = e S5 Z S (ES ydmpe(n)
Y (BS)

it is enough to prove that S'gr'k(E’,;’,) = 0 for wpe-a.e. n, allk € Nand r > 0. This, together
with the implication

Cap, ,(E) =0 = CapZ:;(Eﬁyr) =0, formpec-a.e.nandallk € Nandr >0, (4.4)

where CapZ:;) is the Bessel («, p)-capacity on YX(B,), reduces the problem to the corre-
sponding problem in the finite dimensional setting. To be more precise, we will show that

Capll" (EX ) =0 = SpH(EE ) =0.

In the rest of this section, we implement the aforementioned idea. The key point is to show
(4.4), for which we introduce localisations of functional-analytic objects in Sects. 4.1 and
4.2. We then introduce localised Bessel operators and localised Bessel capacities in Sect. 4.3.

4.1 Localisation of sets and functions

Lemmad.4 Let A C Y(R") be a w-measurable set. Let B C R" be a Borel set. Then, A, p
is wpe-measurable for mp-a.e. n € Y (B). Moreover, if 1(A) = O, then mwpc(A; g) = 0 for
a.e.n € Y(B).

Proof By hypothesis, there exist Borel sets A C A C A so that 7(A\A) = 0. By (i) in
Remark 2.18, A and A are Suslin. By Lemma 3.1, An,B and A, p are Suslin. By the standard
disintegration argument as in Lemma 3.12, it holds that

0= n(A\A) = /T T\ Dy s 4.5)
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Therefore, there exists a 7w g-measurable set 2 C Y (B) so that e ((X\A)W,B) = 0 for any
n € Q. By noting that An,B CAypC Z,,_B, we conclude that A, p is 7 g-measurable since,
up to g negligible sets, it coincides with a Suslin set and every Suslin set is 7 p-measurable
by (ii) in Remark 2.18. The proof of the first assertion is complete.

If 7(A) = 0 the disintegration

0= 7(A) = / w5 (Ay.g)ds(n) 4.6)
T(B)

immediately gives the second assertion. O

Corollary4.5 Let A C Y(R") be a mw-measurable set, B C R" a Borel set, and let g be a
7t -measurable function on Y (R") with g > 1 w-a.e. on A. Then, for wg-a.e. 1 it holds

gnB =1, mpe-ae onAyp. 4.7

Proof Taking A=A \ {g > 1} and applying Lemma 4.4 with Ain place of A, we obtain the
conclusion. O

Lemmad4.6 Let1 < p <ocoandr > 0. Let F", F € LP(Y(R"), ) such that F" — F in
LP(Y(R"), ) as n — oo. Then, there exists a subsequence (non-relabelled) of (F™*) and a
measurable set A, C Y (R") so that wpe(Ar) = L and

F,’]”r — Fyr, inLP(mp,),foranyn € A,.
Note that F , := Fy gc was defined in Definition 3.10.

Proof By Lemma 3.12, we have that

/ (/ |F,’71r—F,7,,|”d7rBr>dnt(n):/ |F" — F|’dm — 0, asn — oo.
T(BH\IT(B,) TR
(4.8)

In particular, up to subsequence fY(B,) IF,;ZJ — Fyr|Pdnp, — 0O for wge-a.e. n, which
completes the proof. O

4.2 Localisation of energies, resolvents and semigroups

In this section, we localise differential operators and related objects introduced in Sect. 2.5.
Let r > 0. The localised energy (&, D(E,)) is defined as the following direct integral

& (F) = /T(B ; Ex s, (Fy)dmpe (), DE) :={(F € L*(TR"), 1) : &(F) < o0}.

r

4.9)
The form is closed by [18, Proposition V.3.1.1]. For F € CylF(T (R")),
E(F) = / |V,F|2TTdn F € CylF(Y(R")), (4.10)
T(R")
where
V,F(y,x) = xB,(x)VF(y,x). 4.11)
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See e.g., [45, Prop. 3.9]. We denote by {G/}4~0 and {T/};o the L2-resolvent opera-
tor and the semigroup associated with (&, D(&,)), respectively. Recall that {G;,r (&) }a
and {TtT(B’)} denote the L>-resolvent operator and the semigroup corresponding to
(Ex(,), H"2(Y(B,), )). The relation between {G”, }q=0. {T/ }i>0 and {Ga B}, (1,7 P}
is given below.

Proposition 4.7 ([46, Corollary 4.11]) Let ¢ > 0, t > 0, and r > 0 be fixed. Then, for any
bounded measurable function F, it holds that

GLF(y) =Gy " Fy e r(v15,), 4.12)
TFy) =T, Fyy  (vl5,) 4.13)
form-a.e. y € T(R").

Remark 4.8 Although Proposition 4.7 provides the statement only for the L2-semigroups
and resolvents, it is straightforward to extend it to the L”-semigroups and resolvents for any
1<p<oo.

Proposition 4.9 The form (&, D(E,)) is monotone non-decreasing in r, i.e. for any s <r,
D) C D), &(F) < &(F), FeDE&).

Furthermore, the following two forms coincide: letting E(F) :=1limy_ o0 & (F) and D) =
{F € mr>(ﬂ)(€r) : 11Inr—)oo gr(F) < OO},

(& DE) = (& H2 (TR, 7).

Proof The monotone increasing property is a direct application of [46, Proposition 4.13].
The second assertion follows from the fact that (A, CyIF(Y (R"))) is essentially self-adjoint
by [2, Theorem 5.3] and that £ and & coincide on CylF(Y (R")). O

Remark 4.10 In [46, Corollary 4.11, Proposition 4.13], the statements deal with the case
where the reference measure is the law of the sineg point process. The case of the Poisson
point process corresponds to § = 0, and the same proofs there apply to the case of the Poisson
point process in this paper.

The next proposition shows the monotonicity property for the resolvent operator G, and
the semigroup 7}".

Proposition 4.11 The resolvent operator {G,}o and the semigroup {T]}; are monotone non-
increasing on non-negative functions, i.e.,

G,F <G,F, T/F <TF, foreverynon-negative F € LZ(T(R"),T[), s<r.
(4.14)

Furthermore, lim; o0 G, F = Go F and lim, oo T/ F = T;F for F € L2(Y(R"), ) and
a,t > 0.

Proof Thanks to the identity
o0
2 —ot
G;:f e T/ dt,
k

it suffices to show (4.14) only for 7;. By a direct application of [37, Theorem 3.3] and the
monotonicity of the Dirichlet form in Proposition 4.9, we obtain the monotonicity of the
semigroup. The second part of the statement follows from the monotone convergence &, 1 £
combined with [38, S.14, p.372]. O
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4.3 Localised Bessel operators

T(B,

Let B” and B, ) be the (a, p)-Bessel operators corresponding to {7/ };~¢ and
o, p p p p g '

{TT(B") }t=0, respectlvely defined in the analogous way as in (4.1). The corresponding («, p)-

Bessel capacities are denoted by Capy, ,, and CapT(Br
4.3)

) defined in the analogous way as in

Lemma4.12 Capgﬁp(E) < Capa’p(E)for every E C Y(R") andr > 0.

Proof It suffices to show that B, pF = BapF for any F > 0 with F € L?(T(R"), n),
which immediately follows from Proposmon 4.11 and (4.1). O

Lemma 4.13 [f Cap,, p(E) = 0, then CapT(B’)(Ew) = 0 for wpc-a.e. n and every r > 0.

Proof By Lemma 4.12 we may assume Capj, ,(E) = 0 for any r > 0. Let {F,} C
LP(Y(R"), ) be a sequence so that F,, > 0, B(;’pF,, > 1 on E, and ||F,,||zp — 0. By
Lemma4.5, (Fy,);,, > Oformpgc-a.e. n. Furthermore, by Lemma4.6, there exists A, C Y (By)
and a (non-relabelled) subsequence (F},), » so that wpe(A,) = 1, and for every n € A,,

(Fu)yr — 0, inLP(Y(B,), 7p,). (4.15)

By Proposition 4.7 and Remark 4.8, we have that

l o0
(BL  Fp)yr = <7/ e T F, dt)
a,ptn/n.r F(a/z) . ton r

1 o0
= 7/ e 't T) Fy), dt
L(e/2) Js "

1 /21T (B
F(a/2)/ ¢ v

=By P (Fu)y.r (4.16)

Note that we dropped the specification of p in the semigroups for notational simplicity in
(4.16).
Since B, ,F, = 1 on E, by applying Corollary 4.5, we obtain that (B, ,Fu)y,, = 1 on

E,, for mge-a.e. n. Thus, by (4.16), By i (F,)y, > 1 on E,, for mpe-ae. n. By (4.15),

T(Br)(E

we conclude that Cap ) = 0 for wpe-a.e. n and any r > 0. O

4.4 Finite-dimensional counterpart

In this section, we develop the finite-dimensional counterpart of Theorem 4.3. The goal is to
prove the following proposition.

Proposition 4.14 Let ap > m. IfCapa (B’)(E) =0, then S'gr’k(E) =0foranyk € N.

T[Q ,®k

xk
Proof Recall that is the k-tensor semigroup of T, as defined in (2.17). Let BDIi "

xk
be the corresponding Bessel operator defined analogously as in (4.1), and Capffp be the
corresponding («, p)-capacity.
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k
Let {F,,} C LP(Y(B,),mp,) be a sequence so that F,,, > 0 and B(IP(B’)FM > 1 on

E C YX(B,), and || Fy|l.r — O. By Proposition 2.17 and the definition of Bessel operator,
we have

k Bxk
By P Fyosi =By (Fuosi),

xk
hence F;, os;y > 0, Bf,’p (Fposg) >1on sk_l(E). Furthermore,
| Fm o Sk”Lp(Ber) = C(k,n, )| EmllLrvksy —> 0, asm — oo,

where C(k, n, r) > 0 comes from the constant appearing in front of the Hausdorff measure

xk
in the definition of 7 g, . This implies that Capffp (sk_1 (E)) = 0. We can now rely on standard
capacity estimates in the Euclidean setting (see, e.g. [47, Theorem 2.6.16]) to conclude that
Srk=m (S/:I (E)) = 0. Recalling (2.4), we have that

m 1 — 1 NK—nN -
S (E) = 25 (08" " (E) = 58" (s | (B)) = 0.0

4.5 Proof of Theorem 4.3

Let E € S(&) such that Cap,, ,(E) = 0. Thanks to Lemma 4.13 we have Cap, ;" (E) = 0

for any » > 0, hence S'g;k(Eﬁ’,) = 0 for any k € N as a consequence of Proposition 4.14. It
implies

o0
_s" k
pr(E) =SB Y S (Ey )drpe(n) =0,

k= T

for any r > 0. Recalling that p/" (E) 1 p™ (E) by (3.5), we obtain the sought conclusion.

5 Functions of bounded variation

In this section, we introduce functions of bounded variations (called BV functions) on Y (R")
following three different approaches: the variational approach (Sect. 5.1), the relaxation
approach (Sect. 5.2), and the semigroup approach (Sect. 5.3). In Sect. 5.5, we prove that they
all coincide.

5.1 Variational approach

Let us begin by introducing a class of BV functions through integration by parts. We then
discuss localisation properties.

Definition 5.1 (BV functions I: variational approach) Let Q C R”" be either a closed domain
with smooth boundary or R”. For F' € U1 L? (Y (R2), mq), we define the total variation as

V’Y‘(Q)(F) = sup:/ (V—?(Q)V)Fdn’g Ve CylV*(T(Q)), |V|T’Y‘(Q) < 1}. (5.1)
T(2)

When Q = R", we simply write V(F) 1= Vy®n)(F). We say that F' is BV in the variational
sense if V(F) < oo.
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Remark 5.2 The assumption F € U,-1L?(Y(R2), mq) plays an important role in Defini-
tion 5.1, ensuring that fT(Q)(Vg"r(Q)V)FdTrQ is well defined for any V e CylV(T(R2)).
Indeed, one can easily prove that V;‘r(Q)V € Ul<p<ooL?(Y(R), mg) for any V €
CylV,.(Y(R)), but it is not L> (Y (2), wg) in general.

