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Abstract
Reproducibility is a widely discussed topic, yet many experimental results cannot be
confirmed due to factors such as publication bias, poor documentation, and inappro-
priate statistical methods. A lack of standard definitions for reproducibility and related
terms further complicates the matter. This paper reviews the literature on reproducibil-
ity, clarifies key terminology by defining five types of reproducibility, and addresses
variations in published definitions by considering changes in datasets, labs, and exper-
imental conditions. We explore the causes of low reproducibility in scientific studies
and discuss statistical perspectives on quantifying and improving reproducibility. In
particular, we propose framing statistical reproducibility as a predictive problem, pro-
viding a framework to evaluate and address reproducibility challenges.

Keywords Nonparametric predictive inference · Preclinical research ·
Reproducibility · Replicability · Statistical reproducibility

1 Introduction

Reproducibility [9] is a complex issue, gaining importance and attention in scientific
research. Nature published a special edition Challenges in irreproducible research,
dedicated to the problem of researchers not being able to verify results presented in
published papers of other scientists [106]. In the literature on the topic of reproducibil-
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ity there has been a lot of confusion about what the term reproducibility means [64],
which will be addressed in this paper.

A better understanding of reproducibility of tests is crucial for pharmaceutical
research and development, as a lack of reproducibility contributes to failure rates
in drug discovery and development processes, increasing costs, and decreasing effi-
ciency. Begley and Ellis [17] highlighted a systematic problem in preclinical cancer
research: the majority of publications in this research area cannot be validated. Sci-
entists at the biotechnology firm Amgen tried to confirm findings of 53 published
papers in haematology and oncology by performing replicate experiments. These did
not reproduce conclusions in 47 out of 53 studies, even with the attempts to contact
the original authors of the articles and to discuss the details of the experiments with
them [17]. Errington et al. [52, 53] attempted to carry out replicate experiments based
on high-impact papers published in 2010-2012 in the field of preclinical research in
cancer biology. A replicate study is a new study, trying to closely imitate the original
study. Out of the chosen 193 experiments from 53 papers, they managed to conduct a
replicate study for only 50 experiments from 23 original papers. 40% of replications
of positive effects and 80% of replications of null effects were successful, according
to three or more of five methods of replication assessment, defined by Errington et al.
[53].

It is evident that scientists show considerable interest in the topic of reproducibility
(or a lack thereof). The number of publications considering reproducibility is large.
There is a rich body of literature on reproducibility in pharmaceutical research, par-
ticularly in preclinical research [25, 86, 91, 92, 128, 148], which will be discussed
in Section 6. In psychology [94, 96, 112, 114, 143, 154], the focus is on the dis-
cussion of replicating the outcomes of the original study and the concern about low
reproducibility rate (or rather replicability rate, as commonly used in psychology).
Computer sciences, machine learning and artificial intelligence [32, 66, 119] mainly
focus on transparency and sharing of data, code and clear documentation of the whole
study. Ioannidis [81] argued that sharing protocols, materials, software, and data pro-
vides a sound basis for reproducible data practices. This aspect is also important in
chemistry [20, 62], nevertheless, there is also practical advice on how to maximise
reproducibility through good laboratory practice and minimising human error.

The purpose of this paper is to provide a review of the literature on reproducibility
and highlight important debates on the topic. It is intended for a broad audience,
including not only statisticians, but also anyone interested in the subject. By shedding
light on the issue of reproducibility, this paper aims to contribute to the ongoing
discussion in this field. The authors would like to note that, although reproducibility
is part of the discussion on doing quality research, it does not equate to it. Thus, this
paper does not aim to address all aspects of quality research.

Given that there are no standardised definitions for reproducibility and related terms
(such as replicability), and that some definitions of reproducibility from the existing
literature lack clarity themselves, this review begins by discussing various possible
interpretations and definitions of the concept of reproducibility in Section 2. Terms
that are related to, or used interchangeably with, reproducibility are also discussed.
With the aim to describe the subtleties encountered in the literature, the available
definitions are classified into five categories, which we refer to as Type A to Type
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E. Section 3 outlines the reasons for low reproducibility and reviews suggestions for
improving reproducibility as presented in the literature. Section 4 focuses on statistical
reproducibility, providing a classification of its definitions and summarising key issues
that have been raised. We also briefly address one of the ongoing debates in the
reproducibility crisis: whether p-values should be used.

This paper primarily focuses on statistical reproducibility. While much of the lit-
erature concerns the validation of test conclusions derived from both the original and
replicate experiments, as addressed in Section 5.1, it is also important from a statistical
perspective to examine reproducibility in cases where only the original experiment has
been conducted. Section 5.2 presents methods for assessing reproducibility in scenar-
ios where only the original experiment is available, suggesting that one approach is to
frame reproducibility as a prediction problem, quantify it through the statistical frame-
work of nonparametric predictive inference (NPI). In addition, Section 6 presents a
case study on reproducibility issues in preclinical research. The paper concludes with
Section 7, which summarises the key points discussed and highlights directions for
future research.

2 Definitions of Reproducibility

There is no universally agreed definition for the concept of reproducibility and there
are many related terms to reproducibility, such as repeatability, replicability, general-
isability, robustness, reliability, open science, transparency, truth [107] and precision
[79]. These related concepts are often also not clearly or appropriately defined, some
of them are used interchangeably and they are all important for the reproducibility
debate. This section presents a summary of definitions for reproducibility used in the
existing literature.

Recent overviews of definitions of reproducibility and related terms have been pre-
sented by Goodman et al. [64], Barba [14] and Gundersen [66]. Goodman et al. [64]
identified that the term research reproducibility is not settled both linguistically and
conceptually. Barba [14] raised the problem of different groups of researchers using
different terminology for the same definition of reproducibility and related terms.
She also mentioned that the terms reproducibility and replication are often used inter-
changeably by researchers, which creates confusion and leads to conceptual ambiguity
in the literature [14].

This paper will classify the definitions of reproducibility encountered in literature
into five categories, Type A to Type E, rather than adhering to precise definitions. The
nuances are captured in the ‘Reproducibility types tree’ in Figure 1. This figure out-
lines possible considerations that are important for defining reproducibility and related
terminology. In describing different types of reproducibility, three key terms are used:
data, method and conclusion. Data are “information, especially facts or numbers, col-
lected to be examined and considered and used to help decision-making” [44]. The
termmethod refers to the way the experiment is run. Method encompasses experimen-
tal design, data collectionmethod, statistical analysis, software used to analyse the data
and programming code. The range of features the method contains differs across dif-
ferent research areas. Conclusion is “ a reasoned deduction or inference’ [49], reached
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Fig. 1 Reproducibility type tree.

after applying statistical analysis to the data. Next, the five Reproducibility types will
be introduced.
Reproducibility Type A: Reproducibility is the ability to follow the analysis of an
experiment based on the same data and a clear description of the data and the method.
Stronger version of Reproducibility Type A: Experimental conclusions are repro-
duced if another researcher applied the same analysis to the same data and reached
the same conclusions, using the description of the data and the method provided by
the original researcher.
Reproducibility Type B: Experimental conclusions are reproducible if same data but
a different method of statistical analysis lead to the same conclusion.
Reproducibility TypeC:Experimental conclusions are reproducible if new data from
a new study carried out by the same team of scientists in the same laboratory, using
the same method of experiment design and analysis, lead to the same conclusion.
Reproducibility TypeD:Experimental conclusions are reproducible if new data from
a new study carried out by a different team of scientists in a different laboratory, using
the same method of experiment design and analysis, lead to the same conclusion.
Reproducibility Type E:Experimental conclusions are reproducible if new data from
a new study, using a different method of experiment design or analysis, lead to the
same conclusion.

All the types of reproducibility rely on a common underlying principle: namely, that
the same conclusions ‘would be’ or have been reached in a reproducible experiment.
Reproducibility Type A and Type B do not require new data, and Reproducibility
Type C to Type E assume either the existence or the possibility of existence of new

123



Journal of Statistical Theory and Practice            (2025) 19:40 Page 5 of 40    40 

data. The term ‘new study’ is used in the Reproducibility Types instead of ‘replicate
study’ because it is more general and it does not imply that the follow-up study exactly
mimics the original study. This linguistic choice was made, as the term replicate study
does not fit well Reproducibility Type E. Throughout this paper, the terms new study
and replicate study are used interchangeably.

There is a different debate, distinct from the Reproducibility Types classification,
about whether there is a necessity to ‘reproduce’ (validate) the results by doing the
experiment again. This debate deals with the question of whether the same conclusion
‘would be’ reached if the experimentwas carried out again orwhether the same conclu-
sion has been reached after the new experiment has been carried out. Reproducibility
Type C to Type E do not distinguish between these two options. Reproducibility has
been assessed under both scenarios: First, when the new replicate experiment has
been performed, which is addressed in Section 5.1. Secondly, when only the origi-
nal experiment has been performed, and a probabilistic assessment is made about the
reproducibility based on the current data and analysis. Section 5.2 will focus on the
latter scenario.

In the literature [8, 79, 87, 89, 94, 103], reproducibility has also beendefined in terms
of precision - the closeness of agreement between multiple (two or more) test results
obtained under specific conditions, such as same method and same or different test
operator. Blackman [23, 24] and Pryseley et al. [8] considered the quantification of this
closeness of agreement between test results. In the abovementioned references, related
terms employed instead of precision are reproducibility, repeatability, measurement
precision, measurement repeatability and measurement reproducibility. However, in
these references there is no distinction between the original and the new test. The
focus of these studies is on the variability in repeated measurements when one or
more elements of the study, such as time, the observer, environment or instruments,
are different [103]. We do not believe that precision should be considered equivalent
to reproducibility. The concept of the original study is crucial to any discussion about
reproducibility. Therefore, the assessment of the closeness of agreement is not within
the scope of this overview.

Sections 2.1, 2.2 and 2.3will elaborate on the variety of definitions for reproducibil-
ity and related terms available in the existing literature, and classify these terms into
five different types of reproducibility. This classification into types aims to clarify
different terminologies. It also aims to show inconsistency in terminology used across
different publications and unclarity of some definitions. Each reproducibility type will
be discussed separately, with the exception of Reproducibility Type C, Type D and
Type E, which are discussed in the same section. The reason for this is that there are
some definitions that either refer tomultiple reproducibility types or it is unclear which
of these three types they refer to.

2.1 Reproducibility Type A

In alignment to Reproducibility Type A, the requirement for reproducible research is
that the documentation, data and code used for the analysis are available to others,
so that they can verify the published results or carry out alternative analyses [118].