Remark 5.3 As it was shown in Remark 2.10, the set of V € CylV (T (2)) with |V |7y <1
is dense in CylV (Y (€2)) with respect to the topology of point-wise convergence and the
LP(Y(R2) = TY(R2), mq) topology for 1 < p < oco.

In order to localise the total variation we employ a family of cylinder vector fields con-
centrated on B,, for some r > 0.

Definition 5.4 For F € U,.1L? (Y (R"), 7), we define the localised total variation as

Vi (F) = sup{/ (V*V)Fdm : V € CyIVL.(Y@®R™), |V|ry@n < 1}, (5.2)
T(R?)

where

k
CyIVL(T(R™)) := {V(y, X) =Y Fi()vi(x) : F; € CyIF(T(RY), v € CX(B, 1 R"). k € N} .
i=1

The next result shows that Vy(p,)(F;,) < oo for wge-a.e. n whenever V, (F) < oo. It
is the key step to perform our nonlinear dimension reduction. Indeed it allows to reduce the
study of BV functions on Y (R") to their sections, which live on the finite dimensional space
T (B).

Proposition 5.5 Letr > O and p > 1. For F € LP(Y(R"), ) with V,(F) < o0, it holds

/ Vy (s, (Fy.r)dmpe(n) =V (F) . (5.3)
Y (BY)

Let us begin with a simple technical lemma.

Lemma5.6 Letr > 0. For V € CylV, (Y (R")), and F € CylF(Y(R")) it holds

/ (/ F’I,r(V)V'?(Br)Vr;,r()’)dnB,(J/)>d7TB;‘(77):/ FV*Vdrn . (54)
T(Bf) \JY(By) T (R?)

Proof of Lemma 5.6 Recall that for » > 0 and n € Y (B;f) we have V, , € CylV_(B,). By
the divergence formula (2.14) and the disintegration Lemma 3.12, we have that

/ </ Fn,r(y)v’ﬂ;‘(B,)Vn,r()/)dﬂBr(y)>d7TBf(n)
T(Bf) \JY(B)

k
= Fy.r V. (F)p.r
/T<B;'></T<B,) T (y)(l; i (Fn,r (V)

k
+ Z(F»n () (Vi vi)*()/))dﬂB,(J/)>dnB,c(n)

/Y‘(BL [Y'(B)( ZVULF +ZF(VR"U1 )) ()/)d]‘[Br(y)dr[B;;(n)

i=1 n.r
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k k
- _/ F(Z Vo Fi+ Y Fi(Vi v,~)*>d71
TRYD o i=1

= / FV*Vdr .O
T(RM)

Proof of Proposition 5.5 We first prove that
/ Vy B,y (Fy.r)dmwge(n) = Vi (F). (5.5
Y(BY)
Let V; € CylVL(Y(R")) with |V;|7y < 1 so that
V,(F) = lim (V*V))Fdr.

i—00 T(R")

Observe that (V;),,, € CylV,(Y(B,)), then by definition of Vy(p,)(F;, ) we get
/ (V*Vi)F), rdmp, :/ (VY@ (Vi) ) Fyrdnp, < Vys,)(Fyr), i€N.
T (By) T(B))
Therefore, by Lemma 5.6,

V. (F) = lim (V*V)) Fdm
=00 T(R")

= lim/ / (vé(lgr)(Vi)n,r)Fr],Fd”Brd”Bf(n)
o) Jrs)

i—00

IA

/ Vys,) (Fy.r)dmpe(n) ,
Y (BY)

which completes the proof of (5.5).
Let us now pass to the proof of the opposite inequality

/ Vv 8,) (Fy.r)dmpe(n) < Vo (F). (5.6)
T(BY)

The idea of the proof is inspired by [34, Proposition 3.2] in the case of the Wiener space. We
divide it into three steps.

Step 1. We show the existence of {V; : i € N} C CylV_ (Y (B,)) such that |V;|7y <1
and

Vy,)(G) = sup/ (Vf‘r(Br)Vi)GdnBr , (5.7)
ieN J1(B,)

forany G € U,- LP(Y(B,), p,).
First we observe that there exists FF := {G; : i € N} C CylF(Y(B,)) such that any
cylinder function can be approximated strongly in H'4 (' (B,)) forany ¢ < oo, by elements

of FF.Let D C C°(B,; R") be a countable dense subset, w.r.t. the Cl-norm: lvlicics,) ==
IVRr V|l Loo(B,) + llvllL=(B,). We define the countable family

FV = {BV . 0)¢a(VIr,x) : V(y,x)

= > wi(X)Gi(y), «.eQ", meN, w; €D, Gie FF |,

i=1
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where ¢, € C*([0, 00)) satisfies 0 < ¢y < 1, |¢},| < 2/ and ¢y (t) = 1 on [0, | + «],
¢ () =0on [l + 2w, c0).
Fixé > 0,q € [1,00)and V € CylV, (T (B,)) with |V |7,y < 1.To prove (5.7) it suffices
to show that there exists W € FV with |W|ry < 1 suchthat ||V Y5, )(V W)llLa(r(s,)) < 9.
Fix t € (¢,2g) and ¢ € (0,1/9). Letting V = Zi:l Fv; € CylV, (Y(B,)), we pick
G; € FF and w; € D such that

m
> (i = willeigs,y + 1Fi = Gilleer s,y + Vv, (Fi = Gl eres,y) < & (5.8)
i=1

and consider W := Y 'L, w;G;. By using the divergence formula (2.14), we can obtain that
| Wi 7 =t + [ (Wl = Vi e[, < C L (59)
T(By) T(Br)

where C = max{l|willc1, 1Gill: v,y IVGillLi(res,) : 1 < i < m} does not depend on

&. We assume without loss of generality that ¢, & ™ e Q and set
W= —2810f)¢ (|W|T Y)W e FV, (5.10)
which satisfies
\Wir,x =(1—2¢ wf)¢ L (IWIE, ) IWin,r < — 26T )(1 4 26T07) < 1.
‘We now check that ||VT(B )(V — W)llza(r(B,)) < é. From the identity
Vi)W =(-2¢ 10’)¢ & (W1 +) (V5 5,) W)

—2(1—2ewr>¢> 1 (W17 ) IWIT

and the inequality
|6/ ) (W)W, <2670 g 0 W,y
& TOF Y y {14607 < ‘W‘Ty <1+2510t} y T
1
< 5¢7 10 _ L,
- X{|W|ZTVT21+£1T»}
we obtain

195 5, (W = Wllza < | ((1 = 26709

(W, ) = 1) (Ve g, W)

L & L9(Y(Br))
+55_W X - 1
{IWlg, 214 0} L (Y (By))
1 ’ _
< 5eT0 ||V W +H by VvV
- 193 ) Wllzacr e XHWIT T>1+ST)( EEUSLLE) P
1
+ 570 || x 107
”W‘ZT y=1+e 107 Y L9 (T (B,))
C<||VT(B)W||L’(T(Br))’t ‘1)
( b ot >’ (5.11)
\W\T Y_HFT} LI(Y(By))
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h, timated ||x _ Vi W b f the Holder i I-
where we estimate ”X{IWIZTVTEHSWIW}( Y (B, M L4 (r(B,)) by means of the Holder inequa

ity and using that t < 2¢. The Chebyshev inequality and (5.9) give

HX _ L = HX . L
{(IWlg, y =1+ 00} ILLY (Y (By)) {IWlr, v=1+e3 } LT (Y (B))

<, . 1
Wi, x—IVir, v 1ze3 ) | L0 (r (B,)

L 1/t
< (s [ IWlr,x — |V|TyTHL1(T(Br)))

1_ 1 1
<Ce" 32 <Ce2 (¢<1),

where C = max{[|lwillc1, 1GillL1¢rs,y)> IVGillLiys,) : 1 < i < m}isindependent of ¢.
Therefore, we conclude

1Y% 8y W = Wllacray < 1V my W = Wllzaera,) + 1V, (W = VllLars,)
< C(e™ +e¥) +e<d,
provided ¢ is small enough. The proof of (5.7) is complete.

Step 2. We conclude the proof of (5.6).
Note that the map y +— F(y)V¥} (B,) V(yl|p,) is m-measurable. Furthermore, by
Lemma 4.4, F; pc is g, -measurable and the map

Y(Bf)>n+> / (V%?(B,)V)Fn,B;'dﬂB,
Y (By)

is 7 gc-measurable. Therefore, the map n — Vy(p,)(Fy, pe) is 7 pc-measurable.
Fix now ¢ > 0 and define a sequence {C; : j € N} of subsets in Y (Bf) so that Cy, = ¢,
and

Cj:= {n € Y(By) : Fy,,,is mp,-measurable and,

/ (VY Vi) Fordmg, > (1 = &)Vrs,) (Fyr) A E_I] \ U Ci,
T(B,) .

where the family {V; : i € N} has been built in Step 1.
Then, C; is wgc-measurable for any j and 7 e (Y(Bf) \ U‘/’.o=1 C;) =0. Set

n
WI(y) = Waly +m) =Y _Vi()xc,(m), v € Y(B), neT(B).
j=1
We approximate xc; by {F;}ieN C CylF(Y(By)) with |FJ‘:| < 1 in the strong

LP/(T(Bf), 7 ge) topology, where # + % = 1. Thus, setting W,’; (y+n):= Z’}:l V; (y)F;
(n), we see that

/ ”V’*T(Br)(Wn - W;}l)( + 7))||Lp’(y(3r))d7TBﬁ(7)) — 0 asi — o00.
T (Bf)

r

Notice that W,i € CylVL(T(R")), hence

i—00

lim (f <V§(B,)W,i(-+n>)fn,rdn3,)dn3,c<n>
1B \Jr(B,)
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:/ / (V;(B,,)Wy?)fn,rdﬂB,ﬂB,‘(n)
T(Bf) JY(By)

n
[ A Zxew [ T vt | dro
Y (Bf) i=1 Y(B;)

n
>(1—-¢) D xe; Ve (fo) et | dupe
RACTON W
=(1-e Vrs) (fyr) A e tdrge(n). (5.12)
Vi Cj

By Lemma 5.6,

/ (V*W,i)fdn=</ (vi;(B,)W,i(-+n))fn,rdn3,.>dn3g(n>, (5.13)
T(R") Y (Br)

which along with (5.12) gives the claimed inequality by letting i — oo and n — oo. O

5.2 Relaxation approach

In this subsection we introduce a second notion of functions with bounded variations. We
rely on a relaxation approach.

Definition 5.7 (BV functions II: relaxation) Let F € LYY (RM), 7r), we define the rotal
variation of F by

IDLF|(YT(R")) := inf{linrgi(gf IVFullprryy -
F, — Fin L'"(Y(R"), %), F, € CylF(YT(R™")}. (5.14)
If IDLF|(T(R")) < oo, we say that F has finite relaxed total variation.
Definition 5.8 (Total variation pre-measure) If D, F|(YT(R")) < oo, we define a map
IDLF|:{G € CylF(Y(R")) : G is non-negative} - R,
ID4F|[G] := inf {liminff G|VF,|rydr : F, — Fin LI(T(R"),JT),
n—0o0 T(Rn)
F, € CyIF(T(R"))} . (5.15)

Notice that |[D. F|[G] < [|Gll1>|D«F|and D« F|[G1 + G2] = ID«F|[G 1]+ ID«F|[G2].
By construction, |[D4F|[G] is the lower semi-continuous envelope of the functional
Cyl[F(Y(R")) > F +— fY(R,,) G|VF|rydn. Therefore, the map F +— |D,F|(G) is lower
semi-continuous with respect to the L' -convergence for any non-negative G € CylF(Y (R")).

It will be shown in Corollary 7.4 that |D, F| is represented by a finite measure |DF|, i.e.

ID«F|[G] = / Gd|DF| for any non-negative G € CylF(T(R")).
T (R)
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5.3 Heat semigroup approach

In this subsection we present the third approach to BV functions. We employ the heat semi-
group to define the total variation of a function F € L?(Y(R"), ), p > 1.

Proposition 5.9 Let F € U~ LP(Y(R"), ). Then |VT; F|;1 < oo fort > 0 and the
Sollowing limit exists

1(F) := lirr(l) IVT,Fl|l1. (5.16)
—
Definition 5.10 (BV functions IIl: heat semigroup) A function F € U, L? (T (R"), ) is

BV in the sense of the heat semigroup if T(F) < oo. We define the total variation of F by
T(F).

To prove Proposition 5.9, we need the Bakry—Emery inequality with exponent ¢ = 1, i.e. for
any t,s >0, F € Uy, LP(T(R"), ), it holds

/ VT, Fldn < oo, |VT4F|<T,|VT,F| w-ae.. (5.17)
Y (R?)

The inequality (5.17) will be proven in Corollary 5.16 in Sect. 5.4. Let us now use it to show
Proposition 5.9.

Proof of Proposition 5.9 Let F € LP (Y, x) for p > 1. By (5.17), we see that

IVTFlly < liminf VTl < liminf [V F)
s= s—

By taking lim sup,_, o, we obtain limsup,_,o [[VT; F| ;1 < liminf;_,¢ ||[VIF| 1, which
concludes the proof. O

5.4 p-Bakry-Emery inequality

In order to complete the proof of Proposition 5.9, we show the p-Bakry—Emery inequality for
the Hodge heat flow, which implies in turn the scalar version (5.17) of the p-Bakry—Emery
inequality. It will play a significant role also in the proof of Theorem 5.18. Recall that, for
F=o(ff, ..., i) € CyIF(Y[R")),

k
VE(y,x) =Y 00y, ..., fiy)Ven fix),

i=l1

k
AF(y)= Y 50y, ... ) (Ve fi Ven )1, v
i,j=1

k
+ Y GRSy BB )y (5.18)

i=1

where (Vgn fi, Ven fi)1, v := (Ve fi, VRn ) 1,0) %Y 2= [u (VR fis ViRe fi)Re (X)dy (X).
See e.g., [2, (4.7)] for the proofs.
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Definition 5.11 (Hodge Laplacian) For V = Y} Fyvg with Fy = & ((fO*, ..., (f5)"),
define Hodge Laplacian of V as

m L
ArV(rx) =0 3 B v ) (Vo £ Ve ) ) v )

k=1i,j=1
(5.19)
m L
+ YD k(D Y DY) (DR )y vk (x)
k=1 i=1
m
+ Z (O ... (fgk)*)’)AH,R" v (x),
k=1
m /L
F2) 3w k(DY (DY) (VR £ Vo) ur () (5.20)
k=1 i=I
where A g revy is the Hodge Laplacian of vy € C*°(R"; R"), and (Vg» fik - Vrn)vg (x) is
the vector field whose ith coordinate coincides with <VRn fik , Vrn (V) >Tx g~ It turns out that

AV does not depend on the choice of both the representative of V and the inner and outer
functions of Fj (see [1, Theorem 3.5]).

For the proof of Theorem 5.13 below, we introduce the following space of exponential
cylinder functions with Schwartz inner functions:

ECylFg(YT(R")) := Span]R{exp{log(l + f)*}  feS, =8 < f <0 forsomesd € (0, 1)},
where S is the space of Schwartz functions in R” (i.e., functions in R” whose derivatives
are all rapidly decreasing). We note that T;ECylFg(T (R")) C ECylFs(Y (R")) for every

t > 0, and that (A, ECyIFg(Y (R"))) is essentially self-adjoint in L*(T(R"), m) exactly by
the same proof as in [2, Theorem 4.2].

Remark 5.12 Exponential cylinder functions have been originally discussed in [2], where
they choose a larger class of inner functions. We introduced ECylFg(Y (R")) with inner
functions in the space S of Schwartz functions for the proof of Theorem 5.13, where we need
to choose a smaller class of inner functions to approximate ECylFg(Y (R")) by cylinder
functions in a sufficiently good way. See the last paragraph of the proof of Theorem 5.13.

We define the corresponding energy functional:
Eu(V, W) = (=AuV, W) 27y
= / YV, Wydr, V,W eCylV(Y(R"), (5.21)
T (R")
where T'T denotes the square field operator associated with Ag. By [1, Theorem 3.5], the
form £y is closable on CylV(Y (R")) and the corresponding closure is denoted by D(Ex)

and the corresponding (Friedrichs) extension of CylV(Y (R")) is denoted by D(Ag). Let
{T;} denote the corresponding L2-semigroup. It holds that

T,V € D(y), foranyr > 0andV € CylV(T(R")). (5.22)

The following intertwining property holds.
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Theorem 5.13 VT; F = T,V F foranyt > 0 and for any F € HY2(Y (RM), 7).

Proof We apply [42, Theorem 2.1] with D = CylF(Y(R")), D = V, A = A, A= Ay,
f’, = T;, R = 0, which concludes the sought statement. To do so, we verify Conditions (i)—
(iv) of [42, Theorem 2.1]. Condition (i) and (ii) are straightforward by construction. Using
the commutation Vri Agpr = Ay reVRe and the representation (5.18) and (5.19), we can
readily verify Condition (iv), i.e., VAF = Ay VF for any F € CylF(YT(R")).

We now verify Condition (iii), viz., (A — A)CylF (T (R")) C H“2(T(R"), 7) is dense for
sufficiently large A > 0. We prove it with A = 0, viz., ACyIF(Y(R")) ¢ H"“2(Y(R"), 7)
is dense. We first prove that AECylFg(Y (R")) c H"2(T(R"), ) is dense. Define L :=
{F € AD(A) : F € HY2(Y(R"), )}. By Lemma 5.14 below, AD(A) C L2(Y(RY), 7) is
dense. Furthermore,

T,AD(A) = AT,D(A) C AD(A) N H"2(Y(RY), ).

In particular, 7, AD(A) C L. Combining [13, (4.26)] with the fact that £ coincides with the
Cheeger energy associated with the L?-transportation distance dy and the Poisson measure
7 (see [26, Proposition 2.3]), we have the following regularisation inequality

| FII?
&T,F) < —L

(5.23)

Therefore, combined with the density AD(A) C L2(Y(R"), ), the space 7 :=
Ur=0T; AD(A) is weakly dense in H 2 (Y (R"), 7). As Tis aconvex subsetin H 2 (Y (R"), 1),
by Mazur’s lemma,

Tis strongly dense in H"2(Y (R"), ) . (5.24)

Forevery G € T = U;-oT; AD(A) = U0 AT;D(A) with an expression G = AT, F with
F € D(A) for some ¢t > 0, we can take F,, € ECylFg(T (IR")) so that

IAF, — AF|;2 4+ 1Fy — Fll;2 =0 (5.25)

by the essential self-adjointness of (A, ECylFg(Y (IR"))). Furthermore, it can be readily
verified that

AT Fy = ATy Flip2 + 1T Fp = T Fli g2 — 0 (5.26)

by the L?-contraction property of 7, and the commutation AT, = T,A for t > 0. Not-
ing T; F, € ECylFg(T(R")) by the stability of ECylFg(Y (R")) under the action of 7,
the formula (5.26) particularly shows that the sequence (AT; F,),eny C AECYIFg(Y (R™))
approximates G = AT, F € Tin the strong L?-topology. Furthermore, by using (5.23) again,
we have the uniform energy bound:

1

sup E(AT, F,) = sup E(T;AF,) < sup —||AF,| < oco. (5.27)
neN neN neN 2t

For every H € D(A),

f (V(AT,F, — G), VH), (dr(y) + / (ATiF, — G)Hdx
T (R") 14 T (R")

= —/ (AT,F, — AT,F)AHdxn +/ (AT,F, — AT,F)Hdn
TR T(R")
n—oo

0. (5.28)
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By the uniform bound (5.27) and the fact that D(A) is dense in HLY2(T(RY), ),
(5.28) shows that (AT;F,)sen C AECylFg(Y(R")) converges to G = AT;F €
T weakly in H“2(Y(R"), 7). Thus, AECylFg(YT(R")) approximates 7 in the weak
H'2(Y(RM), 7) topology. By (5.24) and the fact that AECylF (T (R")) is a convex subspace
in HL2(T (R™), ), by applying Mazur’s lemma again, we conclude that AECyIFg(YT(R™))
is strongly dense in HY2(Y(@R"), 7).

Therefore, to complete the verification of Condition (iii), it suffices to prove that
ACyIF(Y (R")) approximates AECylFg(Y (R")) in H L2(Y(RM), ). The idea of the proof
is, however, the same as in that of [2, Proposition 4.1]: for F = exp{log(l + f)*} €
ECylF5(Y (R")), we can take an approximation f, € CZ°(R") of the inner function f € S
so that F, = exp{log(l + fn)*} € CylF(T (R™)) converges to F in a sufficiently good way
to conclude that ACylF(T (R")) approximates AECylFg(Y (R")) in HY2(TY(R"), 7). As
this proof is mostly a repetition of [2, Proposition 4.1], we omit the details here. O

Lemma5.14 For F € L*(Y(R"), 1), there exists F, € D(A) so that |AF, — Fll;2 — 0.

Proof We first show that AG, F — AGgF in L*(Y(R"), ) for every F € L*(T(R"), )
as o — f fora, B > 0. By the resolvent equality G, — Gg = (B — a)GyGg, we have that

[AGs = Gp)Fll2 = (B = )|AGGpFll2 = (B = )|Ga AGEF]| 2.

By the L?-contraction of oGy, we obtain
B—a
B—-—a)GeAGpF |2 < TIIAGﬁFHLz -0, a—B.

Thus, AG4 F — AGgF asa — Bin L2(Y(R"), 7).

We now prove the sought statement. Let F,, := (1/(e — 1))Go41/nF € D(A). Then,
by the general identity (o« — A)G, = Id, and by the convergence AGyF — AGgF in
Lz(T(]R”), 1) proven above, we have

1 n—00 1 (a@—1) 2 n
AFy=——AGui i} — —AG F=———F"F=F, FeL*(YR"), 7). O
a—1 a—1 (a—1)
Theorem 5.15 Let F € D(Eg). Then |T;F|ry < T;|F|ry w-a.e. for every t > 0. In
particular T; can be extended to the LP-velocity fields LP (T Y (), wq) forevery 1 < p <
0.

Proof By the Weitzenbock formula [1, Theorem 3.7] on YT (R"), we can express Ay =
V*V + RT, where RY is the lifted curvature tensor from the base space R”. Since R” is flat,
we can easily deduce RT = 0.

Now, setting T(V, W) := TY(V, W) +2RT(V, W) = TT(V, W) we can apply [43,
Theorem 3.1] (see the proof of [43, Theorem 3.1] for p = 1) and [43, Proposition 3.5], to
get the sought conclusion of the first assertion.