123



   40 Page 6 of 40 Journal of Statistical Theory and Practice            (2025) 19:40 

Goodman et al. [64] called methods reproducibility the ability, rather than necessity,
to reach the same conclusion by using the same data and method. Here ability refers
to the availability of the data and a clear description of the data and the method, which
would allow the researcher to re-enact the analysis. National Science Foundation’s
[110] definition of reproducibility can also be classified as Reproducibility Type A.
Similarly, a workshop organised by the National Academies of Sciences, Engineer-
ing, and Medicine (NASEM) [107] used the term repeatability (also called empirical
reproducibility), which can be classified as Reproducibility Type A. Donoho [50] used
the term computational reproducibility without explicitly defining it, nevertheless its
use is in alignment to Reproducibility Type A. Peng [119] argued that there is a spec-
trum of reproducibility. On the lower end of the spectrum is limited code sharing, in
the middle section of the spectrum is sharing code and data, and on the upper end of
the spectrum is sharing a single file containing both data and code that can execute
the full analysis of the data. According to Peng [119], this upper end of the spectrum
means full replication, which is the gold standard for reproducibility, as it allows the
researcher to carry out the full analyses again [119]. Peng’s spectrum of reproducibil-
ity does not encompass the term method, however, it is possible that this is because
Peng discussed reproducibility in computational science, where code represents the
method. Peng et al. [120] defined criteria for reproducible epidemiologic research
as the availability of data, method, documentation and accessibility to the software,
data, and documentation, which classifies as Reproducibility Type A. Gentleman and
Lang [61] define reproducible research as research articles which are accompanied
with software tools allowing readers to reproduce the paper results and further use the
computational methods presented in the paper. Their definition can also classify as
Reproducibility Type A.

Stodden [144] dividedReproducibilityTypeA into empirical reproducibility, which
requires appropriate reporting standards and documentation of the physical experi-
ment, and computational reproducibility, which requires accommodating the use of
computation technology in the reporting and scientific practice.Ethical reproducibility
[5], for which it is imperative to transparently report ethical challenges and methods
of resolution of them in studies in biomedical research, also falls into the category of
Reproducibility Type A. Thus there is a reasonable body of work that adopts defini-
tions, which can be classified as Reproducibility Type A.

Reproducibility Type A leads to better transparency in research.We agree that care-
ful documentation of an experiment should be part of creating reproducible research.
We expect all research to have data, method, and code available upon request, but
given the amount of the literature on definitions which classify as Reproducibility
Type A, this is likely not the case. One reason is the lack of incentives for researchers,
particularly when such documentation is not explicitly required by journals or fund-
ing bodies. In computer sciences, Collberg et al. [32] conducted a study to determine
whether 613 papers (from eight Association for Computing Machinery conferences
and five computer science journals) presented reproducible research. Only papers,
for which Collberg et al. [32] were able to obtain code and execute it, were labeled
as reproducible research - reproducible in accordance with Reproducibility Type A.
These were 102 out of 613. Collberg et al. [32] did not verify the accuracy of the
published results. They provided an elaborate list of reasons why researchers did not
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provide code after email correspondence, examples of these reasons were: bad backup
practices, the student who programmed the code left the research institution, and the
code being an intellectual or commercial property.

A stronger version of Reproducibility Type A is presented by Benjamini in the
proceedings of NASEM [107]. He defined reproducibility of the study as reaching the
same conclusions after performing the same analysis on the study’s raw data. Repro-
ducibility in Errington et al. [52], Stevens [143] andNosek et al. [109], and a consensus
study report by the National Academies of Sciences [108] can also be classified as the
stronger version of Reproducibility Type A. Botvinik-Nezer and Wager [28] called
the stronger version of Reproducibility Type A analytical reproducibility. An article
in Biostatistics is defined as reproducible if the Associate Editor for Reproducibility
executed the code on the provided data and reproduced the results given in the article
[118], which is also an example of the stronger version of Reproducibility Type A.

2.2 Reproducibility Type B

The core feature of Reproducibility Type B is that experimental conclusions are repro-
ducible if the same data but a different method of data analysis were used to reach
the same conclusion. While Reproducibility Type B is not a widely discussed kind of
reproducibility, a reference to it can be found in Stahel [142], Goodman et al. [64],
Errington et al. [52] and Botvinik-Nezer and Wager [28]. Stahel [142] discussed con-
ceptual replication: where different analytical methods are used on the same data to
re-examine conclusions of a study, which can be categorised as Reproducibility Type
B. Errington et al. [52] used the term robustness for using alternative strategies on the
same data, which also classifies as Reproducibility Type B. Similarly, Botvinik-Nezer
and Wager’s [28] terminology robustness to analytical variability fits with Repro-
ducibility Type B. According to Possolo [123], different statistical methods - models
and data analysis methods, including data reduction - can lead to different conclusions,
when the same data is analysed.

Goodman et al. [64] presented inferential reproducibility which leads to similar
conclusions from “an independent replication of a study or a re-analysis of the original
study.” The latter part of their definition could either refer to Reproducibility Type B
or stronger version of Reproducibility Type A, depending on whether the re-analysis
uses the same method as the original one did. The former part requires new data and
new analysis, which is in alignment with Reproducibility Types C, D and E, which
are discussed in Section 2.3.

The literature does not clearly specify what is meant by a ‘different method of
statistical analysis’ in Reproducibility Type B, nor is it clear how different the method
should be. More consideration is needed to clarify this distinction. Ensuring that the
statistical analysis is appropriate and suitable is an important aspect to address. It is
also important to highlight that the negative version of Reproducibility Type B, i.e.
experimental conclusions being irreproducible due to different statistical reproducibil-
ity not leading to the same conclusion as the original statistical reproducibility, has
not been considered in the literature. This negative version of Reproducibility Type B
would be absurd, given that in many cases, there is some statistical analysis that can
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lead to a different conclusion than the original statistical analysis. The reason behind
the lack of exploration of these two mentioned aspects of Reproducibility Type B
may be that reproducibility has been widely discussed by non-mathematicians, and
the discussion lacks mathematical rigour.

2.3 Reproducibility Type C, Type D and Type E

A combination of Reproducibility Type C, Type D, and Type E often fits a particu-
lar definition. For example, a consensus study report by the National Academies of
Sciences, Engineering, andMedicine (NASEM) [108] defined replicability as “obtain-
ing consistent results across studies aimed at answering the same scientific question,
each of which has obtained its own data.” This rather broad definition of replicabil-
ity includes Reproducibility Types C, D and E. The same definition of replicability
was adopted by Errington et al. [52], Patil et al. [115] and Stevens [143]. Similarly,
Nosek et al. [109] referred to replication as using different data to test the reliability
of prior findings. The special issue on reproducibility and replicability [31] published
in Statistical Science also follows NASEM’s [108] definition of replicability.

In fact, it can be hard to distinguish under which type or types of reproducibility
a particular definition can be categorised. Unclarity of definitions is a problem in the
reproducibility debate. An example of an ambiguous and vague definition of repro-
ducibility is Goodman’s definition of reproducing the results of investigators in the
proceedings of NASEM [107]. This is defined as “finding the same evidence or data,
with the same strength.” It is unclear how to assess whether the requirement of this
definition has been met.

Another example of unclear definitions has already been discussed in Section 2.2:
inferential reproducibility. It is unclear what Goodman et al. [64] meant by the for-
mer part of the definition for inferential reproducibility: achieving similar conclusions
from “an independent replication of a study.” It is unclear whether or not the circum-
stances of the original and the replicate study were identical or may have varied. If
so, then it would classify as Reproducibility Type E. However, this is just a possible
interpretation of the definition of inferential reproducibility. The definition could also
fit with Reproducibility Type C or D. Moreover, this vague definition of reproducibil-
ity allows for the possibility of replicate study leading to considerably different data.
In a different literature source, Goodman [107] defined inferential reproducibility as
“reaching the same conclusions or inferences based on the results,” however, this new
definition does not yield more clarity.

Furthermore, Goodman et al. [64] defined results reproducibility as “obtaining
the same results from the conduct of an independent study whose procedures are as
closely matched to the original experiment as possible.” It is unclear whether the
definition categorises as both Reproducibility Types C and D or just the latter. The
reason for this unclarity is that the term independent study has no clear definition and
it is often used by researchers, including Goodman et al. [64], without being defined.
It is unclear whether in Goodman et al.’s [64] definition of reproducibility, the same
team of scientists or a different one has to carry out the experiment. On the other
hand, Voelkl et al. [147] provided a clearer definition of reproducibility. They defined
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reproducibility as “the ability to produce similar results by an independent replicate
experiment using the same methodology in the same or a different laboratory,” which
encompasses both Reproducibility Types C and D. A similar definition was used by
Richter [127].

The National Science Foundation [110] distinguished three terms: reproducibil-
ity, replicability and generalisability, and they saw these as a foundation for robust
scientific findings. Reproducibility can be categorised as the Reproducibility Type A
definition, as stated in Section 2.1; replicability is the ability to validate the results
of a prior study by collecting new data via the same procedure [110], which fits both
Reproducibility Types C and D. Generalisability is attained when “the results of a
study apply in other contexts or populations that differ from the original one” [110].
Their definition of generalisability is most relevant to Reproducibility Type E.

Jarvis and Williams [86] defined replication as obtaining an identical result in an
experiment conducted under identical conditions, which is compatible with Repro-
ducibility Type C and possibly also with Reproducibility Type D, as it is unspecified
whether the same team of scientists or the same laboratory is necessary. Jarvis and
Williams [86] defined reproducibility as obtaining a similar result in an experiment
conducted “under similar yet different conditions, the latter having the necessary
degrees of latitude that reflect a real-world situation,” which is most compatible with
Reproducibility Type E. It is unclear what the terms ‘similar results’ and ‘similar yet
different conditions’ exactly mean.

Barba [14] presented another division of terminology: repeatability, requiring the
same team and the same experimental design, which can be categorised as Repro-
ducibility Type C; replicability, requiring a different team and the same experimental
setup and fitting in Reproducibility Type D; and reproducibility, requiring a different
team and a different experimental design, which can be classified as Reproducibility
Type E. It is consistent with definitions of repetition and replication by Atmanspacher
and Maasen [9]: repetition refers to doing the same experiment by the same team
whereas replication refers to situationswhere different teams carry out the same exper-
iment. However, according to Atmanspacher and Maasen [9], reproducibility covers
both terms. Gundersen’s [66] use of the term repeatability also fits with Reproducibil-
ity Type C.