We now prove the second assertion. Let V € LP(TY (), 7). Then, the density of
cylinder vector fields gives the existence of a sequence V,, € Cyl[F(R") C D(Ep) such that
[V = Viry — 0in LP(Y(R"), ) as n — oco. We can define

T,V = lim T{ Vn . (5.29)
n—oo
The existence of the limit follows from
|Ttvn - Ttvm|T'Y' = Tt|vn - Vm|T'Y‘ s (5~30)

as well as the independence of the limit from the approximating sequence (V;,),¢cN- O
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Theorem 5.16 (p-Bakry—Emery estimate) Let p > 1. The following assertions hold:

G T, : H-P(YRY), 1) — HVP(Y(R"), 1) is a continuous operator for every t > 0.
(ii) Forevery F € H"P(Y(RY), m),

IVT,F|}y < TiIVF|}y m-ace.. (5.31)
(iii) Let 1 < p < 2. Forevery F € LP(Y(R"), m) it holds that
INT, Fllrrry < C(p)t™ 2| Fllr, 1> 0. (5.32)

In particular, T, : LP(Y(R"), ) — HY“P(Y(R"), 7) is a continuous operator for
everyt > 0.
(IV) For everyt,s > 0, F e LP(’Y‘(R"L TT), it holds that ”VT[F”L](TT(R”)) < 00 and

IVT,.sFlry < T;|VI,F|ry m-ae.. (5.33)
Proof (i). By Theorems 5.13 and 5.15, for any F € CylF(Y (R")) it holds that
\VT;Flry = |T;VF|ry < T;|VF|ry m-ae.. (5.34)
A simple application of Jensen’s inequality to (5.34) gives
VT, F|% < T;|VF|}y, forF e CylF(Y)andp > 1. (5.35)
Let F, € CylF(Y) be a H'"P(T(R"), m)-Cauchy sequence. Then, by (5.35) and the invari-
ance (T, f) = n(f),

/ \VT,(Fy — Fp)lpypdr < / Ty|V(Fy — Fp)lyrdm
T (R™) TR
= / |V(F, — Fp)|ycdm — 0. (5.36)
T(er)

Since HY? (Y (R"), ) is the closure of CylF(Y) w.r.t. the norm ||V - |lLp vy + | - P (1, 7)>
by (5.36), the operator T; is extended to H L (Y (R"), 7) continuously. The proof of the first
assertion is complete.

(). Let F € HLP(Y(@R"),7) and take F, € CylF(Y) converging to F in
HUP(Y(R"), 7). Then, by the lower semi-continuity of |V - II;T w.r.t. the L?-strong con-
vergence, the continuity of the L”-semigroup 7; and the inequality (5.35), we obtain

P _ p E p
|VTt+SF|TT - |VTZTA“F|TT =< lgglgéf|VTtTan|TT
< liminf VT Fyl 7y < TIVTFlpy.

Here the last equality follows from the assertion (i).
(iii). Let p > 1 be fixed. For any F € CylF(Y (R")) satisfying F' > 0, it holds

t
po-0 [ [ VLEGInFrRdras = [ (pran - [ mrvas
x JY(RM) T (R") TR

< / \F|Pd
T(R")

where the first equality follows by the following argument:
d

— |T,F|Pdr = p/ |T, FIP~ AT, Fdn
dt T(R")

T(RM)

@ Springer



BV functions and sets of finite perimeter on configuration... Page37of57 177

== [ (vmrvir)
T(R") T,

14

d

A7)

=po -0 [ (BFIEVLEVLE) dn)
T(R") TyT

_ 2
=—p<p—1)/ P2V Ldn(y) .
T(]R”) Y

By the contraction property of 7;, we obtain

2—p

t ¢ =e
// |V7}F|§Tdnds§<// |TsF|pd71ds>
« Jr@n « JT@)
! 2 2 g
(f/ IV, F 3| T FIP~ dnds)
* JYR?)

2-p
< Ct 2 ||IF|7, .
We now employ the Bakry—Emery inequality (5.35) combined with the contraction property
of T; to show that s — fT ®") |IVT  F |IT’Td7r is non-increasing, which yields

2—p

t
z/ VT, F|5dr 5/ / VT, F|}ydrds < Ct 72 |F|}, . (5.37)
Y (R") x JYRY)

This implies our conclusion for cylinder functions. We extended itto any F € L” (Y (R"), )
by means of a density argument. Indeed, given F € L”(Y(R"), ), we can find F, €
CylF(Y(R™)) such that F,, — F in L?. The continuity of the semigroup T; gives T; F,, —
T;F in L?, while the lower semi-continuity of the functional G — f“r (R |VG|’T’T(Rn)dn
with respect to the L” convergence for p > 1 yields

n—oo

/ VT, F|}rdn < liminf/ VT, Fylhpdm < Ct7V2 | Fll o .
T(R") T(R?)

(iv). Note that the assertion in the case of 1 < p < 2 implies the one in the case of
p > 2by LP(YR"),7) € LI(Y(R"), w) whenever 1| < g < p. Thus, we only need
to prove it in the case of 1 < p < 2. Let F € LP(Y(R"), ). Then, by the assertion (iii),
T,F € H'P(Y(R"), 7). Take G, converging to 7 F in HLP(Y(R"), 7). Then, up to taking
a subsequence from {G,}, and by making use of (5.34), we conclude that

IVTisFlry = VLT Flry = lim [VT,Gulry < lim Ti[VGylry = Ti|VIFlry .0
n—o00o n—oo

Remark 5.17 In [26] (see also [24]), the 2—Bakry—Emery estimate was proved in the case of
the configuration space over a complete Riemannian manifold with Ricci curvature bound.
For the purpose of the current paper, however, we need a stronger estimate, i.e., the p-Bakry—
Emery estimate (5.31) for arbitrary 1 < p < oo and also the regularity estimate (5.32) of
the heat semigroup, both of which do not follow only from the 2-Bakry—Emery inequality.

5.5 Equivalence of BV functions
In Sect. 5, we introduced the three different definitions (the variational/the relaxation/the

semigroup approaches) of BV functions. In this section we show that the three different
definitions of BV functions are equivalent.
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Theorem 5.18 (Equivalence of BV functions) Let F € L2(Y (R"), 7). Then,

WV(F) = D F|(Y(R")) = T(F).

The proof of Theorem 5.18 will be given later in this section. Thanks to Theorem 5.18, we
can introduce a universal definition of BV functions for L2(Y (R"), 7)-functions.

Definition 5.19 (BV functions) A function F € LZ(Y(R")) belongs to BV(YT (R")) if
V(F) = [D«F|(Y(R")) = T(F) < o0.
We prepare several lemmas for the proof of Theorem 5.18.
Lemma 5.20 Forany V € CylIV(Y(R")) and t > 0 it holds
(V*T;V) = T,(V*V). (5.38)
In particular (V*T; V) € LP(Y(R")) for every 1 < p < o0.

Proof Let F € CylF(Y). By the w-symmetry of 7; and Theorem 5.13, we have that
/ FT,(V*V)dn =f T,F (V*V)dn = —/ (V(y, ), VI, F(¥)) rydn
T(R") T(R") T(R")
= —/ (V. ), T,VF())rvdn
T(R")
= —/ (T:V(y,), VEW))rydn
T (R")

:/ F(V*T,V)dr,
T(R”)
which immediately implies (5.38). O

Let us now introduce D? (T Y (R"), i), the space of vector fields with divergence in
LP (Y (R™), ), as the closure of CylV(T (R")) C LP(TY(R"), ) with respect to the norm
IVILe +1IV*V]iLe.

In the case p = 2, we have the following inclusion

D(Ep) C DX (TYRM, 7), (5.39)
as a consequence of the inequality [|[V*V| ;2 < Eu(V, V) forevery V € CylV(T(R")).

Lemma5.21 Let 1 < p < coand 1 < p' < oo such that 1/p + 1/p' = 1. If F €
LP' (Y (R™), ) then

V(F) = Sup{/ (V*V)Fdr : V e DP(TTRY), 1), |V]ry < 1}. (5.40)
T (R")

Proof Let V € DP(TY(R"), ) with |V|ry < 1, to conclude the proof we just need to
build a sequence (W,,)pen C CyIV(T (R")) such that |[W,| < l and ||V*V — V*W,||Lr —
0 as n — oo. To that aim we first consider a sequence V,, € CylV(Y(R")) such that
WV = Vulee + |V*V — V¥V, |lLr — 0 as n — oo, which exists by definition. We now
define W, by cutting V,, of as we did in (5.10) in the proof of Proposition 5.5. O
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Proof of Theorem 5.18 We first show the inequality |D,F|(T(R")) < V(F) for F €
L2(Y(R"), 7). We assume without loss of generality that V(F) < oo. Let F €
L2(Y(R"), ). Set F, = Ty/u F € H"2(Y(R"), ). By the symmetry of T, in L>(T Y, )
and Lemma 5.20, we have that, for any V € CylV (T (R")) with |V |7y < 1, it holds

/ F,V*Vdr = / T1/,(V*V)Fdr =/ V*(T1nV)Fd. 5.41)
TER") TR TER")

The inclusion (5.22) and (5.39) imply that Ty/,V € D(TY (R"), ), while Theorem 5.15
ensures that [Ty, Viry < Ti/u|Viry < 1.

Therefore, we can apply Lemma 5.21 to (5.41) to obtain ||V F,| ;1 < V(F). Since F;, €
HY2(Y(R"), ) and CylF(Y (R™)) is dense in HY2(Y(R"), 7), we have | Dy F,, | (Y (R")) <
IV F,| 1, by definition. By the lower semi-continuity of |D, F[(Y (R")) with respect to the
L2-convergence, it holds

IDLFI(Y(R") < liminf [DyFy|(Y(R™) < liminf [|VFyll 1 .0y < VF).
n—00 n—oo >

We now prove 7(F) < |D.F|(Y(R")). Let F, € CylF(Y) such that F,, — F in
L'(T(R"), ) and IVEN vy — D4 F|(Y (R™)). Then, by the l—Bakry—Emery inequal-
ity (5.34) on cylinder functions,

IVT;Flipr < liminf VT Fyll g0 < liminf [|[VF, |1 = [DFI(T(R)).
n—oo n—o00o

Thus, 7(F) < |D«F|(T(R")).
Finally we prove V(F) < 7(F) for every F € L?(Y(R")). For F € LP(Y(R"), =) and
V e CylV(Y(R")) with |V|ry < 1, we have that

/ T,FV*Vdn :/ (VT;F,V)dr < / VT F|rydr.
T (R") T (R") TR

Since T; F — F in L? (Y (R"), 7r), we obtain that

/ FV*Vdr < lim |VT,F|rydr.
T(R") t—0 Y (R")
Thus, we conclude V(F) < I(F).

The proof of Theorem 5.18 was given above. However, for the sake of completeness, we
include a proof of the inequality V(F) < |D,F|(Y(R")), which holds in the more general
case of F € LP(Y(R"), w) with 1 < p < o0.

Let F € LP(Y(R"), ) for some p > 1 and |D,F|(Y(R")) < oo. Let F,, € CylF(Y)
such that F, — F in L'(T(R")) and IVEullpiryy = ID«FI(YR")). Let Fyp =
(FuvV—-—M)AMand Fyy := (FVv —M) A M. Then, F, y — Fy in LI(T(R”),JT) and
IVE mllpiryy < IVEllpiry)- Thus, limsup, o IVFy mliziryy < ID«FI(Y(R)).
By the integration by parts formula (2.13), it holds

/ FuuV*Vdn = —/ (V.VE, m)rydrn < |VFEomlipirry S IVElL
T(R") T(R")

forany V € CylV(Y(R")) with |V |7y < 1. By taking a (non-relabelled) subsequence from
{Fu,m} sothat F, ;y — Fy m-ace.,

and using the dominated convergence theorem (note that |F, yV*V| < M|V*V| €
LYY (R, ) uniformly in n), we obtain that

/ FyV*Vdr = lim FyyV*Vdr < liminf [VE, |17y, < D«F|(T(R"),
T(R") n—oo T(R”) n—0o0
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forany V e CylV(T(R")) with |V |7y < 1. Since Fjy — F in LP(Y(R"),7) as M — oo
by the hypothesis F € L? (YT (R"), ), we conclude V(F) < [DF|(Y(R")). O

Remark 5.22 The proof of all the inequalities except |D, F|(Y (R")) < V(F) remains true for
every 1 < p < oo. In order to prove the inequality |D, F|(Y(R")) < V(F) in full generality
following the same strategy we need show that T;V € D?(T Y (R"), ) for 1 < p < oo and
V € CylV(T Y). This should follow, for instance, from the L?-boundedness of vector-valued
Riesz transforms, and will be addressed in a future work.

6 Sets of finite perimeter

In this section we introduce and study the notion of set with finite perimeter. Let us begin
with a definition

Definition 6.1 (Sets of finite perimeter) Let 2 C R" be either a closed domain or the
Euclidean space R". A Borel set E C Y (£2) is said to have finite perimeter if Vv () (xg) <
0.

We refer the reader to Definition 5.1 for the introduction of the total variation Vy(q)(-).

6.1 Sets of finite perimeter in Y(B,)

We first develop the necessary theory in the configuration space Y (B,), in which every
argument essentially comes down to finite-dimensional geometric analysis since only finitely
many particles are allowed to belong to B,.

Let us recall the decomposition Y (B,) = |_|k>0 Yk (B,), where (Tk (By), dvx, ngr) is the
k-particle configuration space Y*(B,) over B, equipped with the L2-transportation distance
d« and ngr := 7B, |yk(p,)- We introduce the reduced boundary in Y (B;).

Definition 6.2 (Reduced boundaryin Y(B;)) Fix r > 0. Given E C Y(B,), set EF =
E N Yk(B,) and define

EX
0% E = L 0% B
k>0

k (pk k k (pk k

7y BX(y) N EY) g (Bs(¥) \ EY)
yeTk(B,):limsup B s > 0, limsupB’37>0

0 _
s—0 7k (BE(yY)) -0 (BE()

Tk(B)

where Bls‘ (y) denotes the metric ball of radius s > O centred at y € TK(B,) w.rt. dyk.

We can readily show that the m-codimensional Hausdorff measure pf; ) WLt d~« coin-
cides with the push-forward measure of the m-codimensional spherical Hausdorff measure
ngk on BX* w.rt. the quotient map sy

>

P,y = S0P = (5048, ©6.1)
where S';kka is the m-codimensional spherical Hausdorff measure on Ber and s; is the

quotient map BX*¥ — TK(B,) as defined in Sect. 2. Having this in mind, we prove the
following Gauf—Green formula in Y (B;).
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Proposition 6.3 (Gau—Green formula in Y (B,)) Fixr > 0. If E C Y (By) is a set of finite
perimeter then there exists a vector field og : Y (B,) — TY(B,) such that |og|ryB,) = 1
p%r(Br)—a.e. on Bg“r(Br)E, and

/(V*V)dngr :/ (V,GE)dpql{(Br) forV e CylV(Y(B,)). (6.2)
E % 5 E
Moreover Vyp,)(XE) = p#(Br)(EJ;(Br)E).

Proof Exploiting the decomposition Y (B,) = |_|k20 YX(B,), where each Y¥(B,) is a con-

nected component we reduce our analysis to the study of EX := E N YX(B,).
Set EF := ;' (EX). Given

Z O(fs - F )0k € CYIV(T(B,)),
we can define V € C;’O(B,Xk; R Y as

V@, o) = ) @) + -+ fu k), fu k() + -+

k=1
+ fue k) vk (X1, -, Xk

Notice that |V|pu < 1 whenever |V |ry < 1.Itis now immediate that EX is of finite perimeter
on B,Xk. Thus, standard results og geometric measure theory on the Euclidean space R (see
e.g., [47, Thm. 5.8.2]), we obtain

/ (V* V)dSBxk = / (V,ope)dpy forV e CRBXR™). (6.3)
0* Ek r
Bk

Here o is a vector field o : BXK — R such that |og |gme = 1 p i 8.€. on B*XkEk By

passing to the quotient by means of the map s in both sides of (6.3) and using (6. 1) we get
the sought conclusion. m}

Remark 6.4 An alternative proof of Proposition 6.3 can be given by employing the theory
of RCD spaces (see [8] and references therein). Indeed (Y*(B,), dk, ngr) is an RCD(0, kn)

space and EX is of finite perimeter. Hence we can apply [ 19, Theorem 2.2] to get the integration
by parts formula, written in terms of the total variation measure | D x g« |. From [9, Corollary
4.7] we deduce the identity |D xgr| = ol [5 Ek-

Y (By) Tk(Br)

Let us now prove a measurability statement. The proof follows arguing exactly in the same
way as in the proof of Proposition 3.6, thus, we omit it.

Lemma 6.5 Fixr > 0. If F : Y(R") — R is a Borel function, then

Y(Bf)>n— / F,,,rd,o#(Br) is 7w pc-measurable .
Y (Br)
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6.2 Sets of finite perimeter on Y(R")

We now study sets of finite perimeter on the configuration space Y (R") by employing the
already developed theory for the space Y (B,). The main idea is to reduce a set E C YT (R")
to its sections E; , C Y(B,) and apply the results for sets of finite perimeter in Y (B,),
combined with the disintegration argument. We finally let » — oo to recover the information
on the perimeter of the original set E.

Let us begin by introducing the definition of the reduced boundary in Y (R").

Definition 6.6 (Reduced boundaryin Y (R")) Let E C YT(R") be a Borel set. For every
r > 0 we set

={yeYR") : ylp € 8§(B,)Ey|8$,,}. (6.4)
The reduced boundary of E is defined as
"E == 1 )
l_l)I;lol?ef FE=J ) 9E. (6.5)
i>0 j>i, jeN

Remark 6.7 We defined 9* E by taking the liminf along the sequence {3} E'};cn. This choice
is completely arbitrary and, as we will see in the sequel (cf. Theorem 6.15), if we change the
defining sequence, then the reduced boundary can change, but only up to an || E||-negligible
set, where || E || is the perimeter measure that will be defined later. Thus, the reduced boundary
is well-defined up to || E||-negligible sets.

Notice that, for every n € Y (Bf) it holds
By E)n.r = 3y (p,) En.r - (6.6)
Lemma 6.8 If E is a Borel subset of Y (R"), then 8 E and 3* E are Borel.

Proof Since 0*E = liminf,_, 9} E, it suffices to show the Borel measurability of 3" E for
every r > 0.
Step 1: We prove the following statement: for every k € N and s > 0 the function

{ . u s, By (rls) N Ey ) ]
eYR") : y(B) =k} > i
Y (R™) = y(Br) y = JTB,(B’S‘(VlBr)) (6.7)

is Borel.
Since the Borel measurability of the map y ng (Bk(yl B,)) is easy, we only give a
proof of the Borel measurability of the map y +— 7 B, (B" (ylg)N EX _r )

Let us identify {y € T(R") : y(B,) =k} ~ Y*(B,) x Y(Bf). It allows us to introduce
the product topology 7, on{y € T(R") : y(B,) = k}, thatis coarser than the vague topology
7, as a consequence of the following observation: since By is open, the vague topology 7, on
Y (Bf) coincides with the relative topology induced by Y (R"). Thus, it suffices to see that
the vague topology on Y (B,) is coarser than the relative topology induced by Y (R"). For
this purpose, we only need to show that, for any ¢ € C¢(B;) (note that ¢ does not necessarily
vanish at the boundary of B,), there exists an extension db € C.(R™) so that d) ¢ on B,.
Given ¢ € C.(B,), we take ® € C(R") which is the extension of ¢ to R” given by the Tietze
extension theorem Let us now pick « € Ce (R™) such that k = 1 on B, and x = 0 on Bj,.
Then, it holds d) =k® e C.(R") and d) ¢ in B,, which concludes the sought statement.
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By the inclusion 7, C T, of the topologies, we have the inclusion of the corresponding
Borel o -algebras %(z,) C %(ty). Since the map

TE(By) x YE(B,) x T(BY) 3 (v1, v2, 1) = XEW1 + M Xgk () (1) 5 (6.8)

is #(t,)-measurable, it is also Z(t,)-measurable. Hence, Fubini’s theorem gives that

TH(B,) x Y(BY) 3 (2. 1) — f ) )xE(yl+n)stm>(V1>dﬂ§,(w)
YT*(B, ’

=5 By (nls)NES,). (6.9)

is %(t,)-measurable as well.
Step 2: Fix k € N and set

wh BE(rlg) NES, )

k,r n . V|B§J’

AT =1y €e YR") : limsup ,
1 0 B(vls)
L By (vlg) NEY )

Ay =3y € Y(R") : limsup -

JR wh (B (v15,))

Then A]{’r = Ag’r.
Observe that A];’r - A]f’r . The converse inequality follows from the following observation.
If27/ <5 <27/"! then

o, Bl ) NEY, ) 7 B ls) N Ey )k B (v15,))
r > r r
s, BE(y15,)) s (B, (v18,)) s, BE(y15,))
7, By (v1s) NEY )

> Clk,n)
YRR B (s

where we used the estimate C(n, k) ~'e™2 Bsmk < 7k (BE(y)) < C(n, k)e V" Bk for
any s < r/5,y € Y(B,) and some constant C(n, k) > 1 depending only on n and k. Indeed,
the latter estimate can be obtained by the following observation: letting y = {x1, ..., X},
we have

BX*ns ' B =B*n | Bi(xo).
a’kEGk
hence
—L"(B,)

LB s Bl =M Cm s

recall that " denotes the n-dimensional Lebesgue measure. The opposite inequality follows
from

g, (BY(y) =

k ok e VB k A o1 Rk
g Bs(¥)) = 0 LY(B" Ns; (Bs(1))
ek —L"(B,) nk
TL (B " N Bs(Xg,)) > € " C(n, k)s"" .

v
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Step 3: We conclude the proof. Thanks to Step 1 and Step 2 we know that A’{‘r is Borel
for every k € N and r > 0. The same arguments as in Step 1 and Step 2 apply to the Borel
measurability for the following set:

my BEyIB)\ES,, )

r,}/\B;‘

y € T(R") : limsup , (6.10)

0 BE(yls)

hence, 9 E is a Borel set. o

6.3 Perimeter measures

In this subsection, based on the variational approach, we introduce the perimeter measure || E ||
for a set E C Y(R") satisfying V(xg) < oo. In order to construct || E||, we first introduce a
localised perimeter measure || E ||, on Y (R"), and show the monotonicity of | E ||, asr — o0.

Definition 6.9 For every Borel set E C YT (R") with V,(xg) < oo, we define

IEI = pY s, @2E),, ® TBe(n) on T(R"), (6.11)

which is equivalently defines as follows: for every bounded Borel measurable function F on
TR,

/ FdIE|, == / </ Fn,rdp#(g,)w:;w)En_,)dng;-(n). 6.12)
T (R™) Y(Bf) Y(B;) "

Lemma6.10 Let r > 0. For every Borel set E C Y (R") with V(xg) < oo, ||E|l, is a
well-defined finite Borel measure.