Zwaan et al. [154] defined direct replication as “studies intended to evaluate the
ability of a particular method to produce the same results upon repetition.” In this
replication, critical elements of the study, such as procedures, samples and measures,
are recreated [154]. But only “those elements that are believed necessary for producing
the original effect” must be present in the replicate study. This definition is closest to
Reproducibility Type D. Furthermore, Zwaan et al. [154] defined conceptual replica-
tion, which assesses whether an effect extends to a different population. Conceptual
replication falls under Reproducibility Type E.

Gundersen [66] viewed reproducibility in the light of the scientific method. Gun-
dersen’s definition of reproducibility requires that a new experiment, mimicking the
original experiment by following the documentations from the original researcher,
is carried out by another team of investigators [66]. Gundersen’s categorisation of
reproducibility differs from ours classification of reproducibility definitions. Gunder-
sen [66] categorised reproducibility into four types of reproducibility, which define
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what type of documentation on the original study was available to the investigators
carrying out the new study. Gundersen’s four types are: description, code, data, and
experiment. The last type encompasses all of the previously named three types. In our
view, all details of the original study should be shared in order to replicate the study.

Furthermore, Gundersen [66] categorised reproducibility into three degrees of
reproducibility, which he called outcome reproducible, analysis reproducible and
interpretation reproducible. The degrees of reproducibility are based on what factors
are similar in the original and the replicate experiment. Outcome reproducible means
that the outcomes in the original and the replicate experiment are the same, thus apply-
ing the same analysis leads to the same conclusion. It is vague what outcome means
in this context, nevertheless, Gundersen [66] stated that outcomes of some experi-
ments are data. Analysis reproducible means that when the same analysis is applied
to the new data in the replicate study, the same conclusion is reached. Arguably, both
outcome reproducible and analysis reproducible fall under Reproducibility Type D.
Interpretation of the analysis denotes the conclusion made about the study. Inter-
pretation reproducible means that neither the outcome nor the analysis have to be
the same in the replicate experiment, but the interpretation (conclusion) drawn from
the original and the replicate study are the same. Thus, interpretation reproducible
allows for different statistical analysis and it can be categorised as Reproducibility
Type E. Parmigiani [113] discusses replicability of prediction rules which he defines
as “obtaining consistent results across studies suitable to address the same scientific
prediction question, each of which has obtained its own data.” His definition is spe-
cific as it refers to prediction rules, which can be applied, for example, in predicting
survival of ovarian cancer patients or screening for tuberculosis [113]. Nevertheless,
it is in line with Reproducibility Type E.

Gundersen [66] argued that using differentmethodology no longer falls under repro-
ducibility, but it is called corroboration, as in such cases hypotheses are supported
by new evidence. Corroboration fits the best within Reproducibility Type E. Gunder-
sen [66] also stated that corroboration refers to theories and hypotheses rather than
to experiments. This underlines that there is a considerable disagreement on what
constitutes reproducibility.

According to Stahel [142], there are two aspects of a successful replication. One
of the two aspects is the confirmation of conclusions, which means that a replication
study leads to the same conclusion as the original one. This is compatible with Repro-
ducibility Types C and D. Stahel [142] also noted that the concept of reproducibility
could be extended to exploring different circumstances, and if the new study leads to
the same conclusion as the original study, then this is called generalisability, which
could be interpreted as using a different method from the original study and can be
classified as Reproducibility Type E. Another aspect of successful replication, accord-
ing to Stahel [142], is statistical compatibility, which addresses the question “Is the
data obtained in the replication compatible with the data from the original study in the
light of the model used to draw inference?” This approach to reproducibility is not
discussed elsewhere in the existing literature, and this paper does not classify this as
any of the Reproducibility Types because it is not clear what ‘data from a new study
are compatible with the data from the original study’ exactly mean.
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Patil et al. [116] recommend that researchers use the R package scifigure to
visualise their definitions of reproducibility and replicability, facilitating meaningful
communication. The visualisations include the following variables: population, ques-
tion, hypothesis, experimental design, experimenter, data, analysis plan, analyst, code,
estimate, and claim. For each variable, the options available are: observed, missing,
different value, and incorrectly reported. These visualisations could be particularly
useful for discussing Reproducibility Types C, D, and E.

2.4 Summary and Discussion

There is no universally accepted definition of the term reproducibility, nor is there
clarity around related terms such as repeatability, replicability, and generalisability.
Different definitions for the same terms are sometimes used in the literature, and
researchers often refer to reproducibility without providing a clear definition. Even
when definitions are offered, they are not always precise, and some terms within
those definitions remain undefined. For meaningful discussions on reproducibility, it
is crucial to clarify the terminology. In this section, we identified five types of repro-
ducibility, along with definitions from the literature that align with these categories.
Figure 1 outlined key considerations in defining reproducibility and how they relate
to these five types. There is some overlap among the types, but it is not the aim of
this paper to determine which is the “correct" one. Rather, all of the considerations
presented are relevant to the reproducibility of scientific findings.

Having reviewed the various definitions and types of reproducibility, it is equally
important to consider the goals associatedwith it. These goals shape how reproducibil-
ity is applied and assessed in scientific research. One clear goal is the confirmation of
conclusions, though researchers need not limit themselves to this objective. According
to Bayarri and Mayoral [16], other goals of reproducibility include the reduction of
random error, bias detection, and extension of conclusions. The latter relates to Repro-
ducibility Type E. Goodman [107] expanded this list by adding two additional goals:
learning about the robustness (“resistance tominor or moderate changes in experimen-
tal or analytic procedures and assumptions”) and the generalisability of results (“true
findings outside the experimental frame or in a not-yet-tested situation”). However,
robustness and generalisabilitymay not be entirely new goals but rather clarifications
of the broader goal of extending conclusions. Zwaan et al. [154] introduced another
role for reproducibility, termed replication, to provide more accurate estimates of
effect sizes. This goal differs from the others, raising questions about whether repro-
ducibility should focus on estimating effect sizes or whether effect sizes should instead
be part of general statistical analysis.

3 Low Reproducibility: Causes and Possible Improvements

There is no universally accepted notion of what low or poor reproducibility means,
which is likely linked to the lack of a universal definition for the term reproducibil-
ity. There are two main approaches to defining low or poor reproducibility: First, it
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can refer to a poorly described and documented experiment, which prevents another
researcher from reproducing the original experiment. This could be done either by
using the same data, in alignment to Reproducibility Type A or Type B, or by redoing
the experiment and acquiring new data, in alignment to Reproducibility Types C to E.
Secondly, low reproducibility can refer to a well described and documented experi-
ment, where a new experiment does not lead to the same findings that were reached in
the original experiment. Poor reproducibility can also refer to a combination of these
two approaches.

The solutions for improving reproducibility often require adhering to good scientific
practice and using appropriate statistical, experimental and documentation methods.
The majority of these solutions are not limited to a particular type of reproducibility.
Finding solutions to the reproducibility crisis calls for many stakeholders: researchers,
public and private institutions, funding bodies, and journals. All these stakeholders
can play a vital role in improving reproducibility [107].

3.1 From a statistical perspective

3.1.1 Poor statistical choices

The discussion of statistical reasons for poor reproducibility begins by highlighting
the problem of researchers making poor statistical choices. Wrong or unsuitable sta-
tistical analysis [12, 19, 57, 108, 124, 144] and poor experimental design [12, 108]
are commonly named. This includes the incorrect use of p-values [19], overrelying on
p-values [70], inadequate sample sizes [57, 124], low power [144], using inappropri-
ate sampling techniques [144], insufficient knowledge of data-generation mechanisms
caused by the use of big data [144], experimental biases [19], statistical biases such
as confounding [19], and programming errors [19]. The discussion of the reasons for
low reproducibility in the quoted papers is mostly theoretical, and it does not include
real-world examples.

More specific reasons for low reproducibility, which only apply to certain exper-
iments, are: examination of weak and complex interactions for data with low
signal-to-noise ratio [118], and miscalculation of effect sizes in meta-analyses [1].
Moreover, greater availability of data and more complicated analytical methods lead
to a greater risk of false or misleading findings [118], as this increases the risk of an
error.

Statistical solutions to problems offered in the literature are: using suitable statis-
tical methods [12, 19, 108], which may include reporting confidence intervals rather
than just p-values [70]; using robust designs [12]; acknowledging uncertainties [108]
and taking into consideration the sensitivity of estimates for both deviations in the
underlying data and model choice [144]. To ensure the appropriate use of statistics, it
is important to involve statisticians at all the stages of the experiments or to provide
good statistical training to the researchers carrying out the experiments [96, 126]. It is
important to teach researchers that statistics is a tool to assess the strength of evidence,
rather than to reveal the truth. Even, with this priority, occasional human error is still
inevitable.
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Berger [19] suggested using Bayesian analysis, and he argued that this statistical
framework provides a systematic way of dealing with multiple statistical analyses.
Johnson et al. [88] recommend using Bayes factors and posterior model probabili-
ties instead of, or alongside, p-values. Researchers not limiting themselves to either
frequentist or Bayesian statistics is desirable. However, this again requires proper sta-
tistical training. Stahel [142] encouraged cross-validation, where the dataset is split
multiple times into smaller training sets. Model parameters are estimated for each
split, and the average performance across all splits is then calculated. Using appropri-
ate statistical analysis has the potential to reduce the incidence of wrong conclusions,
which are often caused by technical errors.

3.1.2 Undesired correlations

Stahel [142] named the within laboratory or within group correlation, which is about
measurements from the same laboratory being more similar. Apart from the incor-
rect use of statistical methods, unwanted or unknown correlations could negatively
affect reproducibility. Stahel [142] suggested that there may be a correlation between
results obtained with short time lags. Carrying out the same experiment in a different
laboratory and by a different team of scientists, in line with Reproducibility Type
D, can ensure that the conclusions of the experiment are not linked to some of the
unknown correlations, such as the within laboratory correlation, which can occur with
Reproducibility Type C. One way to reduce the undesired consequences of unwanted
correlations is accounting for reproducibility in the design of the experiment. This
solution has already been addressed in preclinical research, and this topic will be
further discussed in Section 6. Reproducibility Type E avoids some of the pitfalls of
unwanted correlations, namely, it tests the findings of the experiment under changed
circumstances, which makes the conclusions more robust with respect to the varying
conditions. According to Ehm [51], meta-analysis is needed because of the issues
of heterogeneity and selection bias [51]. Meta-analysis is a statistical method that
combines results of several independent studies [68]. It should not replace replication
studies, but it is useful as it can stop researchers from prematurely accepting conclu-
sions. However, Bogomolov and Heller [26] warn that meta-analysis can conclude
that there is discovery in cases where there is a statistically significant effect in only
one of the studies. Thus, researchers should be carrying out meta-analysis with care.