Proof Let us first show that | E||, is well-defined. The map y + F, ,(y) is pwlr(B,)|3*En,r'
measurable by Lemma 3.1. On account of the definition (6.12), we only need to show that
the map

T(B)>n— . Frrdpy )|, Eyr s (6.13)

is 7 pc-measurable for any Borel function F' : T(R") — R. To show it, we use (6.6) and
rewrite

/

Now, the claimed conclusion follows from Lemma 6.5 by observing that xy: g F' is a Borel
function.
The finiteness of the measure || E||, is immediate by Propositions 6.3 and 5.5, indeed

1
Fyr de(B,) :/

1 1
Fy.rdpys,) :/ oz £ F)n.r dpys,) -
(OFE)y, T(B)

Y8y Enr

IEll(TR") = /T( ) Vy8,)((XE)y.r)drpe () = Ve (xe) = V(xE) < o0. O

Lemma 6.11 Let r > 0. For every Borel set E C Y (R"™) with V,(xg) < oo, there exists a
vector field o , : Y(R") — TY(R") such that

(i) og,(y) € T, Y(R") satisfies o (v, x) =0 for x € By;
(i) log,lrr =1, |El,-a.e;
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(iii) for every V e CylVL (T (R")),
/(V*V)dﬂ 2/ (V.oe ) rydllEll . (6.14)
E T(R")

v) Vr(xe) = |E|-(Y(@R™)), and for every non-negative function F € CylF(Y(R")) it
holds

/ Fd|E|, = sup{/ (V*FV)dn : V € CyIVL(Y@R™), |V|ry < 1} .
T (R") E
(6.15)

Proof By Proposition 5.5, there exists a measurable set €2, C YT (Bf) so that pe(2,) =1
and VT(Br)(XEW) < oo for every n € Q. By Proposition 6.3, for every n € Q,, there exists
a unique 7Y (B,)-valued Borel measurable map o, on Y(B,) so that |oy ,|ry5,) = 1
p%r(Br) lo*E, ,-a.e., and

/ (V*Vy )dmp, =/ (Vn,n0n,r>TT(B,~)dp'lr(Br)’ V e CyIVL(TY[R")),
Ey, 3

“*f(B,)Eﬂ.f

(6.16)

where we used V,, » € CylV, (Y (B,)) whenever V e CylV, (T (R")). By taking the integral
with respect to 7 gc, and arguing as in (4.9) we obtain

/ (V) — / / (V¥ Vi), dse (n)
E T(8) JE,,

2/ / (Vi 0.0 70 (B APy (3, A7 (1) - (6.17)
Y(Be) Jox , E

By En.r

Note that the map 1 [y,
Y (B

view of (6.16), it is equal to a 7 gc-measurable function, and therefore, the argument (6.17)
is justified. For y € T(R") we define

)EWW’”’ Un,r>TT(Br)dPT(B,) is wpc-measurable since, in

Oyl e ) ify|ge € ),
og,r(y) = s r(¥ls,) 1 ) " (6.18)
o (y) =0 otherwise .
Let us now observe that, for any V € CylV(YT (R")), we have
«V,oeTY®))0r = (Vir 0p,r) TYB,) - (6.19)

By combining the definition (6.11) of || E||, with (6.17), (6.18) and (6.19), we deduce the
assertion (iii).
The assertion (i) follows from the definition (6.18), and the assertion (ii) follows from

1
(|GE,r|TT(]R”))n,r = |C7r/,r| =1, IOT(Br)|3*E,,.,'a~e-~

We now prove (iv). We first prove the equality V,(xg) = || E||,(Y(R™)). From (iii) and
(i1) we deduce

V(xe) = Sup{/ " (V*V)fdﬂ' Ve CylVr(T(]R”)), |V|TY(R") < 1}
TERY)

= Sup[/ (V.o )rydllE|, : V € CyIV'(YR"), |VIrr® < 1}
T (R
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< IEl-(YR").

Furthermore, Proposition 5.5 and Lemma 6.3 imply

Vi(xg) = / V) ((XE)y.r)dmpe ()
T(BS)

= /r(B“) P“lr(Br)(a'j;-(Br)En,r)dﬂBf(n) = | E|l,(Y(R")). (6.20)

Thus, the proof of the equality V,(xg) = || E||,(Y(R"™)) is complete.
Let us finally address (6.15). From the equality V. (xg) = || E|l-(T(R")), we deduce the
existence of a sequence Vi € CylV, (Y (R")) such that |V |7y < 1, and

lim (Vi, oe ) ryd|E|l, =/ dlE]|,,
k—o0 T(R") Y (R")
hence,
lim IVk — og |5 dIlEll, = lim / (Vilgy + 1013y = 2(Vi, 08 ) 7r)dIE]l
k=00 Jy(wrr) k=00 Jy(wn)

k—00

< gim2 [ (= (Vior)rodIEl =0,
T(R™)
Therefore, for every F € CylF(T)

lim F(Vi,op r)rrdllEll, = f
k—00 T(R") T (R

in particular, by making use of (6.14) with V = FVj, it holds that

Fd|E],
)

/ Fd|E|, < sup(/ (V*FV)dm : V € CylVL(Y@®R™), |V|ry < 1} . (6.21)
T(R") E

The converse inequality follows form |og |7y = 1 || E||,-a.e. and the fact that F' is non-
negative:

/(V*FV)dn =/ F(Ve. oz )1t d||E|s
E T (R")

5/ |F|d||E||r=/ Fd|E]| . (6.22)
T(R") T®RY)
o

Corollary 6.12 If V(xg) < oo, then r +— || E||(A) is monotone non-decreasing for every
Borel measurable set A.

Proof In view of the density of cylinder functions on L2(Y(R"), 7) it is enough to check
that

r— Fd| E|, isnon-decreasing,
T(Rll)

for every non-negative F' € CylF(Y (R")), which easily follows from (6.15) and the inclusion
CylVi(T(R")) C CylV (T (R")) fors <r. O

By the monotonicity of r + || E|, in Corollary 6.12, we may define the limit measure as
follows:
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Definition 6.13 (Perimeter measure) Given E C Y (R™) with V(xg) < oo, we define the
perimeter measure as

IE|(A) :== lim ||E||,(A) forevery Borel setA. (6.23)
r—00
We finally obtain the Gaul—Green formula for the perimeter measure || E||. For a Borel

set E C Y(R") with V(xg) < oo, let L2(TY, ||E||) be the completion of CylV(T) with
respect to || - || 2¢py, )y analogously in (2.10).

Theorem 6.14 (Gauli—Green formula for || E||) For a Borelset E C Y (R™) withV(xg) < oo,
there exists a unique element o € LT, |E|) such that |og|rr = 1 | E||-a.e. and

/ V*Vdn :/ (V,op)ryd| E|l V € CyIV(T(R")). (6.24)
E TR

Proof Note that, for any V € CylV(T(R")), there exists r > 0 so that V € CylV, (YT (R")).
Thus, by (iii) in Lemma 6.11, for any V e CyIV(Y(R")), there exists r > 0 and og , :
T@R") — TY sothat|og | =1 | E|-ae., and

/v*vw:f V. oe)rrd|Ell,
E T (R")

< NENOC®RD 2NV 200y 21,
< NENCCR DNV 20v 2

The last inequality followed from the monotonicity in Corollary 6.12.
In particular, the linear operator L defined as

L:L*TY®R", |E|) > R, LXTY®R"),|E|) >V L(V) ::/ V*Vdr,
E
(6.25)

is a well-defined continuous operator on the Hilbert space L3(TY(R"), ||[E|)) and satisfies
ILI < IIE|I (Y (R™))'/2. Therefore, the Riesz representation theorem in the Hilbert space
L2(TY @R, |E) gives the existence of o € L2(TY(R™), |E|) so that

loel 2y e < IENCC@R™)YZ,

/v*wm:/ (V,o)d||E| V e CylV(T®R").
E T (R")

It suffices to show that |o|7y = 1 || E||-a.e. By (iv) in Lemma 6.11 and Corollary 6.12, we
deduce that

IEICTR) = Tim [[E],(T(R") = lim V, (xe)

= lim sup /V*Vdn
IO yeCylVI(Y(RM) ,|VIry <1 JE

5/ lolrrdlEll < 1ENCC®R ) 2 lo | 20v 2
T(R”)
< IEI(C (RM),

which yields |o|7y = 1 ||E||-a.e. as a consequence of the characterisation of the equality
for the Holder inequality. O
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6.4 Perimeters and one-codimensional Poisson measures

In this subsection, we prove one of the main results in this paper. Namely, the perime-
ter measure ||E| based on the variational approach (Definition 6.13) coincides with the
1-codimensinal Poisson measure p! (Definition 3.8) restricted to the reduced boundary 9*E
of E (Definition 6.6).

Theorem 6.15 Let E C Y (R") be a set with V(xg) < oo. Then,
IEI = p'loE-
Before giving the proof, we prove a lemma.
Lemma6.16 Let E C Y (R") be a set withV(xg) < oo. Then, foranyr > 0, e > 0, it holds
B E)p,r C (0 E)yr upto ,oqlr(Br)-negligible sets for wpe-a.e. 1. (6.26)

Namely, there exists a measurable set Q. C Y(R") so that wpe(2r ) = 1 and for any
n € Q¢ it holds that

5y B,_)((a;*E)n,, \ a,*ﬂE)n,,) —0. 6.27)

Proof By (6.6) and the definition (6.11) of the perimeter measure || E||,, we see that

00 > [|E[[(A) = [[Ellr+:(A) = / P']y'(3r+€)(a§(3r+e)En,r+s N An,r-&-s)danﬂ (m
T(BS, ) '

r+e

= /’.Y‘(B“ p’]r(3,+g)((8;k+gE)n,r+s N Ar},r+£)d7TBf+E )

)

= / ) P“lr(B,H)((a;:LgE N A)n,r+s)dﬂ3fﬂ (). (6.28)
Y(B)e)
By the monotonicity || E||,+:(A) > ||E||-(A) in Corollary 6.12, we obtain that

/ Y8y (OF e E N A)yge)dripe, () = / Py o) (O E NV A)y ) d7e (n).
Y(BE,,) Y(By)

r+e r

Taking A = T(R") \ 9, E, we have that

0= A(Bf ) ,O#(Brﬂ)((ar*HE n A)’/”+£)d”3f+s ()

rre
> /Y " P (BFE N A)y)dpe ().
Thus, p.lr(Br)((B;‘E N A),,,r) = 0 for wpe-a.e. n, which implies that
(FEN(T®R")\ Br*ﬁE))W = (0 E)pr \ (074 E)yr N (7 E)y 1)
is pqlr(Br)-negligible for wpe-a.e. n. O

Proof of Theorem 6.15 Fix r > 0 and n € YT (BY). It holds

@ E)r=UNGE|] =U[MOE)., (6.29)

i>0j>i nr i>0j>i
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The monotonicity formula (6.27) in Lemma 6.16 gives the existence of Q, ; C T(R") so
that wge (€2, ;) = 1, and for any n € 2, ;

0FE)yr C (3FE)y, j=r uptoapy s -negligible set.

Take @, = Nj>, jenS2r j. Then wpc(€2,) = 1, and by using (6.6), we obtain that for any
n € 2,

¥ g Enr = (OFE)pr C (9*E)y, uptoapy g, -negligible set.
This implies that for any Borel set A C T (R"),
P18y O (8, Enr N Anr) < o1, (0'EN A, 1€ Q.
Thus, by noting that e (€2,) = 1 and recalling Definitions 6.13 and 3.8, we obtain

IEN(A) = lim IE],(4)

o I * .
= lim, - Py 8, O s,y Enr O Ay, )dmpe (1)

: 1 * X
< Jim [ PR E D A ()

=p (ANJE).
In order to conclude the proof, it is enough to check that
IEII(Y (R™) = p' (0°E). (6.30)

Indeed, given any Borel set A, by making use of the already proven inequality || E|| < p'|a+E,
we obtain

IENCC@®™) = [EI(A) + I EN(A®) < p'(ANI*E) + p'(A° N 9*E)
=p' (" E) < |EI(TR").

Thus, || E[[(A) + |[E||(A€) = p'(A N I*E) + p' (A N 8*E) for any Borel set A. Assume
that there exists a Borel set A so that || E|[(A) < p'(AN3*E). Since |E|| < p'(- NI*E), it
implies

IEN(A) + [ EII(AS) < p' (ANI*E) + p' (A° N *E),

which is a contradiction.
We now prove (6.30). Let s < r. By recalling Definitions 6.9, 3.5 of ||E||, and /o,l
respectively and using the monotonicity of p, in Theorem 3.7, we have

IE N (Y ®") = / Pb sy (@ E)y s () = pl (9 E) > p) 07 E).
T(B)

v

hence
IEICr®R™) = lim [|E];(C(R") = liminf p (3} E) = p/(liminf 3} E) = ps(3*E).
1—> 00 1—> 00 11— 00

Passing to the limit s — oo, we conclude (6.30). O
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7 Total variation and Gau3-Green formula

In this section, we prove a relation between the coarea with respect to the perimeter measure
|| E|| and the variation |D, F'| obtained via relaxation of Cylinder functions. As an application,
we introduce the total variation measure |DF | for BV functions F', and prove the Gau—Green
formula.

7.1 Total variation measures via coarea formula

Recall that, for F € BV(T(R")), the map CylF(Y(R")) > G — |D,F|[G] is defined by
the relaxation approach in Definition 5.7. The main result of this subsection is the following
formula:

Theorem 7.1 Let F € L>(Y(R"), 7) N BV(Y (R™)). Then,
V(x(F>1)) <00 aeteR, (7.1
and the following formula holds:

o0
/ ( / Gd|(F > I}H) dt = |D4F|[G], for any non-negative G € CylF(YT (R")).
—00 T(R”)
(7.2)

The proof of Theorem 7.1 will be given later in this section. Before discussing the proof,
we study several consequences of Theorem 7.1. By (7.1), the left-hand side of (7.2) makes
sense with G = 1 since the right-hand side |D, F|[1] < oo is finite due to F € BV(Y (R"))
and Theorem 5.18. This leads us to provide the following definition of the total variation
measure.

Definition 7.2 (Total variation measure) For F € L2(Y(R"), =) N BV(Y(R")), define the
total variation measure |DF| as follows:

IDF| ::/ [{F > t}|dt. (7.3)

We now investigate relations between the total variation measure |D x| and the perimeter
measure | E| defined in Definition 6.13 and the (1, 2)-capacity Cap, , defined in Defini-
tion 4.2.

Corollary 7.3 (Total variation and perimeters) Let E C Y (R") satisfy |Dxg|(T(R")) < oo.
Then,

IDxe| = ||E|| as measures .

Proof By Theorem 5.18, V(xr) < oo and || E| is well-defined. Noting that

TR") ¢t <0;
{xe >t} =13E O0<tr<l;
7] t>1,

and [T (R™)|| = 0 and ||#]| = 0, we obtain that

|DXE\(A):/ [{xe > t}|(A)dt =0+ ||E[(A) +0 = | E|I(A) for every Borel set A.O

—00
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Corollary 7.4 (Total variation and capacity) Let F € L>(Y(R"), ) N BV(Y(R")). For any
Borel set A C Y (R"),

Cap; ,(A) =0 = |DF|(A) = 0.

Proof Let Cap; ,(A) = 0. By Theorems 7.1 and 6.15, we can write

o0

IDF|(A) = /OO IH{F > t}]|(A)dt :/ P (O (F > 1t} N A)dt, (7.4)

—0o0 —00

hence it suffices to show that p! (3*{F > t} N A) = 0. This follows from the absolute
continuity of p! with respect to Cap, , obtained in Theorem 4.3. O

7.2 Proof of Theorem 7.1

This subsection is devoted to the proof of Theorem 7.1. Let us begin with two propositions.

Proposition 7.5 Let E C Y(R") be a set with V(xg) < oo. Then, for every non-negative
Sfunction G € CylF(Y (R")) it holds

/ Gd|E| = sup{/(V*GV)dn Ve CylV(Y®RY), |Viry < 1} . (15)
T (R") E

In particular, the following hold:
() if Fy € CyIF(Y(R")), and Fy, — xg in L'(Y(R"), ) as k — oo, then

lim inf/ G|V Fy|rydr > / Gd|E|, fornon-negative G € CylF(Y(R"));
T(R") TR")

k—00

(i) if xg, = Xgin LY(Y(RY), 7) as k — oo, where (Ex)i are sets of finite perimeter, then

lim inf/ Gd|| Er|| = / Fd||E||, fornon-negative G € CylF(Y(R")).
T (R") T(R")

k—00

Proof Fix e > 0. We pickr > 0such thath(R,,) Gd|E|, > fT(R”) Gd| E||—e.From (6.15)
we deduce the existence of V € CylV, (T (R")) with |V |ry < I such that fE(V*GV)dJT >
fY(R") Gd| E|l; — &, yielding
/ Gd| E|| 5/(V*GV)d71+28
T(R") E
< sup {/ (V*GV)dm : V € CyIV(Y(R")), |V|ry < 1} +2e¢.
E

By taking ¢ — 0, the one inequality is proved.

We now prove the converse inequality. Take a representative G = ®(f}, ..., f;) and
take r > 0 so that Uf.‘zl suppl f;] C B,. By the divergence formula (2.14), we can easily see

sup {/ (V*GV)dm : V € CyIVL(Y(®R™M), |VIry < 1}
E

= sup{/ (V*GV)dm : V e CYIV(Y@R™), |V]ry < 1} .
E
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By combining it with the formula (6.15) and the monotonicity of » + || E||, in Corollary 6.12,
the converse inequality is proved.

Let us now prove (i) and (ii). Fix ¢ > 0. By Theorem 6.14, we can take V € CylV (YT (R"))
such that |V |7y < 1 and

/(V*GV)dﬂ z/ Gd|E| —¢.
E T(R")

Let k; be a subsequence such that lim;_, fT(R,,) G|V Fy;|rydn = liminfy_, me,,)
G|V Fy|rvdm, it holds

/ Gd||E|| — ¢ 5/(V*GV)d7r = lim Fi,(V*GV)dr
T (R") E J=00 Jy(Rrn)
= Alim G(Vij, V)Tydf[
Jj=00 Jy(Rn)

k—00

< liminf/ G|V Fy|rydm .
TR
Furthermore, by using Theorem 6.14 with V being GV, we deduce that

/ Gd|E| — ¢ 5/(V*GV)dn = lim | (V*GV)dn
T (R") E

j—00 Ekj

= lim G(V,og, )ryd| Eg;|
Jj=00 Jy®n) J

< lim inff Gd||Ey, || .0
TR

k— 00

Proposition 7.6 For any F € CylF(Y (R")) it holds

o
/ / Gd|(F > 1)]di
—o0 JY(R")

= / G |VF|rydm, fornon-negative G € CylF(YT(R")). (7.6)
TR

Proof The map

Rt — m():= f G|VF|rydm (7.7)
{F>t}

is monotone and finite since |V F|7y € L' (T (R")). Let € Rbe a point on which the map
t — m(t) is differentiable and set

1 s <t
ge(s) =3¢t —)+1 r<s<i+e (7.8)
0 s>t+e¢.

Notice that g, o F' — x{r>) in LP (Y (R")) for any p € [1, 00) as ¢ — 0. Indeed,

/ |ge o F — x(rspylPdmn <2Pn({t < F <t+¢})) >0, ase > 0. (7.9)
TR
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Standard calculus rules give

1 — t
/ GIV(g o F)|prdr < 8—1/ GIVFlprdr < MU= 540,
T (R") {t<F<t+e) &

while (7.5) in Proposition 7.5 implies
/ Gd|{F > t}| §1iminf/ G|V(ge o F)|rydm =m'(1). (7.11)
T(R") e—0 T(]R")

Since m is differentiable for a.e. r € R, the one inequality comes by integrating (7.11).
Let us prove the converse inequality. Let V € CylV(T (R")) such that |V |7y < 1. Then,
by Theorem 6.14, we deduce

o0
/ F(GV*V)dn =/ / (GV*V)dmrdt
T(R") —oc0 J{F>1}

o0
5/ / GdI{F > 1}|dr .
—oo JT(®Y)

which easily yields the sought conclusion. O

Proofof Theorem 7.1 Let F € L*(Y(R"), ) such that [DF|(Y(R")) < oo and G €
CylF(Y (R™)) be non-negative. By definition there exists a sequence (F,) C CylF(Y) such
that F, — F in LY(Y(R"), ) and fT(R”) G|VF,|rydn — |D4«F|[G]. From Proposi-
tion 7.6 we get

o0
/ / Gd||{Fn>r}||dt=/ GIVE,|rrdr | (7.12)
—oo JT(R") T(R™)

and passing to the limit for n — oo we deduce
o
/ / Gd|{F > t}lldt < ID«F|[G], (7.13)
—oo0 JY(R")
as a consequence of (ii) in Proposition 7.5 and Fatou’s Lemma. In particular {F > ¢} is of
finite perimeter for a.e.-r € R.

Letusnow fixe > 0andconsider V € CylV(T (R")) suchthat |V|7ry < land V(F)—e <
fY(Rn) F(V*V)dr. By Theorem 6.14, we have

IDLFI(Y(R") —e = V(F) — ¢ < / F(V*V)dr = / / (V*V)drdt
T(R") —o0 J{F>t}

o0
5/ / dIF > 1)ldr
N

/f dI{F > t}ldt = [DLFI(T(R") = D, FI[1].
—00 JT(R")

which easily yields

The sought conclusion follows now by recalling that D, F|[G1 + G2] > |D.F|[G1] +
|D4 F|[G7] and by the same argument in the paragraph after (6.30). Indeed,

o0
ID*FI[G]+|D*F|[1—G]§ID*FI[IJE/ / dINF > 1)]dr
—00 JY(RM)

s3] 00
=f [ Gd||{F > t}||dt+/ / (1 — G)d|{F > t}|dt
—o0 JY(R") —o0 JY(R")

@ Springer



177  Page 54 of 57 E. Brué, K. Suzuki

< |D«F|[G] + |ID«F|[1 — G],
forany 0 < G < 1, G € CylF(Y(R")). m]

7.3 GauBB-Green formula

We prove the Gau—~Green formula. For F € L?(Y (R"), 7)NBV (T (R")),let L>(TY, |DF|)
denote the completion of CylV(Y) with respect to || - |27y, |pFj) analogously in (2.10).
Theorem 7.7 (Gaufs—Green formula) For F € L2(Y(R"), 1) N BV(Y(R")), there exists a

unique element o € L3(TY, |DF|) such that |oF|ry = 1 |DF|-a.e., and

/ (V*V)Fdn:/ (V,op)rrd|DF|, YV e CyIV(Y(R")). (7.14)
T(R") T (R?)

Proof We assume without loss of generality that [DF|(YT (R")) = 1. By Theorems 6.14 and
7.1, it holds that

(o]
/ (V*V)Fdn:/ / (V*V)drdt
T (R™) —o0 J{F>t}
o0
=/ / V. ouranyrrd|(F > 1)]dr
—o0 JT @)

5/ \VIrrd|DF|
TR

< WWVll2err,pF))

for every V € CylV(Y). In particular, the map L defined by

L:L*TY,|DF|) = R, L*(TY,|DF|)>V — L(V) ::/

(V*V)Fdr,
T (R")

(7.15)

is a well-defined continuous operator on the Hilbert space L3(TY, |DF|) and satisfies ||L|| <
1. Therefore, the Riesz representation theorem on the Hilbert space L3(TY, |DF|) gives the
existence of o € LE(TY, |DF|) so that

lorllz2cry,prpy <1, / (V*V)Fdn = / (V,or)d|DF| V € CylV(Y(R")).
T (R?) T(R")

From Theorems 5.18 and 7.1, we deduce

1 = DF|(YT(R")) = D« F|[1] = V(F) = sup f (V*V)Fdn
VeCylV,|V]ryr<1 JTR")

< / lorlryd|DF| < llorllp2ry,orp < 1+
T (R?)

which yields |loF |l 17y, pF) = loF 27y, )pFp) = 1, and therefore |op|ry = 1 |DF|-a.e.
as a consequence of the characterisation of the equality in Jensen’s inequality. O

7.4 BV and Sobolev functions

In this subsection, we discuss the consistency of the just developed theory of BV functions
with the (1, 2)-Sobolev space H'2(Y (R"), 7).
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Proposition 7.8 Ler F € L2(Y(R"), 1) N BV(Y(RY)). Suppose |DF| < m with |DF| =
H-mand H € L2 (Y (R"), 7). Then F € HY2(Y(R"), ) and

VF

H=|VF|, op=—r
IVF| F=VE

© X{IVF|£0} »
where oF is the unique element in Lz(TT, IDF]) in the Gauf3—Green formula (7.14).