3.1.3 Within-study selection bias

Related to the undesired correlation is the within-study selection bias. Hutton and
Williamson [77] showed, via a meta-analysis on a treatment for incontinence and
anthelminth therapy, that selective reporting of outcomes has an effect on the conclu-
sions and recommendations made about treatment. This within-study selection bias
is often based on the significance level and the estimates of effect size. However, this
selective reporting becomes problematic whenmeta-analysis is carried out or someone
else tries to replicate the experiment. To avoid these problems, all outcomes should
be reported, even those that were statistically insignificant.
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3.1.4 Missing data

In research, missing data and the lack of documentation of missing data [139] can
lead to poor reproducibility. Thus, it is important to report information about missing
data, which includes the degree of and statistical assumptions related to missing data,
and the practical information on reasons behind missing data. Moreover, it is vital
to perform sensitivity analysis to assess robustness of these assumptions in order
to increase reproducibility [139]. This solution seems feasible as the treatment of
missing values is a part of the statistical analysis, and reporting them is in alignment
with Reproducibility Type A.

3.1.5 Multiplicity

Multiplicity [64] or failure to adjust for multiplicities [19] can also lead to lower
reproducibility. Multiplicity occurs when several statistical inferences are considered
simultaneously, this often involves using multiple statistical tests. According to Bretz
and Westfall [29], ignoring multiplicity in any stage of drug development may cause
a lack of reproducibility, which they call replicability, at a later stage or after market
approval. In a study conducted byBretz andWestfall (25), simulations were performed
with pairs of independent studies, the original and the replicate study. The only dif-
ference between the two studies was the sample size, where the original test study
had sample size of 100, and the replicate study had a sample size of 1000. All other
factors remained the same in both studies. They concluded that the effect sizes of the
original study are not ‘reproduced’ in the replicate study: on average they are larger
than effect sizes of the replicate study. This confirms that changing one aspect of the
test, such as the effect size, can have an effect on the test conclusion.

3.1.6 Deliberate statistical malpractices

Intentional statistical malpractices are another cause of poor reproducibility. These
include: removing ‘outliers’ and unfavourable data [19], trying out multiple models
until one gets favourable results [19] (also called p-hacking [64, 108] or selective
reporting [12, 64]), statistical overfitting [11], data dredging (analysing data in order
to find any possible relationships between the data) [64] and hypothesizing after the
results are known [64, 108] and questionable interim analysis (performing data anal-
ysis while still collecting data, and stopping when p-value is statistically significant),
questionable inclusion of covariates [58] (adding covariates gradually to a regression
model in order to find a significant effect), and questionable subgroup analyses [58]
(reporting subgroup yielding the smallest p-value) [58]. Such malpractices often stem
from the pressure to publish [12]. Clear documentation of all statistical processes,
which links to Reproducibility Type A, allows an external scientist to check the anal-
ysis carried out and it increases the chance of spotting statistical malpractices.

Moreover, pre-registration of studies is conducive to transparency [28, 52, 105, 108,
141] and it prevents many malpractices. In pre-registration of studies, experimental
designs and analytical plans are written down in a database before the experiment is
performed. In clinical studies, pre-registration is mandatory and can be done through
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registries such as the International Standard Randomized Controlled Trial Number
registry [85] and the International Clinical Trials Registry Platform [78].

3.2 More general insights

Themajority of reasons for low reproducibility do not stem fromwrong statistical anal-
ysis. Preference of publishing positive results, a lack of documentation of experiments,
focus on exploratory studies rather than replication studies, and other non-statistical
issues can lead to low reproducibility. This section will summarise these problems and
outline suggestions for improvement offered in the literature.

3.2.1 Preference of publishing positive results

One of the reasons for low reproducibility is the pressure to publish [12]. This is exac-
erbated by the publication bias [19, 108, 142, 154], which refers to the preference of
journals to publish positive results and reject negative results [57]. Similarly, nega-
tive or null results are also often not written up for publication. This leads to a high
proportion of ‘false positive’ results.

Journals should strive to accept for publication articles with negative or null results
[17, 19, 33]. Johnson et al. [88] argue that rather than based on statistical significance,
articles should be accepted based on the quality of the experiment and the data, and the
importance of the hypotheses tested. Removing the stigma associated with negative
results, i.e. negative perception of negative results, has the potential to increase repro-
ducibility [145]. However, even if journals allow the publication of negative results,
it is questionable whether researchers will start writing up negative results simply
because they are focused on positive results, and face many pressures which pre-
vent them from writing negative results for journal publication. It is also questionable
whether scientists would worry about the reproducibility of negative results. If not,
false negatives would be more problematic for science than false positives because
they would receive less attention and scrutiny.

3.2.2 Other problems in the publication system

Allison [1] emphasised that there is a lack of formal guidance for post-publication
corrections. He pointed out that in science, a degree of self-correction is crucial.
However, it is hard to achieve via publications. Once an article gets published, it is
hard to address any errors. The US National Institute of Health (NIH) promoted that
journals should be motivated to allocate more space for papers that point out errors in
earlier work [33], which seems a feasible and forward-looking solution.Many journals
have adopted this policy.

Other problems in the publication system that lead to lower reproducibility are
fraudulent research [12, 108, 118], insufficient peer review, oversight and mentoring
[12] and competition between laboratories leading to hastily written papers [57].
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3.2.3 Documentation

Incomplete or bad reporting [57, 64, 144] or a lack of ‘instruction material’ for scien-
tists who want to produce such reproducible research [52, 118] can also lead to low
reproducibility. The raw data, method description or code are not always available
[12]. One of the reasons why scientists may not share their data and code is that it
takes a lot of time to document the work and to clean up the data and code [97].
Alternatively, the researchers may not want to share documentation which includes
work beyond the published results.

Iqbal et al. [84] carried out a systematic assessment of the biomedical litera-
ture, assessing transparency and reproducibility in a random sample of 441 articles
in biomedical journals published between 2000 and 2014. They concluded that the
biomedical literature lacks transparency; it is missing protocols, data, statements of
conflict, funding information, and statements of novelty or replication. Similarly,
Errington et al. [52] highlighted problems for replication of experiments: incomplete
documentation, not enough information to repeat an experiment, descriptive or infer-
ential statistics not provided, and insufficient detail about the experiments. In their
reproducibility project in cancer biology, the team of scientists sought to repeat 193
experiments from 53 papers [52]. In order to do so, they had to modify 67% of the pro-
tocols, which were already peer-reviewed, and they were only able to implement 41%
of those modifications [52]. Only 4 out of 193 experiments included data which were
necessary for computing the effect size and for conducting power analysis [52]. Fol-
lowing difficulties faced during the design and conduct of the experiments, Errington
et al. [52] were only able to carry out new experiments based on the original experi-
ments for 50 experiments from 23 papers. Seibold et al. [133] attempted to reproduce
analyses (aligned with Reproducibility Type A) of longitudinal data in 11 articles
published in PLOS ONE, where authors consented and data were available. They
were unable to reproduce results for three full articles and parts of two, concluding
that reproducing results is difficult without provided code. Xiong and Cribben [153]
attempted to reproduce 93 papers from prominent statistical journals using functional
magnetic resonance imaging (fMRI) data. Without contacting the original authors,
they successfully reproduced results for only 14 papers, all of which provided real
fMRI data and executable code.

Many sources agree that careful documentation of all steps in an experiment is
important for reproducible research [11, 13, 19, 59, 61, 108]. From the perspective of
the five reproducibility types, clear documentation is important. This includes code,
data and a clear description of the data and the analysis [30, 131]. Moreover, pub-
lic access to all these documents is necessary so that other researchers can validate
the analysis [130]. Haibe-Kains et al. [67] suggest that if data cannot be shared, an
independent, highly trained investigator should verify the analysis. In fields like med-
ical imaging AI, sharing data processing and training pipeline details is also essential.
Berger [19] suggested establishing protocols for scientific investigations. Donoho [50]
advised to create a single R script that generates all the results, figures and tables, for
a particular paper. Solutions in terms of user-friendly software are not new; Schwab
et al. [131] described ReDoc, a simple software system where authors deposit all
the documentation, data, and code, that allows readers to reproduce computational
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results from the articles. A more recent tool for a clear documentation of the statistical
analysis is the R package knitr which creates a single document containing both the
code and the documentation of the experiment, including visualisations [152]. Another
solution is the use of a Jupyter Notebook. This is a web-based computational envi-
ronment that shows the code for data analysis alongside text and visualisations [130].
All these solutions are compatible with the approach to reproducibility described in
Reproducibility Type A, making it possible for another researcher to go through the
data, code, and the method, and reanalyse the experiment. However, these solutions
are not limited to Reproducibility Type A; they are useful for researchers who want
to analyse the same data using a different analytical method (Reproducibility Type
B) or for researchers who want to repeat the experiment (in line with Reproducibility
Type C, D or E). A difficulty is that these solutions are time-consuming and require
training. Nevertheless, the long-term benefits of these solutions are apparent, and they
have already been implemented, for example, in computer sciences. A related question
is what to do when irreproducibility is reported, in line with Reproducibility Type A
or its stronger version.

The recommendations on documentation should not be limited to technical aspects,
such aswhat software to use, but they also should include a discussion ofwhat informa-
tion should be included and in what depth. A detailed manual about journal reporting
in quantitative research in psychology can be found in Appelbaum et al. [6]. The rec-
ommendations presented in this article can be also applied to other research fields.
An earlier work includes Wilkinson et al. [150] who give a detailed and useful guide
for practitioners in psychology on how to carry out appropriate statistical methods,
devise a good experimental design, document the work well. This article does not limit
itself to the field of psychology. Reporting guidelines for a broad spectrum of health
research studies are given by the Enhancing the Quality and Transparency Of health
Research (EQUATOR) network [54].

An example of efforts to encourage authors to share their data and code is the
use of kite marks, introduced by the journal Biostatistics. Authors receive a ‘C’ kite
mark for sharing code and a ‘D’ kite mark for sharing data. Additionally, authors may
apply for a reproducibility review, and if reproducibility (aligned with the definition
of Reproducibility Type A) is verified, they are awarded an ‘R’ kite mark [119].

Tiwari et al. [146] proposed a ‘reproducibility scorecard’ for publications to improve
reproducibility. This scorecard asks 8 questions, two examples of these questions are:
“Are the model codes deposited in a relevant open model database?” and “Are the
mathematical expressions described in the manuscript or supplementary material?”
[146]. Tiwari et al. suggested a 4 out of 8 cut-off in the reproducibility scorecard.
This means that ‘yes’ needs to be answered to at least 4 question for there being a
chance of reproducing the same results. Tiwari et al. [146] limited the scope of their
paper to systems biology modelling but this idea could also be used in other scientific
areas. However, rather than using a cut-off-point, it might be better to report which
‘reproducibility criteria’ the publication satisfies. These reproducibility criteria could
encompass all five reproducibility types.

In big data settings, keeping track of all steps in an experiment and datamanagement
becomes a challenge. There aremany tools that make it possible for researchers to doc-
ument their work, such as an open-source programming language, a cloud-based data
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repository, a programming interface and the previously mentioned Jupyter Notebook
[135]. Moreover, following the FAIR (Findable, Accessible, Interoperable and Repro-
ducible) principles [151] for datamanagement can lead to higher reproducibility [130].
FAIR principles are guidelines that guide researchers on how to organise, describe,
store and operate data in order to improve the reusability of data. See Wilkinson et al.
[151] for a more elaborate description of these principles.

3.2.4 Cooperation

Within an organisation, better reproducibility, in alignment with all reproducibility
types, can be achieved through collaboration of a team [105] and the inclusion of
statisticians in research teams [19]. This is linked to the need for interdisciplinary
teams on large scale projects [130] and for initiative to share common vocabulary.
This would allow for more informed conclusions. Moreover, better mentoring and
supervision, better teaching, more within-lab validation, incentives for diligent work,
and more external-lab validation can improve reproducibility [12].

3.2.5 Focus on replication studies

Funding bodies also have a role to play as they can have an impact on reproducibil-
ity through grant distribution. There should be distinguishment between exploratory
versus confirmatory studies [147]. Pusztai et al. [125] proposed that some of the exist-
ing funding from new-discovery oriented grants gets allocated to confirmatory and
validation grants that could be used for verification of important published results.
For example, Iorns et al. [83] presented a successful replication study in biology. The
details of the experiment are omitted as these include biology related terminology.
Iorns et al. [83] communicated with the original authors to receive further details of
the study and they also performed additional analysis to collect more detailed data,
including data of higher resolution than the original test scenario. This replicate study
confirmed the conclusions of the original test scenario. However, the effects seen in
the replicate study were lower than in the original study. To improve reproducibility,
such efforts should receive recognition in the scientific community. However, such
recognition might be hard to establish, as more emphasis is given to the discovery
research and to the publication of novel findings. The Science Exchange network
[132] established a support network for researchers who want to carry out replication
studies in order to validate key experimental findings.

4 Statistical Reproducibility

Up to this point, this paper has categorised definitions of reproducibility, presented
reasons for low reproducibility and suggestions on how to improve reproducibility,
and discussed reproducibility within the context of preclinical research. This section
provides a concise summary of debates on statistical reproducibility.
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4.1 What is statistical reproducibility?

Similar to the term reproducibility, the term statistical reproducibility, reproducibility
probability or replication probability, is not clearly defined. The first insights related
to statistical reproducibility were provided by Goodman [63], who highlighted a mis-
conception regarding the p-value. Goodman [63] questioned the claim that a small
p-value improves the credibility of the test result and argued that the replication
probability may be smaller than expected. Although Goodman used the term repli-
cation probability rather than reproducibility probability, his definition is similar to
the definition of reproducibility adopted in this paper. Goodman [63] defined it as the
probability of observing another statistically significant result in the same direction
as the first one, if an experiment was repeated under identical conditions and with the
same sample size, which is consistent with Reproducibility Type C. Senn [134] agreed
with Goodman that the p-value and replication probability are different measures and
that inconsistency between test results from individual studies may be expected. How-
ever, he disagreed with Goodman’s claim that the p-value may overstate the evidence
against the null hypothesis [63], both under the Frequentist and the Bayesian frame-
work. According to Senn [134], under the Frequentist framework, p-value is the most
rigorous possible type I error rate that could be considered and still lead to the rejection
of the null hypothesis. Under the Bayesian framework, it could be argued that the p-
value corresponds to a particular Bayesian posterior probabilities. Nevertheless, Senn
[134] recognised that a link between the p-values and replication probability should
be recognised. This article uses the term reproducibility probability (RP) instead of
replication probability.

Miller [104] argued that there are two interpretations of the replication probability
and that in both cases the probability is unknown. Miller called them the aggregate
and the individual replication probability [104]. According to Miller, the former term
refers to experiments being performed by different teams of researchers with varying
conditions, which corresponds to Reproducibility Type E, whereas the latter term
refers to experiments being carried out by a particular individual under exactly the
same conditions, which corresponds to Reproducibility Type C and to Goodman’s
definition of statistical reproducibility.Miller discouraged researchers fromattempting
to estimate both types of replication probabilities, as, according to him, the initial data
provide very little information about the RP in the follow-up experiment [104]. This
is something we disagree with; we believe that the data from the original test scenario
can provide useful statistical insights; a statistician uses data for inference, hence, it
contains further information.

Stodden [144] had a different approach to the use of the term statistical repro-
ducibility. She described it as conception about how statistics affect the likelihood
of a scientific result being reproducible and how they contribute to the study and the
quantification of reproducibility [107]. Stodden also used this term to refer to the sit-
uation when flawed statistical analysis or experimental design leads to the failure to
replicate the experiment [144]. The positive side of this definition is that it emphasises
the importance of appropriate use of statistics in experiments. However, this definition
generalises statistical reproducibility to any discussion regarding statistics and repro-
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ducibility, and it cannot be classified as any of the Reproducibility Types introduced
in Section 2.

The debate on statistical reproducibility raises a variety of questions. In the pro-
ceedings of the workshop on statistical reproducibility by National Academies of
Sciences, Engineering, and Medicine (NASEM) [107], one of the questions focused
on what study designs and appropriate metrics can be used to quantify reproducibil-
ity of scientific findings. The proceedings of NASEM [107] mainly concentrated on
the variability across studies, on how to assess this variability and on what degree of
variability leads to worries about the lack of reproducibility. Indisputably, variability
is an important factor in the statistical reproducibility debate. Lomax [107] explained
that it is important to recognise which aspects of variation can and which cannot be
controlled.

Exchangeability of random variables forms part of the variability discussion. De
Finetti’s Theorem [76] states that exchangeable observations are conditionally inde-
pendent. It means that variables can be swapped around in the sequence, and following
this their joint distribution does not change. Exchangeability can never be verified, but
statisticians still make the assumption of exchangeability under the guidance of prac-
titioners. In the reproducibility debate, it is important to ask whether or not one can
assume exchangeability. This paper proposes that exchangeability could be assumed
when the replicate experiment is carried out under the same conditions. This work
assumes exchangeability in the nonparametric predictive inference (NPI) framework,
as will be explained in Section 5.2.5. Thus, exchangeability can only be assumed
for Reproducibility Type C. It is arguable whether exchangeability, or some extent of
exchangeability, can also be assumed for Reproducibility TypeD. Exchangeability can
no longer be assumed for Reproducibility Type E, where the experiments are carried
out under different conditions.

The proceedings of NASEM also discussed how statistics, in particular the choice
of study design and analysis, can affect reproducibility of scientific results, and
how reproducibility can be enhanced via structural and analytical approaches [107].
These questions address statistical causes of poor reproducibility and suggestions for
improvements, both of these have been addressed in Section 3. However, these pro-
ceedings of the workshop [107] did not give a summary of the existing metrics that
are aimed at validating reproducibility and quantifying statistical reproducibility. This
task will be pursued in Section 5.

Lastly, there is an important question: Within what framework should statistical
reproducibility be assessed? BinHimd and Coolen [22, 41] considered reproducibility
as a predictive problem and provided a frequentist approach, nonparametric predictive
inference, to solve it. This paper adapts their approach to statistical reproducibility.
Within theBayesian framework, predictive inference has been discussed byBillheimer
[21]. With a view to improve reproducibility, Billheimer [21] proposed predictive
inference to predict observables. According to Billheimer [21], statistical modelling
should predict observable quantities and events, based on the current data and other
applicable information, rather than form inferential conclusions through hypothesis
tests or estimation of parameters. Billheimer promoted that instead of focusing on
unobservable parameters, attention should be centred on observable events. This view
is in alignment with the approach to statistical reproducibility presented in this paper,
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however, this work suggests using NPI framework instead of Bayesian framework,
as NPI does not make as many assumptions about the data as a Bayesian framework
does.

4.2 The p-value and the statistical significance

Concerns regarding reproducibility of research results are interlinkedwith the ongoing
debate about whether or not to use p-values [21]. In hypothesis testing, which is a
method of statistical inference, p-values are used tomake dichotomous decisions about
whether to reject or fail to reject the null hypothesis. Depending on the p-value, test
outcomes are labelled statistically significant or non-significant. The most commonly
used threshold value in biomedical research for the p-value is 0.05. The p-value is the
probability of obtaining the same or amore extreme value for the test statistic, under the
assumption that the null hypothesis is correct. The American Statistician (TAS) [149]
suggested abandoning the concept of statistical significance in scientific research.
The grounds for this suggestions are that the concept of statistical significance is
misinterpreted by many, that it can cause erroneous beliefs and poor decision making,
and that it stops statistically insignificant results from being published. Furthermore,
statistical significance does not imply truth, yet many researchers and bodies equate it
with truth [149]. The editorial [149] stated that it is not enough to have directions, such
as “Don’t believe that an association or effect exists just because it was statistically
significant”, but that the p-values should not be dichotomised, i.e. test outcomes should
not be labelled as statistically significant or non-significant, and the word statistically
significant should not be used. TAS [149] suggested that rather than stating the p-value,
its meaning should be described in words.

Fisher introduced p-values for the use at the exploratory stage to see if the experi-
ment findings should be further investigated [111, 149]. They were not meant to lead
to a dichotomous decision making rule, reject or not reject the null hypothesis. The
dichotomous nature of significance testing often leads to p-hacking, the misreporting
of true effect sizes by researchers who want to publish and need significant results, as
discussed in Section 3. Similarly to TAS, Amrhein et al. [4] argued that dependence
on statistical significance threshold can be misleading, and they suggested not using
statistical significance thresholds and reporting only precise p-values.

Amrhein et al. [4] argued that conclusions should not be based solely onwhether the
p-values are significant or non-significant. Other metrics, such as the effect size and
power, are equally important in the statistical analysis of tests. Amrhein et al. [4] also
addressed the problem of making over-confident claims based exclusively on p-value.
Nuzzo [111] also highlighted that effect sizes are often ignored and the research focus
is on whether there is an effect rather than on how big the effect is, while the latter
question is often more important. Nuzzo [111] discussed the problem of overrelying
on p-values in decision making. Halsey et al. [70] discouraged analysis based mostly
on p-values because of “the wide sample-to-sample variability in the p-value” [70].
They proposed that the dichotomous yes-or-no decision should be reached using a
variety of measures, in particular the effect size estimates and their 95% confidence
intervals [70]. Colquhoun [34] raised the problem of high false discovery rate for
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p-value around 0.05 in significance testing. He illustrated this on tree diagrams for
simple testing procedures and he explores it further via simulations; the false discovery
rate is the ratio of the number of false positive results to the total number of positive
test results. The false discovery rate is also high for tests with low statistical power.