Proof By Theorem 7.7 and recalling T,V € D(Ey) C DX(TY®RY), ) for V €
CylV(T(R")) by (5.39), the approximation of T;V by CylV (T (R"), =) implies that

/ (V*G)Fdn :/ (G,or)ryFdr VG € T,CylV(T(R")) V>0, (7.16)
TR T(R")

where T,CylV(Y(R")) := {G =T,F : F € CyIV(TY(R"))} for > 0. By Lemma 5.20 and
the -symmetry of T}, for any U € CylV(YT (R")), setting G = T, U, we obtain

/ (U,VT;F)dm :/ (V*U)T;Fdn
T (R") TR

:/ E(V*U)Fdn:/ (V*G)Fdr
T (R™) TR

2/ (G,or)TYd|DF| :/ (G,op)TyHdn
T (R™) T[R™)

_ / (U T,(Hop))rrdr .
T(R")

Thus, T,(Hor) = VT, F. Lettingt — 0, T;(HoF) converges to Hor in L3*(TY, 7), which
implies that VT; F converges to Hop in LA(TYR"), 7). Since T F — F in L2(Y(R"), 7),
we conclude that F € HY2(Y(R"), ), and VF = Hop. Therefore, H - 7 = IDF| =
|[VF| -, and

VF VF

o = — = — .0
F I X{H#0} |VF|X{|VF|;£O}

Acknowledgements The two authors are indebted to Lorenzo Dello Schiavo and the anonymous referee for
their very careful reading that improved the original manuscript. The first named author was supported by
the Giorgio and Elena Petronio Fellowship at the Institute for Advanced Study at the time of the writing. The
second named author gratefully acknowledges funding by: the JSPS Overseas Research Fellowships, Grant
No. 290142; World Premier International Research Center Initiative (WPI), MEXT, Japan; JSPS Grant-in-
Aid for Scientific Research on Innovative Areas “Discrete Geometric Analysis for Materials Design”, Grant
No. 17H06465; and the Alexander von Humboldt Stiftung, Humboldt-Forschungsstipendium.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

177  Page 56 of 57 E. Brué, K. Suzuki
References
1. Albeverio, S., Daletskii, A., Lytvynov, E.: Laplace operators on differential forms over configuration

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

spaces. J. Geom. Phys. 37, 15-46 (2001)

Albeverio, S., Kondratiev, Y.-G., Rockner, M.: Analysis and geometry on configuration spaces. J. Funct.
Anal. 154(2), 444-500 (1998)

Alonso-Ruiz, P., Baudoin, F.,, Chen, L., Roger, L.G., Shanmugalingam, N., Teplyaev, A.: Besov class
via heat semigroup on Dirichlet spaces I: Sobolev type inequalities. J. Funct. Anal. 278(11), 108459,48
(2020)

Alonso-Ruiz, P., Baudoin, F., Chen, L., Roger, L.G., Shanmugalingam, N., Teplyaev, A.: Besov class via
heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates. Calc. Var. Partial
Differ. Equ. 59(3), 10332 (2020)

Alonso-Ruiz, P., Baudoin, F., Chen, L., Roger, L.G., Shanmugalingam, N., Teplyaev, A.: Besov class via
heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates. Calc. Var.
Partial Differ. Equ. 60(5), 170,38 (2020)

Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces.
Adv. Math. 159, 51-67 (2001)

Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-valued
Anal. 10, 111-128 (2002)

Ambrosio, L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Pro-
ceedings of the ICM 2018 (2018)

. Ambrosio, L., Brué, E., Semola, D.: Rigidity of the 1-Bakry—Emery inequality and sets of finite perimeter

in RCD spaces. Geom. Funct. Anal. 29, 949-1001 (2019)
Ambrosio, L., Di Marino, S.: Equivalent definitions of BV space and of total variation on metric measure
spaces. J. Funct. Anal. 266, 41504188 (2014)

. Ambrosio, L., Figalli, A.: Surface measures and convergence of the Ornstein—Uhlenbeck semigroup in

Wiener spaces. Ann. Fac. Sci. Toulouse Math. 20, 407-438 (2011)

Ambrosio, L., Figalli, A., Runa, E.: On sets of finite perimeter in Wiener spaces: reduced boundary and
convergence to half spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.
24, 111-122 (2013)

Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to
spaces with Ricci bounds from below. Invent. Math. 195, 289-391 (2014)

. Ambrosio, L., Ghezzi, R., Magnani, V.: BV functions and sets of finite perimeter in sub-Riemannian

manifolds. Ann. Inst. H. Poincaré Anal. Nonlinéaire 32, 489-517 (2015)

. Ambrosio, L., Maniglia, S., Miranda, M., Jr., Pallara, D.: BV functions in abstract Wiener spaces. J. Funct.

Anal. 258, 785-13 (2010)

. Ambrosio, L., Miranda, M., Jr., Pallara, D.: Some fine properties of BV functions on Wiener spaces. Anal.

Geom. Metr. Spaces 3, 212-230 (2015)

. Ambrosio, L., Miranda, M., Jr., Pallara, D.: Sets with finite perimeter in Wiener spaces, perimeter measure

and boundary rectifiability. Discrete Contin. Dyn. Syst. 28, 591-606 (2010)

Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter, Berlin (1991)
Brué, E., Pasqualetto, E., Semola, D.: Rectifiability of the reduced boundary for sets of finite perimeter
over RCD(K, N) spaces. Preprint arXiv:1909.00381

Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics,
vol. 33, AMS (2001)

De Giorgi, E.: Su una teoria generale della misura (r — 1)-dimensionale in uno spazio ad r dimensioni.
Ann. Mat. Pura Appl. 36, 191-213 (1954)

De Giorgi, E.: Nuovi teoremi relativi alle misure (r — 1)-dimensionali in uno spazio ad r dimensioni.
Ricerche Mat. 4, 95-113 (1955)

Dello Schiavo, L., Suzuki, K.: Configuration Spaces Over Singular Spaces I: Dirichlet Form and Metric
Measure Geometry. Preprint arXiv:2109.03192

Dello Schiavo, L., Suzuki, K.: Configuration Spaces Over Singular Spaces II. Curvature. Preprint
arXiv:2205.01379

Eberle, A.: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators,
Lecture Notes in Mathematics, vol. 1718, Springer

Erbar, M., Huesmann, M.: Curvature bounds for configuration spaces. Calc. Var. 54, 307-430 (2015)
Federer, H.: Geometric measure theory. Grundleherender Mathematics Wissenschaften, vol. 153, Springer
(1969)

Feyel, D., de la Pradelle, A.: Hausdorff measure on the Wiener space. Potential Anal. 1, 177-189 (1992)
Fremlin, D.H.: In: Fremlin T. (ed.), Measure Theory, vol. IV (2003)

@ Springer


http://arxiv.org/abs/1909.00381
http://arxiv.org/abs/2109.03192
http://arxiv.org/abs/2205.01379

BV functions and sets of finite perimeter on configuration... Page 57 of 57 177

30.
31.
3.
33,
34,
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45,
46.

47.

Fukushima, M.: On semimartingale characterisations of functionals of symmetric Markov processes.
Electron. J. Probab. 4(18), 1-32 (1999)

Fukushima, M.: BV functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space.
J. Funct. Anal. 174, 227-249 (2000)

Fukushima, M., Hino, M.: On the space of BV functions and a related stochastic calculus in infinite
dimensions. J. Funct. Anal. 183, 245-268 (2001)

Gelfand, .M., Vilenkin, N.Y.: Some Applications of Harmonic Analysis. Academic Press, New York
(1964)

Hino, M.: Sets of finite perimeter and the Hausdorff—-Gauss measure on the Wiener space. J. Funct. Anal.
258(5), 1656-1681 (2010)

Ma, Z.-M., Rockner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Graduate
Studies in Mathematics. Springer (1992)

Miranda, M., Jr.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. 82,
975-1004 (2003)

Ouhabaaz, E.-M.: Invariance of closed convex sets and domination criteria for semigroups. Potential
Anal. 5, 611-625 (1996)

Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Academic
Press, San Diego (1977)

Rockner, M., Zhu, R.-C., Zhu, X.-C.: BV functions in a Gelfand triple and the stochastic reflection problem
on a convex set of a Hilbert space. C. R. Math. 348(21-22), 1175-1178 (2010)

Rockner, M., Zhu, R.-C., Zhu, X.-C.: The stochastic reflection problem on an infinite dimensional convex
set and BV functions in a Gelfand triple. Ann. Probab. 40(4), 1759-1794 (2012)

Rockner, M., Zhu, R.-C., Zhu, X.-C.: BV functions in a Gelfand triple for differentiable measure and its
applications. Forum Math. 27, 1657-1687 (2015)

Shigekawa, I.: Defective intertwining property and generator domain. J. Funct. Anal. 239, 357-374 (2006)
Shigekawa, I.: L contraction semigroups for vector valued functions. J. Funct. Anal. 147, 69-108 (1997)
Suslin, M.: ‘Sur une définition des ensembles mesurables B sans nombres infinis’. C. R. Acad. Sci. (Paris)
164, 88-91 (1917)

Suzuki, K.: On the ergodicity of interacting particle systems under number rigidity. Probab. Theory Relat.
Fields 188, 583-623 (2024)

Suzuki, K.: Curvature bound of Dyson Brownian motion. In: Communications in Mathematical Physics.
Preprint arXiv:2301.00262 (2025)

Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/2301.00262

	BV functions and sets of finite perimeter on configuration spaces
	Abstract
	1 Introduction
	1.1 Non-linear dimension reduction and overview of the main results
	1.2 m-Codimensional Poisson measure
	1.3 Bessel capacity
	1.4 Functions of bounded variations and Caccioppoli sets
	1.5 Potential applications
	1.6 Structure of the paper

	2 Preliminaries
	2.1 Notational convention
	2.2 Configuration spaces
	2.3 Spherical Hausdorff measure
	2.4 Regularity of the spherical Hausdorff measures
	2.5 Differential structure on configuration spaces
	2.6 Product semigroups and exponential cylinder functions
	2.7 Suslin sets

	3 Finite-codimensional Poisson measures
	3.1 Measurability of sections of Suslin sets
	3.2 Localised finite-codimensional Poisson measures
	3.3 Finite-codimensional Poisson measures
	3.4 Independence of ρm from the exhaustion

	4 Bessel capacity and finite-codimensional Poisson measure
	4.1 Localisation of sets and functions
	4.2 Localisation of energies, resolvents and semigroups
	4.3 Localised Bessel operators
	4.4 Finite-dimensional counterpart
	4.5 Proof of Theorem 4.3

	5 Functions of bounded variation
	5.1 Variational approach
	5.2 Relaxation approach
	5.3 Heat semigroup approach
	5.4 p-Bakry–Émery inequality
	5.5 Equivalence of BV functions

	6 Sets of finite perimeter
	6.1 Sets of finite perimeter in Υ(Br)
	6.2 Sets of finite perimeter on Υ(mathbbRn)
	6.3 Perimeter measures
	6.4 Perimeters and one-codimensional Poisson measures

	7 Total variation and Gauß–Green formula
	7.1 Total variation measures via coarea formula
	7.2 Proof of Theorem 7.1
	7.3 Gauß–Green formula
	7.4 BV and Sobolev functions

	Acknowledgements
	References