Halsey [69] offered four alternative analysis approaches to augment or replace the
p-value. First, he discussed the augmented p-value augmented with information about
its variability. He suggested the p-value prediction interval as a possible tool to do so.
The prediction interval characterises the uncertainty of the p-value of a future replicate
study [43]. However, augmented p-values may cause confusion as their interpretation
is not straightforward and their calculation relies on p-values. Secondly, Halsey sug-
gested estimating effect sizes and their confidence intervals [69]. Thirdly, Halsey
suggested the use of Bayes factors instead of p-values as more intuitive metrics for
interpretation. Fourthly, Halsey suggested using the Akaike information criterion for
model assessment. Being aware and using alternative methods for statistical analysis
gives decision-makers more flexibility and more tools to make decisions. However,
these tools do not replace p-values as they are different measures and communicate
different messages.

Macnaughton [99] disagreed with the claims made by TAS [149], in particular, that
abandoning statistical significance will lead to fewer false-positive errors in scientific
research, and that it will enable easier replication of scientific research results [99].
According to Macnaughton [99], science and statistics aim at separating signal from
noise in data and the p-value is a useful tool for determining whether the studied
effect exists in the population [99]. Unfortunately, false-positives still persist in pub-
lished research, i.e. a p-value which implies that there is evidence for the alternative
hypothesis, but in fact the null hypothesis is true. Macnaughton [99] argued that the
critical threshold value provides a balance between the rates of false-negative errors,
false-positive errors, and costs. Macnaughton acknowledged that some people may
manipulate p-values (either because of a lack of knowledge or on purpose so that
they can publish) and this is harmful to science. Macnaughton also pointed out that if
researchers obtain a p-value above the critical value of a relevant journal and if they
believe that the studied effect exists and it is important, then the researchers should
create a more powerful research design and repeat the study to see if they can get
convincing evidence for the existence of the effect. Ioannidis [82] also argued that
significance is essential for activity in both science and non-science and that some
filtering process is helpful to avoid drowning in noise.

Benjamin et al. [18] proposed to change the default p-value threshold for statistical
significance from 0.05 to 0.005 for new discovery claims, to improve reproducibility
and to label novel findings with p-values between 0.005 and 0.05 as suggestive evi-
dence. Reproducibility was not explicitly defined by Benjamin et al. [18], it could be
assumed that they referred to Reproducibility Types C, D or E, or a combination of
these. Benjamin et al. [18] did not propose that this new threshold is used for decisions
on whether to publish or not. Similarly, the proceedings of the workshop by NASEM
[107] discussed the benefits of increasing the threshold for demonstrating statistical
significance, through p-values or Bayes factors. It is doubtful whether this would
increase reproducibility because p-values and reproducibility probability are differ-
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ent measures and there is inconsistency between test results from different studies, as
has been discussed by Senn [134] and Goodman [63].

Leek and Peng [96] identified that there are more important discussions than the
question of whether or not to use p-values. It is more important to focus on the
improvement of researchers’ education in statistics and evidence-based data analysis,
teaching them to use statistical analysis correctly. We agree with their point of view;
the p-value forms only a small part of the experiment, which follows experimental
design, collection and handling of data, and summary statistics, and the problem of a
lack of reproducibility in science cannot be solely blamed on the p-value.

5 Quantification of Statistical Reproducibility

Following the documentation of the study, it is essential to carefully check the study
design, code, data analysis, and other relevant aspects, ensuring there are no errors in
alignment with Reproducibility Type A. Reproducibility Type B, on the other hand,
requires the use of the original study’s data but with a different analytical method to
determine whether the same conclusions are reached.

As discussed in Section 2, Reproducibility Types C, D, and E involve two key
scenarios. The first scenario involves both the original and replicate experiments,
where the focus is on assessing whether the conclusions from the original study are
replicated. The second scenario applies when only the original experiment has been
conducted, and reproducibility is evaluated based on the available data and statistical
analysis. While the first scenario has received considerable attention, with various
methods developed to assess replication success, the second scenario has been less
explored.

5.1 Quantifying Statistical Reproducibility with Replicate Studies

Errington et al. [53] described seven methods for the assessment of replication:
(i) statistical significance: whether the p-value is less than 0.05 for the original posi-
tive results or whether the p-value is greater than 0.05 for the original non-significant
results; (ii) original effect size in the replication 95% confidence interval; (iii) repli-
cation effect size in the original 95% confidence interval; (iv) replication effect size in
the original 95% prediction interval; (v) meta-analysis combining original and repli-
cation effect sizes, leading to p-value less than 0.05 for the original positive results
or to p-value greater than 0.05 for the original non-significant results; (vi) compar-
ing whether the results had the same direction - in the evaluation of representative
images the original and replicate outcome can have the same direction but a different
statistical significance; (vii) comparing whether the replication effect size is less than
or equal to the original effect size. A replicated study was assessed as successful if
majority of the criteria (i) - (v) were satisfied (3 or more out of 5). The other two
criteria, (vi) and (vii), were not included in this assessment of a successful replication,
as they do not work for non-significant effects, i.e. cases when the null hypothesis is
not rejected. The comparison of effect sizes showed that the median of effect sizes in
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the replication studies was 85% smaller than the median of effect sizes in the original
experiments, and 92% of the replication effect sizes were smaller than the original
effect sizes. Moreover, the original null effects were replicated for 80% of the original
tests, whereas the positive findings were replicated for only 40% of the original tests.

Open Science Collaboration [112] evaluated reproducibility via the following crite-
ria: significance and the same p-value cut-off point, effect sizes, subjective assessment
of replication teams, and meta-analyses of the effect sizes. They concluded that while
97% of the original studies had a p-value below 0.05, only 36% of the replication
studies had a p-value below 0.05.

Patil et al. [114] highlighted the problem that the p-value cut-off points do not
account for variation [114]. Patil et al. [114] instead suggested the consideration of
the effect expected in the replication study, examining the original effect. Patil et al.
[114] defined the 95% prediction interval, which can be calculated via Equation (1).

r̂original ± z0.975

√
1

norig − 3
+ 1

nrep − 3
(1)

where r̂original is the estimate of the correlation coefficient in the original study, norig
and nrep are the sample sizes in the original and the replication study, respectively;
and z0.975 is the 97.5% quantile of the Normal distribution [114].

Patil et al. [114] warned that a small sample size leads to a wide prediction interval,
and thus, the assessment of the replication study could be non-informative for small
sample sizes. Patil et al. [114] pointed out that in the Reproducibility Project: Psy-
chology [112] by Open Science Collaboration, the replication study effect sizes were
smaller than the original study effect sizes due to publication bias. This observation
is in line with the observation made in Reproducibility Project: Cancer Biology [53].

5.1.1 High Throughput Experimentation

In high throughput experimentation (HTE), automated equipment is used to run a
large number of tests simultaneously. Parallelisation is the key principle of HTE. High
throughput experimentation is, for example, used in biological science laboratories
to rapidly screen millions of samples. Assessment of reproducibility is a highly dis-
cussed topic in high throughput experimentation, where the replicate study often has
a different sample size than the original study. In the replicate studies, only signals
that were positive, interesting or significant in the original study are studied. Thus, the
sample size and design in the replicate study differ from the original study. Moreover,
scientists sometimes introduce test compounds in the replicate study that have similar
characteristics to those selected as significant in the primary screen.

The metrics used to quantify reproducibility in HTE are the r -value [72], irrepro-
ducible discovery rate (IDR) [98] and maximum rank reproducibility (MaRR) [121],
where the r -value is briefly described. A detailed discussion of these metrics is outside
the scope of this paper. This short survey of available metrics aims to illustrate that
this type of assessment has received considerable attention in the literature. Both Li
et al. [98] and Philtron et al. [121] named Spearman’s pairwise rank correlation as a
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commonly used method for assessing reproducibility in HTE. However, both sources
agreed that it is not themost suitablemethod as Spearman’s pairwise rank correlation’s
properties depend on how stringent the requirements for inclusion of genes are.

In the field of genomics, assessing whether findings from a primary study are
replicated in a follow-up study has been explored [27, 73]. The terminology used is
replicability, findings being replicated in another study. The studies conduct large-
scale searches for rare true positives; one study is simultaneously examining many
features. In the context of genome-wide association studies, the follow-up studies
often examine only features that were identified as significant in the primary study.

For the test scenarios described above, Heller et al. [72] introduced the r -value as
a metric to quantify the strength of replication, i.e. evidence against findings from a
primary study being replicated in a follow-up study. A smaller r -value means stronger
evidence in favour of replicability [137]. The Benjamini-Hochberg procedure can be
used on the reported r -values to control the false-discovery rate (FDR). Heller et al.
[72] defined the FDR r -value for feature i as the lowest FDR level at which the finding
is among the replicated ones. Heller et al. offered an online calculator of the r -value
[74].Meta-analysis is often used in genome-wide association studies. However, Heller
et al. [72] argued thatmeta-analysis, pooling results across studies, is not an assessment
of replicability, and they suggested adding the r -value to the statistical analysis.

5.1.2 Agreement indices

Assessment of whether a replicate study reached the same conclusions as the original
study, in accordance to Reproducibility Type C and Type D, has also been assessed
via agreement indices. Barnhart et al. [15] compared various agreement indices: the
Pearson correlation coefficient, the mean-squared deviation, the intraclass correla-
tion coefficient, the kappa statistic, the concordance correlation, the within-subject
coefficient of variation, the coefficient of individual agreement, limits of agreement,
coverage probability, and total deviation index. They identified the coverage proba-
bility as the preferred index for assessing agreement because it can be applied to both
continuous and categorical data, and it is intuitive and easy to compute. These metrics
are not described separately as they are not relevant to the rest of this paper.

5.1.3 Reproducibility from a Bayesian perspective

Reproducibility has been assessed from a Bayesian perspective [16, 71, 138]. For
example, Held [71] introduced the sceptical p-value (pS), a quantitative measure for
replication success. The term replication success is not explicitly defined by Held
[71]. We assume that it means that the findings of the original experiment are vali-
dated in the replicate experiment. The technique is suitable for tests which employ
frequentist analysis. It considers p-values, sample and effect sizes of both the original
and replication study. The method determines the largest confidence level 1 − pS for
the original confidence interval, at which replication success can be declared at level
pS [71]. The author preferred this method to meta-analysis because, according to him,
exchangeability assumptions are not appropriate [71]. Held’s argument is that, via
the conduct of a replication study, researchers challenge the findings of the original
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study, which is an asymmetric task. The problemwe encounter with this method is that
the term replication success is not clearly defined, and the definition of the sceptical
p-value involves this term.

5.2 Quantifying Statistical Reproducibility without Replicate Studies

The previous section discussed metrics assessing reproducibility in situations where
both the original and the replicate experiments have been carried out. This section
focuses on metrics which are calculated after only the original study has been carried
out. These metrics relate to the probability of getting the same decision in a follow-up
study. This view of reproducibility is in alignment with Goodman’s [63] definition
of statistical reproducibility and Billheimer’s [21] approach to predictive analysis. In
the literature, less attention is paid to this approach to statistical reproducibility. This
paper will highlight such an assessment.

5.2.1 Confusing reproducibility with other statistics

We have observed that some researchers interpret p-values, effect sizes, or confidence
intervals as measures of reproducibility. For example, one view considers p-values or
effect sizes as different ways to assess reproducibility. Another interpretation connects
p-values to reproducibility probability, such that p = 0.01 corresponds to R̂P ≈ 0.73
and p = 0.0001 corresponds to R̂P ≈ 0.97. It is unclear how these R̂P values
are defined or calculated. Cumming [43] argued that confidence intervals contain
information about replication. We disagree that p-values, effect sizes or confidence
intervals are measures of reproducibility as they have a clear definition in statistics,
and reproducibility or related terms are not part of those definitions; these are different
concepts.

5.2.2 Peculiar metrics

In the literature, there are peculiar measures of reproducibility, such as Posavac’s
trep and Kileen’s prep. Both metrics are linked to significance testing. According to
Posavac [122], the probability of statistically significant exact replication, trep, can
be calculated by subtracting the minimum difference for a statistically significant t-
statistic from the difference in means observed in the initial study. Posavac presented
a graphical method for calculating the probability of an exact replication being less
than 0.05 for a two-tailed test [122]. However, it is not clear from the article how this
would quantify the probability of the next experiment yielding the same conclusion.
Because of the vagueness of the approach, it is unclear how to apply it in practice.

Killeen [93] argued that the probability of replicating an experiment can be esti-
mated using the statistic prep. He defined prep as the replicate effect which is of the
same sign as the effect found in an original experiment [93]. Killeen was motivated
by the fact that the p-value is commonly misinterpreted. According to Killeen [95],
prep can be estimated by viewing it as a function of the p-value (denoted by p), using
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the following formula:

prep ≈
[
1 + (

p

1 − p
)2/3

]−1

(2)

Maraun and Gabriel [100] pointed out that Killeen’s calculation and interpretation
of prep and of the concept of reproducibility probability contain errors. Nevertheless,
they credit Killeen’s claim that replicability should play a key role in the assessment
of empirical results [100]. Lecoutre et al. [95] also recognised that prep is incorrectly
defined, because of the confusion between 1-tailed and 2-tailed p-values. Another
problem with Posavac’s and Kileen’s calculations of reproducibility is that both of
these metrics are dependent on p-values, which are not measures of reproducibility,
as explained in Section 5.2.1.

5.2.3 Estimated power approach

De Capitani and De Martini [46–48] adopted Goodman’s definition of reproducibility
probability, i.e. the probability of obtaining the same test result in a second, identical
experiment. This corresponds to Reproducibility Type C, but they considered it as an
estimation problem instead of a prediction problem.

De Capitani and De Martini [46–48] equated reproducibility probability to the
true power of a statistical test. Their method is called the estimated power approach
[136] and has been presented for the t-test, Wilcoxon rank-sum test [46] and they also
developed reproducibility probability estimation for other nonparametric tests [47].
Shao and Chow [136] also advocated the estimated power approach. De Capitani and
De Martini [47] argued that their methods provides useful information for evaluation
of the stability of statistical test results. It is unclear what is the precise definition of
the stability of test results and what is the benefit of the estimated power approach.

De Capitani and De Martini argued that many clinical trials cannot be done more
than once or twice,mainly because of their budgets and time constraints [45].However,
for an experiment to be scientifically valid, it is often required that it is reproducible.
De Capitani [45] argued that in such cases reproducibility of the experimental con-
clusions should be addressed as reproducibility of statistical significance [45] and this
should be evaluated using reproducibility probability. We disagree with their state-
ment as we believe the interest should be in reproducibility of conclusions rather than
reproducibility of statistical significance and the two cannot be equated.

In their study, De Capitani and De Martini only focused on reproducibility when
the null hypothesis was rejected. However, the approach proposed in this paper offers
predictive inference for statistical reproducibility in both scenarios - when the null
hypothesis is rejected andwhen it is not. This ensures amore comprehensive evaluation
of reproducibility.

5.2.4 G× L adjusted p-value

It is hard to achieve standardisation in preclinical research and there has been a shift to
embracingvariability, as discussed inSection 6. In linewithReproducibilityType E, all
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conditions cannot be the same in the replicate experiment. Kafkafi et al. [90] described
genotype-by-laboratory interaction (G × L) adjusted p-value, a metric that is aimed
at accounting for variability in genotype influenced by environment. G × L adjusted
p-value indicates the probability of replicating the result in additional laboratories
[90].

The sensitivity of strains of mice (animals with identical genetics) to the environ-
ment is assessed by collecting results about different strains from different laboratories
and determining how consistent is the phenotype, i.e. the set of observable character-
istics. The G× L adjusted p-value is derived by estimating the interaction noise σ 2

G×L
from studies of a number of strains of mice in different laboratories. This provides
information on the extent to which the p-value needs to be adjusted. For example, if
the strain is very susceptible to the environment, the p-value adjustment is greater.
The International Mouse Phenotyping Consortium (IMPC) strived to promote a pub-
lic database of mutant lines of mice that could be available to all laboratories. The
random lab model (RLM) adds the interaction noise σ 2

G×L to the animal noise to
create a base for determining phenotype differences [90]. The power is subsequently
lowered and confidence interval of the estimated effect size is widened, accordingly,
to ensure replicability. In theory, scientists could calculate G × L-adjusted p-values
and confidence intervals. However, the method does not appear to be developed for a
wider-use application. Kafkafi et al. [90] claim that reporting G× L-adjusted p-values
and confidence intervals alongside the usual p-values and confidence intervals would
increase replicability in preclinical research but they do not present reasons.

This approach seems, at first sight, appealing, as the calculation of the G × L
adjusted p-value takes into account results from a variety of laboratories. However,
even the G× L adjusted p-value is susceptible to errors. The feasibility of this method
is related to the question whether it is possible to accurately estimate the G × L
variability and if it is reasonable to trust this estimate. The variability in animal testing
is complex, it does not only depend on the mouse batch and a particular laboratory,
but also on the person who runs the experiment, the time of the day or the year, and
the environment conditions, as will be discussed in Section 6.

5.2.5 Nonparametric Predictive Inference (NPI)

The quantification of statistical reproducibility, particularly in cases where only the
original test scenario has been carried out, has received less attention. Some metrics
related to this scenario were mentioned earlier; however, they primarily focus on
the analysis process or environmental factors, rather than the data itself. The data
aspect is critical, as it provides valuable insights into the variability that can influence
reproducibility.

This authors suggest viewing statistical reproducibility as a prediction problem,
focusing on the variability introduced by data and statistical methods. This perspective
offers a distinct approach, differing from other factors that influence reproducibility.
Rather than relying on classical frequentist methods, which are less suited for predic-
tive problems, we propose the Nonparametric Predictive Inference (NPI) framework.
NPI is designed formaking inferences about future observations, making it well-suited
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for assessing reproducibility. It offers a frequentist alternative to Bayesian approaches,
such as Billheimer’s [21].

The NPI framework assumes that future observations are exchangeable with the
observed data, meaning they are equally likely to fall into any of the intervals created
by the ordered data. This allows for predictions without assuming the exact location
of future data within these intervals. Uncertainty is quantified through lower and
upper probabilities, based on all possible orderings of future observations among the
observed data. For further details, refer to [36, 38, 39].

In the context of reproducibility, statistical reproducibility is defined as the prob-
ability of obtaining the same test outcome when the test is repeated under identical
conditions. This aligns with Reproducibility Type C and is central to theNPI approach.
In NPI, after performing a hypothesis test on the original sample of size n, we deter-
mine whether to reject H0 or not based on the value of the test statistic. Next, we
predict a future sample of size n, where all orderings of the n future observations
among the n actual data observations are equally likely. We then determine whether
H0 is certainly rejected, possibly rejected, or possibly not rejected for each ordering
of the future observations. We count all orderings for which the conclusion is certainly
the same as for the actual test for the lower reproducibility probability. For the upper
reproducibility probability, we include the ’possibly’ orderings where the conclusion
is the same as for the actual test.

For large sample sizes, computing exact lower and upper reproducibility probabil-
ities can be challenging due to the exponential growth in the number of orderings.
To address this, reproducibility probabilities can be estimated using methods like the
NPI bootstrap method (NPI-B) [41] and the sampling of orderings method [42, 101,
102]. These methods provide estimates of the lower and upper reproducibility prob-
abilities and offer flexibility for various applications beyond hypothesis testing, such
as estimating population characteristics from randomized response data [3].

In practical research, at each stage of the process, decision-makers must decide
whether to proceed with further study or repeat the test. The NPI reproducibility
probability offers a valuable metric to support this decision-making process. To obtain
the NPI reproducibility probability, the full data set is required. Different data with
the same test statistic value can lead to different reproducibility values, highlighting
the importance of using complete data for accurate assessments. However, the NPI
reproducibility probability does not imply that the test outcome is “right" or “wrong."
For that, traditional aspects of hypothesis testing, such as significance levels, power,
and other related post-data metrics, remain essential. Therefore, NPI reproducibility
should be considered alongside other statistical methods, including power analysis,
effect size (ES), and p-value assessments, to provide a comprehensive understanding
of the test’s robustness.

Extensive research on NPI for reproducibility has contributed significantly to the
field [2, 22, 37, 40, 41].NPI has been used to study reproducibility for various statistical
tests, including nonparametric tests, likelihood ratio tests, and tests for population
quantiles.
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6 Reproducibility in Preclinical Research: A Case Study

This section will address some of the issues regarding reproducibility of studies that
specifically relate to preclinical in-vivo research, i.e. research carried out on animals,
typically rodents. Preclinical research mostly focuses on the actual replication of an
experiment in accordance to Reproducibility Type E, as due to the inevitable variations
between experiments, it is impossible to have exactly the same conditions in two sepa-
rate experiments. Arguably, this is impossible in any area. Quantifying reproducibility,
in situations when only the original experiment has been carried out, has not received
much attention in preclinical research.

6.1 Ethical issues

Animals are a fundamental part of preclinical research and the majority of the dis-
cussion on reproducibility in preclinical research is linked to them. Due to ethical
issues, sample sizes in animal studies are small. Thus, poor reproducibility may be
to some extent unavoidable. On the other hand, a follow-up study, which assesses
reproducibility, increases the number of animals needed [127]. The 3Rs principles
[55] provide guidance for researchers on how to responsibly conduct experiments in
animal research. The 3Rs stand for replace - animals by non-sentient animals when-
ever possible; reduce - the number of animals; and refine - improve animal well-being.
The ‘reduce’ principle is the most relevant one in the discussion on reproducibility
herein and there is, arguably, a need for a move from the traditional focus on reducing
the number of animals per experiment solely to a more integrated approach which
also considers validity, robustness and reproducibility of experiments. The ‘replace’
and ‘refine’ principles are indirectly linked to the reproducibility debate: the more a
researcher adheres to these principles, the more ethical ground there will be to repeat
the experiment or to use a larger sample size. For the ‘reduce’ principle, an important
question arises: Is it possible to improve reproducibility using smaller sample sizes,
thus reducing the number of animal, assuming the experiment is set up optimally?

6.2 Challenges of using animal in research

Small sample size, linked to the ethical concerns, as well as to financial and practical
reasons, is only one of the challenges a researcher faces when working with animals
in preclinical research. The involvement of animals adds additional uncontrollable
variability. Animals are very perceptive to small environmental changes, such as light
and noise, and this can have an impact on the experiment.

Apart from the variations related to animal use, experiments may face the problem
of inevitable variations, such as time lag, variation of apparatus and material [142].
Similarly, variability of standard reagents [12] can affect the experimental outcomes.
Slightly changing the experimental procedure or using different laboratories, or dif-
ferent animal strains are some of the reasons for low reproducibility of experiment
[33]. Here strain stands for a group of animals that are genetically the same.
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Stevens [143] named other reasons, with focus on animal use in comparative psy-
chology: There is often repeated testing on more animals that are more expensive than
rodents, such as parrots or primates. Also people may have more objections to testing
on more intelligent animals. Therefore, as much data as possible are collected during
one experiment. This exploratory data analysis may lead to data fishing. Furthermore,
there is often limited species coverage and species are often substituted in a replicate
study.

6.3 Recommendations offered in literature

Reynolds [126] pointed out the lack of adequate statistical training in preclinical
research and he advocated training in statistics for researchers, specific to preclinical
research. According to Reynolds [126], researchers should be taught to create the
statistical design and carry out data sampling, before analysing the data and making
inferences. The importance of statistical training has already been discussed in Sec-
tion 3. However, not much attention has been paid to the details of such statistical
training, possibly because a lot of the literature has been written by non-statisticians.
It would be desirable to discuss in greater depth the methods that should be taught,
the level of understanding of the methods that researchers should acquire, and the
guidance on when a non-statistician should consult a statistician.

Spanagel [141] recommended a variety of measures that can be incorporated into
the planning and design of an experiment in order to improve reproducibility: Prior
to a new study, researchers could consider conducting a systematic review or poten-
tial meta-analyses of existing related studies, conduct a power analysis, pre-register
experimental study protocols, as discussed in Section 3, and consider carrying out
multi-centre preclinical studies. In the context of research on psychiatric disorders,
Spanagel [141] advised researchers to consider using animal models that satisfy two
psychiatric diagnostic classification systems, which are based on observations from
clinical research [141], and it is important that the preclinical study reflects those. It is
also advisable not to overcomplicate statistical analysis and to use only the methodol-
ogy that the researcher has a good understanding of [141]. Richter [127] argued that the
risk of bias could be prevented by random treatment allocation, blind administration
of the treatment, and blind assessment of outcome. According to Richter [127], this
could eliminate aspects of the experiment which lead to misleading results. However,
it is arguable whether randomisation is preferable to carefully balancing an experiment
with known factors.

Regarding the documentation of an experiment, diligently followingARRIVE (Ani-
mal Research: Reporting of In Vivo Experiments) guidelines [7] improves reporting
standards in animal testing [127] and thus makes replication of the experiments eas-
ier. ARRIVE guidelines provide directions on reporting of ten essential items: study
design, sample size, inclusion and exclusion criteria, randomisation, blinding, out-
come measure, statistical methods, experimental animals, experimental procedures,
and results. Moreover, reproducibility can be improved by making raw data available
in accordance to FAIR principles [151] and by publishing negative findings [141],
both recommendations have already been discussed in Section 3.
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In preclinical research, discussions of reproducibility typically focus on adhering
to good statistical practices and embracing the inherent variability introduced by the
use of animals. NPI reproducibility research, however, does not concern itself with
deviations stemming from the fact that animal testing is never conducted under identi-
cal conditions (e.g., mice may have slightly different properties, and new experiments
are often carried out in different laboratories). Instead, it is solely concerned with the
reproducibility of statistical tests based on the original test scenario data, including
the description of the data and the statistical analysis. While much of the literature
on reproducibility centres around whether an experiment can be reproduced under
similar circumstances, this is irrelevant for NPI reproducibility because it does not
involve conducting a second experiment. Simkus et al. [140] presented NPI-RB for a
pairwise tests application in preclinical research. They explored whether there is any
relationship between reproducibility and p-values or effect sizes. The initial findings
showed that there is a trend that test statistics close to the test threshold are likely
going to lead to lower reproducibility. They also explored the reproducibility of the
final decision when multiple pairwise comparisons are carried out. This aspect of
reproducibility has not been addressed elsewhere in the literature. It was shown that
statistical reproducibility for the final decision is notably lower than reproducibility
for separate pairwise comparisons.

6.4 Heterogenisation – embracing variability

In alignment with Reproducibility Type E, there is a body of literature suggesting that
systematic heterogenisation rather than standardisation improves reproducibility in
preclinical research [25, 91, 92, 127, 128, 147]. This literature focuses on experiments
carried out on mice. Richter [127] argued that perfect homogenisation decreases inter-
individual variation within a study population to zero, which leads to statistically
significant results that cannot be generalised to slightly different conditions. This is
also called the standardisation fallacy. Standardisation does not account for animals
being responsive to the environment, also known as phenotypic plasticity [91]. This
biological variation caused by phenotypic plasticity differs from random noise [147].
In preclinical research, it has been suggested to embrace variability through systematic
heterogenisation in order to improve reproducibility [91].

Examples of heterogenisation named in the literature are usingmice of diverse char-
acteristics, such as mice of different age, sex and body weight, [129]; using different
inbred strains of mice [147]; co-housing individuals of different strains of mice [127];
varying the housing conditions of mice [147]; varying husbandry and test procedures
[129]; and carrying out the experiment on mice at different times [25] or in multiple
laboratories [148]. For example, Bodden et al. [25] presented a studywhere systematic
heterogenisation, adding variability, via carrying the experiment on mice at different
times of the day improves reproducibility (Type E).

A possible tool for heterogenisation is the use of randomised block designs for the
experiments. This can include using time or a batch as blocking factors [56, 92]. The
latter is called themulti-batch designwhere the experiments are split into small batches
of animals which are tested at different times. These ‘mini-experiments’ are then
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brought together in the statistical analysis. Karp et al. [92] showed how multi-batch
design improves reproducibility in a syngeneic tumour case study. For the multi-batch
design, they explored the following statistical analyses: meta-analysis, a fixed effect
regression approach, a random effect regression approach and a pooled approach. A
pooled approach was not recommended for the statistical analysis as it ignores batch
information. Meta-analysis and random effect regression were recommended by the
authors for the analyses of multi-batch design experiments [92].

Embracing variability also addresses a problem that is interlinkedwith reproducibil-
ity: there is a high failure rate in translating research from preclinical to clinical studies
[127]. Translating research means that conclusions about a new treatment reached in
the preclinical stage of the drug development are validated in clinical research [127].
In a pharmaceutical context, it is desirable that the conclusions of a study remain the
same even if the circumstances change, in order to increase the chance of a successful
translation of the findings from preclinical to clinical studies, as the end goal of phar-
maceutical research is to provide a new treatment. Thus, in the long-term, the focus
on improving and quantifying reproducibility can also positively impact translating
research from preclinical to clinical studies and, consequently, improve the efficiency
of the drug development process.

7 Concluding remarks

The paper provided a comprehensive literature review on reproducibility, discussing
themain debates and highlighting the lack of a universally accepted definition. Various
definitions and related terms available in the literature are classified into five types.
It was shown that sometimes different definitions are used for the same term and
sometimes the same definition is used for different terms; some definitions are not
clear; and often the term reproducibility is used without being explicitly defined.

Reasons for low reproducibility and suggestions for improving reproducibility
offered in the literature were outlined. Many of the solutions simply entail adhering
to good scientific practice and using appropriate statistical, experimental, and docu-
mentation methods, as well as fostering collaboration among different stakeholders.

Statistical reproducibility has also been a key topic of debate. Similar to the concept
of reproducibility, statistical reproducibility is not a clearly defined term. Goodman
[63] defined reproducibility as the probability of observing another statistically sig-
nificant result in the same direction as the first one, assuming identical conditions and
sample size.

Statistical discussions of reproducibility have focused on the variability across
studies and how to control this variability. Important questions remain, such aswhether
the assumption of exchangeability is important for quantifying reproducibility and
what framework should be used to assess it. Related to the reproducibility debate
has been the ongoing discourse on the use of p-values. While there are many issues
associated with p-values, there is currently no clear alternative that can be widely
adopted by researchers.

The paper also reviewed metrics used to assess reproducibility when both the orig-
inal and replicate experiments are conducted, but noted that less attention has been
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paid to quantifying reproducibility when only the original experiment is performed. A
gap in the current debate is the lack of a clear understanding of what the original study
data can reveal about reproducibility. This paper proposed treating reproducibility as a
predictive problem, which can be addressed through frameworks such as Nonparamet-
ric Predictive Inference (NPI), a method that offers a way to quantify reproducibility
using available data.

Finally, we briefly discussed reproducibility challenges in preclinical research,
focusing on ethical concerns and offering possible solutions. A key insight is the shift
from striving for homogeneity to embracing variability in preclinical research. An
important question is what should a decision-maker do when reproducibility is low?
A statistician would most likely advise that in such cases an experiment should be re-
run, possibly with larger sample sizes. However, there are often ethical and financial
constraints that make the replication of the experiment difficult. It is of future research
interest to present an action plan for cases where reproducibility is low.
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